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Hofstader’s Law:

It always takes longer than you expect, even
when you take into account Hofstader’s Law
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Abstract

This work considers control of an ash transformation process, which trans-
forms wood ash produced at district heating plants into fertilizing granules.
The manufactured granules are recycled back to the forest grounds, as a
fertilizer, or as a tool to reduce the acidification in the forest soil at the
spreading area. Other areas of application are, for example, structural fill
and substitute for cement in ready-mix concrete.

The ash transformation process includes mixing, size reduction, granulation,
drying, sorting and packing. Furthermore, the transformation process uses
ETEC-dolomite that acts as a binding agent and therefore improves the
strength of the produced granules. Due to the dolomite, the lime effect of
the produced fertilizers is increased, whereas the leaching speed of the wood
ash included heavy-metals is decreased. A robust machine is developed and
controlled by an industrial control system in order to enable continuous and
automatic manufacture. At present, the units for mixing and size reduc-
tion are fully implemented, built to comply with the industrial requirements
for continuous operation. The remaining stages are controlled to a certain
extent, but are still based on the earlier prototype.

Mixing ash/dolomite/water in order to obtain granular material is one method
to stabilize wood ashes. The main problem is predicting the quantity of water
to be added, since the necessary amount varies with the wood ash quality.
The implemented controller is therefore able to determine this critical amount
without any measure of the wood ash quality, as for example the ash carbon
content. However, the produced granules do not benefit from high carbon
content. Therefore, two potential on-line methods for carbons in ash moni-
toring are presented but not implemented due to financial reasons.
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Notations

Common abbreviations, and general notational conventions for mathematical
symbols and operands follow. When local differences occur, they are clearly
indicated in the text.

Symbols

A,B,C,D,F Polynomials of order na, nb, nc, nd, nf .

At,Bt,Ct,Dt The time varying matrices of a linear system.

α Parameter used in the GMA-test.

∈ Belongs to.

C Field of complex numbers.

c Concentration of a measured parameter.

C2uy(ω) Quadratic coherence spectrum.

Ca(CO)3 Carbonate (calcite).

Ca(OH)2 Slacked lime (portlandite).

CaO Quicklime.

Cd Cadmium.

CO2 Carbon dioxide.

Cu Copper.

d Delay of the process.

d Granule mean diameter.

, The left side is defined by the right side.

δ Drying time for each granule.

e White noise disturbance.

ε Predictor residual.

²r Relative permittivity (real dielectric constant).

ix
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η(t) Viscosity.

f Vector of predicted free reponse.

∆f Absolute bandwidth.

F (ω) The fourier transform of the continuous signal f(t).

fc Carrier (center) frequency.

Fs(ω) The fourier transform of the sampled variable.

∀ For all.

Φuu Autospectra of the input u.

Φyy Autospectra of the output y.

Φvv Autospectra of the disturbance v.

Φuy Cross spectrum between u and y.

ϕ Regression vector.

G GPC prediction matrix.

g The impulse response of the process.

G(q,θ) The transfer function from u to y.

G0 The true transfer function from u to y.

γ Treshold used in the CUSUM-test.

h Sampling time.

H(q,θ) The transfer function from e to y.

H2O Water.

Hfb Feedback compensator.

Hff Feedforward compensator.

I Identity matrix of appropriate dimension.

Ii Intensity of the incident light.

Ir Intensity of the reflected light.

K Gain matrix in RLS.

k1 Converts the input voltage into a pulse frequency.

k2 The applied off-delay.

λ Forgetting factor in RLS.

L(q) Pre-filter (data-filter).

M Model set, model structure.

muu Estimated mean.

µ∗ Estimated mean.

N1 The minimum prediction horizon in the GPC.
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N2 The maximum prediction horizon in the GPC.

Nu The control horizon in the GPC.

NOX Oxides of Nitrogen.

ν Drift parameter in the CUSUM-test.

O2 Oxygen.

1 Column vector with all entries equal to one.

ω Frequency in rad/s.

ωfl, ωfh Lower/upper break frequencies for the data filter.

ωalias The fundamental alias frequency.

ωN The nyquist frequency.

ωs The sampling frequency.

P Parameter covariance matrix in RLS.

Pe(t) Normalized effective power.

Pe(k) Periodic observations of Pe(t).

P crite Critical effective power (mixture viscosity).

Pb Lead.

Q(t) Water flow.

Qmax The maximum water flow.

R Field of real numbers.

r(k) Slope of the set-point trajectory in the GPC.bRuu(n) The correlation matrix.

ruu(τ) The autocorrelation of a stochastic process u.

ρ The control penalty in the GPC.

S True system.

s(k) Distance measure.

σ Conductivity.

{·} Sequence of numbers.

tk Sampling times.

τ Time-delay of a system.

θ Vector of unknown parameters.

θ̂ Estimated parameter vector.

u The process input.

∆u Vector of future control increments.

uc Setpoint for controller.
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uf , yf Filtered process output and input values.

v External variable that represents disturbances.

w Vector of future references.

w(k) Reference trajectory for the GPC.

wos The mesh diameter for the oversized screen.

wps The mesh diameter for the product screen.

y The process output.

ŷ(k + i|k) The expected value of y(k + i) at time k.

yF Filtered measurement before A/D conversion.

Zn Zinc.

Operators and Functions

argminx f(x) The minimizing argument of f(x).

|z| Absolute value of z ∈ C.

A−1 The inverse of the matrix A.

AT The transpose of the matrix A.

AH The hermitian transpose of the matrix A.

E{X} The expected value of a stochastic variable X.

FX(x) The probability distribution function.

fX(x) The probability density function.

mod Modulus, i.e., the signed remainder after division.

kxkp Norm of vector, kxkp, (
Pn
i=1 |xi|p)1/p.

p Differential operator, p , d/dt.

q, q−1 Forward/backward shift operator, qy(k) = y(k + 1).

s Laplace transform variable.

sign Signum function.

sinc Sinc function, sinc(t) , sin(πt)/πt.
log Natural logarithm.

V ar{X} The variance of a stochastic scalar X.
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Acronyms

ACAA American Coal Ash Association.

A-D Analog-to-Digital.

ARX AutoRegressive with eXternal input.

ARMAX AutoRegressive MovingAverage with eXternal input.

CARIMA Controlled AutoRegressive Integrating MovingAverage.

CIFA Carbon In Fly Ash.

COMLI COMmunication LInk.

CPU Central Processing Unit.

CUSUM CUmulative SUM.

D-A Digital-to-Analog.

DDE Dynamic Data Exchange.

FETC The Federal Energy Technology Center.

GMA Geometric Moving Average.

GPC Generalized Predictive Control.

GPR Ground Penetrating Radar.

HA Hardware Alarms.

HMI Human Machine Interface.

IEC International Electrotechnical Commission.

IMP Internal Model Principle.

LOI Loss-On-Ignition.

MPC Model Predictive Control.

NIR Near InfraRed.

ODBC Open Data Base Connectivity.

OE Output Error.

PC Personal Computer.

PE Persistent Excitation.

PM ProgramModules.

PID Proportional Integral Derivative.

PLC Programmable Logic Controller.

PRBS Pseudo Random Binary Sequence.

RLS Recursive Least Square.

SA Software Alarms.

SCADA Supervision, Control and Data Acqusition.
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SFC Sequential Function Chart.

SM SubModules.

UWB Ultra-Wide Band.

VM VariableModules.

WAS Wood Ash Stabilization.

Glossary

Agglomerate Reshaping fine powder into larger particles.

ETEC-dolomite Mineral used as a binding agent.
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Chapter 1

Introduction

1.1 Background

Sweden supports the resolution concerning the environment and progress,
which was taken at the U.N. convention, UNCED, Rio 1992. After this, it is
now our obligation to aim for a lasting development. We should encourage an
environmentally-sound use of renewable resources of energy, and furthermore
the adaptation to the ecological cycle. The today active system for producing
energy with biomass fuel is included in the resolution taken at the U.N., but
still, the adaptation to the ecological cycle is not fully brought to an end.

Recycling of wood ashes from burnt wood (back to the forest grounds) is of
great ecological importance. However, the ash cannot be recycled directly
after combustion. There are several reasons for this, one being the volatil-
ity of wood ashes. This problem is of interest to companies that burn large
amounts of wood in district heating plants and in other applications. Every
year about 300 000 tons [43] of wood ash is produced in Sweden after com-
bustion in heating plants and other applications that use biomass fuel. The
ash, which contains fertilizing substances such as K, Mg, Ca, P and S [30],
i.e., the substances that the trees initially are absorbing from the soil when
growing, are today deposited as waste. This is not a good solution from an
environmental point of view and contradicts the U.N. resolution. From Jan-
uary 1, 2000, there is a new deposit law for organic material in Sweden. The
cost of 850 SEK/ton deposited wood ash also adds an economic incentive to
recycle wood ash. Therefore, the aim is to implement a closed-loop system
as symbolized by Figure 1.1, in which the wood ash is recycled back to the
forest grounds.

1
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Granules

Biomass Fuel

Figure 1.1: The closed-loop system.

The ash cannot be recycled directly after combustion without some pre-
processing; its volatility would cause severe spreading problems. At the com-
bustion an oxidation occurs. Therefore, primarily, all substances in the wood
ash appear as oxides [60]. This implies that many components in the wood
ash become alkaline and reactive. Hence, a direct spreading would cause
heavy damage to the vegetation. Other drawbacks of the direct spreading
are that the fertilizing substances are then emitted too fast or the ash could
clog up the pores of the surrounding living plants. The idea is to transform
the ashes into a product that easily could be recycled. The product should be
manufactured locally at the heating plant and then distributed to the forests
nearby.

As pointed out earlier, wood ashes are difficult to handle because of their
volatility. It is therefore necessary to stabilize the wood ash before trans-
portation and scattering. It is also necessary to stabilize the ash in order
to control the leaching speed of the nutrients and the wood ash included
heavy-metals, as for example cadmium (Cd), copper (Cu), lead (Pb) and
zinc (Zn) [19]. In stabilized wood ash, heavy-metals are sparingly soluble.
Thus, the heavy-metal emission from recycled (stabilized) wood ashes are
comparable with the felling remains left at the felling area. It is also shown
that berries and fungus do not obtain any higher concentrations of heavy-
metals after spreading of stabilized wood ash [36]. It is recommended to
recycle an amount of wood ash that will add a total heavy-metal concentra-
tion comparable to the take out at the felling. Then the forest soils are not
supplied with more heavy-metals compared to the take out, thus resulting in
a non-increasing concentration.
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ETEC-dolomiteETEC-dolomite

WaterWater

MixingMixing

AshAsh

Size ReductionSize Reduction GranulationGranulation HardeningHardening

PackingPacking
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Figure 1.2: The general ash transformation process.

A researcher at Kalmar University College (Ph.D. Tommy Claesson) has
devised a novel method to transform wood ashes into fertilizing granules, easy
to handle and with adequate properties for recycling [30]. The solution is to
mix the ash with water and a mineral (called ETEC-dolomite) that acts as
a binding agent. The ETEC-dolomite, which is imported from Estonia, also
reduces the acidification in the forest soil at the spreading area. Furthermore,
the intensity of the heavy-metal emissions from the produced fertilizers are
even more reduced due to the ETEC-dolomite.

The machine for automated manufacture is based on a pilot equipment that
has been used to granulate the mixture of ash, dolomite and water. This
prototype was developed by Graninge - Kalmar Energi in cooperation with
Kalmar University College. The prototype consists of five different processing
units, which are indicated by Figure 1.2. The ash, ETEC-dolomite and water
are first mixed into a material that is used for granulation. When a suitable
mixture is obtained, the batch is put into a feeder that gradually forces the
material through a raster, which reduces the size of the passing mixture.
The small particles created pass through a drum granulator where the actual
granulation occurs. The granulated material is dried and hardened before it
is packed.

Earlier, the prototype was controlled manually, and the granule properties
then depended on the operator’s knowledge and experience. The operator
determined the mixture quality by taking a sample and analyzing the con-



4 CHAPTER 1. INTRODUCTION

sistency by squeezing it. This solution was expensive because of labor costs.
Furthermore, the work was monotonous, making it even more difficult to
maintain a good and uniform quality of the fertilizing granules. The purpose
of this research is to go from art to science.

1.2 Objective

The objective is to develop the idea outlined above into a well-proven, pro-
fessional method for recycling the ashes. The granule manufacture should be
automatic and batch-wise, all the way from mixing the ingredients to packing
the finished products. The ash transformation process should be capable of
handling 2 tons of wood ash per day and be integrated with the heating plant
computer system so that information easily can be exchanged between the
local control system and the system used for supervision. Since there are
several stages in this process, which all will run concurrently, it is necessary
to use real-time control. Because of the industrial environment, an industrial
control system is suitable as a base. The control system should not only be
able to interact with the process. It should also be able to interact with the
operator. It is very important to emphasize that the man-machine interface
plays an essential role in these kind of applications. If the operator does not
understand the information he/she is receiving, it is impossible to take the
correct decision about the next step in the process. Therefore, it is impor-
tant to also facilitate the exchange of information between the user and the
equipment to be controlled. A well designed interface not only makes work
conditions more pleasant, but also helps considerably to reduce errors and
thus limit the extent of possible damage.

Since each stage in the ash transformation process earlier has been controlled
manually, it is important to utilize the knowledge that the original process
operator’s possesses. This could help a great deal on the way from art to
science in process experiments, controller design and software development.

1.3 Related Works

Research related to recycling of fly ash produced at coal-filed boilers are well
known. The American Coal Ash Association (ACAA) reports that utilities
and other coal-burning facilities generate nearly 50 million tons of fly ash
annually [15]. Of this total, approximately 37 million tons are landfilled,
while only 22%, or 13 million tons are reused. Applications in which fly ash
is commonly used are substitute for portland cement in ready-mix concrete
and structural fill. The greatest factor limiting the reuse of greater volumes of
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fly ash is poor ash quality, primarily due to the presence of excessive unburnt
carbon, which restricts usage of ash in ready-mix concrete, the largest market
for fly ash in USA.

The research related to recycling of wood ashes back to the forest grounds are
in its infancy. To summarize, there is a large amount of papers published that
deal with the leaching properties of recycled wood ash. When considering
techniques to manufacture products suitable for recycling, there is not that
much published. The work in the area of wood ash recycling and related
topics can be divided into several different categories, as for example:

Techniques for Wood Ash Agglomeration

In [38] several techniques used to agglomerate wood ashes are presented thor-
oughly. The advantages of using a drum granulator is presented in [30]. A
number of experiments in Sweden to agglomerate wood ashes, on going or
finished, are documented in [39]. Nordenberg presents a solution where a
stirrer technique is adopted to transform the wood ash into granules. The
solution requires four hours/day of labor work. The company RENOMA [43]
granulates both lime, ashes and different sludges, either separately or com-
bined. Their aim during 1999 was to handle one third of the total amount of
wood ashes produced in Sweden.

Chemical Properties of Ashes

In [19], wood ashes from 10 heating plants and peat ashes from 3 plants were
analysed to determine their contents of nutrients and heavy-metals and cor-
responding solubilities. In addition to pulverulent fly ashes, the investigation
also included fly ashes hardened by adding water. Eriksson shows that the
hardening gives decreases in pH and electrical conductivity suggesting that
this process decreases the solubility of the fly ashes. Several aspects of ash
chemistry are also discussed in the Ph.D. thesis by Steenari [48] .

Leaching Properties

The impact on the environment, leaching properties, how and where the
stabilized wood ash should be recycled are presented in [18]. This reference
also includes the opinion about wood ash recycling from the Swedish national
environment protection board and the Swedish national board of forestry.

Measurement of Unburnt Carbon in Wood Ashes

Most of the methods today are developed for coal-fired boilers. Several off/on-
line methods are available. The Loss-On-Ignition (LOI) test is the standard
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off-line method for determination of carbon content in fly ash. However, in
[7] it is shown that this conventional test method is not an accurate measure
of unburnt carbon in fly ash. If there are significant quantities of slacked lime
(portlandite) Ca(OH)2 and carbonate (calcite) CaCO3 in the fly ash, which,
along with the particulate carbon lose weight under the high-temperature
oxidation conditions of the LOI test, the weight loss from these minerals
easily exceed that due to carbon resulting in gross errors in the LOI tests for
fly ashes. The Federal Energy Technology Center (FETC), U.S. Department
of Energy is every year organizing a conference on unburnt carbon in utility
fly ash. Good publications from FETC on the topic of on-line Carbon In Fly
Ash (CIFA) monitoring are [29], [57] and [53].

1.4 Problem Description

There are always some unburnt remains of carbon in the ash. This is so
because the combustion is not always optimal due to varying quality of the
biomass fuel, and due to different combustion loads. The amount of unburnt
carbon influences the overall granule properties in a very definable way: if
the amount of unburnt carbon is high, this will decelerate the self-hardening
process for a granule with no binding agent [38], [60]. It should also be
pointed out that the produced granules do not benefit from high carbon
contents, since their fertilizing properties will then deteriorate. If there is
a high carbon content present, the wood ash should be sorted out to be
reburnt instead of being used for granule manufacture. If the wood ash is
reburnt, the amount of unburnt carbon decreases and the ash can be used
in the transformation process. Hence, there is a need for an accurate on-line
measure of the wood ash carbon content.

It should be stressed that it is ”fairly easy” to decrease the carbon content in
the fly ash and thus improve the burner efficiency by increasing the oxygen
ratio during combustion. On the other hand, the burner then produces high
NOX levels at elevated O2. This is not permitted by the authorities and puts
us into a dilemma. To optimize the combustion efficiency without elevated
NOX levels is an interesting control problem −however not within the scope
of this thesis.

Mixing ash/dolomite/water in order to obtain granular material is one method
to stabilize wood ashes. The main problem is predicting the quantity of water
to be added, since the necessary amount varies with the wood ash quality. If
the quantity of water exceeds the necessary amount one will obtain a mixture
useless for granular material. Therefore, accurate water control is crucial. In
[30], it is suggested that if a high content of unburnt carbon is present, the
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mixture needs more water. This indicates that the process dynamics change
due to the varying composition of the wood ash. If the dynamics are not time
invariant, basic control theory may not be sufficient to cope with the prob-
lem. One suggested method to solve control problems with systems where the
process dynamics change is to use Adaptive Control. The theory of Adaptive
Control is well known and used in numerous of industrial applications today
[63].

1.5 Outline and Contributions

This thesis addresses both the practitioner and the more theoretically inclined
reader. Terms written in italics are generally index words found at the end of
the thesis. Uncertain readers are advised to look up the meaning of common
abbreviations, and general notational conventions for mathematical symbols
and operands. The thesis is divided into six main sections, not counting the
introduction in this chapter nor the concluding chapter.

Chapter 2 presents the suggested control structures and the selected control
principles for each stage of the ash transformation process that are auto-
mated. Further, a short survey of the design procedure and implementation
methods is given. The objective is to provide the reader without prior knowl-
edge with an understanding of these methods.

On-line measurement of carbon in wood ash is the main issue in Chapter
3. Motivations for on-line monitoring are given and available methods are
surveyed. The philosophy of a measuring device based on impulse radar is
also described.

Chapter 4 presents the chemical properties and the empirical modeling of
wood ash stabilization. As in Chapter 2, a survey of some topics in system
identification is given for the reader unfamiliar with the topic. Further, the
experimental setup and the results from the first and second stage exper-
iments in the system identification procedure are presented. The chapter
finishes with a summary and concluding remarks.

Control of the Wood Ash Stabilization (WAS) process using different control
strategies to detect the critical amount of added water is discussed in Chapter
5. Three strategies are evaluated; a probing strategy, the Geometric Moving
Average (GMA) test and the CUmulative SUM (CUSUM) test, all three
adequate for successful implementation.
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The process operations based on the pilot equipment developed by Graninge
- Kalmar Energi in cooperation with Kalmar University College are presented
in Chapter 6. The general philosophy applied during the development and
implementation of the control program for the ash transformation process is
discussed in Chapter 7. Finally, in Chapter 8 the main topics and contribu-
tions of the thesis are summarized and some topics for future research and
development are outlined.

The main contributions of this work may be summarized as follows:

• A robust machine is developed and controlled by an industrial control
system in order to enable automated manufacture of fertilizing granules
from burnt wood ash.

• Different approaches for on-line Carbon In Fly Ash (CIFA) monitor-
ing are surveyed and a measuring device based on impulse radar is
presented.

• A new method is developed and implemented in order to predict the
necessary amount of added water in the WAS process.

1.6 Academic Work

The main parts of the material presented in this thesis have been published
earlier. Below are all the publications by the author listed.

Conference Papers

The ash transformation concept presented in this thesis was filed together in

• T. Svantesson, A. Lauber and G. Olsson. Automated Manufacture of
Granules from Burnt Wood Ash. V National Science-Technical Con-
ference. Macro Levelling and Reclamation of Areas with use of By-
Products Combustion, Svinoujscie, Poland, October 14-17, 1998.

The empirical model of the WAS process presented in Chapter 4 was de-
scribed in

• T. Svantesson, A. Lauber and G. Olsson: Viscosity Model Uncertainties
in an Ash Stabilization Batch Mixing Process. IEEE Instrumentation
and Measurement Technology Conference, Baltimore Maryland, USA,
May 1-4, 2000.
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Short versions of Chapter 5 appears in

• T. Svantesson and G. Olsson: Detection of Abrupt Parameter Changes
in an Ash Stabilization Batch Mixing Process. Swedish National Con-
ference on Automatic Control, Reglermöte 2000, Uppsala, Sweden, June
7-8, 2000.

• T. Svantesson and G. Olsson: Optimal Adaptive Control of an Ash
Stabilization Batch Mixing Process using Change Detection. IEEE
International Conference on Control Applications, Anchorage, Alaska,
USA, September 25-27, 2000.

Other conference papers not included in the thesis.

• A. Hultgren, W. Kulesza, M. Lenells, T. Svantesson and A. Lauber:
Virtual Real Time Measurement System with a Switched Kalman Fil-
ter. IEEE Work Shop on Emergent Technologies & Virtual System for
Instrumentation and Measurement. Niagara Falls, Ontario, Canada,
May, 1997.

Journals and Magazines

A popular science presentation of the project appears in

• T. Svantesson, S. Holmberg and T. Claesson: Granulerad aska ger
näring till skogsbruket. (In Swedish) Recycling Scandinavia 1: 50-51,
1999.

Miscellaneous

• Patent-application of an impulse radar system for on-line CIFA moni-
toring.

Some of the material presented in Chapter 5 has been used in

• F. Gustafsson. Adaptive filtering and change detection, John Wiley &
Sons, Ltd, 2000.
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Chapter 2

Control Structures and
Algorithms

2.1 Introduction

Several control structures and algorithms have to be applied to make the
ash transformation process automatic. In all implementations, a computer
is used to control the process. Practically all control systems that are im-
plemented today are based on computers. Such systems can be viewed as
approximations of analog-control systems, but this is a poor approach be-
cause the full potential of computer control is not used. At best the results
are only as good as those obtained with analog control. It is much better
to use computer-control systems, which base the control directly on discrete-
time models, so that the full potential of computer control can be used. A
more thorough discussion of this topic is to be found in [64].

2.2 Design: An Overview

Real control problems, like the ash transformation process, are often large
and poorly defined, while control theory deals with well-defined problems.
According to the dictionary, structuring can mean to construct a systematic
framework for something. In this context, however, structuring is used to
describe the gap between the real problems and the problems that control
theory can handle.

The problem of structuring occurs in many disciplines. Formal approaches
have also been developed. The terminology used here is borrowed from the

11
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fields of computer science, where structuring of large programs has been sub-
ject of much work. There are two major approaches, top-down and bottom-
up.

The top-down approach starts with the problem definition − the ash trans-
formation process. The problem is then divided into successively smaller
pieces, adding more and more details. The procedure stops when all pieces
correspond to well-known problems. It is a characteristic of the top-down
approach that many details are left out in the beginning. More and more
details are added as the problem is subdivided.

The bottom-up approach starts with the small piece, which represents known
solutions for subproblems. These are then combined into larger and larger
pieces, until a solution to the large problem is obtained.

Top-Down Approach

The top-down approach involves the selection of control principles, choice of
control variables and measured variables.

Control Principles

A control principle gives a broad indication of how a process should be con-
trolled. The control principle thus tells how a process should respond to
disturbances and command signals. The establishment of a control princi-
ple is the starting point for a top-down design. Several examples of control
principles can be found in [64].

Choice of Control Variables

After the control principle has been chosen, the next logical step is to choose
the control variables. The choice of control variables can often be limited for
various practical reasons. Because the selection of control principle tells what
physical variables should be controlled, it is natural to choose control vari-
ables that have a close relation to the variables given by the control principle.
Because mathematical models are needed for the selection of control princi-
ples, these models also can be used for controllability studies when choosing
control variables.

Choice of Measured Variables

When the control principle is chosen, the primary choice of measured vari-
ables is also given. If the variables used to express the control principle cannot
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be measured, it is natural to choose measured variables that are closely re-
lated to these control variables. Typical examples found in chemical-process
control, where temperatures - which are easy to measure - are used instead
of compositions, which are difficult to measure.

Bottom-Up Approach

In a bottom-up approach to control system design, the choice of control
variables and measurements comes first. Control-loops are then designed for
the individual process operations of the system − the ash transformation
process. At each iteration, different control designs are introduced in the
local loops until a system, with the desired properties, is obtained. The
controllers used to build up the system are the standard types based on the
ideas of feedback , feedforward, prediction and estimation, optimization and
adaptation.

2.3 Implementation Methods

Computer-Control

A computer controlled system can be described schematically as in Figure
2.1. The output from the process y(t) is usually a continuous-time signal.
The output is converted into digital form by the Analog-to-Digital (A-D)
converter. The A-D converter can be included in the computer or regarded
as a separate unit, according to one’s preference. The conversion is made at
the sampling times, tk. The computer interprets the converted signal, {y(tk)}
as a sequence of numbers, processes the measurements using an algorithm,
and produces another sequence of ”decision” or ”control-variables”, {u(tk)} .
This sequence is converted to an analog signal by a Digital-to-Analog (D-A)
converter. The events are synchronized by the real-time clock in the com-
puter. The digital computer operates sequentially in time and each operation
takes a certain amount of time. The D-A converter must, however, produce
a continuous-time signal. This is normally done by keeping the control signal
constant between the conversions. In this case the systems runs open loop in
the time interval between the sampling instants, because the control signal is
constant irrespective of the values of the output. However, if the time interval
between the sampling instants is short compared to the process dynamics,
this will not deteriorate the performance of the control system.

The computer-controlled system contains both continuous-time signals and
sampled or discrete-time signals. The mixture of different types of signals
sometimes causes difficulties. In most cases it is, however, sufficient to de-
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Figure 2.1: Schematic diagram of a computer controlled system.

scribe the behavior of the system at the sampling instants. The signal are
then at interest only at discrete times. Such a system is called discrete-time
systems. Discrete-time systems deal with sequences of numbers, so a natural
way to represent these systems is to use difference equations.

Logic, Sequencing and Control

Industrial automation systems have traditionally had two components, con-
troller and relay logic. Relays were used to sequence operations such as start-
up and shutdown and they were also used to ensure safety of the operations
by providing interlocks. Relays and controllers were handled by different
categories of personnel at the plant. Instrument engineers were responsible
of the controllers and the electricians were responsible for the relay systems.
The so called Programmable Logic Controller (PLC) emerged in the begin-
ning of the 1970s as replacements for relays. They could be programmed by
electricians and in familiar notations, that is, as rungs of relay contact logic
or as logic (AND/OR) statements. However, the PLC now include regular-
ity control and data-handling capabilities as well, a development that has
broadened the range of applications for it.

2.4 Control Methods

The bottom-up approach is used as design method for the ash transformation
process. This section presents different control techniques and algorithms
used for control of each stage (see Figure 1.2, Chapter 1) that is automated
in the transformation process. As regarding the mixture quality control,
we will emphasize the control algorithm based on Generalized Predictive
Control (GPC).
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Figure 2.2: Block diagram of the two-degree-of-freedom controller used for
control of the Wood Ash Stabilization (WAS) process.

The intended Carbon In Fly Ash (CIFA) analyzer provides the amount of
unburnt carbon present in the wood ash. When this information is obtained,
a controller should determine if the ash is to be used in the transforma-
tion process, or to be recycled for possible recombustion. This controller
is programmed with AND/OR statements and affects the ash transforma-
tion process with discrete on/off control actions. See Figure 2.4 for a block
diagram of a similar controller.

Mixture Quality Control

The schematic diagram of one of the proposed controllers for the mixture
quality control problem is shown in Figure 2.2. This is a two-degree-of-
freedom controller and its configuration has the advantage that the servo and
regulation problems are separated. The feedback controller Hfb is designed
to obtain a closed-loop system that is insensitive to process disturbances,
measurement noise and model uncertainties. The feedforward compensator
Hff is then designed to obtain the desired servo properties. The single mea-
surement y is the normalized effective power Pe(t), which represents the rate
of useful work being performed by the three-phase asynchronous machine
used as stirrer drive. Hence, this measurement also represents the mixture
viscosity. The setpoint uc is therefore the desired effective power. The con-
trol input u is the variable flow of water Q(t) added to the mixture of ash and
dolomite. The controller is based on Generalized Predictive Control (GPC)
[10], [6], [9], [63]. In [9] it is shown that a GPC is equivalent to a structure
based on an optimal predictor plus a classical two-degree-of-freedom con-
troller. In fact, for the unconstrained case, the closed loop system can be
posed in the classical pole-placement controller [64]
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Figure 2.3: The strategy of MPC (Model Predictive Control).

R(q−1)∆u(k) = T (q−1)w(k)− S(q−1)y(k) (2.1)

whereR, S and T are polynomials in the backward shift operator. This control
law can be considered as composed of a feedforward term (T/R) and feedback
term (S/R), c.f. Figure 2.2. The control law (2.1) can also be interpreted as

∆u(k) = −r1∆u(k − 1)− · · ·− rnr∆u(k − nr) + t0w(k) + (2.2)

· · ·+ tntw(k − nt)− s0y(k)− · · ·− snsy(k − ns)
As seen in (2.2), the control signal u(k) = u(k−1)+∆u(k) is based upon old
control increments∆u, the used reference trajectory w and old measurements
y. For example, in [64], it is shown that an incremental Proportional Integral
Derivative (PID) controller is a special case of the general form (2.2).

The methodology of all the controllers belonging to the Model Predictive
Control (MPC) family is characterized by the following strategy, represented
in Figure 2.3.

1. The future outputs for a determined horizon N , called the prediction
horizon, are predicted at each instant k using the process model. These
predicted outputs ŷ(k+ i | k) for i = N1, . . . , N2 depends on the known
values up to instant k (past inputs and outputs) and on the future
control signals u(k + i | k), which are those to be sent to the system
and to be calculated.

2. The set of future control signals is calculated by optimizing a deter-
mined criterion in order to keep the process as close as possible to the
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reference trajectory w(k) (which can be the setpoint itself or a close ap-
proximation of it). This criterion usually takes the form of a quadratic
function of the errors between the predicted output signal and the pre-
dicted reference trajectory. The control effort is included in the objec-
tive function in most cases. An explicit solution can be obtained if the
criterion is quadratic, the model is linear and there are no constraints.
Otherwise, an iterative optimization method has to be used. Some as-
sumptions about the structure of the future control law are also made
in some cases, such as that it will be constant from a given instant.

3. The control signal u(k | k) is sent to the process whilst the next control
signals calculated are rejected, because at the next sampling instant,
y(k + 1) is already known and step 1 is repeated with this new value
and all the sequences are brought up to date. Thus u(k + 1 | k + 1) is
calculated (which in principle will be different to u(k + 1 | k) because
of the new information available) using the receding horizon control
concept .

Notice that the MPC strategy is very similar to the control strategy used in
driving a car. The driver knows the desired reference trajectory for a finite
control horizon, and by taking into account the car characteristics (mental
model of the car) decides which control actions (accelerator, brakes and steer-
ing) to take in order to follow the desired trajectory. Only the first control
actions are taken at each instant, and the procedure is again repeated for the
next control decisions in a receding horizon fashion. Notice that when using
classical control schemes, such as PID controllers, the control actions are es-
sentially taken based on past errors. If the car driving analogy is extended,
the PID way of driving a car would be equivalent to driving the car just
using the mirror. This analogy is not totally fair with PID, because more
information, (the reference trajectory) is used by MPC, and the PID con-
troller includes a simple prediction provided by the derivative part. Notice
that if a future point in the desired reference trajectory is used as setpoint
for the PID, the differences between both control strategies would not seem
so abysmal.

Earlier results [30] have shown that if there is a substantial amount of carbon
present in the wood ash, the mixture needs more water to start the agglom-
eration process. This indicates that the process dynamics changes due to the
varying quality of the wood ash. If the dynamics are not time invariant, tra-
ditional control theory may not be sufficient to cope with the problem. One
suggested method to solve control problems with systems where the process
dynamics change is to use Adaptive Control. The theory of Adaptive Control
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Figure 2.4: Block diagram of the size reduction controller.

is well known and used in numerous of industrial applications today [63].

The control objective is to regulate the normalized effective power Pe(t)−
an estimate of the mixture viscosity − to the level P crite , which represents
a critical mixture viscosity. If more water is added to the ash stabilization
process after P crite has been reached, one will obtain a mixture useless for
granular material [39], [49]. To cope with this problem, it is crucial to detect
the level P crite .

Size Reduction

This control problem essentially requires discrete control actions. The gen-
eral schematic diagram of the controller for the size reduction is shown in
Figure 2.4. However, the level in the feeder is continuously measured. This
information is used to decide whether the feeder is full, partially filled or
empty. The controller is programmed with AND/OR statements and affects
the feeder with discrete on/off control actions. The output vector (Rn×1)
start/stops the feeder, controls the feeder direction etc.. Furthermore, the
input vector (Rm×1) monitors for example the overflow at the feeder inlet
based on the information obtained from the continuous level measurement.

Granulation, Hardening, Sorting and Packing

The stages of granulation and hardening are only controlled to a certain
extent. With control we here mean that the inputs to the actuators of the
drum granulator and hardening furnace (see Chapter 6) have static values,
which correspond to a desired system response (granule mean diameter and
granule moisture content). Of course, this is not an adequate implementation
if a uniform product quality is desired. For example, in the hardening process,
the dynamics will change with the speed of the material through the dryer
and the moisture content of the incoming material. On the other hand, this



2.5. SUMMARY AND CONCLUDING REMARKS 19

implementation serves as a good initial solution. The sorting and packing is
not yet automated and is thus handled manually.

2.5 Summary and Concluding Remarks

In this chapter, different control structures and control algorithms were out-
lined for the stages that are automated in the ash transformation process.
In the remaining chapters, more detailed information are available. If the
process dynamics of the WAS process are time-varying, it is favorable to
adopt adaptive techniques. It is also crucial that the correct amount of water
is added to the stabilization process in order to obtain a suitable mixture for
granulation. The mixing procedure is performed batchwise which simplifies
the control problem. Furthermore, the stages of granulation and hardening
are only controlled to a certain extent − the inputs to the actuators of the
drum granulator and hardening furnace have static values that correspond
to a desired system response. It is also stated that the packing, today, is
handled manually.
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Chapter 3

Carbon Content Analysis -
A Survey

3.1 Introduction

There are always some unburnt remains of carbon in the ash. This is so
because the combustion is not always optimal. The lack of optimality is due
to several reasons. Firstly, in the wintertime much energy must be produced
to satisfy the needs of customers. As a result, there is an extraordinary high
burner load during this period, which implies high carbon contents. At high
burner loads, there are even situations when the wood ash is still glowing at
the arrival of the recovery chute. However, this is very rare. Secondly, the
quality of the biomass fuel may change several times a day. This will cause
high carbon contents as long as the combustion parameters are not adapted
to the new fuel.

The traditional methods to determine the carbon content of wood ashes have
been mostly inaccurate and time consuming. This chapter presents a survey
of the problems and available methods for off-line and on-line Carbon In
Fly Ash (CIFA) monitoring. Good publications from The Federal Energy
Technology Center on the topic of on-line CIFA monitoring are [29], [57] and
[53]. For a survey of the economics motivations, see [42]. Another method
presented in the academia for on-line monitoring are based on photoacoustic
detection, which also has the potential for automatic, on-line monitoring [16].
A technique based on electrostatic separation for the removal of carbon in
wood ash is presented in [1]. This method is interesting, but cannot be
classified as an on-line measuring method for Carbon In Fly Ash.

21
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Figure 3.1: Two microscope photographs that show the carbon particles in a
wood ash sample.

Problems in Determining the Carbon Content

In Figure 3.1 two microscope photographs show a close-up of a wood ash
sample. As seen in the pictures dark areas are spotted in the wood ash. These
dark areas are clusters of carbon particles. As a result of this observation
it is natural to ask if there is a simple correlation between the wood ash
carbon content and the color of the ash sample. If this is the case, the rash
reader may claim that this problem is simple to solve, and states the following
proposition: an ash sample that is properly burnt is white, otherwise the color
of the sample should change according to the gray-scale and turn darker if
the ash is not properly burnt. If this is so, the problem would be easy to
solve with Machine Vision1.

The more prudent reader (including the author of this thesis) would be a little
more cautious. For example, consider the information given in Table 3.1.
The table shows that the carbon content of the different samples analysed at
Kalmar University College are of the same magnitude as the results obtained
at Analys Centrum, which validate the results obtained at KUC. Both utilized
the method of LOI − an off-line procedure where a sample is taken to be
dried and reburnt; the weight loss of the sample, after it is reburnt (preceded
by drying), is then proportional to the amount of unburnt carbon. When
inspecting the samples it is concluded that they all have approximately the
same color on the gray scale. In spite of this, as shown in the table, there is an
evident difference between the carbon contents of the samples. The results in
Table 3.1 should however be interpreted with caution. As mentioned earlier,

1Machine Vision is a form of artificial intelligence in which video images are converted
into formats which are recognized by computers.
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Carbon Content Analysis
Nr wl [%] KUC wl [%] AC Nr wl [%] KUC wl % AC
1 11.5 11.7 6 15.5 15.2
2 11.5 10.9 7 16 14.7
3 18 14.1 8 20.5 16.8
4 17 16.7 9 26 24.8
5 49 51.5 10 48 47.8

Table 3.1: The weight loss (wl) in percent of each ash sample provided from
Graninge - Kalmar Energi. This series of ash samples was sent to Analys
Center (AC) for validation, shown in the table for comparision.

if there are significant quantities of slacked lime (portlandite) Ca(OH)2 and
carbonate (calcite) CaCO3 in the fly ash, this may cause problems since these
substances, along with the particulate carbon lose weight under the high-
temperature oxidation conditions of the LOI test. Then the weight loss from
these minerals easily exceed that due to carbon, resulting in gross errors in
the LOI tests for fly ashes [7]. Therefore, a second, more advanced analysis is
carried through. Three different samples of wood ash with different qualities
and colors are investigated. The more advanced analysis determines the
amount of CaCO3 and subtracts this from the weight lost under the high-
temperature oxidation in order to obtain the true weight loss due to the
carbon [19]. The results are shown in Table 3.2.

Carbon Content Analysis
All measures

are weight - %
Sample 1 Sample 2 Sample 3 Inst.

Total Carbon Content 59.6 35.4 8.5 SP
CaCO3 0.63 0.86 2.0 SP
Unburnt Carbon 59.0 34.5 6.5 SP
Unburnt Carbon (wl) 61.4 35 3.5 KUC

Table 3.2: The more advanced method used at the Swedish National Testing
and Research Institute (SP) in comparision with the results from the LOI
test used at Kalmar University College (KUC).

The conclusion drawn from the results shown in Table 3.2 is that for the three
ash samples used in the test, there is no difference between the two compared
methods. However, this proves nothing for the samples presented in Table
3.1, and it cannot be excluded that the portlandite and calcite are the reason
for these ”strange” results. To continue the investigation, a photograph of
the three samples is shown in Figure 3.2. Here a digital camera is used to
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Figure 3.2: A photograph of the three samples presented in Table 3.2. The
leftmost sample is Sample 1.

visualize the working conditions for any system based on machine vision. It is
clear that there is a difference between the three samples. However, it is not
easy to detect by visual means that the difference between the worst and best
ash sample is as great as 53% of unburnt carbon. It should also be stressed
that experimental results show that the color of the ash varies with different
fuels (an unknown parameter) used at combustion. For example, the ash can
sometimes be brown. Referring to Figure 3.1, a heuristic explanation to this
observation may be that the color of the residue material (when the carbon
particles are excluded) is varying as a result of the fuel composition. Hence,
the presence of Ca(OH)2 and CaCO3 does not affect the color since they
are not visible to the eye. These facts imply that a measuring method based
on machine vision would be poor and that the theory of the rash reader will
fail. Therefore, more precise methods are needed.

Motivation

Earlier work [38] shows that one could obtain problems to self-harden the
wood ash if there is a substantial amount of unburnt carbon present. After
the ash is stabilized with water, the presence of organic material (unburnt
carbon) disturbs the hardening process. The method of self-hardening is not
used in the ash transformation process presented in this thesis. Instead, a
hardening furnace is used to obtain a hard surface of the produced granules.
Further, the ETEC-dolomite act as a binding agent, which improves the
strength of the produced granules.

In order to succeed with the ash transformation process, it is crucial that
the correct amount of water is added to the mixture of ash/dolomite to
obtain a material suitable for granulation [39], [49]. The problem is that this
amount varies with the wood ash quality. If there is a correlation between
the necessary amount of added water and the wood ash carbon content, one
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solution would be to measure this parameter on-line and use this information
to determine the optimum recipe of ash/dolomite/water. Furthermore, if
the dynamics of the process are time-varying due to the varying wood ash
qualities, the measurement of the wood ash carbon content could be used to
gain-schedule the used controller. The problem with this approach is that an
on-line measurement of the wood ash carbon content would be required.

A third motivation for on-line analysis is that if the wood ash contains a
substantial amount of unburnt carbon (> 50%), the fertilizing properties of
the produced granules will deteriorate.

Today, at Graninge - Kalmar Energi, it is only possible to determine the
CIFA (with any accuracy) by using the method of Loss-On-Ignition (LOI)
[52]. This procedure takes about four hours and requires labor work. To
avoid this procedure, an on-line measuring device would be convenient.

3.2 Different Approaches of On-line Analysis

Two types of on-line measurements exists for the assessment of unburnt car-
bon in wood ashes: direct and indirect:

• Direct methodologies use a laboratory-like procedure to weigh the col-
lected ash and oxidize the sample. Determining the amount of unburnt
carbon in the collected ash sample requires two quantities: the mass of
the collected sample, and the amount of CO2 released during oxidation.
Direct carbon-in-ash measurements offer a high level of accuracy but
has a quite long processing time, up to 15 minutes.

• Indirect methods include the attenuation of a light beam or microwaves,
as well as measurements of ash capacitance. They can be capable of
generating a high data rate, but with less accuracy than monitors em-
ploying a direct measurement method. This method is undoubtedly the
most rapid on-line method.

Two indirect methods are considered for the task of CIFA analysis. The Near
InfraRed (NIR) approach and the impulse radar approach. The latter is a
new method for on-line monitoring of carbon in wood ash. During 1998, the
author andMalå GeoScience AB applied for a patent of this novel measuring
approach. Unfortunately, the patent was rejected. As a result, a prototype
of the measuring device was not developed. Nevertheless, in section 3.2, the
philosophy of the measuring device is presented.
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Figure 3.3: An on-line NIR instrument for process control.

The NIR approach

On-line infrared measurement is usually performed with IR wavelengths be-
tween 1.0 and 2, 5µm. The measurement technique is based on the fact that
various molecular groups can selectively absorb NIR light [4]. A typical on-
line NIR sensor for process control is shown in Figure 3.3. The on-line sensor
must be capable of detecting small changes in absorption and in this case
of accurately relating these to the carbon content. Since NIR absorption is
primarily concerned with absorptions by -OH, -CH, and -NH groups, most
organic materials can be analyzed using absorption at different wavelengths.
Absorption of NIR light in transmission and reflectance follows an exponen-
tial law (Beer-Lambert) and to a first approximation the following equation
can be used for reflectance measurement:

log
Ii
Ir
= Kc (3.1)

where Ii is the intensity of the incident light, Ir the intensity of the reflected
light, K is the absorption coefficient and c is the concentration of the mea-
sured parameter.

It is clear that by measuring the log ratio of incident and reflected intensi-
ties at the relevant absorption bands a signal proportional to concentration
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would be obtained. In on-line analysis it is not possible to measure the in-
cident light intensity and therefore at least one reference wavelength outside
the region of absorption is used to approximate this. The reflected inten-
sity at this wavelength is then rationed against that of the absorption, thus
providing a measure of the amount of absorption irrespective of the level
of illumination. A further important practical point in taking a ratio of
the reference and measure signals is that factors other than concentration
variations of the component under analysis affect both signals equally, and
therefore cancel out in the calculation. Important examples of such factors in
an industrial measurement are instrument-to-object distance, dust build-up
on optical surfaces and atmospheric humidity variations, all of which cannot
be controlled in most on-line applications. This simple two wavelength model
helps to clearly describe the operation of an on-line instrument. In practice
additional wavelengths are normally necessary but the principles of operation
are similar. But one question remains: is it possible to separate the carbon
from other substances in the wood ash when looking at the absorption?

The Impulse Radar approach

Conventional radar sends out short bursts of single-frequency (narrow band)
electromagnetic energy in the microwave frequency range. Other radars step
through multiple (wide-band) frequencies to obtain more information. An
impulse, or a Ultra-Wide Band (UWB) radar sends individual pulses that
contain energy over a very wide band of frequencies. The shorter the pulse,
the wider the band, thereby generating even greater information. Because
the pulse is so short, very little power is needed to generate the signal. An
UWB radar is one having a very large bandwidth [55],

0 ≤ ∆f
fc
≤ 1 (3.2)

where∆f is the absolute bandwidth and fc is the carrier (or center) frequency.
An UWB radar is characterized 0.25 < ∆f/fc ≤ 1.

The number of applications for Ground Penetrating Radar (GPR) is quite
large [58]. It is mainly used for geological surveying, detecting of pipes and
other buried objects [8]. The on-line CIFA analyzer utilizes the principle
that the unburnt carbon found in fly ash affects the transmitted signal more
than the ash itself. How an electromagnetic wave travels through a media is
mainly determined by two properties; the relative permittivity ²r (or dielec-
tric constant) and the conductivity σ. The dielectrical properties determine
the velocity of the electromagnetic wave through the media. The conductiv-
ity of the media determines how much of the input energy that is absorbed.
Both these parameters are frequency dependent.
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Transmitter Receiver

Figure 3.4: The impulse radar system for indirect on-line CIFA monitoring.

The objective is to utilize the impulse radar system to measure the relative
permittivity ²r (or dielectric constant) and the conductivity σ of an ash
sample. The measuring device is depicted in Figure 3.4. The measuring
system is installed on the recovery chute of the precipitator where the fly ash
is removed. An impulse is sent from the transmitting horn-antenna through
the ash sample and is received by another horn-antenna at the opposite side.
The transmitted impulses have a very short duration of 1 − 10 ns and a
bandwidth of 100− 800 MHz.

Equipment for direct sampling at sampling frequencies necessary for this ap-
plication is still expensive today, and most samplers rely on repetitive sam-
pling. The impulse is transmitted several times and from each pulse one or
several samples are taken. The trigger point for the sampler is delayed from
pulse to pulse, such that after a number of pulses the whole waveform is
sampled. The principle is shown in Figure 3.5, where 4 pulses are sampled
with a sampling frequency of a fourth of the desired sampling frequency. The
recorded measurement is then sent to a computer for further processing.

During one measuring cycle, the delay and attenuation of the received pulse
are measured. The delay provides information about the relative permittivity
²r of the ash sample, whereas the attenuation of the received pulse provides
information about the conductivity σ. The ash sample collector is made of a
non conducting material. In order to obtain a representative measurement it
is important that the bulk density of the ash sample in the rectangular chute
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Figure 3.5: The principle of repetitive sampling.

is the same for each analysis. Finally, the parameters ²r and σ are used to
obtain the carbon content of the wood ash sample.

3.3 Summary and Concluding Remarks

There are always some unburnt remains of carbon in the ash. This is so
because the combustion is not always optimal due to varying operating con-
ditions. In this chapter two potential methods for on-line CIFA monitoring
are presented. However, one disadvantage with the method of NIR spec-
troscopy is that only the top layer of the sample is analysed, i.e., this layer
must be representative for the whole ash sample. A good reference on instru-
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mentation and calibration for NIR spectroscopy is [41]. This reference also
lists manufacturers of both laboratory and on-line equipment for NIR spec-
troscopy. Unfortunately, the absence of experimental results from a research
colleague (not mentioned in the acknowledgments) make the evaluation of
the method impossible.

It is concluded that the presence of Ca(OH)2 and CaCO3 does not affect
the color of the wood ash, since these are not visible to the eye. On the other
hand, this may result in gross errors in the LOI tests for fly ashes [7]. It is
also concluded that experimental results show that the color of the wood ash
varies with different fuels used at combustion. This implies that a measuring
method based on machine vision would be poor.

The prices of the today available CIFA analyzers based on microwave meth-
ods, for example, the device presented in [17], are too expensive for the
application of wood ash transformation. Also a direct methodology based on
oxidation of the ash sample is expensive (≈ 1.5MSEK). Therefore, at present,
no on-line measuring device is installed. Instead, all wood ash is transformed
into granules, i.e., no ash is sorted out to be reburnt. Furthermore, it is
concluded that it is quite possible for the ash carbon content to attain a level
of 60% of unburnt carbon, c.f. Table 3.2. Therefore, an attempt to optimize
the burner efficiency has been launched and is ongoing. A solution to the
problem of predicting the necessary amount of water in the ash stabilization
procedure is presented in Chapter 5.



Chapter 4

Ash Stabilization -
Empirical Modeling

4.1 Introduction

Mixing ash/dolomite/water in order to obtain granular material is one method
to stabilize wood ashes. The main problem is predicting the quantity of wa-
ter to be added, since the necessary amount varies with the wood ash quality
[39], [49], [60]. In [49], it is reported that the critical water-to-ash ratio varies
between ash types and must therefore be determined for each ash. However,
one possible solution is to measure the mixture viscosity and study whether
this parameter can be used to control the amount of added water. In this the-
sis, a novel method is presented where the viscosity is continuously estimated
in the batch mixing process. The viscosity is estimated by measuring the nor-
malized effective power Pe(t), which represents the rate of useful work being
performed by the three-phase asynchronous machine used as stirrer drive. In
this chapter, an empirical model of the viscosity dynamics is developed.

First, an introduction to the general problems are given, followed by a pre-
sentation of the chemical properties of wood ash stabilization. Next, a survey
of some topics in system identification is available for the reader unfamiliar
with the topic. Further, the experimental setup and the results from the first
and second stage experiments are presented, and the chapter ends with a
summary and concluding remarks. The reader is encouraged to go back to
Figure 1.2 in Chapter 1, if a reminder is necessary of the different stages in
the ash transformation process.

For the mixing of the ash, ETEC-dolomite and water, a Fejmert S-500mixer

31
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is utilized, see Appendix B. The dolomite and ash are mixed in the first step.
The ratio between the two dry matters are always the same. The next step is
to add water to start the wood ash stabilization. By measuring the normalized
effective power Pe(t), a good estimate of the mixture viscosity is obtained.
This measurement provides information how to control the variable water
flow. When the mixture quality is satisfactory, the material passes an outlet
that is positioned at the bottom of the mixer. The batch ends up in a feeder
that gradually forces the material through a raster that reduces the size of
the passing mixture (see Figure 1.2). The feeder is rotating, and it is possible
to obtain two directions of rotation. This is to prevent all superstructures
that will occur due to the sticky mixture. A high-pressure cleaning procedure
is provided to prevent any superstructure within the mixer. During this
procedure a dust preventing system (see Appendix B) is controlled so that
an underpressure is introduced into the mixer. This will seal the mixer so
that no water is leaking out. After the cleaning procedure is finished, the
mixer is ready to mix a new batch.

The Structure of the Problem

Earlier experiments have shown [30] that if a high content of unburnt carbon
is present in the wood ash, the wood ash stabilization needs more water in
order to be successful. This indicates that the process dynamics change due
to the varying quality of the ash. The system is assumed to be described by
the following general state space differential equation:

dxt
dt

= Atxt +Btut−τ (4.1)

yt = Ctxt +Dtut−τ

where At,Bt,Ct and Dt denote the time varying matrices of the linear sys-
tem, and τ denote the time-delay of the system. If the process dynamics are
not time invariant, traditional control theory is not always sufficient to cope
with the problem. One suggested method to solve control problems with
systems where the process dynamics change is to use Adaptive Control [63].
An adaptive controller, being inherently nonlinear, is more complicated than
a fixed gain controller. Before attempting to use adaptive control it is there-
fore important to investigate whether the control problem might be solved
by traditional control methods. In the literature on adaptive control there
are many cases in which these control methods can do as well as an adaptive
controller. One way to proceed in deciding whether adaptive control should
be used is given by the following discussion: if the process dynamics are con-
stant, this leads to that a controller with constant parameters is selected. If
the process dynamics are varying, then a controller with varying parameters
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should be used. If the variations are predictable, a gain-scheduling should
be used. And finally if the variations are unpredictable, this leads to the
selection of an adaptive controller.

From here, two approaches are possible: control of the wood ash stabilization
with the wood ash carbon content known or unknown.

1. If there is a correlation between different viscosity models and the wood
ash carbon content, one solution would be to use the measurement
from a CIFA monitor to gain-schedule the implemented controller. The
problem with this solution is that an on-line measurement of the wood
ash carbon content is required.

2. If the measurement of the carbon content is not available, indirect adap-
tive control could be used to on-line estimate the viscosity model dy-
namics and optimally control the ash stabilization process.

With support from the concluding remarks in Chapter 3, the latter of these
two presented options is selected.

Chemical Properties of Wood Ash Stabilization

When stabilizing wood ashes that are well burnt (less than 10% of unburnt
carbon) the following two reactions are dominating [38]. Slacked lime is
produced by treating quicklime with water:

CaO +H2O −→ Ca(OH)2 + heat production (4.2)

The reaction is fast and exothermic. When slacked lime is formed the sta-
bilization starts through carbonization with help from the carbon dioxide
available in the air:

Ca(OH)2 +CO2 −→ CaCO3 +H2O (4.3)

This reaction is fast initially but is decreasing after 3 − 7 days. The most
important transformation is that of Ca(OH)2 to CaCO3, since it reduces the
solubility of calcium and the alkalinity of the ash. Thus, a pH shock in the
forest soil is avoided. These two reactions are dominating even if dolomite is
mixed with wood ash. However, the presence of organic material (unburnt
carbon) disturbs the hardening process.

4.2 System Identification

The notion of a mathematical model is fundamental to science and engineer-
ing. A model is a very useful and compact way to summarize the knowledge
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about a process. The process models can sometimes be obtained from first
principles of physics. It is more difficult to get the model of the disturbances,
which is equally important. These models often have to be obtained from
experiments. The types of models that are most often used are state-space
models (internal models) and input-output models (external models). The
models for the disturbances are for the internal models given as a dynamic
system driven by white noise. For the external models the disturbances are
often given in terms of spectral densities and covariance functions. Mod-
els for disturbances can, however, only rarely be determined from the first
principles. Thus, experiments are often the only way to get models for the
disturbances.

A process cannot be characterized by one mathematical model. A process
should be represented by a hierarchy of models ranging from detailed and
complex simulation models to very simple models, which are easy to manip-
ulate analytically. The simple models are used for exploratory purposes and
to obtain the gross features of the system behavior. The complicated models
are used for a detailed check of the performance of the control system. The
complicated models take a long time to develop. Between the two extremes,
there may be many different types of models.

There are no general methods that always can be used to get a complete
mathematical model. Each process or problem has its own characteristics.
Some general guidelines can be given, but under no circumstances can they
replace experience. Model building using physical laws requires knowledge
and insight about the process.

In most cases it is not possible to make a complete model only from phys-
ical knowledge. Some parameters must be determined from experiments.
This approach is called system identification, and the following discussion is
inspired by [64], [31], [54] and [27].

The System Identification Procedure

The identification process amount to repeatedly selecting a model structure,
computing the best model in the structure, and evaluating the properties of
this model to see if they are satisfactory. The cycle run as follows [31]:

1. Design an experiment and collect input, output data from the process
to be identified.

2. Examine the data. Some pre-treatment may have to be applied. Use
the first half of data for identification, and the second half for validation.
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3. Select a model structure.

4. Compute the best model in the model structure according to the input,
output and the given criterion of fit.

5. Examine the properties of the model obtained.

6. If the model is good enough then stop, otherwise go back to the third
step and try another model set. Other estimation methods can also be
performed (fourth step), further pre-treatment can be applied to the
data (first and second step).

System identification is thus the experimental approach to process-modeling
as indicated by Figure 4.1.

System
Input Output

Identification

Model

Figure 4.1: The approach of system identification for process-modeling.

The system identification procedure includes:

• Experimental planning.
• Selection of model structure.
• Parameter estimation.
• Validation.

When investigating a process where the a priori knowledge is poor, it is
reasonable to start with transient or frequency-response analysis to get crude
estimates of the dynamics and disturbances. The results can then be used to
plan further experiments.
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Experimental Planning

It is often difficult and costly to experiment with industrial processes. There-
fore, it is desirable to have identification methods that do not require special
input signals. Many ”classic” methods depend strongly on having the input
to be of a precise form, e.g., sinusoid or impulse. Other techniques can handle
virtually any type of input signals at the expense of increased computations.
One requirement of the input signal is that it should excite all process modes
of interest sufficiently.

It is sometimes possible to base system identification on data obtained un-
der closed-loop control of the process. This is very useful from the point
of view of applications. For instance, adaptive controllers are based mostly
on closed-loop identification. The main difficulty with data obtained from a
process under feedback is that it may be impossible to determine the para-
meters in the desired model, i.e., the system is not identifiable, even if the
parameters can be determined from a open-loop experiment. Identifiability
can be recovered if the feedback is sufficiently complex. It helps to make the
feedback nonlinear and time-varying, and to change the set points.

Model Structures

The model structures are derived from prior knowledge of the process and the
disturbances. In some cases the only priori knowledge is that the process can
be approximated by a linear system in a particular operating range. It is then
natural to use general representations of linear systems. Such representation
are called black-box models. An example of a generalized model structure is
given in (4.4):

A(q)y(k) =
B(q)

F (q)
u(k) +

C(q)

D(q)
e(k) (4.4)

where u is the input, y is the output, and e is a white noise disturbance
and q is the forward-shift operator. The parameters, as well as the order
of the models, are considered as unknown. Depending on which of the five
polynomials A, B, C, D and F are used, different model-structures will arise.
The AutoRegressive with eXternal input (ARX) model structure, which use
the polynomials A and B in (4.4), is linear in the unknown parameters,
but for example, in the AutoRegressive Moving Average with eXternal input
(ARMAX) structure, which utilize the polynomials A, B and C in (4.4), the
output can not be written as a linear regression.
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Parameter Estimation Methods

Solving the parameter estimation problem requires:

• Input-output data from the process.

• A class of models.
• A criterion.

Parameter estimation can then be formulated as an optimization problem,
where the best model is the one that best fits the data according to the given
criterion. The results of the estimation problem depends, of course, on how
the problem is formulated. For instance, the obtained model depends on the
amplitude and frequency content of the input signal. There are many pos-
sibilities for combining experimental conditions, model classes and criteria.
There are also many different ways to organize the computations. Conse-
quently, there is a large number of different identification methods available.
One broad distinction is between on-line methods and off-line methods. The
on-line method gives estimations recursively when the measurements are ob-
tained and is the only alternative if the identification is going to be used in
an adaptive controller or if the process is time-varying. In many cases the
off-line methods give estimates with higher precision and are more reliable,
for instance in terms of convergence. This is due to the fact that an off-line
formulation is a simpler problem to solve.

Criteria

When formulating an identification problem, a criterion is introduced to give
a measure of how well a model fits the experimental data. The criteria can
be postulated. By making statistical assumptions, it is also possible to derive
criteria from probabilistic arguments. The criteria for discrete-time systems
are often expressed as:

J(θ) =
NX
k=1

g(ε(k)) (4.5)

where θ is a vector of unknown parameters, ε is the input error, the output
error, or a generalized error . The prediction error is a typical example of a
generalized error. The function g is frequently chosen to be quadratic, but it
is possible for it to be of many other forms.

The first formulation, solution, and application of an identification problem
where given by Gauss in his famous determination of the orbit of the asteroid
Ceres [21]. Gauss formulated the identification problem as an optimization
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problem and introduced the principle of least squares, a method based on
the minimization of the sum of the squares of the error. Since then, the
least-squares criterion has been used extensively. The least-squares method is
simple and easy to understand. Under some circumstances it gives estimates
with the wrong mean values (bias). However, this can be overcome by using
various extensions. The least-square method is restricted to model structures
where the output can be written as a linear regression. For a description of
identification of other systems, good references are [31], [54] and [27].

When the disturbances of a process are described as a stochastic process, the
identification problem can be formulated as a statistical parameter-estimation
problem. It is then possible to use the maximum-likelihood method . This
method has many attractive statistical properties. It can be interpreted as a
least-square criterion if the quantity to be minimized is taken as the sum of
squares of the prediction error. The maximum-likelihood method is a general
technique that can be applied to a wide variety of model structures.

Model Validation

When a model has been obtained from experimental data, it is necessary to
check the model in order to reveal its inadequacies. For model validation, it is
useful to determine such factors as step responses, impulse responses, poles
and zeros, model errors, and prediction errors. It is also a good approach
to use another set of experimental data to validate the model. If the model
does not pass the validation test, it must be revised i.e., we loop in the
system identification procedure until a proper model is obtained. Since the
purpose of the model validation is to scrutinize the model with respect to
inadequacies, it is useful to look for quantities that are sensitive to model
changes.

4.3 Experimental Setup

Measurement System

The mixture viscosity is estimated in the batch mixing process by measur-
ing the normalized effective power Pe(t), which represents the rate of useful
work being performed by the three-phase asynchronous machine used as stir-
rer drive. The measurement system is depicted in Figure 4.2. One of three
phases to the motor is connected to the primary side of a 100:5 current trans-
former. The secondary side of the transformer is connected to a power trans-
ducer (load measurement — EL-FI G3 power meter [35]) that electronically
measures the input power to the asynchronous machine and compensates for
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Figure 4.2: The setup used for measurement.

the internal losses in the induction motor. Thus, the transducer compensates
for variations in the mains voltage and always estimates the actual power
applied on the motor shaft. The electrical output from the transducer is a
direct current 0 − 20 mA and the dynamics GP (s) is given by the transfer
function

GP (s) =
K

1+ sT
(4.6)

where K and T are user-adjustable parameters. The current from the power
transducer is converted into a voltage of 0 − 10 V with GR(s) = R = 500
Ω. The anti-aliasing filter is a third order Butterworth-filter with a cut-off
frequency of 3 Hz

Gaa(s) =
1

(βs+ 1)
¡
β2s2 + βs+ 1

¢ (4.7)

where β = (6π)−1. The sample time h = 0.1 s is used. The filtered signal
yF (t) is A/D-converted and stored in DISKREG, a software package developed
at the Department of Technology for real-time data acquisition and control.
The power transducer is calibrated so that a voltage of 10 V corresponds to
full load, i.e. in DISKREG the range 0−10 V is interpreted as 0−100% of the
maximum effective power Pe(t).

Actuator

The water added during the ash stabilization procedure is the input to the
WAS process. It is crucial that the water is distributed over a wide area,
yielding a homogenous mixture [51]. To achieve this, spray nozzles and an
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Figure 4.3: The setup used to generate the identification signal.

on/off control valve are adopted. The setup is depicted in Figure 4.3. As
previous we use DISKREG but here as an input signal generator. The generated
signal u(kh) is D/A-converted and the Voltage/Pulse converter transforms
the DC voltage into a proportional pulse frequency. Further, an off-delay is
incorporated in such way that a continuously open valve is obtained if u(t)
reaches its maximum value. The time between the generated pulses increases
with decreasing input voltage u(t). The water flow Q(t) to the WAS process
is a linear function of the input voltage u(t)

Q(t) = f(u(t)) = u(t)k1k2Qmax (4.8)

where u(t) is the input voltage (V ), k1 (pulse/sV ) is a constant that converts
the input voltage into the corresponding pulse frequency and k2 (s/pulse) is
the applied off-delay. The available flow Qmax (liter/s) is approximately 0.3
liter/s. By using this approach, the flow of water is controlled with good
precision and we comply with the constraints regarding a fine spray of water
as input to the WAS process. A photograph of the experimental setup is
shown in Figure 4.4.

4.4 First Stage Experiment

A standard procedure of identification is to start with some first stage exper-
iments, which include simple experiments followed by continued experiments
(second stage experiments). For a first stage experiment some simple input
signal could be used. Dominating time constants in the output response
and low-frequency noise can be evaluated from, for example, a step/pulse re-
sponse. The first stage experiments are carried out with different amplitudes
in order to determine the operating range of a linear model. The experimental
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Figure 4.4: The experimental setup. The software DISKREG is used for data
acquisition.

conditions for the first stage experiment are selected to be

H : u is a pulse sequence; each pulse has an amplitude of γ · 10% (4.9)

where γ is an integer. The measurement of the normalized effective power
Pe(t) is only available as periodic observations of Pe(t) sampled with a time
interval h (the sampling period). Let the values of Pe(t) be represented by a
sequence

{Pe(k)}∞k=0 ; Pe(k) = Pe(kh) for k = 0, 1, . . . (4.10)

then the measurement of Pe(k) can be expressed as

Pe(k) , y(k) = x(k) + v(k) = g(k) ∗ u(k) + v(k) (4.11)

where y(k) is an observation of a variable x(k), the system input u(k) con-
volved with the systems impulse response g(k) corrupted by a variable v(k),
which is some external input that represents disturbances. The raw input-
output data from the first stage experiment is shown in Figure 4.5. Here the
sample time h = 0.1 s is used. In the figure it is seen that the process has
”slow dynamics”, which implies that the dynamics of the power transducer
and anti-aliasing filter can be neglected. Due to the slow dynamics, the in-
put and output are resampled to h = 1 s by decimation. The decimation is
preceded by prefiltering. By observing the figure and disregarding the initial
behavior (caused by gearbox oil heat-up in the stirrer drive, which implies
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Figure 4.5: Raw input-output data from the first stage experiment.

decreased resistance), it may be inferred that the system has positive gain
and no time-delay. This description of the system is valid up to t ≈ 700
s. Then the mixture viscosity changes and the normalized effective power
decreases rapidly giving a mixture useless for granulation.

Test of Linearity

The coherence spectrum is particularly interesting as a test of linearity in
an input-output relationship. If we assume that (4.11) is valid, then the
quadratic coherence spectrum between the two signals u and y is defined as
the ratio

C2uy(ω) =
|Φuy(iω)|2

Φuu(iω)Φyy(iω)
(4.12)

where Φuy is the cross-spectrum, Φuu and Φyy are the autospectra of the input
u and output y respectively. To see that the quadratic coherence always takes
on a value in the interval 0 ≤ C2uy(ω) ≤ 1, we use that Φuu ∈ R and rewrite
equation (4.12) as

C2uy(ω) =

¯̄
Φuy(iω)

¯̄2
Φuu(iω)Φyy(iω)

=
|G(iω)|2Φ2uu(iω)
Φuu(iω)Φyy(iω)

=
|G(iω)|2Φ2uu(iω)

Φuu(iω)
³
|G(iω)|2 Φuu(iω) +Φvv(iω)

´ (4.13)
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which can be rewritten as

C2uy(ω) =
|G(iω)|2

|G(iω)|2 + Φvv(iω)
Φuu(iω)

=
1

1+ Φvv(iω)

|G(iω)|2Φuu(iω)
(4.14)

From (4.14) it is concluded that the quadratic coherence always takes on a
value in the interval 0 ≤ C2uy(ω) ≤ 1, with a value close to one in the frequency
range where the noise level is low (Φvv ¿ Φuu) and if the system is linear [27].
The coherence function may thus be viewed as a type of correlation function
in the frequency domain. Using the data set Z100−700 = {y(k), u(k)}700k=100,
the coherence function estimate Ĉ2uy(ω) is calculated and shown in Figure
4.6. The coherence spectrum with coherence close to 1 for frequencies up
to 0.03Hz verifies that there is a satisfactory coherence between the two
signals. This gives promise of successful identification with a linear model.
Since a linear input-output relationship is observed in Figure 4.5, it may
also be inferred that the noise level is larger, i.e., the magnitude of the input
autospectrumΦuu is smaller for frequencies above 0.03Hz. The results shown
in Figure 4.6 should however be interpreted with caution since the viscosity
dynamics seem to be time-varying.

The content of unburnt carbon present in the wood ash is the main parameter
that determines the wood ash quality. For each experimental batch, the wood
ash carbon content is determined by using the test of LOI [52]. Six repeated
samples are taken from the batch used in the first stage experiments and
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a confidence interval for the asymptotic distribution is calculated using the
Student’s t-distribution

µ∗ ± t(n−1)α/2
σ∗√
n

(4.15)

where µ∗ is the estimated mean of the n collected samples from the popula-
tion, n− 1 is the degrees of freedom, α is the significance level and σ∗ is the
estimated standard deviation. For the batch used in the first stage experi-
ment, a 95%-confidence interval for the asymptotic distribution of the wood
ash carbon content is 51.4± 0.8 % of unburnt carbon.

4.5 Estimating Process Dynamics

There may of course be several reasons why a model of a dynamical systems
is sought. A common one is that the model is needed to design a regulator for
the system. It is then important that available design variables are chosen so
that the resulting model becomes as appropriate as possible for the control
design. Originally, the idea was to fit the dynamics of the WAS process to
a parametric model and to construct a model of the model errors that are
present in the nominal model. This procedure is called model error modelling
[32]. When the error models are linear, it is preferable to present the nomi-
nal model uncertainties in frequency domain. This approach is however not
successful due to the fact that the process dynamics of the WAS are time-
varying. Therefore, it is necessary to estimate a model on-line at the same
time as the input-output data is received. The measurement of Pe(k) can be
expressed as

Pe(k) , y(k) = ϕT (k, d)θ(k) + e(k) (4.16)

where θ(k) is a parameter vector containing the system parameters, d is the
delay of the system, ϕT (k, d) is the regression vector and e(k) is additive
white noise. The estimated model parameters are expressed as a parameter
vector θ̂,

θ̂ =
h
â1, . . . , âna, b̂1, . . . , b̂nb

i
(4.17)

where na and nb are the orders of the process denominator/numerator poly-
nomials A(q) and B(q) respectively, c.f. equation (4.4). With a given time
delay d, the regression vector ϕ can be written as

ϕ(k, d) = [−yf (k− 1), . . . ,−yf (k−na), uf (k− 1− d), . . . , uf (k− nb− d)]
(4.18)

where yf and uf are the filtered process output and input values

yf (k) = L(q)y(k) uf (k) = L(q)u(k) (4.19)
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Here L(q) is a suitable pre-filter (data-filter). See Section 4.8 (Appendix).
The regressor ϕ is used to estimate the parameter vector θ̂. The required
least-square equations are [31]

θ̂(k) = θ̂(k − 1) +K(k)
h
yf (k)−ϕT (k, d)θ̂(k − 1)

i
K(k) = P(k)ϕ(k, d) =

P(k − 1)ϕ(k, d)
λ+ϕT (k, d)P(k − 1)ϕ(k, d) (4.20)

P(k) =
1

λ

·
P(k − 1)− P(k − 1)ϕ(k, d)ϕ

T (k, d)P(k − 1)
λ+ϕT (k, d)P(k − 1)ϕ(k, d)

¸
where P is the parameter covariance matrix, K the gain matrix, and λ a
forgetting factor. See Section 4.9 (Appendix) for a detailed derivation of
how the forgetting factor λ influences the parameter estimate θ̂(k) given
P(0) and θ̂(0). The Recursive Least Square (RLS) parameter estimator
is implemented in C-code and incorporated in SIMULINK S-functions [50],
[47]. The implemented algorithm uses the Bierman UD covariance factoriza-
tion update, which is well suited for real-time implementation [5]. For more
details on the algorithm, see Section 4.10 (Appendix). If the input sequence
u(k) of the first stage experiment is regarded to be sufficiently exciting, the
RLS could be applied to this input-output data with different orders of an
ARX model structure. To determine if the input is of sufficient complexity,
the criterion of persistent excitation is used.

Definition 4.5.1 Persistency of excitation [27], [63].

A signal u fulfils the condition of Persistent Excitation (PE) of order n if the
following limits exist

mu = lim
N→∞

1

N

NX
k=1

u(k) (4.21)

ruu(τ) = lim
N→∞

1

N

NX
k=1

u(k − τ)u(k) (4.22)

and if the correlation matrix

bRuu(n) =


r̂uu(0) r̂uu(1) · · · r̂uu(n− 1)
r̂uu(−1) r̂uu(0) · · · r̂uu(n− 2)

...
...

. . .
...

r̂uu(1− n) r̂uu(2− n) · · · r̂uu(0)

 (4.23)

is positive definite (See Appendix). 2
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Model set na nb nk VN(θ̂)
1 1 1 0.3182
2 1 1 0.1690

Ay = Bu+ e 2 2 1 0.1663
3 1 1 0.1844
3 2 1 0.2079
3 3 1 0.2264

Table 4.1: Numerical values of the loss function VN(θ̂) for different ARX
model orders when the RLS is applied to the data-set obtained from the first
stage experiment. The strange result (increasing loss for increasing model
order) may be caused by the abrupt change in the process dynamics since,
in general, the convergence for the RLS is slower for a higher model order.

Persistent excitation of order n is sufficient to obtain consistent estimates
of n parameters with the least-squares method. From the definition it is
concluded that the input signal of the first stage experiment is PE of at least
order 6.

The criteria for deciding the best model order was minimization of the mean
square of the estimation error [34]

VN(θ̂) =
1

N

NX
k=1

ε2(k) (4.24)

where
ε(k) = L(q)y(k)−ϕT (k, d)θ̂(k − 1) (4.25)

The values of the loss function (4.24) for different model orders are shown in
Table 4.1. Notice that nk = d+ 1. Here, a low-pass data-filter

L(q) =
1− f
q − f (4.26)

with f = 0.9 is used. In the table it is observed that the loss function is
minimized for a second order ARX model. However it may be useful to
select a structure with na = 2, nb = 1 and nk = 1. When inspecting the
input-output data shown in Figure 4.5 it may be inferred that the gain of the
process dynamics switches sign when the mixture viscosity begins to decrease.
If this structure is selected, the model may better capture this property. The
reason is that if nb = 2, two parameters of small magnitude are identified
in the numerator polynomial, whereas if nb is chosen to be one, this yields
only one parameter to estimate in the B polynomial. As a result, an abrupt
change of the system gain will be easier to track.
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4.6 Second Stage Experiment

The second stage of experiments is characterized by a systematic design and
execution of suitable experiments. These experiments were carried through
at randomly selected occasions during a period of two months, in order to
identify models for different wood ash qualities. A Pseudo Random Binary
Sequence (PRBS) was used as an input signal during the identification ex-
periments. This signal is implemented for example as

u(k) = 0.5(u1 + u2) + 0.5(u1 − u2)sign(w(k)) (4.27)

where w(k) ∈ [−1, 1] is a sequence of uniformly distributed random numbers,
for example computer generated. The actual shape of the input signal should
be adapted to the application. The viscosity dynamics are typically slow
which implies that (4.27) must be modified so that the normalized effective
power Pe(t) is able to change adequately during two amplitude switches of
the input sequence u(k). This is achieved by only allowing the input sequence
to change amplitude each Nth sample interval (called the basic period). With
u1 = a and u2 = −a the correlation function for the PRBS sequence with
basic period N can be shown to be [54]

ruu(τ) =

½
a2N−|τ|N , τ = 0,±1, . . .±N
0 , |τ | > N (4.28)

with the spectral density function

Φuu(ω) =
a2

2π

1

N

1− cosNω

1− cosω (4.29)

As seen in (4.29) an input signal with most of its energy located in the low
frequency range is obtained if N is large. This will excite the modes of the
system that corresponds to slow dynamics. In the second stage experiments,
N is selected to be 600.

An example of process input-output data and the convergence of the esti-
mated parameters are shown in Figure 4.7. The figure clearly shows that
the process dynamics are time-varying. For the experiment presented in
Figure 4.7, a 95%-confidence interval for the asymptotic distribution of the
batch wood ash carbon content is 40.9±0.3 % of unburnt carbon. The second
stage experiments yield the following physical interpretation of the viscosity
dynamics, which also supports the results obtained in Table 4.1: since the
mixture is accumulating water, an integrator is to be found in the process
dynamics. Further, a time-constant is present, which depends on how the
water is ”diffused” into the mixture; in the beginning of the WAS procedure
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Figure 4.7: A selected second stage experiment. Here a PRBS sequence
is used as an input sequence. In the lower plot, the convergence of three
parameters in a second order ARX model identified with RLS is shown.

the dry mixture absorbs water fast, whereas at the end the mixture becomes
more and more saturated and is not able to absorb water as fast as in the be-
ginning. This implies a grey box model shown in Figure 4.8. From a system
perspective, the gradual saturation of the mixture is explained as a time-
varying time-constant, i.e., the time constant corresponds to a mode that
decreases in speed. This implies that the system will, eventually, become a
double integrator. This heuristic discussion is supported by Figure 4.9.

For each experiment, it is observed that the estimated process gain b̂1 switches
sign (c.f. Figure 4.9) when the mixture viscosity begins to decrease. This
property may be used to disable any control action during the WAS proce-
dure. Further, there are strong indications that it is not only the accumulated
quantity of water that is related to the instant when the process gain changes.
In addition, this instant is also affected by the applied flow of water Q(t) and
the wood ash quality. For example, the accumulated amount of water at the
viscosity change is 133 liters for the experiment shown in Figure 4.5, whereas
the amount is only 85 liters for the experiment shown in Figure 4.7. When
comparing the carbon content of the batches, which are 51.4 ± 0.8 % and
40.9± 0.3 % of unburnt carbon, this supports the theory that more water is
required in the ash stabilization process if the carbon content is high [30].
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Figure 4.8: Gray box model for the dynamics of the WAS process. Here, p
is the differential operator d/dt.
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Figure 4.9: The estimated continuous-time parameters K and τ of the gray
box model presented in Figure 4.8. It is observed that the time-constant τ is
approximately 5 seconds at the beginning of the WAS process.
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4.7 Summary and Concluding Remarks

In this chapter, the viscosity of the ash/dolomite/water mixture is estimated
by measuring the normalized effective power Pe(t), which represents the rate
of useful work being performed by the three-phase asynchronous machine
used as stirrer drive. It is shown that this measurement is well suited for
control of the amount of added water to the WAS process. A second order
ARX model structure has been selected. Recursive Least Square (RLS) is
applied to estimate the time-varying dynamics. By using this approach, it is
possible to track variations in the process dynamics due to varying wood ash
quality.

It should be noticed that the selected ARX model could be exchanged for an
identified Output Error (OE) model. The OE model structure is motivated
by the interpretation that the random disturbances visible in Pe(k) are caused
by the stirrer, which is a part of the sensor (motor + stirrer). The sensor
monitors the mixture viscosity, i.e., the random fluctuations are interpreted
as measurement noise. However, the models identified with RLS maps the
true measurement of Pe(k) with good agreement in deterministic simulations
[27]. This implies that the relation between the process input and output
is well defined, i.e., the prediction of the normalized effective power Pe(k) is
not built upon old values of Pe(k) only. This make the model most adequate
for control of the WAS process.

Further, there are strong indications that it is not only the accumulated
quantity of water that is related to the instant when the process gain changes.
In addition, this instant is also affected by the applied flow of water Q(t) and
the quality of the wood ash. Therefore, to determine an critical water-to-ash
ratio based only on CIFA measurements may give poor results. A solution
for fast detection of the abrupt change in the process dynamics is presented
in Chapter 5.
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4.8 Appendix 4A - Choice of Data-filter

The system description is given in the form (c.f. equation (4.4))

y(k) = G(q−1,θ)u(k) +H(q−1,θ)e(k) (4.30)

as the basic description of a linear system subject to additive random distur-
bances. Here

G(q−1,θ) =
B(q−1)
F (q−1)

=
b1q
−1−d + b2q−2−d + · · ·+ bnbq−nb−d
1+ f1q−1 + · · ·+ fnfq−nf (4.31)

and

H(q−1,θ) =
C(q−1)
D(q−1)

=
1+ c1q

−1 + · · ·+ cncq−nc
1+ d1q−1 + · · ·+ dndq−nd (4.32)

and {e(k)} is a sequence of independent random variables with zero mean
value and variance σ2e. For the case of an ARX modelG = B/A andH = 1/A.
In this section we will explain and affect the distribution of the bias

G(eiω,θ∗)−G0(eiω) (4.33)

where G0(eiω) is the true transfer function and G(eiω,θ∗) is the limiting
estimate of G. The case of most practical interest is probably to study the fit
between G(eiω,θ∗) and G0(eiω). It is natural to consider the bias distribution
of G to be the most important issue, since closed-loop stability of a regulator
design will depend on the accuracy of G. The limiting parameter estimate is
given by [31]

θ∗ = lim
N→∞

θ̂N = argmin
θ

Z π

−π

¯̄
G0(e

iω)−G(eiω,θ)¯̄2 Φu(ω)

|H(eiω,θ)|2| {z }
Q(ω,θ)

dω (4.34)

This means that Q(ω,θ) will be taken as the weighting function that deter-
mines the bias distribution. This bias distribution can in turn be affected by
properly selecting the

Input spectrum Φu(ω). Noise model set.
Prefilter L(q). Prediction horizon k.

Notice that it is only the ratio Φu/|H|2 that determines the bias distribution;
the values of the individual functions Φu, H and L are immaterial. If, for
instance the input and outputs are filtered with the pre-filter

yf (k) = L(q)y(k) uf (k) = L(q)u(k) (4.35)
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this will affect the weighting function and the actual weighting function
Q(ω,θ) obtained is ¯̄

L(eiω)
¯̄2 ·Q(ω,θ) (4.36)

To identify a system with non-zero mean one can, for example, remove the
average value of the signals before they are used in the estimator to obtain a
correct model. In recursive methods it is difficult to remove average values.
An approach that works for signals with non-zero mean and drifting signals
is to differentiate the signals, i.e. to multiply the regressor with q − 1. As
differentiated signals are quite noisy, it is a good idea to low-pass filter the
differentiated signals. Low-pass filtering also removes the undesired high
frequency dynamics. A suitable data-filter is then [63]

L(q) =
(q − 1)(1− f)

q − f (4.37)

With this filter a disturbance will be removed from the data, except for
components in the frequency interval (ωfl, ωfh) where ωfl is the lower break
frequency and ωfh is the upper break frequency for the data-filter, see Figure
4.10. The estimator will thus not be confused by low frequency drift. Hence,

rad/s

|L|

rad/s

|L|

ωfl ωfh ωfh
1 1

Figure 4.10: The amplitude curve of the bandpass filter (left) and the low
pass filter (right).

if ωfh is too high, the estimator may attempt to fit the model at too high
frequencies.

Since it is assumed that no low frequency drift is present in the WAS process,
a simple low-pass filter

L(q) =
1− f
q − f (4.38)

is implemented as data-filter. See Figure 4.10. Using a low pass filter as
data-filter gives a good low frequency fit.
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4.9 Appendix 4B - Interpretation of the RLS
Algorithm

Consider the system
S : yk = ϕTk θ + ek (4.39)

and the model
M : yk = ϕTk θ

In the batch least-square [31] problem we consider the matrix

Pk =

"
kX
i=1

ϕiϕ
T
i

#−1
(4.40)

It satisfies the recursive equation

P−1k = P−1k−1 +ϕkϕ
T
k (4.41)

By including the forgetting factor λ the corresponding RLS covariance matrix
is obtained

P−1k = λP−1k−1 +ϕkϕ
T
k (4.42)

with the initial value P0. The solution is

P−1k = λkP−10 +
kX
i=1

λk−iϕiϕ
T
i (4.43)

The difference equation for P−1k θ̂k is given by

P−1k θ̂k = λP−1k−1θ̂k−1 +ϕkyk

with the initial values P0 and θ0. The solution is

P−1k θ̂k = λkP−10 θ̂0 +
kX
i=1

λk−iϕiyi (4.44)

Combining equations (4.43) and (4.44) gives

θ̂k =

"
λkP−10 +

kX
i=1

λk−iϕiϕ
T
i

#−1 "
λkP−10 θ̂0 +

kX
i=1

λk−iϕiyi

#
(4.45)

Hence,

• If λ < 1, the influences of the initial conditions tend to zero as k→∞.
• If λ = 1 and P0 = αI, then the influences of initial conditions tend to

zero as α→∞ .
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4.10 Appendix 4C - Bierman UDUT Covari-
ance Update

The three equations given in (4.20) denote one way to mechanize the recursive
update of the estimates and the covariance matrix. Although widely accepted
both in theory and practice, a straightforward implementation of the RLS
algorithm is notorious for its poor numerical property in real application,
which can easily destroy the performance of the RLS algorithm [5], [13].
This can be made clear by taking a look at the covariance updating formula

P(k − 1)− P(k − 1)ϕ(k, d)ϕ
T (k, d)P(k − 1)

λ+ϕT (k, d)P(k − 1)ϕ(k, d) (4.46)

As time goes on, the covariance matrix converges to a matrix of very small
magnitude, which implies that the covariance updating equation (4.46) may
involve the subtraction of two almost equal matrices with very small mag-
nitudes. This can easily result in poor numerical performance when imple-
mented on digital computers with finite word length and round-of errors [13].

Many modified forms of the RLS algorithm exist to improve the numerical
performance [34], [45], among which Bierman’s UD factorization method [5],
[56] is one of the most successful approaches. Mathematically, Bierman’s
method is equivalent to the RLS method. However, through a different
formulation, namely, the UD factorization, Bierman’s algorithm is numer-
ically much more stable than the RLS algorithm [5], [56], [33]. In Bierman’s
method, instead of directly updating the covariance matrix P(k) using equa-
tion (4.46), a UDUT factored form of the P(k) matrix,

P(k) = U(k)D(k)U(k)T (4.47)

is used. That is, at every time interval, U(k) and D(k), instead of P(k), are
updated, where D(k) is diagonal and U(k) is an unit upper-triangular ma-
trix. The UD factorization preserves the positive-definiteness (see Appendix
A, Section A.1) of the P(k) matrix and updates the square root of the co-
variance matrix, thus the numerical condition can be considerably improved.
Experiments show that for digital computer implementations, to obtain the
same numerical accuracy, the UD algorithm can use about half the word
length required by the conventional RLS algorithm [24], [56].

A stepwise implementation of Bierman’s UD factorization algorithm is sum-
marized in Algorithm 4.1. For detailed derivation and discussions, see [5],
[56] and [34].
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Algorithm 4.1: Bierman UDUT Estimate-Covariance Update:

v = D(k − 1)f , f = UT (k − 1)ϕ(k, d), α0 = λ

for j = 1 to n do % n = na+ nb

αj = αj−1 + vjfj
Djj(k) = αj−1Djj(k − 1)/αjλ
pj = −fj/αj−1, K̄j(k) = vj

for i = 1 to j − 1 do
Uij(k) =Uij(k − 1) + pjK̄i(k)

K̄i(k) = K̄i(k) + K̄j(k)Uij(k − 1)
end

end

The update gain K(k) is now given by:

K(k) = K̄(k)/αn

Clearly, the UD factorization algorithm is a variant of the RLS algorithm in
that the UD factorization technique is used to replace the covariance update
(4.46) for more stable numerical performance. The UD factorization algo-
rithm was motivated to be, and actually has also been widely regarded as,
only a numerical enhancement to the RLS method.
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Chapter 5

Control of the Ash
Stabilization Process

5.1 Introduction

During the simulations in this chapter, an optimal adaptive controller is used
to regulate the chemical process of the WAS. The model parameters of the
time-varying process dynamics are estimated using the RLS parameter es-
timator, see Section 4.5. At each batch produced, an auto-tuning sequence
with the controller disabled is carried through in order to obtain a good esti-
mate of the process dynamics. After the auto-tuning sequence is completed,
a Generalized Predictive Controller (GPC) is enabled to control the WAS
process. The control objective is to regulate the normalized effective power
Pe(t) to the level P crite , which is the point when the mixture totally saturates.
It should be stressed that the level P crite must be detected as fast as possible,
since at the level P crite only a small additional amount of water gives a mix-
ture useless for granulation. For example, given a saturated batch of 250-300
kg, an additional amount of 2-4 liters of water results in a wet mixture. To
cope with this problem, change detection is applied to reach the desired level
P crite without any pre-determined set-point.

Three methods are evaluated: a probing strategy, the GMA-test and the
CUSUM-test, all three adequate for successful implementation. The used
control strategies are presented and off-line simulations with a model of the
physical process will evaluate the control performance. The GMA-test and
the CUSUM-test are also evaluated by testing the detectors on two different
data sets, before the best strategy is selected for real-time control of the WAS
process.

57
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RLS

Controller Process
u(k)

Output
Reference

θ̂(k)

Pe(k)

L(q) L(q)

r(k)

Figure 5.1: The structure of the closed loop system.

The GPC method was proposed by Clarke et. al [10] and has become a pop-
ular control method both in industry and academia. It has been successfully
implemented in many industrial applications, showing good performance and
a certain degree of robustness. It can handle many different control problems
for a wide range of plants with a reasonable number of design variables, which
have to be specified by the user depending upon the prior knowledge of the
plant and control objectives. Advantages with the GPC controller, which
make it suitable for control of the WAS process are:

• One design variable that is very useful comes with the penalty on the
control signal − we can guarantee small control actions near the level
P crite .

• It is useful when future reference values are known. The objective is
to control the process input u(k) − the variable flow of water − in
such way that the normalized effective power Pe(t) initially follows a
reference trajectory before the level P crite is reached. This trajectory
is constructed so that an appropriate flow of water is inserted to the
WAS process.

• Constraints on the control signal are easily included in the controller −
it is not possible to extract any added water.

5.2 Control using the GPC

The schematic of the closed loop system is shown in Figure 5.1. The model
parameters of the time-varying WAS process dynamics are estimated using
the RLS parameter estimator. The process inputs and outputs are filtered
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with the data filter L(q) to avoid difficulties with the parameter estimation.
The estimated parameters are further used by a GPC that controls the rela-
tive effective power Pe(k) given a ramp set-point trajectory with slope r(k).
The implemented control strategy disables the controller when the relative
effective power Pe(k) reaches the level P crite .

Formulation of the GPC

The methodology of Generalized Predictive Control (GPC) is illustrated by
using the loss function

J(N1, N2, Nu) = E

(
N2X
i=N1

(ŷ(k + i | k)−w(k + i))2 +
NuX
i=1

ρ (∆u(k + i− 1))2
)

(5.1)
subject to the equality constraints

∆u(k + i) = 0 for i = Nu, . . . , N2 (5.2)

Here ŷ(k + i | k) is an optimum i−step prediction of the system output
on data up to time k, N1 is the minimum prediction horizon, N2 is the
maximum prediction horizon, Nu is the control horizon, ρ is a control penalty
and ∆ = 1− q−1 is the difference operator. The future reference trajectory
w(k + i), can be calculated for example as

w(k + i) = w(k + i− 1) + r(k + i) (5.3)

where r is the slope set-point for the reference trajectory. Further a Con-
trolled Auto-Regressive Integrating Moving-Average (CARIMA) model is
used as a process model

A(q−1)y(k) = q−dB(q−1)u(k − 1) +C(q−1)e(k)
∆

(5.4)

where u(k) and y(k) are the control and output sequences respectively of
the plant, and e(k) is a zero mean white noise. A, B and C are the process
polynomials in the backward shift operator

A(q−1) = 1+ a1q
−1 + · · ·+ anaq−na

B(q−1) = b1 + b2q
−1 + · · ·+ bnbq−nb+1 (5.5)

C(q−1) = 1+ c1q
−1 + · · ·+ cncq−nc

and d is the time-delay of the system. The role of the ∆ operator is to
ensure integral action in the controller in order to cancel the effect of step
output disturbances or model errors. Thus the nature of the plant description
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(5.4) is to model the output as being corrupted by the effect of an additive
random walk process. While this may not be a realistic model, its effect
upon the controllers derived from it will be to force the ability to reject step
output disturbances. This is entirely a reflection of the known nature of load
perturbations arising. Thus, the GPC incorporates this noise model directly
into its formulation in order to tailor its response for particular circumstances.
This is a manifestation of the Internal Model Principle (IMP), see [6].

The key idea is to split the data into future and past components. We require
the solution of two Diophantine equations [10], [6], [63]. Dropping the explicit
arguments in q−1, the first is

C = EiA∆+ q
−iFi (5.6)

Here
Ei = e

(i)
0 + e

(i)
1 q
−1 + · · ·+ e(i)i−1q−(i−1) (5.7)

and
Fi = f

(i)
0 + f

(i)
1 q
−1 + · · ·+ f (i)nf q−nf (5.8)

where nf = max(na, nc− i) [20]. The second Diophantine equation to solve
is

EiB = GiC + q
−iHi (5.9)

Here
Gi = g

(i)
0 + g

(i)
1 q
−1 + · · ·+ g(i)i−1q−(i−1) (5.10)

and
Hi = h

(i)
0 + h

(i)
1 q
−1 + · · ·+ h(i)nhq−nh (5.11)

where nh = max(nc, nb+ d− 1)− 1 [20]. We find that

y(k + i) =
B

A
u(k + i− d− 1) + C

A∆
e(k + i)

=
B

A
u(k + i− d− 1) + Fi

A∆
e(k) +Eie(k + i)

=
B

A
u(k + i− d− 1) + Fi

C

·
y(k)− B

A
u(k − d− 1)

¸
+Eie(k + i)

=
B

A

·
1− q−iFi

C

¸
u(k + i− d− 1) + Fi

C
y(k) +Eie(k + i)

=
EiB

C
∆u(k + i− d− 1) + Fi

C
y(k) +Eie(k + i)

= Gi∆u(k + i− d− 1) + Hi
C
∆u(k − d− 1) + Fi

C
y(k) +Eie(k + i)
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Hence, the optimal predictor for y(k + i) at time k is obtained by replacing
e(k + i) by its expected value (zero):

ŷ(k + i | k) = Gi∆u(k + i− d− 1) + Hi
C
∆u(k − d− 1) + Fi

C
y(k) (5.12)

In Chapter 4 it is shown that an ARX model structure of second order is
sufficient to describe the process dynamics of the WAS adequately. This
implies that the C polynomial can be chosen to be 1. When considering the
set of i step ahead optimal predictors, we can write

y =G∆u+H(q−1)∆u(k − d− 1) +F(q−1)y(k) (5.13)

where

y =


ŷ(k +N1 | k)

ŷ(k +N1 + 1 | k)
...

ŷ(k +N2 | k)

 ∆u =


∆u(k)
∆u(k + 1)

...
∆u(k +Nu − 1)



G =



gN1−1 0 · · · 0
gN1

gN1−1 · · · 0
...

. . .
...

... gN1−1

...
...

gN2−1 gN2−2 · · · gN2−Nu


(5.14)

H(q−1) =


HN1(q

−1)
HN1+1(q

−1)
...

HN2
(q−1)

 F(q−1)=


FN1(q

−1)
FN1+1(q

−1)
...

FN2
(q−1)


Here N1 = d+ 1 and N2 = d+N , where N is the prediction horizon in the
loss function (5.1). Notice that the last two terms in equation (5.13) only
depend on the past. Now define

f , H(q−1)∆u(k − d− 1) +F(q−1)y(k) (5.15)

The prediction can be written as

y =G∆u+ f (5.16)

where f contains known components, ∆u contains future control increments
andG is the lower triangular matrix containing the step response coefficients.
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The dimension of G is (N2−N1+ 1)×Nu, since we have taken into account
the constraints (5.2). The effect of altering N1 is to delete rows from the top
of G [6]. Expression (5.1) can be written as

J(N1, N2, Nu) = kG∆u+ f −wk22 + ρ k∆uk22 (5.17)

where

w =
£
w(k +N1) w(k +N1 + 1) · · · w(k +N2)

¤T
(5.18)

Minimizing (5.17) with respect to ∆u, assuming there are no constraints on
the control signals, gives

∆u =
¡
GTG+ρI

¢−1
GT (w− f) (5.19)

Notice that the control signal that is actually sent to the process is the first
element of vector ∆u, which is given by

∆u(k) =K (w− f) (5.20)

that is the first row of matrix
¡
GTG+ρI

¢−1
GT . This is the receding control

concept.

If the delay d is known, the minimum prediction horizon is N1 = d + 1.
This is so because if the delay is known, there is no point in setting N1 to
be less than d since there would then be superfluous calculations in that the
corresponding outputs cannot be affected by the first action∆u(k). The usual
choice of the maximum prediction horizon is N2 = d+integer

¡
Tr
h

¢
, where Tr

is the systems approximate rise time. The control horizonNu is often selected
to be considerably smaller compared to N2 since this parameter essentially
determines the size of the optimization problem.

Constrained GPC

In the previous section the control problem has been formulated considering
all signals to possess an unlimited range. This is not very realistic because in
practice all signals are subject to constraints. In our case the actuator has a
limited range of action; a fully closed and a fully open position of the valve
used for water control.

When the only constraints present are the maximum and minimum value of
the control signal u(k + i), the constraint can be written as

1 (umin − u(k − 1)) ≤ Tu ≤ 1 (umax − u(k − 1)) (5.21)
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where the matrix T is a lower triangular matrix whose entries are ones and
1 is a vector composed of ones. The optimal prediction of the process output
can be written as

y =G∆u+ f0 (5.22)

we note that

∆u =


∆u(k)
∆u(k + 1)

...
∆u(k +Nu − 1)

 =


u(k)− u(k − 1)
u(k + 1)− u(k)

...
u(k +Nu − 1)− u(k +Nu − 2)



=


1
−1 1

. . .
. . .
−1 1




u(k)
u(k + 1)

...
u(k +Nu − 1)

−

u(k − 1)

0
...
0


, Du− f1 (5.23)

If (5.23) is inserted in equation (5.22) we obtain

y =G (Du− f1)+f0 , Ḡu+ f2 (5.24)

where Ḡ is a lower triangular matrix with all its diagonal elements equal to
g0 and its secondary elements are given by gi − gi−1. The objective function
(5.17) can now with (5.23) be written as [9]

J(u) =
1

2
uTAu+ bu+c (5.25)

where

A = 2
³
ḠTG+DTD

´
bT = 2

³
(f2 −w)T Ḡ− fT1 D

´
c = kf2−wk22 + kf1k22

The problem has now been reduced to optimize a quadratic form (See Ap-
pendix A.1) with a constraint matrix

min
1

2
uTAu+ bu+c (5.26)

subject to
·
IN×N
−IN×N

¸
u ≤

·
1umax
−1umin

¸
that is solved on-line at each sample interval using quadratic programming.
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Reaction

Apply       

Continue

Stop

u(k)

∆Pe(kh)

h
< 0

∆Pe(kh)

h
≥ 0

Next sample
hit

RLS and GPC

Figure 5.2: The probing strategy, where ∆ = 1− q−1 is the difference oper-
ator.

5.3 Detection of Critical Viscosity

The objective of this section is to develop methods to detect the critical
mixture viscosity of the ash/dolomite/water.

Probing Strategy

The control objective is to regulate the normalized effective power Pe(t) to
the level P crite , which represents the desired mixture viscosity. When P crite

is reached and nevertheless more water is added to the WAS process, this
gives a mixture useless for granular material. To cope with this problem,
a probing strategy is developed to reach the desired level P crite without any
fully pre-determined set-point trajectory. The strategy is shown in Figure
5.2 and is inspired by the work presented in [62]. The probing strategy
works as follows: a ramp reference trajectory is generated and the GPC
calculates the control signal increment ∆u(k) at each sample so that (5.25) is
minimized. If the difference approximation of the derivative Ṗe(t) is negative,
the controller is disabled and the probing strategy stops. If not, the probing
strategy continues. Hence, the probing strategy also gives the ability to
track changes in P crite due to varying wood ash qualities. It should also be
noticed that the strategy could include a linearly increasing control penalty
ρ, yielding small control actions near the point P crite .
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Change Detection

Algorithmically, all proposed change detectors can be put into one of the
following three categories:

• Methods using one filter, where a whiteness test is applied to the resid-
uals.

• Methods using two filters, one slow and one fast, in parallel.

• Methods using multiple filters in parallel, each one matched to certain
assumption on the abrupt changes.

The measurement of the normalized effective power Pe(t) is only available
as periodic observations of Pe(t) sampled with an time interval h . Let the
values of Pe(t) be represented by a sequence

{Pe(k)}∞k=0 ; Pe(k) = Pe(kh) for k = 0, 1, . . . (5.27)

then the measurement of Pe(k) can be expressed as

Pe(k) , y(k) = ϕT (k, d)θ(k) + e(k) (5.28)

where θ(k) is a parameter vector containing the system parameters, d is the
delay of the system, ϕT (k, d) is the regression vector and e(k) is an additive
white noise. An adaptive parameter estimator is good at following slow vari-
ations in the system parameters. If the system is changed abruptly instead,
for example if the gain of the system switches sign, it takes quite a long time
before the filter adapts to the new system parameters. To improve the per-
formance of the filter a change detector [22] can be added. The structure of
the implemented change detector is shown in Figure 5.3:

θ̂(k), ε(k) s(k)

Filter Distance
Measures

Stopping
Rule

Data Alarm

Figure 5.3: The principle of the one-filter approach for change detection.

In the one-filter approach, one adaptive filter is used to determine if there is
a change in the system. If the estimated model is correct, the residuals ε(k)
from the filter should be white and gaussian. The change detector consists
of three stages; filter, distance measures and stopping rules:



66 CHAPTER 5. CONTROL OF THE ASH STABILIZATION PROCESS

Filter

The implemented RLS parameter estimator discussed in Chapter 4 is here
used as a filter. The RLS gives as an output the parameter estimate θ̂(k)
and the residual ε(k) at time k.

Distance Measures

After a change, either the mean or variance or both will change. This is
indicated by the residuals ε(k) from the filter, which become ”large” in some
sense. The main problem in statistical change detection is to decide what
is meant by ”large”. Therefore a function s(k), called distance measure of
the residual, ε(k), at time k is calculated to obtain a measurement of the
distance to zero of the residual. Here, the implemented distance measure is
the same as the residual [22], i.e., s(k) = ε(k), which is useful for detecting a
change in the mean.

Stopping Rules

If the residuals are white the expected value E {s(k)}, of s(k) should be zero.
A hypothesis test can be used to decide whether the model is correct or not

H0 : E {s(k)} = 0 (5.29)

H1 : E {s(k)} 6= 0

This is essentially achieved by low-pass filtering s(k) and comparing this
value to a threshold γ. One such method is the GMA [44] test. A one-sided
GMA-test1 is

g(k) = αg(k − 1)− (1− α)s(k), alarm if g(k) > γ (5.30)

Here the parameter α is used to tune the low pass effect. Another method is
the CUSUM-test [59], [3]. The one-sided CUSUM-test only detects if g(k) is
significantly larger than zero.

g(k) = max (g(k − 1)− s(k)− ν, 0) , alarm if g(k) > γ (5.31)

Here the drift parameter ν and the threshold γ are design parameters used
to tune the sensitivity of the change detector.

1To aid a visual comparison between the GMA and CUSUM-tests, we here use αg(k−
1)− (1 − α)s(k) instead of the text-book version αg(k − 1) + (1 − α)s(k) as a first order
exponential filter.



5.4. SIMULATION STUDY 67

5.4 Simulation Study

In order to evaluate the control performance, a model of the WAS dynam-
ics has been built in SIMULINK. The experimental output and the predicted
SIMULINK model output are shown in Figure 5.4. As seen in the figure the
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Figure 5.4: The input signal, Pe(k) and the predicted SIMULINK model out-
put. Pe(k) is filtered with a low pass filter before plotted in the figure.

mixture becomes saturated at t = 680 sec. Hence, this is the point P crite .
The dynamics of the WAS are well described by a second order system with
two real poles and a variable gain, see Section 4.6.

Two Simulation Examples

The RLS parameter estimator and the GPC algorithm with amplitude con-
straints on the control signal is implemented in C-code and incorporated in
SIMULINK S-functions [47]. For the GPC, when Nu = 1, the step response
matrixG becomes a vector and no matrix inversion is required for computing
∆u. This choice is selected for simplicity and is valid for stable systems [10].
This choice of Nu also simplifies the optimization problem for the constrained
GPC [11]. The implemented control strategies are evaluated by simulations,
controlling the SIMULINK model of the time-varying WAS dynamics.

Two strategies are evaluated for comparison in the simulation study, the
GMA-test and the probing strategy. The simulation results for both strate-
gies are shown in Figures 5.5 and 5.6 respectively. In the simulations, a
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Figure 5.5: Simulation with the probing strategy, where λ = 0.995, Tr = 10,
ρ = 0.001, umin = 0, umax = 100 and with a slope of the reference trajectory
equal to 0.1. The RLS is turned off at t = 20 min to avoid estimator wind-up
[63].
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Figure 5.6: Simulation with the GMA-test as control strategy, where λ =
0.995, Tr = 10, ρ = 0.001, umin = 0, umax = 100. Here, the treshold
γGMA = 5 · 10−3 has been used.



5.4. SIMULATION STUDY 69

control signal quantization of 2% is included. Initially, an auto-tuning se-
quence with the controller disabled is carried through in order to obtain a
good estimate of the process dynamics. After the auto-tuning sequence is
completed, the GPC is enabled to control the WAS process. In Figure 5.5 it
is seen that the probing strategy is successful in detecting the mixture satura-
tion and stop the controller at t = 11minutes. From t = 11 to t = 50 minutes
the relative effective power Pe(t) is still decreasing even if the control signal is
zero. This phenomenon is also observed in real experiments. The explanation
for this is that the diffusion process is still active giving a decreasing viscosity
since the stirrer drive is running. To overcome this problem, the stirrer drive
must be disabled when the normalized effective power has reached the point
P crite . Before the stirrer drive is disabled, a small amount of wood ash is
added to the batch yielding a less sticky mixture. Hence, this can also be
used as an additional control variable.

In Figure 5.6 we see that the GMA based control strategy also is successful in
detecting the mixture saturation. The parameter α used to tune the low pass
effect is here selected to be 0.9. Hence, the maximum value of the control
signal u(k) is 100%, which limits the bandwidth of the closed loop system. If
the control signal would however be non-constrained, the mixture absorption
properties would still limit the magnitude of the maximum control signal.

Conclusions

In this section it has been shown that an optimal adaptive controller combined
with a control strategy will overcome the difficulties in controlling the chemi-
cal process of wood ash stabilization. Two control strategies were evaluated:
Adaptive control combined with a probing strategy and adaptive control with
the GMA-test. The results of the simulations listed with comments on good
(+) or poor (−) properties of the two control strategies are

Probing Strategy

+ Gives the ability to track changes in P crite due to varying wood ash
qualities.

− Since we differentiate the data, the probing strategy will be sensitive
to disturbances in the measurement of Pe(k). The differentiated signal
may then have to be low-pass filtered before used in the probing strategy
in a real-time application. This will delay the detection time.

− The controller is disabled precisely at, or slightly after the point P crite .
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GMA Strategy

+ Gives the ability to track changes in P crite due to varying wood ash
qualities.

+ Uses the full potential of the RLS.

+ Gives the possibility to disable the controller just before the point P crite .

− The threshold γ and the parameter α used to tune the low pass effect
may be hard to select.

5.5 On-line Detection

The change detector based on the GMA-test and the CUSUM-test are now
applied to two data sets that represent a typical behavior of the WAS process.
Here random pulses are inserted to the system input and the results are shown
in Figures 5.7 and 5.8. When the normalized effective power Pe(k) reaches
the level P crite , the gain of the WAS process switches sign from positive to
negative, which implies that the residuals ε(k) become negative. In both
figures it is seen that both implemented change detectors are successful in
detecting the mixture saturation, i.e., when the level P crite is reached. The
data filters L(q) (see Section 4.8) uses f = 0.9. In Figure 5.8 we see that
from t = 800 s to t = 1800 s the normalized effective power Pe(k) is still
decreasing even if the input signal u(k) is zero. This phenomenon was also
observed in the simulations shown in Figures 5.5 and 5.6.

Conclusions

In this section, a change detector has been presented using the one-filter
approach for detecting the abrupt parameter change that occurs in a WAS
process. Two stopping rules were evaluated, the GMA-test and the CUSUM-
test. The implemented change detectors are both successful in detecting when
the mixture becomes saturated, i.e., when the level P crite is reached. However,
the CUSUM-test has a more distinct detection. Further, prefiltering with the
∆ operator to cancel the natural integrator of the process dynamics does not
yield any better detection. It should also be noticed that the selected ARX
model could be exchanged for a recursively identified Output Error (OE)
model.
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Figure 5.7: The change detector applied to the first data set. The plot to the
upper left shows the applied input u(k) and the system response − Pe(k).
In the upper right plot the parameter convergence for the RLS is shown for
λ = 0.998. The thresholds γGMA = 0.015 and γCUSUM = 0.1 are used,
which are plotted in the two lower figures as dotted lines.
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Figure 5.8: The change detector applied to the second data set. The upper
left plot shows the applied input u(k) and the system response − Pe(k).
In the upper right plot the parameter convergence for the RLS is shown
for λ = 0.998. The same thresholds are used as in Figure 5.7. Successful
detection of the point P crite is obtained.
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5.6 Real-Time Implementation

The result of identification is dependent upon a careful choice of input to
the system under investigation. During the auto-tuning, a Pseudo Random
Binary Sequence (PRBS) is used as process input. This input signal shifts
between two levels in a certain pattern such that its mean value and covari-
ance function are quite similar to those of a white noise process [54]. This
signal is therefore adequate for identification purposes since a white noise
sequence is PE of any order [63].

PRBS Signal Generator

In order to generate a PRBS sequence with an auto-correlation function as
given in equation (4.28), it is necessary to generate random numbers, uni-
formly distributed between, for example, zero and one. A numerous of meth-
ods for generating uniformly distributed random numbers have been devised,
see e.g. [2]. The sequence of numbers generated is determined by the initial
seed of the PRBS signal generator. Since the generator resets the initial seed
at start-up, the sequence of numbers generated will be the same unless the
initial seed is changed.

Definition 5.6.1 Uniform distribution [2].

A random variable X is uniformly distributed on the interval [a, b] if its
probability density function is given by

fX(x) =

½
1
b−a , a ≤ x ≤ b
0 , otherwise

(5.32)

The probability distribution function is given by

FX(x) =


0 , x < a
x−a
b−a , a ≤ x ≤ b
1 , x > b

(5.33)

The mean and variance of the distribution are given by

E {X} = a+ b

2
(5.34)

and

Var {X} = (b− a)2
12

(5.35)

2
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Figure 5.9: The upper plot shows the first 200 samples of the PRBS sequence.
The two lower plots show the estimated auto-correlation function and the
estimated auto-spectrum.

In order to generate random numbers uniformly distributed in the interval
[0, 1] we put a = 0 and b = 1. The PRBS signal generator is implemented in
the CALC-IDE environment described in Section 7.4. The result of a MATLAB
simulation using the PRBS signal generator for N = 5, h = 1 and 10000
generated samples is shown in Figure 5.9. See Appendix A, section A.2, for
the definition of the auto-correlation function and the auto-spectrum. The
result of the simulation confirms equation (4.28) and the number of dips
in the estimated auto-spectrum is equal (N − 1)/2. Note that (4.28) is an
asymptotic result, which means that it is valid for an infinite sequence.

Anti-Aliasing Filter

Filtering reduces noise errors in the signal. For most applications a low-
pass filter is used. This allows through the lower frequency components but
attenuates the higher frequencies. The cut-off frequency must be compatible
with the frequencies present in the actual signal (as opposed to possible
contamination by noise) and the sampling rate used for the A-D conversion.
A low-pass filter that is used to prevent higher frequencies, in either the signal
or noise, from introducing distortion into the digitized signal is known as an
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anti-aliasing filter . These generally have a sharper cut-off than the normal
low-pass filter used to condition a signal. Anti-aliasing filters are specified
according to the sampling rate of the system and there must be one filter per
input signal.

Very little is lost by sampling a continuous-time signal if the sampling instants
are sufficiently close, but much of the information about a signal can be lost
if the sampling points are too far apart. It is, of course, essential to know
precisely when a continuous-time signal is uniquely given by its sampled
version. Shannons sampling theorem (see the Appendix given in Section 5.9)
gives the conditions for the case of periodic sampling. Note that Shannon
gives conditions only for an infinite time signal. Also note that in practice
we have to be more conservative, i.e., sample a little more frequently.

Practically all analog sensors have some kind of filter, but the filter is seldom
chosen for a particular control problem. It is therefore often necessary to
modify the filter so that the signals obtained do not have frequencies above
the Nyquist frequency (see the Appendix given in Section 5.9). The simplest
solution is to introduce an analog filter in front of the sampler. The analog
inputs of the used control system SattCon 200 (See Section 7.3) all have
prefilters. However, for the selected sampling time h = 1 s, the available filter
has only a gain of about −0.4 dB at the Nyquist frequency ωN = ωs/2 = π,
which is not sufficient. Therefore, a first order filter is designed that serves
as an extra anti-aliasing filter. The filter has the transfer function

Gaa(s) =
1

s+ 1
(5.36)

and has a gain of about −10.4 dB at the Nyquist frequency. Due to the slow
process dynamics, the dynamics of the anti-aliasing filter are neglected.

Experimental Results

An adaptive controller that utilizes the CUSUM-test for detection of the level
P crite is implemented in the CALC-IDE environment (see Section 7.4) to enable
real-time control of the WAS process. However, when using change detection
based on a one-filter approach, experiments show that the complexity of the
control algorithm may be decreased to a minimum. Then the control sequence
produced by the GPC can be exchanged for a simple sequence that runs in
open-loop.

The final choice of implementation is therefore summarized as follows: at
each batch produced, a PRBS sequence is generated in order to obtain a good
estimate of the process dynamics. This is to ensure an adequate performance
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of the CUSUM-test. After the PRBS sequence is completed, the control
signal attains the level umax until a suitable mixture viscosity is obtained.
This control strategy is, despite its simplicity, optimal in the sense that the
level P crite is reached in minimum time. As a result, this implementation also
gives a decrease in the number of floating point calculations. This is positive,
since most of the available time at the Programmable Logic Controller (PLC)
has normally to be used for purposes other than the control algorithm itself,
as for example, communications and alarms. See Chapter 7.

5.7 Summary and Concluding Remarks

In this chapter, different methods are developed in order to detect the critical
mixture viscosity of the ash/dolomite/water. Three strategies are evaluated;
a probing strategy, the GMA-test and the CUSUM-test, all three adequate
for successful implementation. However, the final implementation is based
on a simple control sequence performed in open-loop combined with a change
detector that uses the one-sided CUSUM-test as a stopping rule.

It should be stressed that varying the threshold of the CUSUM-test affects
the final moisture content of the mixture. Experimental results show that a
threshold γCUSUM = 0.2 yields a mixture suitable for granulation, whereas
the threshold γCUSUM = 0.1 presented in Section 5.5 yields a faster detection
and thus a less moistened mixture. However, the threshold γCUSUM = 0.2
must be tested during a longer time-period in order to validate its robustness
at seasonal variations of the wood ash quality.
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5.8 Appendix 5A - Recursion of Diophantine
Equations

It is simple to show that the two Diophantine equations (5.6) and (5.9) can
be solved recursively. The recursion of the Diophantine equation has been
demonstrated in [10]. A more detailed derivation is presented in [20]. Notice
that the recursions given in this Appendix are valid for a time delay d = 0.

Calculation of E and F

i = 1 initialization(
e
(1)
0 = 1

f
(1)
j = −e(1)0 (aj+1 − aj) 0 ≤ j ≤ na (5.37)

i ≥ 2 recursion(
e
(i)
i−1 = f

(i−1)
0

f
(i)
j = f

(i−1)
j+1 − e(i)i−1(aj+1 − aj) 0 ≤ j ≤ na (5.38)

Calculation of G and H

i = 1 initialization(
g0 = e

(1)
0 b1

h
(1)
j = bj+2e

(1)
0 0 ≤ j ≤ nb− 2 (5.39)

i ≥ 2 recursion(
gi−1 = h

(i−1)
0 + b1e

(i)
i−1

h
(i)
j = h

(i−1)
j+1 + e

(i)
i−1bj+1 0 ≤ j ≤ nb− 2 (5.40)

2
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5.9 Appendix 5B - Sampling and Reconstruc-
tion

Very little is lost by sampling a continuous-time signal if the sampling instants
are sufficiently close, but much of the information about a signal can be lost
if the sampling points are too far apart. It is, of course, essential to know
precisely when a continuous-time signal is uniquely given by its sampled
version. The following theorem gives the conditions for the case of periodic
sampling.

Theorem 5.9.1 Shannons sampling theorem [46].

A continuous-time signal with a Fourier transform that is zero outside the
interval (−ω0, ω0) is given uniquely by its values in equidistant points if the
sampling frequency ωs is higher than 2ω0. The continuous-time signal can
be computed from the sampled signal by the interpolation formula

f(t) =
∞X

k=−∞
f(kh)

sin (ωs(t− kh)/2)
ωs(t− kh)/2 =

∞X
k=−∞

f(kh)sinc
ωs(t− kh)

2
(5.41)

where ωs is the sampling frequency in radians per second (rad/s).

Proof. See for example [64].

2

Remark 5.9.1 The frequency ωN = ωs/2 plays an important role. This
frequency is called the Nyquist frequency.

Remark 5.9.2 Notice that equation (5.41) defines the reconstruction of sig-
nals whose Fourier transforms vanish for frequencies larger than the Nyquist
frequency.

The Fourier transform Fs(ω) of the sampled variable is given by

Fs(ω) =
1

h

∞X
k=−∞

F (ω + kωs) (5.42)

where h denotes the sampling interval and F (ω) is the Fourier transform of
the continuous-time signal f(t)

F (ω) =

Z ∞
−∞

e−iωtf(t)dt (5.43)
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Thus, the function Fs(ω) is periodic with a period equal to the sampling
frequency ωs. If the continuous-time signal has no frequency components
higher than the Nyquist frequency, the Fourier transform is simply a periodic
repetition of the continuous-time signal f(t).

It follows from (5.42) that the value of the Fourier transform of the sampled
signal at ω is the sum of the values of the Fourier transform of the continuous-
time signal f(t) at the frequencies ω+nωs. After sampling, it is thus no longer
possible to separate the contributions from these frequencies. The frequency
ω can thus be considered to be the alias of ω+nωs. It is customary to consider
only positive frequencies. The frequency ω is then the alias of ωs−ω, ωs+ω,
2ωs − ω, 2ωs + ω, . . ., where 0 ≤ ω ≤ ωN . After sampling, a frequency
thus cannot be distinguished from its aliases. The fundamental alias for a
frequency ω1 > ωN is given by [64]

ωalias = |(ω1 + ωN)mod(ωs)− ωN | (5.44)

A practical difficulty is that real signals do not have Fourier transforms that
vanish outside a given frequency band. The high-frequency components may
appear to be low-frequency components due to aliasing. The problem is
particularly serious if there are periodic high-frequency components. To avoid
the alias problem, it is therefore necessary to filter the analog signals with
an anti-aliasing filter before sampling as discussed in Section 5.6.



Chapter 6

Operations in the Earlier
Prototype

6.1 Granulation Process

After the mixture has passed the size reduction the actual granulation occurs.
The drum granulator (shown in Figure 6.1 and in Appendix B) consists of two
rotating parallel cylinders. The mixture enters the drum granulator at the left
end and passes through the cylinders from the left to the right in Figure 6.1.
The time required for the material to pass the cylinders is the variable that
controls the granule size distribution. This time can be controlled using two
parameters [30]: the first is the angular velocity ω of the rotating cylinders;
the second is the inclination θ. The angular velocity has to be quite precise
− it cannot be too great or too small. This will cause the material to either
be smashed or not granulated. When the material follows the inner wall of
the cylinders up to a distance equal its radius, the desired angular velocity is
obtained [30]. It is important to note that neither the inclination should be
too small. Then no material would pass the drum granulator. Two variables
that cannot be affected, but also have impact on the size distribution, are
the length and diameter of the rotating cylinders. At present, the inputs to
the actuators of the drum granulator have static values, which correspond to
a desired granule mean diameter d.

6.2 Granule Hardening

After the granulation is completed, the granulated material enters the drying
stage in the ash transformation process. The idea is to use the flue gas
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ω

θ

Figure 6.1: The drum granulator used to granulate the ETEC-dolomite, ash
and water.

produced during combustion to dry the granules. This approach is quite
attractive, since there is no need to produce any extra energy at the drying
procedure. The flue gas, which has a temperature of 150-170 ◦C, is today
not used for anything and is therefore discharged immediately.

At present the flue gas is not used in the hardening procedure. The reason
for this is that it is still not clear whether the flue gas produced at Graninge-
Kalmar Energi is appropriate for granule hardening or not. This is under
investigation. Instead, the hardening furnace is heated by hot air. The
furnace, which is depicted in Figure 6.2 and shown in Appendix B, contains
four conveyor belts that transport the granulated material. It is possible to
vary the conveyor belt velocity (fixed today) and thus control the time δ that
each granule is present in the hardening furnace.

6.3 Sorting and Packing

The final stage of the ash transformation process is the sorting and packing.
This stage is at present not implemented and is thus handled manually. The
setpoint for the granule size distribution is that 80% should have a diameter
range of 0.5− 4 mm. The largest accepted diameter is 6 mm. In the future,
if necessary, an industrial vibrating screen station (oversized and undersized
screens) will be applied. On the other hand, if it is possible to control the
granule size distribution with such a precision that the vibrating screens are
not needed, the total solution would be less expensive. However, if this is not
the case, for the screen we will have:
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Figure 6.2: The furnace used in the drying process.

wos > 6 mm (6.1)

wps ≤ 6 mm
where wos is the mesh diameter for the oversized screen, and wps is the mesh
diameter for the product screen. How to deal with the granules that have a
diameter range less than 0.5mm is still not decided. The exact mesh diameter
is to be obtained through experiments. After the granules have passed the
vibrating screen they are packed and stored in big sacks or containers for
later transportation. The use of containers are recommended [18].

6.4 Summary and Concluding Remarks

The stages of granulation and hardening are at present only controlled to a
certain extent. With control, we here mean that the inputs to the actua-
tors of the drum granulator and hardening furnace have static values, which
correspond to a desired system response (granule mean diameter and gran-
ule moisture content). This is not an adequate implementation if a uniform
product quality is desired. For example, in the hardening process, the dy-
namics will change with the speed of the material through the dryer and the
moisture content of the incoming material. On the other hand, this imple-
mentation serves as a good initial solution. In the future work, controllers for
the granulation and hardening processes should be developed, and the sort-
ing and packing, which today are handled manually, should be automatic.
The physical equipment should also be built to comply with the industrial
requirements for continuous operation.



82 CHAPTER 6. OPERATIONS IN THE EARLIER PROTOTYPE



Chapter 7

Co-ordination of Control

7.1 Introduction

The control system and the physical process must of course work well to-
gether. For example, a controller is normally designed for operation around
one operating state. It is, however, necessary to make sure that the system
will work well also during start-up and shutdown and under emergency con-
ditions, such as process failures. During normal conditions it is natural to
design for maximum efficiency. At a failure, it may be much more important
to recover and quickly return to safe operating conditions. In any automated
manufacturing system that is in operation 24 hours a day the robustness of
a control system is crucial. The discussion above implies that a robust and
safe control system must be designed for the ash transformation process in
order to meet all possible situations that may occur during operation.

Because of the industrial environment, an industrial control system is suitable
as a base to solve the computer real-time problem. The control system should
not only be able to interact with the process but also with the operator . It
is important to emphasize that the man-machine interface plays an essential
role in these kind of applications. If the operator does not understand the
information he/she is receiving, it is impossible to make the correct decision
about the next step in the process. Therefore, it is important to facilitate the
exchange of information between the user and the equipment to be controlled.
A well designed interface not only makes work conditions more pleasant but
also helps considerably to reduce errors and thus limit the extent of possible
damage.
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Figure 7.1: The real-time environment.

The ash transformation process consists mainly of five different tasks that
will run concurrently, as depicted in Figure 7.1. Some of the processes can be
divided into smaller parts, for example, the ash scheduling is included in the
main program. These tasks run in parallel and need information from the
”world outside” through measurements to be able to execute the next step
in the program code. This implies that a numerous amount of sensors must
be included to convey this information. In order to physically connect the
computer to the process many technologies have to be applied. Since it is
impossible to become an expert in all the related fields, it is important to be
aware of the different interfacing problem in order to get a functional closed-
loop system. If poor measurements are obtained of the quantity that is to be
controlled, it is waisted time to use any theory from automatic control. In
this case, when dealing with a true physical process, we can not ignore what
is happening beyond the A-D-converters. A good reference to a book that
clearly remark the importance of this topic is [40].

As mentioned earlier, each process needs different kinds of sensors. Therefore,
numerous digital and analog inputs-outputs must be connected to the control
system.

7.2 Control System Philosophy

This section presents the general philosophy applied during the develop-
ment and implementation of the control program for the ash transformation
process.
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Two Mode Operations

To enable flexible operation it is possible to run the ash transformation
process in two different modes:

Mode1 : Bypass operation
Mode2 : Ash transformation

It is the operator that manually sets the current mode for the transformation
process.

Bypass Operation Mode

In this mode, the ash will never pass through the ash transformation process
and no granules are thus produced. The ash will instead be transported to
an ash container, see Appendix B. By having this mode, it is possible to
reschedule the ash transportation and shut down the transformation process
if a failure occurs. Hence, running the process in mode 1 is the same solution
as applied earlier: the ash is deposited as waist. In this mode no alarms are
allowed from any object that is a member of the ash transformation process.
This is so because the staff should be able to do repairs/services on the
equipment without any unmotivated alarms occurring, for example, if any
safety switch is turned off during the service. Alarms are thus still allowed
to be triggered from the parts of the process still active, for example, if the
spiral-feeder for the ash transportation fails.

Ash Transformation Mode

In this mode the ash is granted to be transformed into fertilizing granules in
the manufacturing line. The process will run in this mode until the operator
orders shut down, or if any failure occurs. The ash falling from the electro-
static precipitators is, if necessary, analysed by a CIFA monitor independent
of the process mode. If mode 2 is active, and the analyzed ash is qualified,
it is transported to an ash buffer (see Appendix B) for later granulation. If
not, it is transported to the ash container. If mode 1 is active, the ash is
always transported to the ash container.

Fault Detection

During operation of any manufacturing system, many predictable and un-
predictable sources for system failure may occur. When dealing with a pro-
duction line, as the ash transformation process, it may be fruitful to divide
the total manufacturing system into several successively smaller pieces as



86 CHAPTER 7. CO-ORDINATION OF CONTROL

depicted in Figure 7.1. If a failure occurs in one stage of operation, the con-
trol system must make a proper decision whether to shut down the whole
production line or to keep some part of the system running.

Fault detection is to determine as quickly as possible if something in the
production line has gone wrong based on knowledge of the system and ob-
servations. Based on the detection we have to make a fault isolation, i.e.,
from observations of the system we wish to determine if a fault has occurred,
where it occurred, and what it is. In our case the problem is to decide which
component has failed. Components can be arbitrary items such as sensors,
actuators, electric drive systems, feeders etc. Since the process can run in
two different modes, some failures can occur in any of these two modes. If
a failure occurs, the control system identifies the failure and then classifies
how serious it is depending on the current mode. The failures are classified
as serious or less serious. The control systems then gives an alarm and take
proper actions depending on in which mode (mode1/mode2) the process is
running. Hence, irrespectively of the process mode, it is always necessary
for the operator to correct the source of error and acknowledge before the
process can be put in operation after the failure. If any source of error is
not corrected accurately, and the operator anyway acknowledges, it is not
possible to restart the ash transformation process until the source of error is
properly corrected.

In this application two alarm-types are used. The first type is alarms caused
by the hardware, called Hardware Alarms (HA) and the second type is alarms
caused by the software, called Software Alarms (SA). An example of a HA
may be that a safety switch is switched off to the electrical motor used in
the ash spiral-feeder conveying system. On the other hand, a SA could be
that the hardware does not indicate any failure, but no ash is filled into the
mixer. This is monitored by the control system. Also if the execution of any
of the implemented control-algorithms fails, this is regarded as a SA and the
control system should take proper actions.

7.3 Distributed Control

The microprocessors have had a profound impact on the way computers have
been applied to control entire production plants. It became economically
feasible to develop systems consisting of several interactive microcomput-
ers sharing the overall workload. Such systems generally consist of process
stations, controlling the process; operator stations, where process operators
monitor the activities; and various auxiliary stations, for example, for system
configuration and programming, data storage and so on. All of them are in-
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teracting by means of some kind of communication network. The allure was
to boost performance by facilitating parallel multi-tasking, to improve overall
availability by not putting ”all the eggs in one basket” to further expandabil-
ity and to reduce the amount of control cabling. The term ”distributed
control” was coined. The first systems were oriented towards regularity con-
trol, but over the years distributed control systems have adopted more and
more of the capabilities of programmable (logic) controllers, making today’s
distributed control systems able to control all aspects of production and en-
abling operators to monitor and control activities from a single computer
console.

Distributed control is adopted to solve the co-ordination problem of con-
trol, see Figure 7.2. The total system contains a local Central Processing
Unit (CPU) that is connected to the ash transformation process through sev-
eral I/O units. This CPU (SattCon 200) is independent and programmed
via a Personal Computer (PC), which is easily connected to the front end of
the SattCon 200 unit. The software DOX10 is used to design the program to
be downloaded. DOX10 supports five different types of programming meth-
ods: Sequential Function Chart (SFC), Function Blocks, Ladder, Enhanced
Instruction List and Structured Text, which is floating point in SattCon 200.
The local control system SattCon 200 is communicating with the SattGraph
Server by using the protocol COMmunication LInk (COMLI)1. Ethernet is
utilized to transfer data to SattGraph 5000, which is used for supervision at
the district heating plant. Four load cells are connected to the weight trans-
mitter E-2 WEI. The WEI unit is a slave under SattCon 200 and is used as
a transmitter between the load cells and the PLC. The data communication
is carried out over an isolated RS 485 serial interface with COMLI used as
protocol, see Figure 7.2.

SattGraph 5000

SattGraph 5000 is a modular PC-based Supervision, Control and Data Ac-
qusition (SCADA) system. The open, object orientated system architecture is
founded on true client/server principles. The SattGraph Human Machine In-
terface (HMI) concept used for operator interactions employs modern graph-
ical interaction techniques, supports object orientation and features informa-
tion zooming and pop-up windowing. SattGraph 5000 is a scalable system
concept. The architecture for a small single node combi system is exactly
the same as for an enterprise size installation. SattGraph 5000 is developed
for the 32 bit Windows NTTM platform providing connectivity to a world of
WindowsTM applications. Configuration of process signals, detected events

1 This communication is at present not implemented.
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Figure 7.2: Co-ordination of control.

and alarms, and long-term process history are stored in true Open Data Base
Connectivity (ODBC) databases. This enables any type of user specific re-
port to be generated by the use of standard Windows components, such as
Microsoft ExcelTM, AccessTM, SQL ServerTM, Visual Basic and Visual C++.
This feature helps the operator to analyze the process output and further to
make decisions about long-range improvements.

Communication with PLCs like SattCon 200 is handled by the communica-
tion server. See Figure 7.2. This server supports the used protocol COMLI,
and also an open Dynamic Data Exchange (DDE) interface. An event or
alarm may be triggered by a binary signal or by an internal limiter in the
server. Printouts and event logs can be generated for all state changes with
a configurable status description. Printouts can be sent to any configuration
of printers. The latest events can be inspected in an event list. Alarms are
displayed in the alarm list and on the alarm line in the SattGraph opera-
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tor station. Alarms may be delayed a certain amount of time to avoid false
detection.

Some limited control could be implemented in SattGraph, but since the
distance between the different units may be large, it is recommended that
the control algorithms are implemented at the local unit near the physical
process.

7.4 Used Programming Methods

In this section the used programming methods in DOX10; Grafcet and CALC-
IDE are described. Function Blocks are also used but not discussed here.

Grafcet

Grafcet was proposed in France in 1977 as a formal specification and real-
ization method for logical controllers. The name Grafcet was derived from
graph, since the model is graphical in nature, and AFCET (Association Fran-
caise pour la Cybernétique Economique et Technique), the scientific associa-
tion that supported the work.

During several years, Grafcet was tested in French industries. It quickly
proved to be a convenient tool for representing small and medium scale se-
quential systems. Grafcet was therefore introduced in the French educational
programs and proposed as a standard to the French association AFNOR
where it was accepted in 1982. In 1988 Grafcet, with minor changes, was
also adopted by the International Electrotechnical Commission (IEC) as an
international standard named IEC848 [25]. In this standard Grafcet goes
under the name Sequential Function Chart (SFC). Seven years later, in 1995,
the standard IEC1131-3, with Grafcet as essential part, arrived [26]. The
standard concerns programming languages used in Programmable Logic Con-
troller (PLC)s. It defines four different programming language paradigms
together with SFC. No matter which of the four different languages that is
used, a PLC program can be structured with SFC. Because of the two in-
ternational standards, Grafcet, or SFC, is today widely accepted in industry
where it is used as a representation format for sequential control logic at the
local PLC level. In Section 7.8 (Appendix) a brief overview of Grafcet is
given. A more thorough presentation is to be found in [14].
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CALC-IDE

CALC-IDE, an extension of DOX10, is utilized to implement the more advanced
control algorithms. CALC-IDE is a stand alone program in WindowsTM that
is used for arithmetic calculations in SattCon 200. Floating-point calcu-
lations for controllers, mean-value calculations, handling of arrays, statisti-
cal analyses etc. are all solvable with CALC-IDE. The language is based on
selected parts of the system program specification for programmable logic
controllers, described in the international standard IEC1131-3 [26]. Com-
pared to Structured Text, this programming language has some prominent
differences.

Variables

The following class of variables are not implemented:

VAR ACCESS . . . END VAR
VAR CONSTANT . . . END VAR

A program that follows the rules in IEC1131-3 declares the absolute vari-
ables in a VAR . . . END VAR − construction. A program in SattCon 200 uses
VAR . . . END VAR, VAR INPUT . . . END VAR, VAR IN OUT . . . END VAR and/or a VAR_
OUTPUT . . . END VAR − constructions. The variables are further not affected
directly. They are copied to a reserved memory area in a data-segment at
the instance before the execution begins. The variables are then copied back
to the memory or register at the end of the execution.

Datatypes

Generic datatypes, time, date and ascii-strings are not implemented. The
following datatypes are missing:

BOOL INT REAL STRING TIME
SINT LINT USINT UINT UDINT
ULINT DATE TIME_OF_DAY TOD DATE_AND_TIME
DT BYTE WORD DWORD LWORD

and datatypes triggered by flanks.

7.5 Implementation

Totally, to control and monitor the ash transformation process, fifteen three-
phase asynchronous machines, eight discrete control valves and fifteen sensors
are incorporated. The asynchronous machines that are sources of mechanical
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power, are used as movers for: spiral-feeder conveying systems, fans, high-
pressure pump operation, stirrer drive, size reduction, drum granulation and
conveyor belts. Some of these induction motors are speed regulated. It is
possible to run each individual motor manually or via the PLC. Furthermore

• A power transducer is utilized to measure the normalized effective
power Pe(t) as discussed in Chapter 4.

• Inductive proximity sensors are applied to control the mixer outlet in
order to adjust the feeding rate to the size reduction stage.

• Load cells with high resistance for lateral and longitudinal forces are
used to measure the shear stress in the bars at which the mixer is placed
upon. The stress is measured by straingauges in a fullbridge giving an
analog output. The load cells are connected to the WEI unit shown in
Figure 7.2, section 7.3.

• Electromechanical sensors are used for level monitoring in the buffers.

Ultrasonic Sensors

Ultrasonic sensing is applied for level monitoring and control of the size re-
duction stage. Ultrasonic sensing, which is a non-contact measuring method,
is well suited since the mixture of ash/dolomite/water is very sticky. This
type of level sensor is based upon high-frequency sound waves that are gen-
erated by the application of an alternating current to a piezoelectric crystal.
Sonic waves may undergo surface reflection. They also have a velocity of
propagation which is medium dependent. If such a wave is launched into a
medium towards a level interface, it will undergo reflection. The wave takes a
finite time to travel a distance equal to twice the distance between the sensor
and the interface. Hence, by measuring the time from launch to reception of
the reflected wave, the calculation of the distance is made using the velocity
of propagation of the sound wave. If a wave travels in, for example, an empty
cylindrical space with a velocity v (m/s), and takes the time t (s) to travel
the distance 2(h2−h1) (m), where h2 (m) is the length from the sensor to the
bottom of the cylindrical space and h1 (m) is the length from the sensor to
the surface of the interface. Then the relevant equation for these conditions
is [37]

2(h2 − h1) = tv (7.1)

Ultrasonic sensing is affected by several factors including the target’s surface,
size angle and the distance from the sensor. Environmental conditions such
as temperature, humidity, gases, and pressure may also affect the measure-
ment. Therefore, a sensor that automatically compensates for most of these
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environments is selected. The measured level from the ultrasonic sensor is
compared to different pre-determined levels yielding three discrete values of
the feeder level: feeder_full, feeder_half_empty and feeder_empty.

Component Failures

If any of the components mentioned above fails, it is crucial to detect this
and take proper actions. For the motors, overcurrent relays or thermal over-
load relays (the first operates when the current through the relay, during its
operating period, is equal to or greater than its setting), safety switches (a
manual on/off switch that ensures, in off-mode, that the motor is not started
during, for example, service/repair) and contactor failures must be monitored
in order to ensure a functional hardware. For some motors, it is crucial that
the source of error is corrected before a certain time-interval has expired,
i.e., some acknowledgments for hardware alarms are time constrained. This
is to guarantee safe operation of the ash transformation process. Also, to
further ensure safe and robust operation, several tasks have time constraints.
If a task is not completed during a predetermined time-interval, an alarm
becomes active. This is used to monitor:

• Mixture quality control failures.

• Failures during the ash/dolomite dosage.

• Failure of the ultrasonic sensor.

• Failure of the size reduction stage.

Fault detection is further applied to check:

• Superstructure in mixer.

• Absence of water.

• Failure of the dust preventing equipment.

To ensure safe (and dry) operation of the high-pressure cleaning procedure,
the gross weight of the mixer is monitored during this period.

7.6 Program Structure
DOX 10 enables the user to structure the program (project) in ProgramMod-
ules (PM) and SubModules (SM). It is possible to include 255 PM:s in a
project, where each PM can contain up to 1000 SM:s. With this feature,
the user can structure the program so that each PM is controlling a specific
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Figure 7.3: The DOX 10 program structure used when controlling the trans-
formation process.

part of the process, where each SM in the PM is controlling, for example, a
specific object. Another option is to structure the program in such way that
each PM is handling special events, as for example alarms. Each PM and SM
can be given a name and be documented. In order to make communication
between the different PM:s possible, forty VariableModules (VM) are avail-
able to the user. All user variables are located in this real-time protected
area. It is possible to connect any VM to an arbitrary chosen PM, which
enables flexible programming.

The selected program structure for the ash transformation process is depicted
in Figure 7.3. Here nine program modules are implemented to control spe-
cific parts of the ash transformation process, c.f., Figures 7.1 and 1.2. The
main program also includes the ash scheduling. The approach of having
special program modules for alarm events, output control etc. is adopted.
The PM for communication is handling all interactions between SattCon
200 and SattGraph 50002 . The communication line uses an asynchronous
serial RS485 interface, which is well suited for long distance transmissions.

2 At present not implemented.
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The used protocol is COMLI. SFC procedure steps (see Section 7.8) are imple-
mented in order to enable effective usage of the weight transmitter. The PM
labeled I-buffer is for future use, if a CIFA monitor is installed. This PM
is then utilized to determine the recipe for the dry material − dolomite and
ash − at each batch produced in the ash transformation process.

All Program Modules are implemented in the DOX 10 environment. Program
codes, which are implemented in the CALC IDE project environment, are con-
nected to the corresponding PM in the DOX 10 environment via a real-time
configuration. In this configuration, it is possible to choose if the program
code should be executed periodically or if it should be triggered and executed
once by a bit changing state from false to true. If the program code is set to
be executed periodically, it is possible to enable/disable the periodical exe-
cution, which gives the opportunity to run, for example, a control algorithm
in some special SFC step in the main program. All implemented program
codes uses the program skeleton suggested in [63]:

Algorithm Skeleton

Analog_Digital_Conversion
Compute_control_signal
Digital_Analog_conversion
IF estimate THEN
begin{estimate}
Covariance_update
Parameter_update
IF tune THEN
begin{tune}
th_design:=th_estimated
Design_calculations

end{tune}
end{estimate}

Organize_data
Compute_as_much_as_possible_of_control_signal

Line 1 implements the conversion of the measured output signal, the refer-
ence signal, and possible feedforward signal. All the converted signals are
supposed to be filtered through an appropriate anti-aliasing filters. Line 3
sets the control signal to the process. Lines 15 and 2 contain the calculation
of the terms of the control signal that are independent of whether the process
parameters are estimated or not. Notice the division of the calculations of
the control signal to avoid overly long computation times. Only calculations
that contain the last measurements are done in Line 2.
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Lines 4-13 contain calculations that are specific for an adaptive algorithm.
There are two logic variables, estimate and tune, which control whether the
parameters are to be estimated and whether the controller is to be redesigned,
respectively. The estimation is done in Lines 5-7, and the design calculations
are done in Line 11. Line 14 organizes the data such that the algorithm
is always ready to start the estimation when desired. For a non-adaptive
controller, some parts of the suggested program skeleton are neglected.

7.7 Summary and Concluding Remarks

In this chapter, the general philosophy applied during implementation of the
control system has been presented. Also a detailed description of the used
sensors, the selected program structure and programming methods are out-
lined. The usage of fault detection has also been presented. The program
is implemented and tested. However, the HMI is not yet available. The
academical potential of the work presented in this chapter may not be the
greatest, but on the other hand, for the operator of any process controlled by
computers, a well designed, robust and good structured program/operator
interface is of most value. This takes a considerable time to achieve practi-
cally, but the academical writing about it is minor. However, it increases the
engineering significance of the work.
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7.8 Appendix 7A - Grafcet

The purpose of this appendix is to give a short description of the graphical
language Grafcet that was presented as an implementation method in Section
7.4. An example containing the basic Grafcet building blocks is shown in
Figure 7.4.

Initial
Step

Alternative Paths

Parallel PathsTransition

Token

Step

Figure 7.4: Grafcet graphical syntax.

Syntax

Grafcet has a graphical syntax. It is built up by steps, drawn as squares, and
transitions, represented as bars. The initial step, i.e., the step that should be
active when the system is started, is represented as a double square. Grafcet
has support for both alternative and parallel branches, see Figure 7.4.

Steps

A step can be active or inactive. An active step is marked with one (and only
one) token placed in the step. The steps that are active define the situation or
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the state of the system. To each step one or several actions can be associated.
The actions are performed when the step is active.

Actions

There are two major categories of actions: level actions and impulse actions.
A level action is modeled by a binary variable and has a finite duration. The
level action remains set all the time while the step, to which the action is
associated, is active. A level action may be conditional or unconditional.
An impulse action is responsible for changing the value of a variable. The
variable can, but must not, be a binary variable. An impulse action is carried
out as soon as the step changes from being inactive to active. A variable
representing time may be introduced to create time-delayed actions and time-
limited actions. For a more thorough discussion of related topics, see for
example [28].

Transitions

Transitions are used to connect steps. Each transition has a receptivity. A
transition is enabled if all steps preceding the transition are active. When
the receptivity of an enabled transition becomes true the transition is firable.
A firable transition will fire immediately. When a transition fires the steps
preceding the transition are deactivated and the steps succeeding the transi-
tion are activated, i.e., the tokens in the preceding steps are deleted and new
tokens are added to the succeeding steps. The transitions are programmed
with, for example, Function Blocks, Ladder or Enhanced Instruction List.

Procedure Steps

A procedure step is equivalent of a procedure call in an ordinary programming
language. When the procedure step becomes active it calls an underlying
procedure (Grafcet sequence) that should be executed. When the procedure
is finished, it confirms this by making the transition after the procedure step
firable. This scheme is very useful if the program to be implemented contain
several steps where the same task should be executed.
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Chapter 8

Concluding Remarks

This work has discussed the control of an ash transformation process, which
automatically transforms wood ash produced at district heating plants into
fertilizing granules. The manufactured granules are recycled back to the
forest grounds, as a fertilizer, or as a tool to reduce the acidification in the
forest soil at the spreading area. Other areas of application are, for example,
structural fill and substitute for cement in ready-mix concrete.

Today CIFA analyzers based on microwave methods are too expensive for
the application of wood ash transformation. Therefore, at present, no on-
line measuring device is installed. Instead, all wood ash is transformed into
granules, i.e., no ash is sorted out to be reburnt. However, an attempt to op-
timize the burner efficiency has been launched and is ongoing. Furthermore,
it is concluded that the presence of Ca(OH)2 and CaCO3 does not affect
the color of the wood ash, since these components are not visible to the eye.
On the other hand, this may result in gross errors in the LOI tests for fly
ashes. Experimental results show that the color of the wood ash varies with
different fuels used at combustion. This implies that a measuring method
based on machine vision would be poor.

In Chapter 4, the viscosity of the ash/dolomite/water mixture is estimated
by measuring the normalized effective power Pe(t), which represents the rate
of useful work being performed by the three-phase asynchronous machine
used as stirrer drive. It is shown that this measurement is well suited for
control of the amount of added water to the WAS process. A second order
ARX model structure is selected and RLS is applied to estimate the time-
varying dynamics. Since the mixture is accumulating water, the physical
interpretation of the viscosity dynamics is that an integrator is to be found
in the process dynamics. Further, a time-constant is present, which depends

99
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on how the water is ”diffused” into the mixture; in the beginning of the WAS
procedure the dry mixture absorbs water fast, whereas at the end the mixture
becomes more and more saturated and is not able to absorb water as fast
as in the beginning. It is also concluded that the process gain switches sign
when the mixture totally saturates.

Methods to predict the critical water-to-ash ratio are presented in Chapter 5.
The final implementation is based on a simple control sequence performed in
open-loop combined with a change detector that uses the one-sided CUSUM-
test as stopping rule. The controller is implemented in the CALC-IDE en-
vironment to enable real-time control of the WAS process. The total ash
transformation process is controlled by an industrial control system in order
to enable automatic manufacture. A personal concluding remark is that the
major problem of building a machine for automated manufacture is to design
an apparatus that does not obtain superstructures on the mechanical parts
when processing the sticky mixture of ash/dolomite/water.

Extensions and Future Work
There is a number of open problems that need to be further investigated
regarding automated manufacture of fertilizing granules. A list for future
research and development is:

• Since the produced granules do not benefit from high carbon content,
the necessity of an on-line measuring device for the assessment of the
carbon in fly ash must be established. Furthermore, the attempt to
optimize the burner efficiency must be evaluated.

• The threshold γCUSUM = 0.2 must be tested during a longer time-
period in order to validate its robustness at seasonal variations of the
wood ash quality.

• The granulation and hardening processes must be modified, or maybe
rebuilt in order to comply with the industrial requirements for continu-
ous operation. Furthermore, the approach to dry the granules by using
the flue gas produced during combustion must be investigated.

• Controllers for the granulation and hardening processes should be devel-
oped, and the sorting and packing, which today are handled manually
should be automatic.

• A HMI must be implemented to enable proper exchange of information
between the user and the equipment to be controlled.



Appendix A

Prerequisites

A.1 Vectors and Matrices

Definition A.1.1 Definition of a Vector

Let x1, x2, . . . , xn be any n real numbers and x an ordered set of these num-
bers, that is

x = [x1 x2 . . . xn]
T (A.1)

then x is called an n-vector (or simply a vector). Here T denotes the trans-
pose of the column vector x, i.e.,

x =

 x1
...
xn

 = [x1 . . . xn]T (A.2)

2

Definition A.1.2 Definition of a Matrix

A matrix is a rectangular array of real elements. The (i, j)−th element aij
of the matrix A stands in the i−th row and j−th column of the array. The
order (size) of a matrix is said to be m × n if the matrix includes m rows
and n columns. For example,

A = {aij} =


a11 a12 · · · a1n

a21
. . .

...
...

. . .
...

am1 · · · · · · amn

 (A.3)

is a m× n−matrix. 2
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Definition A.1.3 Inverses of Nonsingular Square Matrices

If A and B are square matrices of the same dimension, and such that their
product

AB = I (A.4)

where I is the identity matrix, which has ones along the main diagonal and
zeros everywhere else, then B is the matrix inverse of A and A is the matrix
inverse of B. The matrix inverse is unique, if it exists, and is denoted by
A−1.

2

Definition A.1.4 Quadratic forms

Given
x = [x1 x2 . . . xn]

T (A.5)

and the square matrix A

A =


a11 a12 · · · a1n

a21
. . .

...
...

. . .
...

an1 · · · · · · ann

 (A.6)

then

xTAx =
nX
i=1

nX
j=1

aijxixj (A.7)

is called a quadratic form.

2

Definition A.1.5 Positive definite matrix

A square symmetric matrix AT = A is said to be positive definite, denoted
by A Â 0 if

xTAx > 0 ∀x 6= 0 (A.8)

2

Definition A.1.6 Positive semi-definite matrix

A square symmetric matrix AT = A is said to be semi-definite, denoted by
A º 0 if

xTAx ≥ 0 ∀x 6= 0 (A.9)

2
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A.2 Stochastic Processes

Definition A.2.1 Stochastic process

A sequence of random (stochastic) variables

{y(k), k = 1, 2, 3, . . .} (A.10)

shorter denoted {y(k)} is called a stochastic process.

2

Expectation

The statistical average value my(k) of a random variable y(k) is given by the
mathematical expectation operator denoted E. Hence

my(k) = E {y(k)} (A.11)

Assume that a number of realizations y(1)(k), y(2)(k), . . . , y(n)(k) of the ran-
dom variable y(k) are available. The expectation can then be considered as
the average value when an infinite numbers of realizations are utilized. Thus

my(k) = E {y(k)} = lim
n→∞

1

n

nX
i=1

y(i)(k) (A.12)

For a stochastic process {y(k)} this means that the average value generally is
a time-varying function my(k). However, if the expectation operator acting
on a stochastic process implies a constant function, we obtain a stationary
stochastic process. The average value, my, for instance, then becomes

my = E {y(k)} = E {y(k + i)} i = ±1,±2, . . . (A.13)

For stationary processes the average taken over a number of realizations can
naturally be replaced by a time average of one single realization {y(k)}Nk=1.
Hence, (A.12) is then replaced by

my = E {y(k)} = lim
N→∞

1

N

NX
k=1

y(k) (A.14)
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Correlation

The auto-correlation for a stochastic process {y(k)}, defined as

ryy(k, τ) = E {(y(k + τ)−my(k + τ)) (y(k)−my(k))} (A.15)

describes how the process is correlated in time. For a slowly varying process,
there is a strong correlation between values at different time instances, while
the correlation is insignificant for a rapidly varying process except for very
short time differences τ .

Assuming a stationary process, the correlation does not depend on the time
k, but only on the time difference τ . Thus, we simplify the notation for the
correlation to ryy(τ), and experimentally it can be determined by the time
average as

ryy(τ) = E {(y(k + τ)−my) (y(k)−my)} (A.16)

= lim
N→∞

1

N

NX
k=1

(y(k + τ)−my) (y(k)−my)

If the average my = 0 we also note that the variance becomes

V ar y(k) = E
©
y2(k)

ª
= ryy(0) (A.17)

It is also important to know how two different stochastic processes are related
to each other. Assume that {y(k)} and {u(k)} are stationary stochastic
processes. The dependence between these processes is then described by the
cross-correlation

ryu(τ) = E {y(k + τ)u(k)} (A.18)

= lim
N→∞

1

N

NX
k=1

(y(k + τ)−my) (u(k)−mu)

Example A.2.1 (White-noise)

White noise is a type of stochastic process that often is used as a unit distur-
bance. It is simply defined as an uncorrelated stationary process with zero
mean. Assume that the stochastic process {e(k)} is white noise with variance
re. Then the average is

me = E {e(k)} = 0 (A.19)

and the auto-correlation

ree(τ) =

½
re , τ = 0
0 , τ 6= 0 (A.20)

2
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Spectrum

The frequency content of a signal is described by its spectrum. Depending on
the property of a signal, different types of spectra are defined. For a stochastic
process {y(k)} the auto-spectrum can be considered as the expectation of the
power spectrum for realizations of y(k), i.e.,

Φyy(ω) = lim
N→∞

1

Nh
E |YN(ω)|2 (A.21)

where YN is given by the Discrete Fourier Transform (N measurements)

YN(ω) = h
NX
m=1

y(mh)e−iωmh (A.22)

The normalizing factorNh is the real time between the first and last non-zero
value of the signal. Hence, Φyy(ω) describes the average frequency content
of {y(k)}. Hence, equation (A.21) can also be written as

Φyy(ω) =
1

2π

∞X
τ=−∞

ryy(τ)e
−iωτ (A.23)

which shows that the spectrum for a stochastic process can be considered as
the fourier transform of the correlation function ryy(τ). In fact, (A.21) is the
original definition of spectrum for a stochastic process.

In the same way, the cross-spectrum for two stochastic processes is defined
as

Φyu(ω) =
1

2π

∞X
τ=−∞

ryu(τ)e
−iωτ (A.24)

This means that the cross-spectrum for two independent signals is zero since
ryu = 0.

Example A.2.2 (White-noise cont’d)

For white noise e(k) with variance re, (A.20) and (A.24) imply that

Φee(ω) =
1

2π
re (A.25)

i.e., the spectrum is constant. This is in fact the reason for the designation
white noise, since the white color has an equal mix of all colors (frequencies).

2
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Appendix B

Magnificus Apparatus

Rome was not built in a day.
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