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Abstract

In this work, various aspects of multivariate monitoring and control of waste-
water treatment operation are discussed. A number of important difficulties
face operators and process engineers when handling online measurements from
wastewater treatment processes. ©hese include, for instance, a high number of
correlated measurement variables, non-stationarities, nonlinearities and multi-
scale process behaviour. A systematic way to handle and analyse data is needed
to effectively extract relevant information for monitoring and control. In this
work, a chemometric approach is taken. Principal component analysis (PCA)
is used to reduce both the dimensionality of the problem and the noise level
in data. However, it is shown that basic PCA is not sufficient to describe the
process adequately. There are mainly two reasons for this. First, the processes
display a non-stationary behaviour due to the diurnal, weekly and seasonal vari-
ations in the composition of the wastewater. Second, disturbances and events
occur at different time scales making basic PCA less suitable.

The problem of non-stationary data is overcome using adaptive PCA in terms
of updating of the scale parameters as well as the covariance structure. It is
shown that adaptive PCA significantly improves the monitoring results as the
model adapts to new process conditions without losing its ability to detect de-
viating process behaviour. To solve the problem of disturbances that occur at
different time scales multiscale PCA is used. Multiscale PCA is a combination
of multiresolution analysis and PCA. Measurement signals are decomposed into
several time scales, and PCA models at each scale are identified. By doing so,
the sensitivity to small process deviations that otherwise are obstructed by the
diurnal variation is considerably increased. By omitting the lowest time scale
from the analysis, the remaining time scales will inherently be (practically) sta-



tionary, since this corresponds to using a highpass filtered version of the data.
Another solution, where the PCA models at each scale are made adaptive is also
presented.

Using the monitoring results to adjust the process in a supervisory control man-
ner is discussed. Two different methods are presented. The first is based on a
multistep procedure. The current operational state is detected and classified us-
ing clustering in the principal component space. This information is used to
determine appropriate setpoints for local controllers so that the process returns
to what is considered normal operation. In the setpoint determination step,
both static and dynamic models are used. The dynamic models are used within
the framework of model predictive control (MPC). The multistep approach is
best suited for extreme event control, since nonlinear and discrete control ac-
tions easily can be incorporated. The second method to integrate monitoring
and control is based on PCA. Here, the inverse PCA model is used to directly
calculate appropriate setpoints for the local controllers so that the process can be
controlled to attain specified output requirements. The controller can be seen
as a multivariate feedback controller implemented on top of the local control
system. It is shown by simulation studies that both methods for supervisory
control can successfully be used to control the process according to the control
objectives.
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Preface

This thesis constitutes the second part of the work I have carried out in my
pursuit of a PhD in Industrial Automation at the Department of Industrial
Electrical Engineering and Automation, Lund University, Lund, Sweden. The
first part is presented in my Licentiate’s thesis entitled ‘Monitoring Wastewater
Treatment Systems’ in 1998.

The topic of this thesis is multivariate monitoring and control of wastewater
treatment processes. I have come to realise that this topic is somewhere between
a number of different research fields, such as process control, chemometrics,
statistics and wastewater engineering. To be ‘somewhere in between’ has been a
fascinating experience and I have learnt a lot from the different fields. However,
it has also been difficult, since each has its own favourite methods and ways of
expressing things. Sometimes, even a kind of hostility between the areas has
been noticeable. This is sad, since they certainly complement each other. I have
tried to pick suitable parts from each area to achieve the objectives of the work.
However, as the title suggests, most ideas are taken from chemometrics, which
also can be considered an interdisciplinary field. Thus, the notation is mostly
according to that of chemometrics.

The thesis is a compilation thesis, consisting of an introduction to wastewater
treatment and multivariate monitoring and control, followed by seven included
papers. The papers are not organised chronologically. Instead, they are organ-
ised so that a common thread should be possible to follow. Since some of the
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papers are old and since the paper format only provides limited space, each pa-
per is followed by an addendum. In the addenda, comments on various aspects
of the papers are given.
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Chapter 1

Introduction

Opver the last centuries the human effects on the hydrologic cycle have increased.
In order to establish convenient environments for living as well as agricultural
and industrial production, artificial recycles have been created. So, in addition
to the necessity to life, water is used for numerous purposes, for example ir-
rigation, transport of material and energy as well as cleaning. Whatever the
purpose is, processing and use normally result in pollution of water. Enormous
amounts of water need to be treated each day, and although only a fraction is ac-
tually treated, the wastewater treatment industry constitutes the world’s largest
industry in terms of treated mass of raw material.

The methods to treat wastewater have, during the last century, gradually been
refined, from simple grids and aerated ponds to highly complex processes in-
cluding many separate steps. The requirements on the water being discharged to
the recipient bodies have become more demanding as the environmental aware-
ness has increased on both individual and governmental levels. The stricter
requirements as well as the increased complexity of the involved processes em-
phasise the need for more knowledge on and better control of the processes.

The level of automation has risen somewhat from a very basic level in the
beginning of the 1970s to approach a level in parity with the complexity of the
involved processes at the most modern installations. However, there is much left
to do, and a lot can be learnt from other industrial fields, such as chemical pro-
cess, pharmaceutical and paper and pulp industries. In this work, a systematic
approach to information extraction from wastewater treatment data is presen-
ted, using ideas taken from work carried out in especially the chemical process
industry. Further, a methodology to use the extracted information for improve-
ment of the overall control of the wastewater treatment plant is discussed.
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1.1 Motivation

In most process industries, monitoring of the process and the process output
is performed to achieve conformity with quality, safety and economic require-
ments imposed on the production. The level of monitoring differs from vari-
ous fields and pioneering efforts are found in, for instance, the petrochemical
and pharmaceutical industries. Wastewater treatment industries cannot be con-
sidered to be among the most diligent and systematic users of monitoring. Up
to today, monitoring in wastewater treatment has mostly focused on a few key
effluent entities upon which regulations are enforced by governments or other
authorities. However, as more entities are regulated and the regulations become
more rigid, the demands on the operation of the processes increase. Minim-
ising the use of resources, for instance, energy, chemicals and manpower, and
decreasing the amount of sludge products produced, have also become import-
ant issues in order to adapt the wastewater treatment processes to the ideas of
sustainability. The development towards more resource efficient and sustain-
able systems has led to an increased need of process and operation knowledge.
Thus, new and upgraded wastewater treatment plants are equipped with meas-
urement systems for collecting data on a large amount of entities. In large
wastewater treatment plants, the data collecting system may include hundreds
or even thousands of measured entities. The measurements are used for mon-
itoring the process and the quality of the process output. Measurements are
also used for control directly in control loops or indirectly as a basis for manual
control actions.

Due to the varying operational conditions, process and quality variables need
to be monitored continuously to ensure a reliable and efficient operation and,
thus, daily average values are not sufficient to get early detections or warnings
of deviating or abnormal conditions. Consequently, this calls for techniques
to handle large data sets online. The methods for monitoring used today are
normally based on time series charts, where the operator can view the different
variables as historical trends. It is difficult to track more than a few variables
and when the number of monitored variables increases, it is difficult to draw
any conclusions. Moreover, collective effects cannot be assessed by individual
investigation of variables. Therefore, the methods must handle the difficulties
involved in extracting information from multivariable data from the processes.
These difficulties include large data sets, collinear data, data with nonlinear
relationships, non-stationary data, data with dynamic relationships, noisy or
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unreliable data and missing data. Further, to be useful in the operation, the
information must be presented in an understandable and easily interpretable
way.

Ideally, the information gained from process data is used to operate the pro-
cess in the most efficient way possible. However, it is not always obvious how
the information can be utilised to counteract a process deviation or disturb-
ance. With a control system involving many local controllers, the cause-effect
relationships may be complex and difficult to assess in time for possible correc-
tions to have an effect on the disturbance. Some disturbances arise quickly, so
an operator support in the decision making is desirable.

Wastewater treatment plants are not always manned. This means that if a
severe disturbance occur, the time for reaction may be long. In these situations,
a method to automatically derive and implement changes to the control system
could provide a remedy. Automatic derivation and implementation of control
system changes, typically setpoint changes or invoking new control handles,
can be obtained by integrating the control and the monitoring system. This
has been done in many industrial fields, but in wastewater treatment, these su-
pervisory or plant-wide control systems are still uncommon. However, a recent
study shows that the wastewater community now are beginning to show an in-
creased interest in these issues (Jeppsson et al.; 2001). Also, researchers have
increased their efforts to develop control architectures that better suit the dif-
ficulties encountered in wastewater treatment operation (Sanchez et al.; 1996;
Katebi et al.; 1998; Roda et al.; 2001).

A systematic way to multivariate monitoring and supervisory (or plant-wide)
control of wastewater treatment plants may provide more efficient and safer
operation with a higher effluent water quality as a result. Moreover, it may also
allow for new process designs and techniques with higher demands on the level
of surveillance and control.

1.2 Objectives

The primary objective of this work is to investigate the applicability of mul-
tivariate statistics for online monitoring and control of wastewater treatment
operation of a continuous biological nutrient removal plant. A number of sec-
ondary objectives can be stated, objectives to achieve the primary objective: 1)
Identify challenges and difficulties encountered in online handling of multivari-
ate process data generated by the wastewater treatment processes; 2) Adapt and
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combine already known technologies, mainly from the field of chemometrics
and statistical process control, to suit wastewater operational data; 3) Develop
extensions to existing techniques to improve online monitoring performance in
those cases when existing techniques do not suffice; 4) Investigate and assess the
complexity level of the monitoring techniques required to obtain reliable and
useful process information; 5) Investigate how the monitoring information can
be used for wastewater treatment control; 6) Integrate monitoring and control
to form a framework for monitoring and supervisory control.

The above listed objectives are complemented by some objectives of earlier
presented work (Rosen; 1998a): a) Provide techniques for measurement data
validation and quality improvement; b) Highlight and demonstrate methods
to extract information from single variables and show the applicability of these
methods for detection of disturbances.

The objectives should be seen from an engineering perspective rather than a
scientific perspective. Thus, some statistical issues have been put aside to make
room for solutions that are not the most elegant from a statistical science point
of view, but feasible in practice. It should also be stated that the objectives 5 and
6 are natural extensions of the first four objectives. As will be seen, objectives
5 and 6 are somewhat driven by the curiosity of investigating how far one can
extend the use of multivariate statistics for purposes originally not intended.
Thus, no exhaustive investigation of other plant-wide or supervisory control
approaches has been made.

It is appropriate with a comment on the use of terms. In the context of this
work, the term ‘multivariate control’ is used for the task of coordination and/or
optimisation of a set of local controllers in a multivariate system. The term
‘multivariate system’ is here used for a system with multiple inputs or outputs.
In control theory, this is often referred to as a ‘multivariable system’. Therefore,
multivariate control is used here to avoid confusion with methods normally as-
sociated with ‘multivariable control’ (Glad and Ljung; 2000). Moreover, the
term ‘non-stationary’ is here used in a practical sense. This means that a signal
is said to be ‘stationary’ if the mean and variance over a period of interest are
constant (within the expected statistical fluctuations). This means that use of
‘weakly stationary’ would be closer to a correct terminology (Astrom and Witt-
enmark; 1997; Schreiber; 1997; Kennel; 1997). Further, non-stationary is also
used for the multivariate case when the covariniance structrure changes over a
time period of interest (Kano et al.; 2000a,b; Yoo et al.; 2001; Lennox; 2001).
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1.3 Contributions

The main results of this work is summarised in Chapter 6. The major contri-
butions of this work can be summarise as:

The applicability of multivariate statistics for online monitoring of waste-
water treatment operation is shown by examples on real process data.
Techniques for isolation of deviating variables are proven useful and dif-
ferent methods for visualisation of the process state are shown successful;

The dominating difficulties in monitoring wastewater treatment opera-
tion are identified and analysed;

It is shown that many of the difficulties are circumvented by implement-
ing extensions of the basic algorithms;

New multiscale approaches are developed to solve the problems associ-
ated with processes displaying a wide range of time constants;

A framework for integration of monitoring and control is developed;
A new use of chemometric methods for supervisory control is presented.

A summary of available techniques for multivariate statistical monitoring is
given and the bibliography includes a major part of the recent work done within
the field. Finally, the work may provide a basis for engineers interested in apply-
ing the discussed methods and techniques to wastewater treatment monitoring
and control.

1.4 Outline of the thesis

This thesis is organised in three parts: Part 1 includes a general introduction,
some background information and conclusions, Part 2 consists of the included
papers and in Part 3 a bibliography is given. Part 1 consists of a number
of chapters: In Chapter 1, motivation, objectives and contributions of the
work are given. Moreover, in Chapter 1, the author’s publications are listed.
Chapter 2 includes some basic information on wastewater treatment operation.
In Chapter 3, an overview of multivariate statistical process control is given and
in Chapter 4 some ideas on how multivariate statistics can be used for control
of wastewater treatment operation is outlined. Chapter 5 is a summary of the
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included papers and Chapter 6 contains some conclusive remarks on the results,
implementation aspects and topic for future research. In Chapter 7, a summary
of the work is given in Swedish.

1.5 Publications

Included papers

Paper A: Detection of disturbances in wastewater treatment systems,
Christian Rosen and Gustaf Olsson

Paper B: Monitoring of wastewater treatment operation. Part I: Multivariate
monitoring,
Christian Rosen and James A. Lennox

Paper C: Monitoring of wastewater treatment operation. Part II: Multiscale
monitoring,
Christian Rosen and James A. Lennox

Paper D: Adaptive multiscale principal component analysis for online monitoring
of wastewater treatment,
James A. Lennox and Christian Rosen

Paper E: Supervisory control of wastewater treatment plants by combining prin-
cipal component analysis and fuzzy c-means clustering,
Christian Rosen and Zhiguo Yuan

Paper F: A framework for extreme-event control in wastewater treatment,
Christian Rosen, Mats Larsson, Ulf Jeppsson and Zhiguo Yuan

Paper G: A chemometric approach to supervisory control of wastewater treatment
operation,
Christian Rosen and Ulf Jeppsson

Author’s contribution to included papers

The included papers are the result of collaboration with other researchers. There-
fore, a few comments on the contribution of the author to each paper are ap-
propriate.
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Paper A: Ideas, implementation, analysis and writing are attributed to the au-
thor with support from Olsson.

Paper B: Collaboration with Lennox resulted in the ideas of the paper. Imple-
mentation, analysis and writing are attributed to the author with support from
Lennox.

Paper C: See Paper B.

Paper D: The author’s main contribution to Paper D is in the idea stage of
the work. Some of the underlying ideas originate from the collaboration with

Lennox in Papers B and C.

Paper E: Collaboration with Yuan resulted in the ideas of the paper. Imple-
mentation, analysis and writing are attributed to the author with support from
Yuan with the exception of the SBH controller, which is attributed to Yuan.

Paper F: Paper F is a continuation of the ideas in Paper E. Implementation,
analysis and writing are attributed to the author with two exceptions: coding
and testing of the MPC algorithm were done in collaboration with Larsson;
derivation of the reduced order model was done in collaboration with Jeppsson.

Paper G: Ideas, implementation, analysis and writing are attributed to the au-
thor with support from Jeppsson.

International journal publications

Rosen, C. and Olsson, G. (1998). Detection of disturbances in wastewater
treatment systems, Wat. Sci. Tech. 37(12): 197-205.

Rosen, C. and Yuan, Z. (2000). Supervisory control of wastewater treatment
plants by combining principal component analysis and fuzzy c-means cluster-

ing, Wat. Sci. Tech. 43(7): 147-156.

Rosen, C. and Lennox, J. A. (2001). Multivariate and multiscale monitoring of
wastewater treatment operation, Waz. Res. 35(14): 3402-3410.

Lennox, J. A. and Rosen, C. (2001). Adaptive multiscale principal compon-
ent analysis for online monitoring of wastewater treatment, Waz. Sci. Tech.

(accepted).
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Rosen, C., Larsson, M., Jeppsson, U. and Yuan, Z. (2001). A framework for
extreme-event control in wastewater treatment, Waz. Sci. Tech. (accepted).

Rosen, C. and Jeppsson, U. (2001) A chemometric approach to supervisory
control of wastewater treatment operation, J. Chemometr. (submitted).

International conference publications

Rosen, C. and Olsson, G. (1997). Detection of disturbances in wastewater
treatment systems, 7 IAWQ Workshop on Instrumentation, Control and Auto-
mation of Water and Wastewater Treatment and Transportation Systems, 6-9 July,
1997, Brighton, UK.

Lennox, J. A. and Rosen, C. (2000). Using wavelets to extract information from
wastewater treatment process data, I World Water Congress of the International
Water Association (IWA), 3-7 July, 2000, Paris, France.

Rosen, C. and Yuan, Z. (2000). Supervisory control of wastewater treatment
plants by combining principal component analysis and fuzzy c-means cluster-
ing, 5% IWA International Symposium on Systems Analysis and Computing in Wa-
ter Quality Management (WATERMATEX), 18-20 Sept., 2000, Gent, Belgium.

Lennox, J. A. and Rosen, C. (2001) Adaptive multiscale principal component
analysis for online monitoring of wastewater treatment, 1” /WA Conference on
Instrumentation, Control and Automation (ICA2001), 3-7 June, 2001, Malmo,
Sweden.

Rosen, C., Larsson, M., Jeppsson, U. and Yuan, Z. (2001). A framework
for extreme-event control in wastewater treatment, I /WA Conference on In-
strumentation, Control and Automation (ICA2001), 3-7 June, 2001, Malmo,
Sweden.

Yuan, Z., Bogaert, H., Rosen, C. and Verstraete, W. (2001). Sludge blanket
height control in secondary clarifiers, 1 IWA Conference on Instrumentation,
Control and Automation (ICA2001), 3-7 June, 2001, Malmé, Sweden.

Rosen, C. and Jeppsson, U. (2001). Supervisory control of wastewater treat-
ment operation by PC-space control, 7" Scandinavian Symposium on Chemo-
metrics, 19-23 Aug., 2001, Copenhagen, Denmark.
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Other publications

The author of this thesis has earlier presented several reports and articles, which
are all in line with the work presented here. Rosen and Olsson (1997b) treats
the transformation from data to information and discusses some practical as-
pects of data collection and information extraction. Rosen and Olsson (1997a)
is a report on analysis of online data from Pt Loma wastewater treatment plant
in San Diego, USA. The incentive of the Pt Loma study was optimisation and
increased knowledge of the chemical precipitation at the plant in order to meet
more stringent requirements from the government of California. Time delay
related issues and fault propagation in multilevel flow models (graph-based dia-
gnosis) are discussed in Rosen (1998b). A comprehensive report on both uni-
variate and multivariate detection of disturbances in wastewater treatment op-
eration is given in Rosen (1998a).
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Chapter 2

Wastewater treatment processes

The first ideas of recovery of water quality were based on physical means, such
as dilution and sedimentation. However, this became precarious as cities grew
larger and the importance of hygienic issues increased. Chemical precipita-
tion was introduced to increase the settleability of the particulate matter in the
wastewater to increase the settling efficiency. Biological treatment of wastewater
dates back to the late 19th century (Orhon and Artan; 1994). It started with the
trickling filter or biological bed, which was developed in the early 20th century
(Hammer; 1986). Another breakthrough in biological treatment of sewage was
the discovery that supplemental aeration of wastewater resulted in higher level
of purification. In the beginning of the 20th century, experiments were car-
ried out on what was to be called the activated sludge process. During the last
few decades, wastewater treatment has become an industry of high complexity.
Increasing requirements on efficiency in terms of effluent water quality and eco-
nomics are important reasons. More knowledge on the physical, chemical and
biological processes involved has been obtained, which has resulted in more ad-
vanced and efficient configurations. The ability to measure, analyse and control
certain substance concentrations, flow rates and other entities is beginning to
influence the design and operation of treatment plants considerably.

2.1 Process description

Wastewater treatment processes aim at removal of pollutants in the wastewater
by transformation and separation processes. This is achieved in various ways,
depending on the characteristics of the wastewater, the desired effluent quality

13
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grit removal biological reactors chemical precipitation

screens primary settler secondary settler

A

influent
wastewater

effluent
water

return activated sludge

to sludge treatment

Figure 2.1: Principle layout for a continuous wastewater treatment plant (water

phase).

and other environmental and social factors. Traditionally, the wastewater treat-
ment processes are divided into physical, chemical and biological treatment,
which are used in many different combinations. Figure 2.1 shows the prin-
cipal layout of a typical treatment plant with physical, biological and chemical
treatment.

Physical treatment

Physical treatment involves, for instance, screens, sedimentation, flotation, fil-
ters and membrane techniques. Sedimentation implies that particles heavier
than water are settled in tanks and separated from the water phase. In flotation,
or dissolved air flotation (DAF), particles are separated from the water phase by
using dissolved air in pressurised water. When the pressure decreases, the dis-
solved air is released as small air bubbles, which attach to and lift the particles
to the surface of the tank, where they are removed.

Chemical treatment

Chemical treatment involves coagulation and flocculation of colloidal and sus-
pended matter as well as precipitation of some dissolved matter, such as phos-
phorous. Typical chemicals used are ferro, ferri and aluminium salts as well as
lime. To further increase the efficiency of the process, coagulation aids such as
polymers are often used. The chemical treatment also includes separation of
the flocculated matter as a chemical sludge by means of sedimentation, flota-
tion, etc.
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Biological treatment

Biological processes are based on biological cultures, consisting of bacteria, uni-
cellular life forms and even some multicellular life forms. The organic pollutants
in the wastewater serve as food and energy sources for the microbiological cul-
ture as it grows. The microbiological culture can either grow suspended in the
water phase or in a fixed position on surfaces as a biofilm. Suspended growth is
used in so called activated sludge (AS) reactors, while the fixed growth is used
in fixed bed reactors. A combination thereof is, for instance, suspended carriers,
where the biofilm grows on small carriers, which are suspended in the water
phase. Biological treatment aims at having a certain amount of microbiological
culture in the process. In an AS reactor this is achieved by separating the sludge
from the water phase in a sedimentation unit and returning it into the biolo-
gical reactor. The excess sludge created in the process is removed and treated
in sludge treatment processes, which stabilise and dewater the sludge. Stabil-
isation of sludge makes it biologically safe and often usable as fertiliser. The
reduction of organic matter in a biological treatment plant is typically 90%
or more. There are also processes for biological removal of phosphorous, but
phosphorous removal is not further discussed in this work.

Predenitrification AS process

Many modern treatment plants utilising AS have biological nitrogen removal.
Biological nitrogen removal relies on nitrifying and denitrifying bacteria for
removal of nitrogen in two steps: nitrification and denitrification. Two dif-
ferent types of bacteria cultures are used to achieve nitrification and denitri-
fication: autotrophic bacteria use inorganic carbon as carbon source whereas
heterotrophic bacteria use organic carbon as carbon source. In the nitrifica-
tion step, ammonium is oxidised to nitrite and then nitrate (nitrification) by
autotrophs. In the second step, nitrate is reduced to nitrogen gas (denitrific-
ation) by heterotrophs. A difficulty with this procedure is that the two steps
require different ambient conditions to function effectively. The nitrification
step needs dissolved oxygen, whereas the denitrification step requires an oxy-
gen free environment. A solution to this is to divide the reaction volume into
separate compartments in which the conditions are different. A relatively com-
mon configuration for nitrogen removal is the predenitrification process. The
first reactor is anoxic, that is no dissolved oxygen is present, and is followed by
an aerated volume. This may appear somewhat backwards as the nitrification
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internal (nitrate) recirculation

. —» . >
anoxic aerobic settler >

sludge recirculation

Figure 2.2: Basic principle of the predenitrification configuration.

is done after the denitrification. However, the denitrification process requires
readily biodegradable organic substrate and this is normally present in the influ-
ent wastewater. If the denitrification was to take place after the nitrification (i.e.
a post-denitrification configuration), most of the organic substrate would have
been consumed and external carbon would have to be added. Thus, to provide
the anoxic reactor with nitrate, a recirculation stream is introduced from the
last reactor to the first reactor (sometimes the sludge recirculation is sufficient
and no internal recirculation is needed). This configuration puts a limit on
how far the nitrogen removal can be driven, but it provides an, in many cases,
economical solution and has become popular. The basic principle of the pre-
denitrification configurations is shown in Figure 2.2.

2.2 Automation in wastewater treatment operation

Online measuring and data collection systems

The number of measurable entities increases as research on and development of
instrumentation and sensors progress. A difficulty in online measuring is the
aggressive environment in which the sensors must function. Another problem
is that many of the interesting entities must be derived from reaction analysis
in batch (or continuous) experiments. Development of automatic systems for
this type analysis is progressing all the time and today a number of bio-chemical
variables can be measured online. Interesting development in the sensor area in-
volves new types of sensors such as sensor arrays or soft sensors, where variables
are deduced from a number of measurements, and biosensors that utilise (im-
mobilised) cultures of bacteria. Many of these techniques are on the fringe of
being commercially available and will play an important role in wastewater char-
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Table 2.1: On-line measurement in predenitrification process

Type Measured variable Comment

Physical
infl. flow rate continuous
air flow/pressure continuous
temperature continuous
suspended solids continuous
sludge blanket height discrete/continuous

Physio-chemical

pH continuous
redox potential continuous
dissolved oxygen (DO)  continuous
conductivity continuous
Bio-chemical

respiration delay 15-30 mins
ammonia delay 5-30 mins
nitrate delay 5-30 mins

acterisation and sensing within a few years. In Table 2.1, the most important
measurements that are readily (but sometimes costly) available (Vanrolleghem;
1994; Jeppsson et al.; 2001).

The data collecting systems differ from plant to plant and from supplier to
supplier but common sampling rates (in Sweden) are 10 and 12 per hour, i.e.
every sixth and fifth minute, respectively. The sample values are often an aver-
age over the sampling period, during which some sensors continuously deliver
values and others perhaps only once a minute. All sensors are afflicted with time
lags, but normally these are short in comparison to the dominant time constants
of the process.

Control handles

There are limitations to what can be controlled in a wastewater treatment plant.
This is due to a lack of powerful control handles in comparison to the relatively
severe disturbances that varying influent wastewater characteristics impose on
the system. Major available control handles for a predenitrification process are
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Table 2.2: Manipulated variables in predenitrification process.

Type Manipulated variable ~ Controls Controller
Flow rates
infl. flow rate hydraulic load OO/FF/FB
internal recirculation  nitrate to first reactor ~ FF/FB
internal recirculation  nitrate in last reactor FF/FB
sludge recirculation sludge to first reactor ~ FF/FB
sludge recirculation sludge blanket level FB
waste flow tot. amount of sludge  Man/OO/FB
Chem. addition
ext. carbon addition  access to substrate FF/FB
polymer addition sludge settling prop. FF
lime addition pH FF/FB
P-precipitants effl. phosphate FF
Aeration
air flow/pressure DO conc. FB
air flow/pressure redox potential FB
air flow/pressure respiration FB
DO setpoint ammonia conc. FB
Other
step feed flow distribution Man/FF

FF=feed-forward (incl. ratio control); FB=feedback;
Man=manual; OO=on-off (incl. time control and alarm triggered)

listed in Table 2.2 (Vanrolleghem; 1994; Jeppsson et al.; 2001). The table re-
flects state of the art in practice and it is not likely that there are many plants
that have access to all of the listed manipulated variables.

A majority of the manipulated variables are macro variables (DO and some
of the chemical additions excepted) whereas some of the major mechanisms
that drive the processes are on the micro level. Moreover, these mechanisms
are often coupled. Thus, most control handles must be considered rather blunt
and often a combination of control handles is required to reach a certain control
objective.
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Process dynamics

A wastewater treatment process consists of many subprocesses with dynamics
of various time scales. Some variations are slow, for instance sludge dynamics
and temperature, with time scales of days, week and even months. The daily
variation in influent flow rate and substance concentrations is perhaps the most
dominant variation. However, there are even faster dynamics present, such as
dissolved oxygen (DO) dynamics and hydraulic shocks. The different time
scales make it difficult to analyse the cause-effect relationships, especially when
recirculation and other feedback loops are present. Therefore, it is important to
establish the dynamic behaviour of the involved processes and adapt the analysis
methods in accordance to the dynamics. An overview of cause-effect relation-
ships and the corresponding (qualitative) time constants is given in Olsson and

Jeppsson (1994).

2.3 Modelling of wastewater treatment processes

In Papers E to G, different supervisory control approaches are discussed. To
investigate their performance, simulation studies of wastewater treatment oper-
ation have been used. Although the configurations of the plants differ, the same
models for both the biological reactions as well as for settling have been used
in all three papers. For the readers not accustomed with wastewater treatment
modelling and simulations a short description of the models is given here.

The Activated Sludge Model No.1

The Activated Sludge Model No.1 (ASM1) is the result of a task group work,
initiated by the International Water Association (IWA, formerly IAWQ and
IAWPRC) in 1983, and published in 1987 (Henze et al.; 1987, 2000). It must
be pointed out that the model owes a lot to earlier work carried out by a num-
ber of researchers. The perhaps most important work was carried out in South
Africa during the late 1970s and early 1980s (Ekama and Marais; 1979; Dold
et al.; 1980; Van Haandel et al.; 1981). Since the introduction of ASM1 the
task group work has continued and in 1995 the Activated Sludge Model No.2
(ASM2) was presented. ASM2 includes new compounds and biological pro-
cesses that describe biological phosphorus removal and is a more complex model
that ASM1 (Henze et al.; 1995, 2000). It was soon followed by the ASM2d,
a minor extension to the ASM2 model (Henze et al.; 1999, 2000). In 2000,
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the ASM3 (Gujer et al.; 1999; Henze et al.; 2000) was presented, returning to
the structure of the less complex ASM1, but with a number of extension and
changes.

Although new models have been introduced, the ASM1 is still very much in
use due to the extensive knowledge and experience that have been obtained in
the research community. An example of this is the recently developed bench-
mark for control of biological wastewater treatment (will be shortly described
later), which relies on the ASM1.

State variables

The state variables included in the ASM1 are listed in Table 2.3. The state vari-
ables differ somewhat from the ones measured and observed at a plant. Organic
matter and dissolved oxygen have the unit mg COD/I. The nitrogen fractions
have the unit mg N/I, and the unit for alkalinity is moles HCOj3 /m3.

Table 2.3: The state variables of the ASM1 model.
Symbol  Variable

St Inert organic matter

Ss Readily biodegradable substrate

X Particulate inert organic matter

Xs Slowly biodegradable substrate

XB H Active heterotrophic biomass

XB,a  Active autotrophic biomass

Xp Particulate product from biomass decay
So Dissolved oxygen

Sno Nitrate and nitrite nitrogen

SNH Ammonia nitrogen

SND Biodegradable organic nitrogen

XND Particulate biodegradable organic nitrogen

SALK Alkalinity

At the plant the total suspended solids (TSS) is normally measured. There-
fore, the particulate matter must be converted to 7'S\S. Henze et al. (1995)
proposed following conversion:

TSS =0.75(X; + Xp + Xs) + 0.9(Xp,u + Xp,a) (2.1)
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Reaction dynamics

There are eight different dynamic processes in the ASM1 model describing the
dynamics.

Aecrobic growth of heterotrophs—readily biodegradable substrate, dis-
solved oxygen, ammonia and alkalinity are consumed and heterotrophic
biomass is produced. The growth rate is modelled by a Monod expres-
sion.

Anoxic growth of heterotrophs—readily biodegradable substrate, nitrate
and ammonia are consumed and heterotrophic biomass and alkalinity are
produced. The growth rate is modelled by a Monod expression.

Aerobic growth of autotrophs—dissolved oxygen, ammonia and alkalin-
ity are consumed and autotrophic biomass and nitrate are produced. The
growth rate is modelled by a Monod expression.

Decay of heterotrophs—heterotrophic biomass is decomposed into slowly
biodegradable substrate and other particulate products.

Decay of autotrophs—autotrophic biomass is decomposed into slowly
biodegradable substrate and other particulate products.

Ammonification of soluble organic nitrogen—biodegradable organic ni-
trogen is transformed to ammonia. Alkalinity is produced.

Hydrolysis of entrapped organics—slowly biodegradable substrate is trans-
formed to readily biodegradable substrate.

Hydrolysis of entrapped organic nitrogen—particulate biodegradable or-
ganic nitrogen is transformed to biodegradable organic nitrogen.

The complete dynamic modell is described elsewhere (Henze et al.; 1987, 2000).

Parameters

The kinetic and stoichiometric coefficients of the ASM1 model must be given
values. The task of determining these values is known as model calibration. If
the model is used to simulate a specific plant, the calibration must be carried
out for this plant. This implies extensive experiments at pilot and bench-scale
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plants. However, a set of parameter values suggested by the IWA task group is
presented in Henze et al. (1987). These values may be used when no further
information is available, or when the task is to model a plant in general.

Settler Model

The settler model used in the simulation model is known as a one-dimensional
layer model. One-dimensional models only describe the settling process along
the vertical axis, leaving only cross-sectional area and depth as design paramet-
ers. The one-dimensional layer model is thoroughly described in, for instance,
Ekama et al. (1997) and Jeppsson (1996) and only the basic ideas behind the

model will be presented here.

Layers

The idea behind one-dimensional layer models is that the settler is divided into
a number of layers. The mass balance for each layer is calculated, assuming
complete mixing within each layer. The sludge transport between the layers is
assumed to depend on two mechanisms; bulk movement and gravity settling.
The bulk movement is caused by the hydraulic flow and are, hence, directed
both upwards and downwards. A feed layer must be determined. Above the
feed layer the bulk flow is directed upwards, corresponding to the effluent flow
(Qe); below the feed layer the bulk flow is directed downwards, corresponding
to the underflow (Q),,). The gravity settling is always directed downwards due
to the gravity action on the sludge. In Figure 2.3, the principle of the one-
dimensional layer model is shown.

Settling Velocity Functions

Many different settling velocity functions are found in the literature. Tradition-
ally, the settling velocity function is based either on an exponential or a power
function, where the settling velocity only depends on the local concentration
(Kynch; 1952). In the model used in this study, the double-exponential settling
velocity function is used. In this function, consideration is taken to the fact
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Figure 2.3: General description of the traditional one-dimensional layer settler

model (Jeppsson; 1996).
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Figure 2.4: Schematic description of the double-exponential settling velocity
model at a constant Xy (Jeppsson; 1996).

that low concentrations do not imply extremely high settling velocities. The
function is defined as (Takdcs et al.; 1991):

Vs = MaT <0, min (1)6, 0 (e_rh(X_Xmi") — e_TP(X_X"“'")))> (2.2)

where v{, and vg is the maximum practical and theoretical settling velocity, re-
spectively. 7, is a settling parameter characterising the hindered settling zone
and 7}, is a parameter associated with the settling behaviour at low solids con-
centrations. Xy, is calculated as a fraction of X:

Xmin = fnst (2.3)

where Xt is the concentration into the feed layer. Figure 2.4 shows the double-
exponential settling function.

The benchmark simulation model

The idea to develop a simulation benchmark for wastewater treatment control
was first evoked in the mid 1990s. The development of the benchmark was
then carried out in parallel (and in cooperation) by the European Cooperation
in the field of Scientific and Technical Research (COST) Actions 682/624 and
the first IAWQ Task Group on Respirometry-based Control of the Activated
Sludge Process (later the second IWA Respirometry Task Group) (Spanjers et
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Figure 2.5: The principal layout of the COST benchmark simulation plant.

al.; 1998b,a; Pons et al.; 1999; Copp; 2000). The motivation for the work is
that there exists a need for a way to evaluate different control strategies in an
objective way, i.e. without plant specific requirements or limitations. A stand-
ardised simulation protocol makes this possible. However, it was decided that
the protocol should be platform independent so that no specific requirements
on software are required. A look at the last few conferences in the areas of con-
trol and simulation of wastewater treatment processes (e.g. WATERMATEX
(2000) and ICA (2001)) reveals that the approach is successful; many research-
ers around the world use the ‘COST benchmark’ for simulation and evaluation
of control strategies.

Plant configuration

The simulation plant comprises five reactors, of which the first two are anoxic
and the following three are aerobic. The reactors are followed by a sedimenta-
tion unit and the plant is, consequently, a predenitrification plant. The physical
dimensions of the plant are: anoxic reactors: 1000 m?; aerobic reactors; 1333
m?; sedimentation unit: 6000 m> (area 1500 m?). Two internal recycle streams
are included: internal (nitrate) recirculation from tanks 5 to 1, and sludge re-
circulation, from settler to tank 1. In the default configuration, values and
properties of certain variables, parameters and max/min values are specified.
The average influent flow rate used for design of the plant is 18446 m?3/day.
The layout of the simulated plant is shown in Figure 2.5.



26 Chapter 2. Wastewater treatment processes

Process models

The reactors are modelled using the ASM1 model as completely mixed reactors
and the settler is modelled using a ten-layer Takdcs model.

Influent characteristics

Three different influent files have been developed. The files contain data at
15-minute fifteen intervals, and display a significant diurnal as well as weekly
pattern. The files are developed to mimic real wastewater characteristics typical
for a plant of the chosen size. The influent data includes values for Ss, X f,
Xs, X[, SNH; S[, SND: XND and Qm with So, XB,A: Xp and SNO set to

zero. The influent files are:

Dry weather—The dry weather data display a diurnal and weekly pattern
corresponding to that of dry weather. Thus, no major upsets are present.
The file contains data for a 14-day period (so do the other files).

Storm weather—The storm weather data include two major upsets. A
short storm (high influent flow rate) at the end of day 8 and a longer
storm at the start of day 11. The first disturbance includes a flush-out,
i.e. particulate matter said to be present in the sewer system is flushed
out due to a sudden increase in the flow rate. This implies that the
particulate matter concentration during the event is high. During the
second disturbance, however, the particulate matter is diluted, resulting
in low influent concentrations. During both disturbances, the soluble
compounds are diluted. The maximum flow rate during both disturb-
ances is about three times the average influent flow rate.

Rain weather—The rain weather data contain a prolonged period of rain.
The rain starts at day 8 and diminishes at day 10. During the rain event,
both soluble and particulate matters are diluted.

The influent flow rates for the separate cases are displayed in Figure 2.6.

Performance measurements

To evaluate different control strategies, a performance index has been developed.
This index includes a process assessment and a controller assessment. The pro-
cess assessment is divided into an effluent quality index, effluent violations and
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Figure 2.6: Influent flow rate for the influent files developed within the COST
simulation benchmark work.

operational costs (sludge production, energy for pumping and aeration). The
controller assessment includes controlled variable performance and manipu-
lated variable performance. Consequently, the index is not just one measure,
but a set of measures useful for investigation and assessment of the dynamic
properties of new control strategies.

Other aspects

The benchmark platform is in constant development. The most updated in-
formation is available on the COST Action 624 benchmark web site
(http:/Iwww.ensic.u-nancy.fr/ COSTWWTP/).
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Chapter 3
Multivariate monitoring

This chapter outlines some basic aspects on multivariate statistical process con-
trol (MSPC) of industrial processes in general and wastewater treatment process
in specific. The basic methods are described together with extensions needed to
adapt MSPC to the requirements for wastewater treatment operation monitor-

mg.
3.1 Challenges

Common to most industrial processes is that the number of measured variables
is high and that the number tends to increase even more as developments in
sensor technology and process control progress. The incentive for this increase
is stricter requirements on product quality, process efficiency, process safety,
etc. In wastewater treatment, this has resulted in that we today have access to
many online measurement signals from the process. In a well-equipped treat-
ment plant the number may exceed hundred (or even thousand), ranging from
binary equipment signals and alarms to flow rates, pressures and nutrient con-
centrations. It has been established that the human being is capable of handling
just a few inputs simultaneously (seven is often mentioned) before a degrading
analysis capacity is recorded. This makes combinatorial effect of many variables
difficult to anticipate and comprehend. MacGregor (1997) state a few difh-
culties or challenges that need attention in handling and analysing industrial
data.

Data qualitcy—Measurements are normally afflicted by noise arising from
various sources in the sampling and measurement procedure. Moreover,
sometimes data are not available at all due to sensor malfunction or com-

29
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munication problems within the data collection system. Noise and miss-
ing data points make it difficult to extract and interpret information from
data.

Data size—The high number of measured variables is a result of the in-
crease in accessibility due to the introduction of computers in the data
collection procedure. Expressions like ‘data overload’ and ‘data rich, in-
formation poor’ arise from the fact that although the information is in
the vast amount of data, humans simply do not have the ability to ana-
lyse and interpret high dimensional problems. Not seldom is the result
that only a few ‘key’ variables are monitored and, consequently, a lot of
information is lost (Wise and Gallagher; 1996b; MacGregor; 1997).

Collinear data—The fact that a process contains many measured vari-
ables does not necessary imply that the process inherently is high dimen-
sional. On the contrary, most industrial processes display a behaviour
that can be captured in a few ‘true’ dimensions. This is because there are
normally only a few main mechanisms that drive the process. The col-
linearity problem does not only provide difficulties for human interpret-
ation, but also for conventional statistical analysis methods, since they
rely on a high degree of independence among the variables (MacGregor;

1997).

For any type of measurement monitoring system, the above discussed challenges

must be met. However, there are further difficulties to overcome before a moni-

toring system can successfully be applied to wastewater treatment operation (or

processes with similar behaviour).

Non-stationary data—The conditions in which wastewater treatment pro-
cesses are operated are normally of a varying nature. Diurnal, weekly and
seasonal patterns are normally found in the influent wastewater charac-
teristics. These disturbances must be considered as normal and is in prac-
tice seen as state of things rather than disturbances. It is often difficult
to discern other process disturbances from those caused by the varying
influent conditions, which tend to have a dominant effect on the process
behaviour.

Multiscale data—A difficulty related to the dynamic properties of the
disturbances as well as of the process is that disturbances occur in many
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different time scales. By this, we mean that some disturbances affect the
process in a short time frame, whereas others have a much slower re-
sponse. Apart from that this fact complicates the discernment of disturb-
ances in a similar way to that of non-stationarity, it also deteriorates the
performance of many monitoring techniques (Bakshi; 1998). Moreover,
information on the time scale (or ‘speed’) of a disturbance may prove
crucial for a decision on counteractive actions. The multiscale nature of
data is, however, not only a problem; it can also be used to decouple the
process in time.

Nonlinearities—Wastewater processes display a nonlinear behaviour and
relationships between variables cannot always be approximated by a linear
function. Consequently, if this is the case, nonlinearities must be taken
into account when developing a monitoring model.

Dynamic data—Almost all data from dynamic processes (such as waste-
water treatment) are autocorrelated, which means that each observation is
not independent of the previous observation. This may have a great im-
pact on statistical properties of the monitoring output (Negiz and Cinar;
1997) and, consequently, caution must be taken when interpreting the
result.

3.2 Statistical process control

Monitoring process operation using univariate time series is often referred to
as statistical process control (SPC). The first ideas of SPC for quality improve-
ment go back as far as to the beginning of the century when, for instance, Vil-
fredo Pareto and Walter Shewart made some important contributions to SPC
(Thompson and Koronacki; 1993). The ideas were further developed during
the 1950s, but it is not until the 1970s that SPC has become a standard tool
for quality improvement in the process industry. SPC involves many methods
for monitoring and presenting measurement variables, but perhaps the most
common ones are:

K -charts—measurement values plotted against the time;

MA charts—moving average of the measurement series plotted against
time;
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Figure 3.1: Examples of univariate monitoring charts.  ¢-chart (top) and

CUSUM chart (bottom).

EWMA charts—exponentially weighted moving average filtered meas-
urements plotted against time;

CUSUM charts—cumulative sum of the difference between the meas-
urement and a target value plotted against time.

These methods have great similarities to conventional signal processing tech-
niques. There are many references to SPC in the literature, such as Bissel
(1994), Thompson and Koronacki (1993) and Box and Luceno (1997). SPC
in wastewater treatment applications is described in Chapman (1998). An ex-
ample of univariate monitoring of the influent ammonia concentration to a
wastewater treatment plant is shown in Figure 3.1. The X-chart and CUSUM
chart give complementary information on the current ammonia load.

3.3 Multivariate statistical process control

Multivariate statistical process control comprises a number of methods that of-
ten is referred to as projection methods (Davis et al.; 1996). The basic idea of
projection methods is that a high dimensional space, spanned by a number of
measured variables, is projected onto a model space of fewer dimensions. The
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model space is spanned by linear!

combinations of the original variables to form
‘pseudo variables’, often referred to as principal components or latent variables.
The identification of a projection method, thus, involves finding the pseudo
variables that best describe the major features of the data set constituted by the
measured variables and where the pseudo variables span only the ‘true’ dimen-
sion of the process. Thus, correlated data are not a difficulty but a necessity for
projection methods.

The basis of the multivariate statistical methods is principal component ana-
lysis (PCA). PCA was first described by Pearson (1901) as a method to find the
closest fit of lines and planes to points in space. From this, a number of people
have contributed to make PCA what it is today (Fisher and MacKenzie; 1923;
Hotelling; 1933; Wold; 1966). Another cornerstone of multivariate statistics is
the partial least squares (PLS), introduced by Wold in the 1970s (Geladi; 1988).
PLS is a regression method closely related to PCA.

The history of multivariate statistics is closely linked to progress within areas
such as econometrics, psychometrics and chemometrics (Geladi; 1988), the lat-
ter involving the area of process monitoring. With a starting point in the early
1970s, chemometrics developed along with computational power (Geladi and
Esbensen; 1990; Esbensen and Geladi; 1990). During the 1980s, chemomet-
rics received an increased attention and multivariate process monitoring was
included as an application of the techniques. During the 1990s a number of
developments and extensions of the basic methods were introduced and chem-
ometrics is today an important tool in many process industries. The paral-
lel development of the methods has resulted in an abundance of redundant
terminology. For instance, PCA goes under different names such as singular
value decomposition (SVD), Karhuen-Loéve expansion, eigenvector analysis,
characteristic vector analysis and Hotelling transformation, depending on what
research area it is used in (Wold et al.; 1987a). Factor analysis may also be
mentioned, but it is slightly different from PCA.

Standard methods

Principal component analysis

In mathematical terms, PCA is obtained by singular value decomposition of
the covariance or correlation matrix of the process data. By doing so, a sub-

' Also nonlinear projection methods exist and will be discussed later.
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Figure 3.2: Decomposition of X into a process subspace and a noise subspace.

space (process subspace) containing the true (non-random) variation is iden-
tified. Complementary to this subspace is the noise subspace, which ideally
contains only noise (Figure 3.2).

An alternative way of describing PCA is that a line (or component) is fitted
in the direction of greatest variability of the measured variable space. Next, a
line is fitted in the second greatest direction of variability orthogonal to the first
line and, thus, a plane is obtained. The next line is fitted in the third greatest
direction, orthogonal to the plane. This is continued until it is established that
no systematic variability is left (Figure 3.3).

In matrix form, PCA is written as:

X = TPT+E (3.1)

where X is the original data set of size [m X n], T is called scores [n x al, P
is called loadings [n X a] and E is the model residual (or noise subspace). If
a = n then E = 0, as all the variability directions are described. However, if
a < n, i.e. less principal components than original variables are retained, then
E describes the variability not described by the sum of the TP? matrices. In
general, a << n is true for industrial applications.
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Figure 3.3: PCA as a successive fitting of components in the directions of greatest
variability.

Prior to decomposition, variables are mean centred. Further, variables are
normally scaled to give them equal influence on the model (variables are ex-
pressed in different units and display substantially different numerical ranges).
There are situations when this pre-treatment is not appropriate, but all through
this thesis data are both mean centred and scaled to unit variance (autoscaled)
unless otherwise stated.

The basic principle for process monitoring using PCA is that a training set of
data representing normal operational conditions is decomposed and a process
subspace is identified. When new process data are obtained, they are projected
onto the process subspace and noise space, respectively. By investigating the
projected data (T) and the residual (E), process deviations and disturbances
can be detected utilising various techniques (Jackson and Mudholkar; 1979;
Kresta et al.; 1991; Yoon and MacGregor; 2001). By looking at the sum of
the squared prediction error (SPFE), the current model fit is investigated. If
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the current operation display poor fit, the current operational state is obviously
different from that of the training set. Hotelling’s 72 is a summarised way
of surveying the scores and is used to assess the variations within the model®.
Moreover, when a deviation is established, backtracking through the model is
done to isolate what variables contribute to the deviation (MacGregor et al.;
1994; Teppola et al.; 1998¢; Rosen and Olsson; 1998).

A decision that is crucial for the performance of the PCA model is when to
stop including more principal components (PCs) and this is where modelling
experience and process knowledge comes in. However, there are different tests
that can be applied (Wold; 1978; Himes et al.; 1994; Qin and Dunia; 2000) to
support the decision.

A more comprehensive description of PCA and its applications is found in,
e.g. Jackson (1980), Jackson (1981), Joliffe (1986), Wold et al. (1987a) and
Eriksson et al. (2001). Piovoso et al. (1992), Zullo (1996), Kourti et al. (1996),
Wikstrom et al. (1998), and Teppola et al. (1998¢) provide many interesting ex-
amples of application of PCA in the process industry in general (for wastewater
treatment applications see Section 3.5).

PCR

Principal component regression is a simple extension of PCA. An output or
quality variable is regressed on the scores instead of on the measured variables
as is the case in ordinary least squares regression.

X = TPT+E (3.2)
Y = TB (3.3)

where Y is the output variable vector/matrix and B is the regression vec-
tor/matrix. Now, we have a model with predictive power, which are advant-
ageous in many cases. The monitoring properties are obviously the same as
for PCA, but if the model is developed for prediction, the number of PCs is
determined as the number that gives the best prediction of the variables in Y.

PLS

In PCR, the decomposition of X is done to maximise the captured variability in
X. This is generally not optimal for prediction purposes. In partial least squares

%A more elaborate discussion on SPE and T? is given in Paper B.



3.3. Multivariate statistical process control 37

(PLS) regression, the decomposition of X and Y is carried out iteratively. By
exchanging information between the two blocks in each step, the principal com-
ponents (or latent variables, which is a more common term in PLS modelling)
of the X -space are rotated so that the predictive power of the X-space with
regard to the Y-space is enhanced. There are different algorithms to calculate
PLS, but a common algorithm for this is the NIPALS algorithm (Geladi; 1988;
Lindgren et al.; 1993; Kaspar and Ray; 1993; Dayal and MacGregor; 1997a;
Phatak and de Jong; 1997). The equations of PLS are:

X = TPT+E (3.4)
Y = UQT+F (3.5)
X = TBQT (3.6)

where U and Q are the scores and loadings for the Y-block. B describes the
inner relation between the latent variables of X and Y space.

As was the case for PCA (and PCR), the choice of the number of latent
variables is crucial for the monitoring and prediction outcome and typically
cross-validation is used to select the appropriate number (Wold; 1978; Wakeling
and Morris; 1993; Messick et al.; 1997).

Process monitoring using PLS follows the same procedure as for PCA. How-
ever, since the model is developed with one or several specific output variables
in mind, process deviations affecting these variables will be emphasised. Thus,
if PCA is considered as an unsupervised monitoring model and only dependent
on the choice of variables in X space, PLS can be seen as a supervised model
with the possibility to tailor the model to detect deviations of certain interest.

Examples of process monitoring application utilising PLS are given in e.g.
Kresta et al. (1991) and MacGregor and Kourti (1995). For the reader with a
background in control theory, an interesting interpretation of PLS regression is

given by Di Rusco (1998).

Extension of standard methods
Dynamic methods

An often encountered objection to MSPC for process monitoring is that MSPC
does not consider the dynamics of a system. In its basic configuration, MSPC
is a static modelling technique.
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Time-lags are present in all dynamic processes. By time-lag we mean the
time it takes for a change in the X-block to propagate to the Y-block. In
basic multivariate monitoring the time lag between the X-block and the Y-
block is not addressed. One way of dealing with this, assuming there is just one
quality variable in the Y-block, is to investigate the cross-covariance function
between every input variable and the output variable and calculate the suitable
lag (Astrom and Wittenmark; 1997). A second way is to use an a priori model
for the time lag of every relation, for example, depending on the retention time.
By doing so, the time lag between each process variable and the quality variable
will change dynamically as the flow rate changes and we will obtain a quasi-
dynamic representation of the flow rate dynamics (Réttorp and Jansson; 2001).

However, it is straightforward to extend MSPC so that dynamics are accoun-
ted for. By simply introducing lagged duplicates of each variables in the X
or Y-block, dynamic relations can be modelled. Thus, the lagged X -block is

written:
X = [XpXgo1 ... Xpy] (3.7)

where X;,_; denotes the data matrix lagged [ samples. Thus, ideas taken from
time-series modelling, such as finite impulse response (FIR), auto-regressive
exogenous input (ARX), auto-regressive moving average (ARMA), etc., can eas-
ily be used within the framework of multivariate statistics (Ricker; 1988; Wise
and Ricker; 1993; Ku et al.; 1995; Baffi et al.; 2000; Tsung; 2000; Kano et al.;
2001; Li and Qin; 2001). The augmentation of the X and Y -block increases
the number of variables and especially in stiff systems (such as wastewater treat-
ment processes) this may become cumbersome. An approach to decrease the
number of variables by excluding overlapping samples is reported in Luo et al.

(1999).

Nonlinear methods

In their basic form, PCA, PCR and PLS are linear methods and, consequently,
there are limitations to what can be achieved when they are applied to nonlinear
systems. Nonlinear pre-treatment of data is an often suggested method. This
typically involves using the squared or logarithmic value of a variable. This is
appropriate if the relation between variables is known to be nonlinear. Also,
physical knowledge can be built into the model by using cross terms, e.g. for
mass flows etc.
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Different nonlinear PCA algorithms have been proposed in the literature,
e.g. Kramer (1991), Malthouse et al. (1995), Dong and McAvoy (1996b) and
Jia et al. (1998). Common to all algorithms is that they describe the relation
between original variables and scores with nonlinear functions, identified by a
neural network. The relation between X and T is:

X = f(D)+E (3.8)

Nonlinear PLS regression was proposed by Wold et al. (1989). Here, the re-
lationships between X -scores and Y -scores are modelled in a nonlinear fashion.

U = f(T)+E (3.9)

The inner relationship f is typically a polynomial or splines (Wold; 1991).
Other methods based on neural networks describing the inner relation are also
found in the literature, e.g. Qin and McAvoy (1992), Malthouse et al. (1997)
and Baffi et al. (1999). An interesting alternative to the neural network ap-
proach is reported by Berglund and Wold (1997).

Nonlinear multivariate monitoring algorithms have been applied to process
monitoring in, for instance, Dong and McAvoy (1996a), Zhang et al. (1997),
Jia et al. (1998), Shao et al. (1999), Fourie and de Vaal (2000) and Lin et al.
(2000).

Adaptive methods

As mentioned earlier, many industrial processes do not display a stationary be-
haviour. Operational conditions change due to reasons such as varying raw
material quality, surrounding temperature, varying process load and equipment
wear. This is not an ideal situation for the methods described above. They all
rely on the assumption that data are stationary in the time scale of interest. Con-
sequently, extensions to the basic algorithms must be implemented to overcome
this difficulty.

The way to address this problem depends on the nature of the process drift
and two major cases can be distinguished. The first case originates from uni-
variate changes in mean and variance, that is mean and variance are varying,
but the qualitative relations between variables stay the same. In this case, it is
sufficient to update the scaling parameters (mean and variance) of the data as
shown in Rosen and Lennox (2001).
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The second case involves changes in the relations between the variables (co-
variance structure) in addition to changes in the mean and variance. Here,
the covariance structure of the model must be updated. A straightforward way
is to use a moving (rectangular) time window, on which the model is based. A
more sophisticated way is by recursive means (Helland et al.; 1991; Wold; 1994;
Dayal and MacGregor; 1997a; Qin; 1998; Stork and Kowalski; 1999; Ouyang
etal.; 2000; Li et al.; 2000). The principle of the updating schemes is that when
new data are available they are included in the data matrix according to certain
weights. For recursive methods, these weights are exponentially decreasing so
that the history is increasingly disregarded as the monitoring progresses. There
is usually a need for an updating criterion, to ensure that only data that are
representative for the process are used in the updating of the model. Recursive
models do to some extent reduce the problem of nonlinearities, as a recursive
model can be regarded as a linearisation of the system at the current operational
point.

Multiscale methods

It has been pointed out that multivariate statistics does not take into account
the multiscale nature of process data (Bakshi; 1998). When deviations occur on
multiple scales it is difficult to discern small but important deviations since they
may ‘drown’ in the residuals of, perhaps, less important but large deviations.
Wavelets and multiresolution analysis (MRA) provide a solution to this ob-
stacle. Wavelets and MRA constitute a framework for decomposition of signals
into separate time scales. The theory of the framework is described elsewhere,
see e.g. Vetterli and Herley (1992), Strang and Nguyen (1996), Alsberg et al.
(1997) and Torrence and Compo (1998), and in this context, MRA can be
seen as a specific group of filterbanks. A signal is decomposed into several scales
(Figure 3.4). The highest scale contains the high frequency information of the
signal. Successively, lower scales contain lower frequencies until a predefined
depth. The remainder of the signal constitutes the lowest scale and is a low pass
filtered version of the original signal. MRA may be expressed as continuous or
discrete (Shensa; 1992; Rioul; 1993), and for the purposes of this work, only
the discrete form is used. An appealing feature of MRA is that perfect recon-
struction of a decomposed signal is possible. This means that all separate scales

add up to the original signal.
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Figure 3.4: Decomposition of signal into four scales. Original signal in the most
upper panel.

For monitoring purposes, MRA is used to decompose each variable into a
number of scales as a data pre-treatment step, and a monitoring model is iden-
tified for each scale (Kosanovich and Piovoso; 1997; Shao et al.; 1999; Rosen
and Lennox; 2001). By monitoring each time scale separately, the models are
specialised on certain features, which means that the covariance structure may
differ significantly between the scales. The result is an increased sensitivity
to small, but significant, deviations. Moreover, MRA on the measurements
provide solutions to a few other difficulties. Since the MRA decomposes signals
into separate time scales, the autocorrelation of the signals is reduced (Bakshi;
1999) and one can partly justify the use of static monitoring models. Further-
more, since the scales will have zero mean (except for the lowest scale), models
need not be updated if the variance and the covariance structure are approxim-
ately constant.

The price comes at a higher complexity level; many scales must now be mon-
itored. By combining scales into fewer and more physically interpretable scales,
the complexity is somewhat reduced (Rosen and Lennox; 2001). However,
Bakshi (1998) proposes a multiscale PCA in which data are decomposed into
several scales and PCA models are used to determine whether the scales are sig-
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nificant at each sampling instance. Through reconstruction of only significant
scales and monitoring by a uniscale PCA, the advantages of MRA are combined
with a low dimensional PCA model (Bakshi; 1998; Rosen and Lennox; 2001).
In Lennox and Rosen (2001), an adaptive algorithm based on the multiscale
PCA is proposed. Other applications where MRA is combined with multivari-
ate process monitoring are found in Trygg and Wold (1998) and Trygg et al.
(2001).

Hierarchical and multiblock methods

When the number of variables is high, the interpretation is complicated. By
organising the data in blocks and perform multiblock or hierarchical PCA/PLS
(see e.g. Wangen and Kowalski (1988), MacGregor et al. (1994), Wold et al.
(1996) and Rinnar et al. (1998)) the interpretability may be increased. Data
are organised in layers where the scores or latent variables of the lower level are
used to form models at higher levels (Figure 3.5). This may prove advantageous
in systems where the variables are generated from different parts of the pro-
cess, each constituting separate process units. An example from a wastewater
treatment plant could be that the data from the biological process, chemical
precipitation and sludge treatment would form separate blocks that are unified
in a model on a superlevel.

Batch process methods

For batch process monitoring, the situation becomes somewhat different to that
of continuous process monitoring. Here, the structure of data is increased by
yet another dimension—the batch. Thus, the data matrix structure is three-
dimensional with variables, time and batches representing one dimension each.
There are some different ways to address this problem. In multiway PCA (Wold
et al.; 1987a) data are unfolded into a two-dimensional structure and then PCA
is applied before the data are folded back. Other useful methods include parallel
factor analysis (PARAFAC) and Tucker3 (see e.g. Dahl et al. (1999), Louwerse
and Smilde (2000) and Bro et al. (2001)). In fact, batch processes constitute
a large share of industrial processes and significant amounts of work have been
carried out to adapt multivariate statistics to such processes. However, this is
outside the scope of this work and readers are referred to the cited publications
and the references therein.
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Figure 3.5: Principle of hierarchical PCA with a sub- and superlevel.

Some comments on statistical issues

Multivariate statistical methods raise some statistical issues. Most of these issues
are outside the scope of this work. However, it is appropriate to discuss a few of
the most important statistical difficulties encountered when dealing with large
data sets from industrial processes.

It is possible to determine confidence limits for the scores, SPE and T2
Usually it is assumed that data are normally distributed and the observations
are independent. However, in the monitoring case this assumption can be re-
laxed. The only important assumption needed is that the data used for deriving
the models are representative for the common cause variations in the process
(MacGregor; 1997).

Non-parametric confidence limits can also be used (see e.g. Rosen (1998a)),
and more importantly, limits can be derived from experience, especially the
operator’s own experience. If it is established that a confidence limit is too
sensitive/insensitive the limit is simply changed to suit the operation.
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3.4 Discussion on the applicability to WWTP operation

In this chapter, multivariate statistics have been discussed together with a num-
ber of different extensions to adapt the techniques to process monitoring. Which
of these extensions must be incorporated in an algorithm for wastewater treat-
ment operation? The best choice of method is often a balance between perform-
ance and complexity. The increase in performance must motivate the increase
in complexity. In this work, the stance is that the major problems that need
to be addressed are the non-stationary and multiscale nature of data, whereas
dynamics and nonlinearities may be of less importance. The reasons for this

stance will be discussed in this section?.

Static or dynamic

At a first glance, it is tempting to claim that a monitoring technique for waste-
water treatment operation must be dynamic. We certainly know that the waste-
water treatment processes are dynamic and, hence, so should the model be.
However, a closer investigation yields that this claim becomes weaker due to
reasons discussed below.

The cause-effect relationships in a wastewater treatment plant (only continu-
ous treatment is discussed here) are rather complex due to recirculation streams,
generally the internal recirculation and sludge recirculation. Thus, the course of
events in the first reactor is not only dependent on what happens in the influent
flow, but also on what happens in the other reactors and the settler. This will
severely complicate a cause-effect relationship analysis based on, for instance,
cross-covariance function studies. Consider, as a simple example, a predenitri-
fication plant with a reactor volume of 5000 m>. Let the average influent flow
rate be 10,000 m?/day, which means that the plant would have a hydraulic re-
tention time of 12 hours. From an input-output point of view, the retention
time does not depend on the internal recirculation stream but looking at the
actual flow rate between the reactors the effective retention time is decimated to
4 hours if the internal recirculation is 200 % of the influent flow rate (the same
reasoning is valid for sludge recirculation if the volume of the settler is included
in the example). If the recirculation flow rate is increased further (which is not
exceptional), we approach a situation that can be considered as a completely

3The following discussion is based on the experience of the author and may not be supported
by, especially, method developers.
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mixed reactor. Now, if the sampling time is significantly faster than the effect-
ive retention time and the aim of the monitoring is to detect correspondingly
fast disturbances, a dynamic approach is adequate. However, if this is not the
case, a static approach is probably sufficient.

A second objection to dynamic models in wastewater treatment is related to
the stiffness of the system; to model a stiff system with time constants ranging
from minutes to months involves many lagged duplicates of especially the slow
varying variables. From a situation of tens or hundreds of variables, we may
end up with thousands or even more variables. This increases the complexity
considerably and the interpretation task becomes cumbersome.

Linear or nonlinear

Many subprocesses within wastewater treatment display a nonlinear behaviour
and nonlinear methods may provide a remedy if these are to be modelled. How-
ever, from a macro point of view, which is normally the view of the operators,
wastewater treatment displays a surprisingly linear behaviour. There are import-
ant exceptions, for example sludge loss, but for a plant in a normal operational
state the nonlinearities are often well behaved. By well behaved we mean non-
linearities that display smooth and monotonic behaviour. Monitoring is often
a case of classification of the current operational state into one of two classes:
normal or abnormal. For example, let a linear model approximately describe
the normal region of the operational space. Deviations outside this region are
driven by linear and/or nonlinear mechanisms. When a deviation is established
it is often of less importance ‘how much’ abnormal the current state is. The
very fact that a deviation has been established is serious enough to invoke ac-
tions (Figure 3.6). Thus, it is not obvious that a nonlinear model increases the
practical monitoring quality sufficiently to motivate the increase in complexity.

The situation is different when a prediction model is the objective or when
there is obvious nonlinear behaviour in the normal operational region. In such
cases, the only feasible way is nonlinear modelling. However, this is outside the
scope of this work and will not be discussed further.

Constant or adaptive

The non-stationary nature of wastewater treatment data surely calls for adaptive
models. Models that cover large regions of operation (typically identified from
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Figure 3.6: Illustration of a linear model representing a smooth, monotonic non-
linear process. If the normal region is adequately described by a linear
model, the discrepancy between the linear projection and the ‘true’
projection is of less importance if a violation of the limits has already

been established.

months or even years of data) can be used for supplementary information on
the ‘absolute’ location of the current operational state. However, for day-to-day
monitoring, adaptive models is an appealing alternative to frequent identifica-
tion of new models, which of course is costly (and basically the same as adaptive
models) or to have a library of monitoring models representing different opera-
tional states. Another important advantage of adaptive models was mentioned
earlier; adaptive models can be seen as a linearisation at the current operational
state and, thus, mitigate the need for a nonlinear process representation.

Uniscale or multiscale

Wastewater treatment data display a multiscale nature. Disturbances occur in
many different time scales and it is often difficult to discern small but significant
changes in the ‘background’ variation caused by the varying influent conditions.
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By multiscale monitoring, the sensitivity for these types of disturbances is in-
creased. The multiscale approach is also partly a solution to the previously dis-
cussed issue of dynamic models. Each scale represents a ‘snapshot’ in a limited
range of frequencies and, thus, each scale model will intrinsically only describe
the variable relations of that range. The increased complexity can be hidden
from the end users by means of adaptive multiscale models, as demonstrated in
Paper D or by combining adaptive models with the approach of interpretable
scales discussed in Paper C. However, for smaller systems with less wide ranges
of time constants, a dynamic model may be a more adequate choice.

3.5 Multivariate monitoring in wastewater treatment

There are several examples of applications of multivariate statistical monitoring
(and modelling) to wastewater treatment operation in the literature. An early
application of PLS modelling of wastewater treatment plants is given in Aarnio
and Minkkinen (1986). Monitoring of the efluent water from a paper and pulp
wastewater treatment plant using PCA is reported in Kim Oanh and Bengtsson
(1995). In Teppola et al. (1997), it is reported that PLS modelling seems to be
a promising tool for detection of shifts in variables. Isolation of deviating vari-
ables is also possible. Classification of the operational state in principal com-
ponent space to obtain a decision support system is discussed in Sanchez et al.
(1997). Rosen and Olsson (1998) use PCA and PLS for disturbance detection
and prediction of wastewater treatment operation. Contribution plots are used
to isolate deviating variables. A comprehensive discussion on both single vari-
able and multivariable monitoring of wastewater treatment operation is found
in Rosen (1998a). Modelling of wastewater treatment processes using PLS and
PCR are reported in Mujunen et al. (1998) and Teppola et al. (1998b). Fuzzy
clustering and PLS is combined in Teppola et al. (1998a) to predict the sludge
volume index and to interpret the results. Teppola et al. (1999) utilise adaptive
fuzzy clustering combined with PCA for process monitoring to handle seasonal
variations. Yet another combination of two clustering techniques and PLS is
reported by Teppola and Minkkinen (1999). Detection of process disturbances
by examination of the trajectories in the score space is reported in Weiss et al.
(1998) and Pons et al. (1999). Some results from basic PCA monitoring of a
wastewater treatment plant are reported in Bendwell (2000). Rosen and Yuan
(2000) use clustering and PCA to identify different operational states in a su-
pervisory control framework. In Rosen and Lennox (2001), adaptive PCA and



48 Chapter 3. Multivariate monitoring

a combination of wavelet analysis and PCA is used to overcome problems as-
sociated with non-stationary and multiscale data. A slightly different approach
based on dissimilarity indices are used for disturbance detection in Yoo et al.
(2001) and in Lennox and Rosen (2001) an adaptive multiscale PCA is pro-
posed for wastewater treatment monitoring.



Chapter 4

Multivariate feedback adjustment
for control

Multivariate statistical techniques can be integrated with process control to form
a supervisory level in the control system. Information from the monitoring sys-
tem is used for the control of the process to derive appropriate control strategies
or actions suitable for the current operational state. In this chapter, a discussion
on how this can be done and which control task may be solved by doing so, is
presented.

4.1 Challenges

The increase in the number of measured and controlled variables improves the
observability and controllability of the process. Instead of passively observe the
effects of disturbances and process changes, it is possible to react to them and
adjust the control so that disturbances are attenuated. The monitoring inform-
ation plays an essential role in this work. Although multivariate monitoring
methods are used for both disturbance detection and isolation, it is not obvious
how to adjust the process so that a desired result is obtained. This becomes espe-
cially obvious when the number of manipulated variables is high. The problem
of process adjustments are here divided into three subproblems:

Extreme event control—bringing the process from an abnormal state
back to the normal state.

49
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Disturbance rejection—finding appropriate control actions that attenu-
ate disturbances.

Product design—finding the operational region to achieve a certain out-
put product or quality.

The control objective in extreme event control is generally to drive the process
back to the normal operational state. This may involve completely different
control actions than what is normally used. Discrete actions like step feed, use
of equalisation tanks, etc. are typical examples of such actions in wastewater
treatment operation. Further, it may involve a shift in the overall control ob-
jective, from process output quality to process safety (e.g. sludge inventory
control). It may also involve process shutdown, if the safety of the process can-
not be ensured. In wastewater treatment, this would correspond to bypassing.
Disturbance rejection or attenuation is here defined as minimising the effects
of disturbances that must be considered as normal. These are, for example, dis-
turbances due to changes in the influent conditions or temperature variations
due to seasonal effects. It is, thus, an issue of adapting the process to the changes
in the operational conditions. In process industry, a product is generally charac-
terised by certain composition of different compounds, material, etc. Product
design implies determining how the process should be operated to obtain this
product. An example of this in wastewater treatment is controlling the process
to obtain desired sludge properties in the secondary settler. Here, the product
is the sludge, and its properties are not generally directly measurable (online).
However, sometimes the desired output quality is directly measurable. In these
cases, the process is operated to attain a setpoint on the measured quality vari-
able. Controlling the process to certain output setpoints can be considered as a
special case of product design. In wastewater treatment, controlling the process
to attain certain setpoints on effluent key variables, such as nitrogen, phosphor-
ous, suspended solids, organic matter, etc., is an example of the special case.

The three problems constitute supervisory control. Supervisory control is
typically implemented on top of the local control layer, but with longer time
constants than that of the local controllers. Examples of the levers available to
exercise supervisory control are coordination of several local controllers, invok-
ing new control actions and shifting the control objectives. In the remainder
of this chapter, a discussion will be given on how supervisory control can be
implemented in wastewater treatment, utilising ideas from multivariate moni-
toring.
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4.2 Extreme event control and disturbance rejection

Extreme event control and disturbance rejection are similar problems. An ex-
treme event can, of course, be regarded as a severe disturbance. It is therefore
not surprising that the methods to solve these problems are similar. In this
section, two alternative, and as we will see later, complementing methods to in-
tegrate multivariate monitoring and control are discussed. First, methods based
on detection and classification of the current operational state are considered.
Here, the current operational state is first determined and then the informa-
tion is used to apply appropriate controller setpoints. Second, a multivariate
monitoring model is inverted and used directly to calculate suitable controller
setpoints.

In the first approach, the determination of appropriate setpoints, e.g. by
models or look-up tables, is done independently of the detection/classification
and the approach can be seen as a multistep approach. This means that the
setpoint determination does not rely upon the same assumptions made for the
monitoring model. This is useful when the operational state is outside the valid
range of the monitoring model and additional control handles are used. In
this work, this approach is taken in the case of extreme event control. In the
second approach, the determination of setpoints rests on the same ground as the
monitoring model. This means that the current state must be within the region
that is adequately represented by the monitoring model. This direct approach
is used for ‘normal’ operational state control.

Multistep approach
Step 1—detection/classification

The basis of this methodology is that different operational states can be rep-
resented by different locations in a multivariate space. By identifying these
locations beforehand, the current operational state is analysed and classified in
accordance to previously encountered states. The multivariate measurement
space is reduced by projecting it onto a smaller space defined by, for instance,
a PCA model. In the reduced space, regions corresponding to different opera-
tional states (disturbances) are identified. The identification of regions can be
done manually or by using an unsupervised clustering algorithm. When new
data are projected onto the model space, the current locations are classified using
clustering. From the clustering, a membership function that describes to what
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Figure 4.1: Five clusters representing different disturbances projected on a low-
dimensional score space (squares indicate cluster centres).

extent the current location belongs to the predefined classes is obtained. The
membership function can be crisp, the location only belongs to one class at the
time, or it can be fuzzy, the location may belong to several classes. Fuzzy cluster-
ing is useful in the case when the boundaries between regions, corresponding to
different states, are uncertain or when some regions are not covered by a class.
Fuzzy boundaries also provide a means to seamless transitions between classes.

In Figure 4.1, an example of a reduced space (score space of a PCA) with a
number of clusters corresponding to different operational states, is shown. Even
though the clusters are somewhat hard to see, the clusters are easily discerned
using clustering algorithms (there are more than two dimensions in the reduced
space).

It is desired that as many known disturbances as possible are included in
the training data. To check the performance, the algorithm needs some kind
of surveillance. By monitoring the squared sum of distances to all clusters, a
measure for evaluation of the classification is obtained. In this way, a limit is set
on the maximum allowed deviation from the known classes so that the result
also may be classified as ‘unknown’. When an unknown disturbance occurs
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the classes need to be updated. This can be done by simply adding a new
class. However, if the new disturbance is established to be only a variation of an
already known class the centre of the location old class can be shifted manually
or by use of adaptive clustering (Marsili-Libelli and Miiller; 1996; Teppola et
al.; 1999).

Step 2—setpoint determination

From step 1, the current operational state is obtained. To determine appropri-
ate setpoints, various methods may be used. The most basic way is to have a set
of pre-defined controller setpoints for each type of disturbance. Such a look-
up table is typically based on experiences from previous encounters with the
same type of disturbance. This is an intuitive method, but may imply that too
large safety margins are used. A more refined way is to calculate the setpoints
using process models with the current process state as initial condition. The
models can be of various level of sophistication, ranging from steady state mod-
els to fully dynamical models implemented within the model predictive control
(MPC) framework (see e.g. Garcia et al. (1989), Camacho and Bordons (1999),
Morari and Lee (1999) and Mayne et al. (2000)). Whatever method is used,
the advantage of using state classification prior to setpoint determination is that
it reduces the complexity of the model, since knowledge of the disturbance is
available. Disturbances affect the process in different ways and different time
scales. Consequently, each model does not have to describe all the dynamics
in the process; it only has to describe the dynamics that are influenced by the
disturbance in the time scale of interest. This fact is utilised to tailor models for
specific purposes.

Step 3—post-treatment

When new controller setpoints have been calculated, using look-up tables or
models, the final controller setpoints are weighted according to the membership
function determined in step 1. This means that if crisp classification is used,
the weights are either 1 or 0, but in the case of fuzzy classification the weights
will be between 1 and 0. Thus, parallel computations of setpoints are required
at transitions between classes. In Figure 4.2, the framework structure is shown.
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operational state, determination of appropriate set points and post-
treatment.

Direct approach

In the direct approach to disturbance rejection using multivariate monitoring,
the model is inverted so that appropriate controller set points are computed
directly from the model. In its most basic form, this is done when loading plots
are investigated and control actions are derived from the analysis. From loading
plots, which are the column vectors of P (see Equation 3.1) plotted versus each
other, a lot of information are obtained. A loading plot describes the relations
between the real variables and the principal components (or latent variables).
Moreover, such a plot also describes the mutual relations of the real variables.
Thus, a loading plot can be used to investigate possible contributing variables to
a deviation along a principal component but it can also be used to find variables
that would drive the process back to normal (disturbance rejection). A loading
plot is shown in Figure 4.3.

Using loading plots to find appropriate control adjustments is a manual pro-
cedure; the operator investigates the plots and draws conclusions on which
adjustments of the control are based. However, the same way of thinking is
extended to an automatic derivation of adjustments to the local control. The
difference between the current and desired location in score space is mapped to
a difference in the original variables (Figure 4.4). Assuming that some of the
variables are manipulated variables, it is straightforward to calculate the change
in the manipulated variables so that the process moves towards the desired loc-
ation. For data that are mean centred this means that controller adjustments
strive to force the process to the origin in the score space. This approach to
control the process in the score space was proposed by Piovoso and Kosanovich
(1994)!. The original method is afflicted by a weakness: it does not address the

"The authors briefly indicated this approach in an earlier publication (Piovoso et al.; 1992).
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P,

Figure 4.3: The relations between variables and the principal components are
visualised by a loading plot. The plot are used to find suitable con-
troller adjustments to drive the process in a certain direction.

change in the system characteristics introduced by the closing of the loop; when
feedback information is used to derive control adjustments, the system cannot
be considered as an open loop system anymore. Other researchers have pro-
posed extensions to the methodology, which address this problem (Chen and
McAvoy; 1996; Chen et al.; 1998).

4.3 Product design

The problem of product design is different from that of disturbance rejection
in the sense that here the supervisory control system must be able to control the
process to certain output specifications instead of simply controlling the process
with a minimum of deviation from ‘normal’ operation. A quality requirement
must be defined and is typically one or several setpoints imposed on certain
variables. It can also be expressed as a certain composition of the end product.
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t

Figure 4.4: Principle of score space control. The differences in the score space
(Atq, Aty, Atg,...) are mapped to differences in the original variable
space.

Extended direct approach

Assume that a certain product quality is desired. This product quality is spe-
cified using one or several measurable variables. The problem consists of find-
ing the values of manipulated variables that will yield the desired quality and,
hence, the relations between the process variables and the quality variables must
be known. If the quality variables are regressed onto the process variables, using
for example PCR or PLS regression, such relations can be found. Now, since
the desired quality is known, the inverse of the model will give us process vari-
able values that will fulfil the quality requirements. Let the model be a latent
variable model, that is with a reduced process space, and the number of latent
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variables be a. Furthermore, let the number of quality variables be &, then three
different cases may occur (Jaeckle and MacGregor; 1996):

k > a, that is the number of latent variables is smaller than the number
of quality variables. The system is overdetermined (generally no exact
solution) and least squares is used to find the best approximation.

k = a, that is the number of latent variables is equal to the number of
quality variables and there is a unique solution.

k < a, that is the number of latent variables is higher than the number
of quality variables. Here, the system is underdetermined (infinite num-
ber of solutions) and the pseudo—inverse2 is used to find one possible
solution.

In an industrial process, the last case is the most realistic. The use of the pseudo-
inverse is justified since it will yield the solution with the smallest Euclidean
norm. Consequently, the solution is the one with the smallest variation in the
latent variables, or put differently, the solution is the one closest to the origin
in the score space. For mean centred data, this is a reasonable choice. However,
since there is an infinite set of solutions, it is shown in Jaeckle and MacGregor
(1996) and Jaeckle and MacGregor (2000) that a ‘window’ of solutions can be
obtained, from which suitable solutions are chosen, based on process knowledge
and operational history. This is advantageous when the operational space is
limited by physical or control related limitations.

Model errors are introduced by a number of causes. First, the closing of the
loop will introduce a distortion of the covariance structure. Second, controller
saturations or physical limitations will also alter the structure. Third, disturb-
ances due to external variations or system changes affect the model agreement
and, fourth, model mismatch due to nonlinearities, insufficient excitation in
the identification phase, etc., will see to that there is a discrepancy between the
model and the process. If this is not compensated for, the controller will not
yield the desired result; the process location in the model does not agree with
the real process location. In Rosen and Jeppsson (2001a), a possible solution to
this difficulty is presented for the case when the quality variables are available

%A more elaborate discussion of the use of different pseudo-inverses is given in the addendum

of Paper G.
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online. A compensation term is introduced to correct the model errors and the
method is capable of compensating errors online.

The direct method, as implemented in Rosen and Jeppsson (2001a), can be
considered as a multivariate steady-state feedback approach. Therefore, it is best
suited for supervisory control in longer time scales, controlling the average value
of the quality variables. Of course, the suitable time scale is dependent on the
controlled system and for a wastewater treatment plant, this is daily or weekly
average control. The long control perspective may, or may not, be advantage-
ous. In many countries, the effluent quality requirements are policed by use of
average values and in this case the approach would be adequate. However, other
countries use grab samples or discharge fees. Here the approach is less suitable.
However, it is shown in Rosen and Jeppsson (2001a) that the short term per-
formance can be considerably improved by simple feed-forward terms. Another
possible improvement to the direct method would be to incorporate the ideas
from multiscale monitoring. The supervisory controller consists of several time
scales on which control models are identified for each scale. As in the moni-
toring case, this may provide a way to circumvent the problem of addressing
process dynamics. The multiscale framework does also allow for temporal de-
coupling of otherwise coupled variables or states. Multiscale procedures apply
to both the multistep and direct methods and some aspects of multiscale control
are discussed in Stephanopoulos et al. (1997), Stephanopoulos and Ng (2000)
and Alsberg (1999).



Chapter 5

Summary of work

5.1 Introduction

The driving forces behind the often substantial collection of online data in in-
dustrial processes are generally related to quality, safety and economic require-
ments on the processes and their outputs. The introduction of computers and
instrumentation in the operation allows for a vast amount of data to be collec-
ted. The data may provide an important source of information but one should
not confuse data and information. The information is generally hidden in the
data and more or less sophisticated techniques are necessary to extract adequate
and reliable information.

The quality of the obtained information is strongly dependent of the quality
of the measurements. The devise ‘garbage in - garbage out’ is certainly applic-
able to information extraction and, therefore, methods to test and improve the
quality are important tools to ensure reliable information. Another important
aspect is the appreciation of information. Remember that the information must
be interpretable and understandable for the users before it is truly informative.
This is especially imperative in the case when process data include many vari-
ables of different engineering units.

Online data monitoring is normally carried out to investigate the current pro-
cess status; is the process behaving normally and are the output variables meet-
ing their requirements. Monitoring data online can be carried out in a univari-
ate or multivariate fashion. In univariate monitoring, variables are monitored
separately and no consideration is taken to the mutual relationships between
variables. In contrast, multivariate monitoring utilises these relationships to ex-
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tract more information and reduce the dimensionality of the monitoring prob-
lem.

Monitoring information can be used to increase the knowledge of the process
and the major mechanisms that drive the process. However, the primary incent-
ive for extracting information is control. To be able to react quickly and firmly
when process deviations are detected may be the difference between failure and
success. By combining the monitoring task with the task of determining ap-
propriate setpoints for the local controllers, a fast response to disturbances is
made possible. The integration of monitoring and control, thus, provides a
framework for automatic supervisory control.

In this work, both univariate and multivariate techniques for extraction of in-
formation from wastewater treatment operation data are discussed, with a clear
focus on the multivariate techniques!. The multivariate approach has proven
successful in many industrial applications and in this work, it is shown that
wastewater treatment is no exception. Further, alternative ways to use monitor-
ing information in the control system to obtain automatic supervisory control
are presented. The methods used are based on recent developments in the field
of chemometrics.

5.2 Univariate monitoring

Measurement quality

Before any analysis of process data is carried out, it is important to validate the
quality of the data. In Paper A, a number of obstructions that complicate the
information extraction process are briefly discussed. These obstructions include
missing values, noise and outliers. Different digital filtering techniques provide
solutions to these problems but one needs to be careful, especially in the case of
outliers, so that valuable process information is not discarded.

Statistical process control

Statistical process control (SPC) is a framework that was originally developed
for univariate monitoring. Here, single measurement signals are analysed on-
line with respect to a number of (mostly) statistical measures. Typical measures
are the variable’s amplitude, mean, variability, rate of change, trends and de-

'Single variable analysis is discussed more thoroughly in Rosen (1998a).
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viation from normal situation. Generally, the measures are monitored as time
series with parametric or non-parametric confidence intervals representing the
normal region. It is shown in Paper A that these methods are applicable to
wastewater treatment operation and an example of detection of sensor failure
using variability monitoring is given.

Two major disadvantages of univariate monitoring for industrial processes
must be mentioned. First, when the number of measured variables is high, the
interpretability of the whole monitoring problem decreases. Monitoring many
variables is a cumbersome task and there is an imminent risk of variables being
neglected. Second, univariate monitoring does not account for collective effects.
A multivariate process may be outside its normal region with all variables still
within their respective limits. In such situations, univariate monitoring is not
sufficient.

5.3 Basic multivariate monitoring

Multivariate monitoring techniques

A preliminary study of the applicability of multivariate statistical process control
(MSPC) for process monitoring is presented in Paper A. Through a number of
examples, it is shown that principal component analysis (PCA) can successfully
be used to detect deviating process performance. PCA is a method to reduce
the dimensionality of a problem, by projecting a high-dimensional space onto a
space of a lower dimension using the fact that most industrial data display high
degree of correlation. The principal components (PCs) define a space in which
the scores (the projected data) are linear combinations of the original measure-
ments and constitute pseudo variables that capture the major mechanisms of the
process. By reducing the space, information is disregarded. However, this does
not mean that adequate information is wasted. As a matter of fact, the essence
of PCA is that the adequate information is represented by the principal com-
ponents, whilst non-adequate information is wasted (or considered as noise).
Normally, data are mean centred and scaled so that measurements of different
units and numerical amplitudes may be compared. If this is not done, a variable
with high numerical amplitude may affect the model in a disproportional way.
More detailed information on PCA is given in Paper B.

In Paper A, partial least squares (PLS) regression is also discussed. PLS can
be considered as a development of PCA and the important difference is that in
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PLS, data are divided into two blocks; one block represents the independent
variables (X-block) and the other represents the dependent variables (Y-block).
By reducing both blocks simultaneously, a regression model with monitoring
as well as predictive power is obtained. PLS is generally used for prediction of
one or several variables, but can also be used to focus the detection effort on the
variables most influential on one or several output (or quality) variables. Thus,
if PCA can be considered as a technique for general process monitoring, PLS
(and other regression methods) is a technique for specific process monitoring
techniques®.

Basic online monitoring using PCA and PLS involves offline identification
of a model from data that represents normal operational conditions. New data
are projected onto the model and the scores and/or the model residuals are then
monitored as new samples are obtained. Note that it is imperative that new data
are scaled and mean centred in the same way as training data.

Information visualisation

The scores can be monitored using conventional univariate SPC techniques
with calculated confidence. However, since the dimensionality of the task may
still be substantial, this may be cumbersome. Instead, inherent characteristics
of PCA (and PLS) are utilised. The first component describes the direction
of the largest variability of the X-block and the second component describes
the second largest direction and so on. This means that by plotting the first
PC versus the second PC, a significant part of the variability in the X-block
is covered by a so-called score plot (in the PCA example in Paper A, the first
two PCs cover more than 75% of the variability of the X-block). A confidence
region is calculated and whenever the current location is outside this region,
a disturbance is established. This is an intuitive and comprehensive way of
displaying high dimensional data.

The number of adequate and information carrying scores may be too high
to make score plots applicable. Then, two summarising measures may be used.
The first is the Hotelling’s T2, which describes the summarised variations within
the monitoring model. 72 can be monitored using confidence limits. How-
ever, T? must normally be complemented by the second measure: the sum

of the squared prediction error (SPE). SPE expresses the summarised dis-

“General and specific methods are sometimes referred to as unsupervised and supervised
methods, respectively (Davis et al.; 1996).
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tance from the model, or put simply: how well new data fit the model. The
reason they complement each other is that when a disturbance is manifested in
‘coordinated’ variable changes (i.e. the relations between the variables or covari-
ance structure remains the same), this will be detected in the 72 and the SPE
will stay low. However, when the disturbance manifests itself as a disturbance
in the covariance structure, the SPE will become high, while the T stay low.
In the general case though, a disturbance will cause both the T? and SPE to
increase. A more comprehensive discussion on the 72 and SPE measures is
given in Paper B.

In Paper A and B, the above-discussed measures for visualisation of the op-
erational state are used. It can be concluded that the measures provide a much
more compact way of presenting process information compared to univariate
time series plots. It should be noted that no (adequate) information is generally

lost in the MSPC procedure.

Variable isolation

An appealing feature of most MSPC methods is the ability to isolate deviating
variables. This is used when a disturbance has been observed. By backtracking
through the model, the variables responsible for deviations in the score plots,
the 72 and the SPE can be identified. So-called contribution plots are used
to analyse the contributions from individual variables. In Papers A and B, a
few examples show that these plots can successfully be applied to wastewater
treatment data.

5.4 Advanced multivariate monitoring

Handling non-stationary data

Basic MSPC using PCA assumes that data are stationary, i.e. the variable mean
and variance are approximately constant. This is seldom the case in wastewater
treatment operation due to diurnal, weekly and seasonal variations. The ever
changing operational conditions either makes the monitoring model too in-
sensitive to smaller changes (e.g. if a whole year’s operational data are used to
identify a model) or it makes the monitoring model less useful due to lack of
fit. In Paper B, this problem is addressed by implementing adaptive monitoring
models.
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The adaptation of the model can be carried out in different ways. If the mu-
tual relationships between the variables (the covariance structure) are believed
to be approximately constant, the adaptation can be obtained by only updating
the scaling parameters. A moving (historical) window can be used for updating.
Here, the historical data have the same influence on the parameters. However,
a more sophisticated way is to update the parameters recursively, so that expo-
nential weighting is obtained. The forgetting factor, i.e. the speed with which
historical values are disregarded, may vary depending on the aim of the model
and the nature of data.

When the covariance structure is believed to change, the whole model has
to be updated. The same approach as for the parameters may be applied to the
covariance structure. A major disadvantage of updating the covariance structure
is that one loses the possibility to use score plots for visualisation. This is due to
the rotation of the space defined by the PCs caused by the continuous updating
of the covariance structure.

It is shown in Paper B that adaptive models are applied successfully to real
wastewater treatment data where a static model does not suffice. A period of
more than 100 days, spanning from late summer to early winter and with signi-
ficantly changing operational conditions, is investigated and the adaptive mon-
itoring models detect deviations from normal operation. It is also shown that
isolation of contributing variables is achieved to facilitate process diagnosis.

Handling multiscale data

Wastewater treatment data display a multiscale nature. Events and disturbances
appear in many different time scales, from long term (months) to short term
(minutes or hours). This is a problem for the MSPC techniques discussed here.
Multivariate monitoring is generally carried out in one time scale. This time
scale contains frequencies ranging from the Nyquist frequency to the lowest fre-
quencies present in the process. The presence of different time scales introduces
an error in the monitoring model and this error degrades the sensitivity and,
consequently, the ability to detect small, but significant, changes in data. Small
deviations are ‘drowning’ in the variations caused by, for instance, the varying
influent conditions.

In Papers C and D, a framework for multiscale multivariate monitoring is
presented. It is based on recent techniques for multiresolution analysis (MRA).
In MRA, data are split into separate time scales using the wavelet transform.
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The decomposed data can be evaluated by multivariate monitoring, for instance
PCA, to obtain a multiscale monitoring methodology. Multiscale monitoring
has some important advantages. The sensitivity of the monitoring model is in-
creased as every scale is monitored separately. Moreover, the separation of data
into multiple time scales implies that the higher scales will have approximately a
constant mean and only the lower and/or lowest scale will display trends or long
term variations. Consequently, by omitting the lowest scale from the monitor-
ing, the problem of monitoring data from changing process conditions is partly
solved. Also, information on the scale on which a disturbance or event appears,
may be used in the interpretation to find the physical cause of the event or dis-
turbance. An example of process monitoring using a combination of PCA and
MRA is given in Paper C. The sensitivity is increased and it is also seen that the
non-stationarity problem is solved.

Monitoring many separate time scales introduces an increased complexity;
although PCA provides a reduction of dimensions we now have scores on many
scales, and the total number of scales may be larger then the original number.
There is, fortunately, a way out of this dilemma. By combining scales into
physically interpretable scales, the number of scales is reduced and the inter-
pretability is increased. In Paper C, such as approach is utilised to monitor
process data. Compared to the case, in which no recombination is done, the
interpretability is increased both due to a decreased number of scales and the
fact that the scales better corresponds to the major time scales of the process.

A third multiscale approach is presented in Paper C. In this, monitoring
models are used on each scale to determine whether a certain scale displays
significance. The signals are then reconstructed using only significant scales.
The reconstructed signals are monitored using a uniscale PCA model. Thus,
the ability of the multiscale approach to detect small disturbances is combined
with the dimension reduction of the uniscale approach. The result is a sensitive
monitoring model generating information that is displayed in a compact way.
It is shown in Paper C that the three methods have similar performance.

Paper D outlines an adaptive multiscale PCA (AAMSPCA) for process mon-
itoring where the adaptive capabilities are combined with multiscale feature ex-
traction. In analogy with the techniques described above, data are decomposed
into several time scales using MRA. An adaptive model, similar to the one dis-
cussed in Paper B, is identified on each scale. Thus, each scale model follows the
evolution of the process. In the paper, the AAMSPCA algorithm is compared
with adaptive PCA. The AAMSPCA shows a greater ability to adapt to a wide
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range of changes. Moreover, the AAMSPCA appears to be more sensitive to
slower changes. This may be beneficial when sufficiently slow adaptation must
be weighted against persistent violation of control limits.

5.5 Control adjustments

To integrate monitoring and control to form an automatic supervisory control
scheme is a natural extension to monitoring. This enables the control system to
react to process changes without operator intervention.

Open loop adjustments

When a disturbance has been detected and the current operational state is con-
sidered abnormal, it is desired to force the process to return to the normal state.
This may involve invoking new control handles, normally not used when the
process is in-control. It may also involve a shift in the control objective, from,
for instance, low effluent nutrient concentrations to retaining the sludge in the
system. In Paper E and F, a framework for extreme event control of wastewater
treatment operation is proposed. The framework consists of several subtasks.
Monitoring and classification of the operational state is performed by combin-
ing PCA and fuzzy clustering. Several regions corresponding to different types
of extreme events (disturbances) as well as normal operation are identified in the
PC space. Using the fuzzy clustering algorithm, a membership function that de-
scribes to what region the current operational state belongs is obtained. When
the current operational state is identified, an algorithm determines appropriate
setpoints for the local controllers. The output from the setpoint determination
is weighted according to the membership function. The last step is carried out
since fuzzy clustering allows a state to belong to more than one region. This
enables seamless transition between different operational states and yields faster
control response and smoother control actions. The proposed framework is
outlined in Paper E. Here, look-up tables are used to determine appropriate
setpoints. Consequently, the setpoint need to be established a priori based on
operational experience.

A number of different test cases are studied by simulation. The test cases are
based on influent data developed by the COST 624 benchmark group. The
results show that the proposed scheme is capable of detecting and classifying
different extreme events and that the implemented controller setpoint changes
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improve the performance of the plant according to the control objectives.

The setpoint determination of Paper E is further developed in Paper E Look-
up tables, steady-state and dynamic models are compared to assess if an in-
creased complexity yields improved performance. A reduced order dynamic
model is developed. The model relies only on measurements that are practically
possible to obtain in a real situation. The steady-state controller (SSC) control
law is obtained by linearisation of the reduced model at the current operating
point. The inverse steady state relationship between inputs and outputs is cal-
culated. A more sophisticated model based setpoint determination is obtained
by introducing model predictive control (MPC). In MPC, the reduced model
is used to simulate various control setpoints at each sample. The ‘optimal’ set-
points are chosen, using an optimisation criterion.

The different setpoint determination strategies are tested in a simulation
study. It is shown that both SSC and MPC yield better performance in terms
of control costs and flexibility than the look-up table. An important and ap-
pealing feature of MPC is the ability to design a cost function and to account
for controller saturation. This may be valuable when a cost-benefit assessment
is desired. However, it is not obvious that the increased complexity can be
justified in all cases. The look-up table strategy is simple and robust to meas-
urement disturbances and the choice between the strategies is a balance between
performance and simplicity.

Feedback adjustment

During normal operation, the situation is somewhat different to that of ex-
treme events. Here, the task of the supervisory control system can be said to
be twofold: disturbance rejection and product design. In normal operation,
disturbance rejection implies minimising the effect of disturbances that must
be accepted as normal. Such situations include the diurnal pattern in the in-
fluent characteristics, temperature changes due to weather variations, inhibition
effects, etc. It is not an issue of returning the process back to normal; it is rather
an issue adapting the process to the changes in the operational conditions. In
contrast to disturbance rejection, product design involves changes to the con-
trol system to achieve specific requirements on the effluent quality. In waste-
water treatment operation, this generally implies determining what controller
setpoints are required to meet the effluent standards imposed on the operation.



68 Chapter 5. Summary of work

In Paper G, a chemometric approach to supervisory control of wastewater
treatment is proposed. The main objective of the work is to control the mean
effluent nitrogen concentration (product design) from a biological stage, con-
figured as a predenitrification process. As a secondary objective, the supervisory
control system should minimise the variation in the effluent concentration (dis-
turbance rejection). A PCA model is used to monitor the current operational
state. By inverting the model, local controller setpoints that drive the process to
a desired location in the score space are determined. To compensate for model
errors due to, for instance, identification difficulties, process nonlinearities, con-
troller saturations, etc., a compensation term is introduced. The controller can
be seen as a multivariate feedback controller.

Using the COST benchmark simulation model, the controller performance is
evaluated. The first objective is achieved and it is shown that the controller can
control the process to an arbitrary (within reasonable values) effluent setpoint
for the effluent nitrogen concentration. It is also shown that by introducing
a feed-forward term in the controller, the effluent concentration variation is
significantly reduced. The supervisory controller approach poses two major
drawbacks. First, the identification of the controller must be carried out during
constant influent conditions. Second, the controller does not consider the costs
of the proposed control actions. However, in the addendum some comments
and possible solutions to these difficulties are given.



Chapter 6

Concluding remarks

The amount of data collected at industrial sites today is significant. Data are
collected for many reasons, of which process monitoring and control are two
important purposes. In process monitoring and control, data need to be treated
online, which makes it more demanding than other data handling problems.
Relevant information must be extracted from the data and presented and in-
terpreted adequately within a short time span. The large amount of data puts
special requirements on the methods used for process monitoring and control.
In this work, a chemometric approach to meet these requirements is presented.

6.1 Summary of results

Process monitoring

In wastewater treatment process operation, the operators and process engin-
eers face a number of difficulties and challenges to transform the vast amount
of data into information. Faulty measurements due to erroneous sensors or
noise arising from various sources in the sampling and measurement proced-
ure lead to poor data quality. The high number of measured variables implies
that there is a risk for ‘data overload’; humans simply do not have the ability
to analyse and interpret high dimensional problems. A process where many
variables are measured does not necessary imply that the process inherently is
high dimensional. Instead, data often display a high degree of redundancy, i.c.
data are collinear. This does not only create difficulties for human interpreta-
tion, but also for conventional statistical analysis methods, since they rely on a
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high degree of independence among the variables. Furthermore, the conditions
in which wastewater treatment processes are operated are normally of a vary-
ing (non-stationary) nature. It is often difficult to discern process disturbances
different from those caused by the varying influent conditions, which tend to
have a dominant effect on the process behaviour. The fact that disturbances
occur in many different time scales, which is another difficulty, complicates the
distinction of disturbances in a similar way to that of non-stationarity and it
also deteriorates the performance of many monitoring techniques. In addition
to the difficulties already mentioned, the fact that the involved processes are
nonlinear and well as dynamic must be accounted for.

In this work, multivariate statistical process control (MSPC) is investigated as
a remedy for these difficulties. The potential of MSPC as a tool for monitoring
wastewater treatment processes is shown. Moreover, standard MSPC techniques
are extended and adapted to suit the requirement of monitoring of wastewater
treatment operation.

Principal component analysis (PCA) is one of the MSPC methods used. PCA
accounts for collective effects, as it allows for simultaneous analysis of all in-
cluded variables. It also reduces the dimensionality of the data and compress
it into information. PCA provides different ways to visualise the process in an
interpretable and intuitive manner, helping the user to extract relevant inform-
ation and make sensible decisions. A PCA model is identified using data from
normal or desired process operation, and then used to detect deviations from
this behaviour.

However, due to changing conditions, for instance, diurnal variations, sea-
sonal changes and long term trends, the monitoring model must be updated.
This can be achieved by making the PCA model adaptive. Several levels of ad-
aptation may be used. It is shown that adaptive scaling parameters are an option
when the relationships between the variables do not change. This approach has
advantages since it allows intuitive graphical representations, such as score plots.
When the relationships between the variables change, the covariance structure
of the model must also change. Adaptive PCA (i.e. adaptive covariance struc-
ture) together with updated scaling parameters, provides us with a powerful tool
for monitoring non-stationary processes in faster time scales.

Due to the multiscale nature of events and disturbances, a multiscale ap-
proach to online monitoring of wastewater treatment measurement data is pro-
posed. Decomposition of data into separate time scales is combined with prin-
cipal component analysis to extract significant features in different time scales
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and to reduce data dimensionality. The advantages of such an approach are an
increased sensitivity to small but significant changes and a way to approach the
problem of monitoring of data from varying conditions. The scales can be re-
combined to represent physically interpretable scales. By doing this, two things
are achieved. First, the number of scales that has to be monitored is smaller
and second, the scales are chosen to match dominant time scales of the process,
resulting in a more intuitive interpretation. A more sophisticated way to sim-
plify the interpretation is also presented in the multiscale principal component
analysis (MSPCA) methodology, which involves feature extraction from data
on each scale and then recombination using a uniscale PCA. An extension of
MSPCA to include adaptation of the scale models is proposed in the adaptive
MSPCA (AAMSPCA). The results show that the AAMSPCA sometimes yields
a faster response to slower disturbances, whereas the results are similar for cases
involving faster changes.

Process control

When a disturbance or process deviation is observed, the task for the operators
and process engineers is to make the process return to the normal operational
state. However, although information on the disturbance is available through
the monitoring system, it is not obvious how to adjust the process so that a
desired result is obtained. This becomes especially obvious when the number
of manipulated variables is high. Consequently, a systematic approach to adjust
the process so that the requirements imposed upon it are fulfilled is desirable.
This is often referred to as supervisory control and involves coordination of
local controllers, invoking new control handles and shifting the control object-
ives. Supervisory control is here divided into a few subproblems: extreme event
control, disturbance rejection and product design. The control objective in ex-
treme event control is generally to force the process back to its normal state. In
disturbance rejection or attenuation, the goal is to minimise the effects of dis-
turbances that must be considered as normal. Product design implies determin-
ing how the process should be operated to achieve a certain output quality, for
instance to achieve certain quality variable setpoints. In this work, a framework
for integrating MSPC and control is proposed. By two different approaches, all
three subproblems are addressed.
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In the first approach, it is shown that by integrating PCA, clustering and
setpoint determination, automatic supervisory control of wastewater treatment
processes is achieved. The ability of PCA to represent the underlying mechan-
isms in a few components is combined with clustering to determine the current
operational process state. The information on the operational state is used to
derive appropriate setpoints for local controllers. Both static and dynamic set-
point determination models are used. The most basic model consists of a look-
up table, which is an intuitive alternative and yields robust results. However,
the fact that different disturbances affect the system in different ways allows for
a reduction of a setpoint determination model. By implementing a reduced
order dynamic model in a model predictive control (MPC) framework, a flex-
ible method for process recovery is obtained. Likewise, a steady state controller
based on continuous linearisation of a reduced order model is shown capable
of driving the process back to its normal operational state. This multistep ap-
proach is best suited for extreme event control since new or discrete control
handles are be incorporated into the procedure.

The second approach can be seen as a multivariate feedback controller. By
inverting the monitoring model (a PCA model), the controller outputs required
to reach a certain point in the model space, are calculated. To compensate for
model errors due to closing of the loop, process changes, local controller satura-
tions, etc., a compensation term is added to the controller. The main objective
of the supervisory controller is to control the average effluent quality to certain
setpoints. However, a secondary objective of the controller is to minimise the ef-
fluent quality variation during varying influent wastewater characteristics. The
results show that the controller is able to meet setpoints imposed on the effluent
nitrogen concentration, both for constant and varying influent concentrations.
Moreover, the variation in the effluent concentration is reduced significantly by
the introduction of a feed-forward term in the controller. It is also shown that
the controller compensates for controller saturation or actuator loss if the loss
or saturation occurs in a PC direction covered by other actuators and that it
is relatively insensitive to measurement disturbances. Due to the limitation in-
herent of the linear approximation, this approach is best suited for disturbance
rejection and product design.
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6.2 Comments on implementation

It is appropriate to discuss some aspects of implementation of the methods de-
scribed in this thesis. There are many factors to consider, and the best solution
for disturbance detection and isolation may vary considerably from plant to
plant.

Data screening

An important issue for both monitoring and control is the quality of the data.
Low quality of data limits its use considerably. Therefore, the measurement sys-
tem, including sensors, devices and computers must be properly and continu-
ously maintained and checked. However, measurement related disturbances
will always occur, especially in an industrial environment. Digital filtering is
a straightforward, and yet, flexible way to improve the data quality. Median-
based filters have proven to be effective. The frequently occurring step changes
and discontinuities in data are preserved (which is not the case when using lin-
ear filters), while noise is reduced. The main drawback is the unavoidable time
delay, which may cause problems in some applications where a fast response is
prioritised.

Process monitoring

There is an intricate balance between complexity and performance when indus-
trial processes are to be monitored. When everything is functioning properly,
the level of complexity is of less importance. However, when this is not the
case, simplicity is a desired feature. The methods used should be insensitive to
some process changes and at the same time they should detect others. A rule
of thumb is to keep everything as simple as possible. This rule would, in many
situations, disqualify parts of what have been discussed in this work. How-
ever, it is the author’s opinion that one extension to standard MSPC cannot be
neglected in wastewater treatment operation: the ability to adapt to new oper-
ational conditions. The conditions vary considerably, and the only alternative
would be to constantly identify new models. Making a MSPC model adapt-
ive is a relatively straightforward task and involves only a few extra parameters
in addition to those of static monitoring. The advantages do in this case bal-
ance the increased complexity. Moreover, if used in parallel with a less sensitive,
static model, the operator is provided with tools for both detection (the adapt-
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ive model) and process analysis (the static model). Whether this is achieved by
use of time-scale decomposed monitoring (where the higher scales are adapt-
ive in terms of mean values and the lowest scale constitute the static model) or
by use of a recursive model for adaptation and a conventional model for static
monitoring, is dependent on the situation.

Process control

An important feature of the multistep approach, based on the combination of
a detection/classification unit and a setpoint determination unit, is that it is
intuitive. The reasoning follows similar paths to that of an operator; first, the
current operational state is assessed and then appropriate setpoints are determ-
ined. A look-up table is simple and the setpoints may be chosen conservatively
so that a safety margin is retained. Further, a look-up table can easily be veri-
fied off-line and function as an ‘expert system’. Thus, when a disturbance is
observed, the operator uses the system as an advisor and compare its advise to
that of him/herself. When there is sufficient confidence in the system, the su-
pervisory controller can be applied online. Model based setpoint determination
is probably more difficult, although not impossible, to use as an advisor, since
the controller setpoints are updated more frequently.

In a real application, it is important that when there is a failure on the su-
pervisory level, the local controllers are provided with suitable setpoints, for in-
stance the ones used for normal operational control. Consequently, surveillance
of the supervisory controller is imperative. This surveillance must be carried
out in both the hardware and software domains. A possible integration of the
methods discussed in this work is outlined in Figure 6.1.

6.3 Topics for future research

There is a clear trend towards an increasing number of sensors and signals in
the operation of industrial processes. This leads to large amounts of data, and
often, redundant data. Redundant data call for methods to extract relevant
information, even in areas that we today consider univariate. Thus, there are
many interesting topics within the areas of multivariate monitoring and control.
A few of them are mentioned below.
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Figure 6.1: Possible integration of monitoring, extreme event control and normal
operational state control. Information from both supervisory con-
trol systems are sent to the all embracing monitoring system, which
determines which control structure should be used. An emergency
controller is used when the other controllers are not applicable.

Process monitoring

An interesting area of research is the application of monitoring and control of
large, complex processes with a high number of different subprocesses. The
information paths in such systems need to be structured. Multiblock or hier-
archical methods (briefly described in Chapter 3) may then provide an alternat-
ive. For wastewater treatment systems, a number of subunits may be identified,
e.g. biological stage, precipitation stage, sludge handling and sewer network (or
parts of it). An MSPC model is used for monitoring each subunit. However,
some of the information is sent to a higher level (superlevel). On this level,
another MSPC model is used to monitor the coordination between the differ-
ent subunits. Such a system would not be significantly more complex than a
monitoring system that includes all measurements in one MSPC model, but it
would certainly produce more easily interpretable results.
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Image analysis by means of multivariate analysis may be a ‘hot’ topic in the
future. In a presentation at the 7 Scandinavian Symposium on Chemometrics
(2001), MacGregor showed how he and his group used PCA to monitor a com-
bustion flame. For wastewater applications, automatic sludge characterisation
using wavelets and PCA may prove successful in the future. The data matrix is
constituted by the pixels of a digital image.

Process control

Preliminary studies for extending the principal component space (PCS) con-
troller discussed in Paper G to include the ideas of multiple time scales seem
promising. Measurements are decomposed into a number of time scales (prefer-
ably corresponding to the dominant time scales of the process) and models are
identified for each scale (the same procedure as for multiscale monitoring). Us-
ing the fact that the scales add up to the original data, the control signals from
each scale are added. Each scale model is ‘optimised” for a certain frequency
band and the complete controller, including all scales, may prove better than a
‘uniscale’ controller. Further, the dynamic properties of such a controller ought
to be better than a controller based on a uniscale model.

One step further from supervisory control is plant-wide control. The same
ideas as for hierarchical monitoring ought to be applicable to plant-wide con-
trol. The superlevel model provides target values for the supervisory controllers,
which in turn produce local controller setpoints. However, it is probable that
nonlinear techniques will be required, since the relations between the subunits
may be far from linear.

Process diagnosis

Although the area of process diagnosis is outside the scope of this work!, it is
closely linked to process monitoring and detection. An approach to diagnosis
analysis, which has proven successful, is graph-based diagnosis. Graph-based
diagnosis implies that the causal relations are described by nodes and connec-
tions in networks (Larsson; 1994). By describing the functionality of a waste-
water treatment plant in such a way, a diagnostic tool could provide valuable
help in the cause-effect analysis of a disturbance.

1Diagnosis has been discussed by the author in Rosen (1998b) and Rosen (1998a).
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Data transfer systems

In information transfer systems, multivariate statistics may be useful as a data
compression and coding method. Assume that instead of transferring the actual
data, the scores from a PCA model are transferred. When the receiver wants to
explore the data, the PCA model is used to inflate the data. Thus, the amount
of data that need to be transferred is reduced at the same time as it is made
useless unless the receiver has access to the original model.
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Chapter 7

Popularvetenskaplig
sammanfattning

En kemometrisk metodik fér processévervakning
och -styrning, tilldampningar pa avloppsvattenrening

For att styra, overvaka och utvirdera processer inom processindustrin, samlas
stora mingder data frin mitgivare i olika delar av processen. Den tekniska
utvecklingen inom miitteknik- och datoromradet har gjort det mojligt att mita
mdnga olika storheter. Inom processindustrin kan antalet vara mycket stort;
hundratals och ibland tusentals virden loggas kontinuerligt med intervall avpas-
sade for den enskilda processen.

Att analysera och i viss mén forutsiga skeenden i dagliga driften av avlopps-
reningsverket vilar i stor utstrickning pé operatorerna och driftspersonalen vid
avloppsreningsverken. Informationen frén driften maste vara palitlig, littillging-
lig och uppdaterad for att analyser skall kunna utféras och korrekta beslut tas.
Idag finns pi ménga verk runtom i landet en omfattande mingd mitningar som
gors 1 realtid. P4 ett avloppsreningsverk kan dessa uppgd till mer 4n hundra sig-
naler som mdste bearbetas och analyseras innan informationen som de bir kan
goras tillginglig f6r anvindaren. Vidare maste informationen presenteras pa ett
lattbegripligt sitt, vilket 4r speciellt viktigt om forestdende storningar i systemet
skall kunna undvikas.

Fér att utvinna anvindbar information ur stora mingder data krivs en sys-
tematisk hantering av data. Att undersoka varje signal eller variabel individuellt
dr tidskrivande. Detta leder ofta till att endast ett antal “nyckelvariabler’ an-
vinds. Detta ir olyckligt av flera skil: dels gir information forlorad eftersom
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endast ett fital variabler 6vervakas, dels forbises ssmmansatt information som
beskrivs av samspelet mellan flera variabler. Fér att utnyttja datamingden maxi-
malt krivs alltsd metoder som kan hantera och analysera ett stort antal variabler
samtidigt. Vidare méste metoderna kunna reducera datamingden till en grip-
bar mingd utan att relevant information gar férlorad f6r att sedan presentera
informationen p3 ett intuitivt och littbegripligt sitt.

Multivariat statistik utgér en grupp av metoder f6r hantering och analys av
stora mingder data. Metoderna bygger pa empirisk modellering, d.v.s. histo-
riska data anvinds for att identifiera en modell som beskriver relationerna mel-
lan olika variabler i en datamingd. I multivariat statistik reduceras stora data-
mingder visentligt; man kan siiga att dimensionaliteten pd problemet reduceras.
Detta kan dstadkommas genom att man utnyttjar redundansen i dataming-
den for att producera att antal "pseudovariabler’ som bir information frin alla
variabler. Dessa pseudovariabler kan sedan évervakas antingen var och en fér
sig, eller i de fall di de fortfarande 4r minga, i form av gemensamma métt. Det
dr viktigt att man inte ser denna teknik som en ’svart 1ada’. Det ir fullt mojlige
att anvinda analysen ’baklinges” sd att ndr en avvikelse i en pseudovariabel har
konstaterats dr det méjligt att direke isolera den eller de verkliga variabler som
avvikit frin sitt normala upptridande.

I denna avhandling presenteras ett systematisk tillvigagingssitt att vervaka
processen med hjilp av idéer frin multivariat statistik. Ett antal utvidgningar
av allminna metoder diskuteras som mojliga kandidater att l6sa de problem
som uppstar vid driften av avloppsreningsverk. Dessa svarigheter har frimst
att gora med de forinderliga forhillanden som rider vid ett verk. Avlopps-
vattnets sammansittning skiljer sig avsevirt over dagen, veckan, minaden och
dret. Detta gor att driften hela tiden forindras pa ett sitt som fi andra processin-
dustrier upplever. Overvakningsmetoderna for en sidan process miste klara av
att anpassa sig till nya situationer, utan att det sker driftstérningar eller utloses
onddiga larm.

Adaptiv multivariat statistik har visat sig vara en bra 16sning pd problemet.
Overvakningsalgoritmen uppdateras nir processen forindras, och uppdaterings-
hastigheten kan varieras beroende pa mélet f6r 6vervakningen. I avhandlingen
visas att adaptiva algoritmer klarar av att anpassa sig till nya driftstérhillanden,
utan att forlora kapaciteten att uppticka avvikande beteenden i processen.
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Ett annat problem med 6vervakning av avloppsvattenrening ir att stdrningar
och skeenden upptrider i olika tidsskalor. Med detta menas att vissa frlopp ir
snabba medan andra ir lingsamma. En process med dessa egenskaper brukar
kallas f6r en ’styv’ process. Detta gor det svirt att modellera relationerna mel-
lan olika variabler. En losning pd detta problem féreslas. Den bygger pd s.k.
‘wavelets, en relativt ny teknik frin matematiken, som anvinds for tidsskale-
uppdelning av mitvariblerna. Genom att dela upp variabler i olika tidsskalor,
kan &vervakningsmodeller for varje skala identifieras och problemet med styva
processer undviks i viss man pa detta sitt.

Nir 6vervakningssystemet har uppticke ett avvikande beteende, bor pro-
cessen styras pa ett sddant sitt att konsekvenserna av storningen minimeras.
I denna avhandling presenteras tvd metoder hur informationen frén évervak-
ningssystemet direkt kan anvindas i styrsystemet for processen. Ett typiskt styr-
system i ett avloppsreningsverk bestdr av ett antal lokala styrenheter. Dessa
styrenheter har som uppgift att styra en (eller nigra f3) variabler i processen.
Genom att mita och korrigera kan ett s.k. ‘bérvirde’ (6nskade virdet pa varia-
beln) uppritthallas. For att tillhandhélla borvirden till de lokala styrenheterna
finns ett 6verordnat styrsystem. I allmidnhet utférs detta manuellt pa avlopps-
reningsverk, d.v.s. operatdrerna sitter limpliga bérvirden f6r det aktuella pro-
cesstillstindet. I avhandlingen diskuteras hur detta 6verordande system kan
automatiseras. Genom att terkoppla information frdn 6vervakningen, kan
styrsystemet korrigera for storningen utan att processoperatoren behéver in-
gripa. Detta ir viktigt d& avloppsreningsverket i allminhet 4r obemannat mer-
parten av tiden eftersom driften pagir hela dygnet.

Den forsta metoden kan beskrivas som en flerstegsmetod. Férst anvinds
multivariat statistik for att beskriva det nuvarande processtillstindet. Informa-
tion om vilken typ av processtillstind som rider skickas till styrsystemet, som
i sin tur reagerar pd tillstindet. Denna metod limpar sig vil for styrning un-
der extrema processtillstind, d& processen kan sigas vara lingt frin sitt normala
tillstdnd. For styrning under normala forhéllanden beskrivs en metod f6r hur
overvakningsmodellen och den 6verordade styrmodellen integreras fullkom-
ligt. Genom att anvinda och styra pseudovariablerna frin vervakningssystemet
kan de lokala styrenheterna koordineras sé att ett 6verordnat styrmél uppnds.
Genom simuleringsstudier visas att bdda metoderna ir potentiellt mycket int-
ressanta for styrning av avloppsreningsverk.

Multivariata metoder kommer att spela en viktig roll inom processovervak-
ning och -styrning i framtiden. Utvecklingen inom omradet sker snabbt, och
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inom vissa industriella grenar har dessa metoder visat sig vara mycket kompe-
tenta. Det dr forfattarens sike ate vi hittills bara sett bérjan pa en utveckling
som kommer méjliggéra nya tekniker och processer i framtiden.
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Paper A

Disturbance detection in wastewater treatment
systems

C. Rosen and G. Olsson

Wat. Sci. Tech. 37(12): 197-205, 1998

Abstract:  The development in sensor technology has made many wastewater treatment
systems data rich but not necessarily information rich. 1o extract the adequate information
from several sensors is not trivial, and it is not sufficient to consider only the time series. Dif-
ferent tools for detecting unusual online measurement data and deviating process behaviour
are discussed. In this paper various dimension reduction as well as advanced filtering meth-
ods are considered in order to extract adequate information for fault detection and diagnosis.
Both the operator and the process engineer can take advantage of such methods for proper

monitoring of the plant, in particular extreme events and their causes.

Keywords: Data analysis; detection; diagnosis; monitoring; multivariate ana-
lysis; principal component analysis (PCA); projection to latent structures (PLS).
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Introduction

As the number of measured variables in a wastewater treatment plant is increas-
ing and the need and possibility to control the process is becoming greater, the
monitoring and diagnosis of the measurements are gaining in importance to
obtain knowledge of the process performance and a higher product quality.

The environment for the measurement equipment is often very hostile and con-
sequently the measurements are often defective, such as having low signal-to-
noise ratio, or missing values and outliers. This implies that, before any ana-
lysis can be performed, the measurements must be pre-processed, for example
filtered. The basic information in a measurement is the amplitude, but the
measurement signal often contains a lot more information. This information,
e.g. rate of change, trends and variability, can be used to gain additional know-
ledge of the process and measurement equipment performance.

The methods for monitoring and detection used today are normally based on
time series charts, where the operator can view the different variables as his-
torical trends. It is hard to keep track of more than a few variables and when
the number of monitored variables are increasing it is difficult to draw conclu-
sions. To be able to monitor the process behaviour effectively, an extraction of
important information must be performed from the large number of measured
variables. The information must be presented in an understandable and inter-
pretable way. Powerful methods are available for the reduction of the high di-
mensionality of the information. Methods for monitoring and detection based
on dimension reduction methods such as Principal Component Analysis (PCA)
and Projection to Latent Structures or Partial Least Squares (PLS) have been
proposed by, for example, MacGregor et al. (1994), to deal with situations with
many, collinear and sometimes redundant, variables. In applications for waste-
water treatment, Krofta et al. (1995), have applied the analysis techniques for
dissolved air flotation.

In this paper we will discuss the element of detection and show some examples
on different detection methods. We have decided to leave the mathematics out
and wish to concentrate on the basic ideas and principles. For a more thorough
treatment of the methods the interested reader is referred to the specialised lit-
erature and the proposed references.
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Single variable analysis

Before any analysis of the measurements can be carried out data screening is
crucial. Corrupted measurements must be found and dealt with, so that false
conclusions based on the measurements are avoided. Almost every measure-
ment series is affected by:

e missing values: they can be dealt with in several ways. Extrapolation in
online situations or interpolations in off-line situations can be done, if
the missing values are few and not succeeding each other. If the there
is a extended period of missing values, the information is lost and the
measurements must be disregarded (Bergh; 1996).

e noise: digital filters can be applied. Any filtering will cause some inform-
ation loss, but digital filters allow a smart compromise between signal in-
formation and noise corruption. More reading on filtering can be found
in Astrém and Wittenmark (1997) or Olsson and Piani (1992).

e outliers: this is a delicate problem. Depending on the measurement
equipment different conclusions can be drawn. Algorithms for detection
of outliers based on the statistical properties of the measurements can
be found in the literature. Detection of outliers can also be handled by
redundant sensors or digital filtering (Astrom and Wittenmark; 1997).
However, one must be careful when dealing with outliers and a highly
unexpected value may sometimes be true and significant (Bergh; 1996).

The preliminary data screening aims at finding adequate signals for further ana-
lysis. Now, each individual signal can be analysed with respect to a number of
characteristic features:

e amplitude, the basic information in the measurement. Usually, a normal
range with high and low limits is defined to be able to make qualitative
comparisons.

e mean, the deviation from the mean can be used to relate the current
amplitude to the normal value.
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No.  Variable No. Variable

1. influent temperature  11.  influent flow rate

2-3.  sludge concentration  12.  pH after biol. treatment
4-7.  air valve position 13.  dispersion flow rate (DAF)
8. influent conductivity 14.  sludge level (DAF)

9 influent ammonia 15.  sludge concentration (DAF)

10.  influent pH

Table A.1: Available online measurements at the Rustorp Treatment Plant.

o deviation from normal situation, in some cases with variables varying
periodically, e.g. flow rate, it can be informative to investigate the devi-
ation from the normal variation.

e rate of change, gives information on the dynamic features of the meas-
urement.

e trends, are useful information on the long term variations.

e variability, also reveals dynamic properties of the signal. Poor sensor per-
formance can be detected by examining the variance and the frequency
content of the signal.

The primary data analysis discussed so far gives the first pieces of information
about the process operational state. The primary signals can be combined in
various ways to calculate or estimate other variables. It is outside the scope
of this paper to further discuss model based estimation. This has been done
elsewhere (Olsson; 1989).

The data used in this paper is collected at the Rustorp wastewater treatment
plant, Ronneby, Sweden. Thus is no simulated data used for the examples. The
Rustorp plant is a municipal nutrient removal activated sludge plant serving
about 25000 p.e. The process is operated with predenitrification, and dis-
solved air flotation (DAF) as a final step. The acquired data are sampled every
5 minutes from online instrumentation, as shown in Table A.1.

In addition to the process variable measurements in Table A.1, the plant outlet
quality variables pH, phosphate and turbidity are measured.
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Example 1—poor sensor performance

In Figure A.1(upper) the influent ammonia is plotted for a period of about
3.5 days. The first 500 samples are displaying a normal behaviour in terms
of variation and noise characteristics. At about sample 3070 there is an abrupt
change in the signal characteristics. The noise level increases significantly, which
might indicate poor sensor performance. To more systematically detect this
change in signal characteristics, an analysis of the variance of the high-passed
filtered signal is carried out. The filter retains only the high frequency content
of the signal. To examine the variance of the raw signal would not be enough,
since there are variations in the signal, apart from the noise. Figure A.1 (lower)
shows how the variance (calculated from a moving window of 72 samples) of
the high-pass filter output suddenly increases after about sample time 3070.

Detection of operational states

In many cases the investigation of individual signals is insufficient and can not
reveal the true state of the process. Variables influence each other and one
must often look at several variables simultaneously. Multiple process data can
be analysed in many different ways and Davis et al. (1996) suggest that the
analysis methods can be divided into three distinct components:

e numeric-numeric, including time and frequency domain analysis;

e numeric-symbolic, including dimension reduction and distribution func-
tions based methods;

e symbolic-symbolic, including knowledge based systems.

Here we want to detect a measurement pattern, which may be regarded as an
operational state, determined by the measurements and observations. Thus, as
the process conditions change the plant could be said to be in different opera-
tional states. We define an operational state as a multidimensional region, where
all the process states and parameters are located. Thus, if some of the states or
parameters drift away from this region, the process is said to move into another
operational state. A general operational state is here defined as a region that
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Figure A.1: Detection of poor sensor performance. The upper part of the figure

shows the influent ammonia concentration. The lower part shows the
variance of the high-pass filtered signal (sample time = 5 minutes).

includes influent parameters and process state variables, without any specific
output quality variable in mind. It can also be defined as a specific operational
state, including adequate effluent quality variables.

There are (at least) two fundamental ways of describing a specific plant:

o Physically based definition, using mass balances of substrates and organ-

isms, including reactions. Combining the a priori models with observa-
tions it is possible to derive some of the unknown parameters (grey-box
models).

Input-output based definition, based on the correlation or other relations
between measured or observed variables. The parameters of the model do
not necessarily have any physical interpretation (black-box models).
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The parameters obtained from any of the above model description can be used
to determine the operational state of the process. In any of the models vari-
ous uncertainties can be represented by stochastic processes. There are many
references in the literature to grey-box modelling and we will not discuss this
further, even though grey-box modelling might give us a considerable contribu-
tion to the understanding of the processes (Carstensen; 1994; Lindberg; 1997).
In this paper, we consider input-output models to classify the cause-effect re-
lationships, in particular some dimension-reduction methods. Some examples
are shown to demonstrate the methods for detection purposes. There are also
other techniques available, which are not further explored here, such as artificial
neural networks, clustering and classification algorithms.

Dimension-reduction based methods

Depending on the aim for the detection model, it is important to group the
available variables (or indirect variables calculated or estimated from other vari-
ables) into independent (X) and dependent (Y) variables. When the whole
plant is considered, the process variables, including the influent characteristics
variables, typically are defined as the independent variables, while the effluent
quality variables are defined as dependent. However, when the modelled sys-
tem does not comprise the whole plant, it has to be derived from the system
boundaries which variables are the dependent and independent ones respect-
ively. This implies that a variable can belong to the X-block in one model and
to the Y-block in another one. Normally causality will help us to decide, but
when recycling loops or feedback are present in the system, the causality is not
trivial. For example, the DO level at the outlet of the aerated basin can be a
independent variable (X-variable) in a model monitoring the anoxic zone in a
predenitrification plant. Scaling must sometimes be done, to be able to com-
pare changes in different variables to each other. When the units and amplitudes
differ, it is convenient to normalise to zero mean and unit variance.

PCA

Principal Component Analysis is a way to investigate large data sets with many
process variables. However, many of these variables are often highly correlated,
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Principal Eigenvalue % Variance % Variance
Component  of Captured Captured
Number Cov(X) This PC Total

1 2.53e+00  50.63 50.63

2 1.24e+00 24.82 75.45

3 6.98¢-01 13.95 89.41

4 3.81e-01 7.62 97.03

5 1.49¢-01 2.97 100.00

Table A.2: Percent variance captured by PCA model

since most variables only reflect a few underlying mechanisms that drive the
process in different ways (Kourti and MacGregor; 1994). The true dimension
of the process space is often a lot smaller than the dimension of the data matrix
space. The aim for the PCA is to project the high dimensional space into a
more visual low dimensional space and by doing this finding the key variables.
This is achieved by transforming the measurements of the original coordinate
system in such a way that a maximum of the variance is explained by the new
coordinate system. Thus, there will be a number of new latent variables, called
principal components, which describe most of the variance in the process in a
space of fewer dimensions than the original space. A model can be built from
a set of training samples, and then used to detect deviations from the normal
model space.

Example 2—monitoring the general operational state in two di-
mensions

In this example we will show the applicability of PCA in monitoring the influ-
ent wastewater characteristics. Available online measurements of the influent
wastewater are; temperature (1), conductivity (2), ammonia (3), pH (4) and
flow rate (5), which are variables of the so-called X-block. The detection model
is built and trained from 6000 samples (= 21 days) of normal operating con-
ditions. Table A.2 shows that already two principal components describe 75
percent of the variance in the X-block.

A new period of measurements are transformed by the model into the first two
principal components (PC #1 and PC #2). The elliptic boundaries in Figure
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Figure A.2: Monitoring the influent characteristics with PCA (sample time = 5
minutes).

A.2 correspond to the 95 and 99 percentage significance level of the original
training data.

It can be seen that the process is not exactly situated in the centre, but it is
mostly inside the boundaries. However, two major deviations from the normal
situation can be observed. The first deviating situation starts at about sample
141 and propagates outside the normal operating region to its maximum devi-
ation at sample 165. The other situation is noted in samples 336 to 352. What
has caused these deviations? As discussed by MacGregor et al. (1994), the vari-
able contributions to the changes in the PC #1 and PC #2 directions, can be
shown as in Figure A.4. The first two bar charts in Figure A.4 show the event
between samples 141 and 165, and the last two bar charts show the event at
samples 336 to 352. Bar chart 1 and 2 show that it is primarily the change in
variable #3, i.e. ammonia, that has caused the plot to exceed the boundaries
in the PC #1 direction while the change in variables #1-3, i.e. temperature,
conductivity and ammonia, has caused the movement in the PC #2 direction.

This is confirmed by the plots in Figure A.4 (right). Bar chart number 3 and
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Figure A.3: Monitoring the influent characteristics with traditional time series
charts (sample time = 5 minutes).

4 show that the second event is caused by variable #5, i.e. flow rate, along the
PC #1 axis and variable #1,2 and 5 along the PC #2 axis. (Note that the sign
of the bars in the bar charts can not directly be used to decide in what direction
changes occur, but it can easily be derived.)

Observations of the time series in Figure A.3 do not easily reveal what are the
most significant changes of the process. Thus, the PCA plot can help the oper-
ator to focus on the right causes of an event.

21 2t 2 2t 3 2; 4

1 : : E =l

0| e e 0 — 0 _ __Im
-1

-2 -2 -2 -2

3 3 3 3
PC #1 PC #2 PC#1 PC #2

Figure A.4: The contribution of every X-variable to the change in PC #1 and #2
direction at the first (chart 1 and 2) and second event (chart 3 and 4).
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X-Block Y-Block
LV# ThisLV Total ThisLV Total
1 26.58 26.58 34.75 34,75
2 18.82 45.40 8.55 43,31

Table A.3: Percent variance captured by the model.

PLS

Partial Least Squares or Projection to Latent Structures is also, as the PCA,
a dimension reduction method, but in PLS the latent variables (LV) of the X-
space are calculated to maximise the correlation between the input matrix X and
an output matrix Y, containing the product quality variables, such as effluent
turbidity or ammonia. In this way the detection effort can be applied on the
variables most influential on one or several specific quality variables.

Example 3—monitoring a specific operational state considering
the output turbidity

In Example 2 the PCA method only tries to explain the variance in the X-
block. Using PLS the X-block can be linked to the Y-block, containing the
quality variables. In this example the X-block contains all the variables in Table
A.1 and the Y-block contains the effluent turbidity. The model is built from
2500 samples (=~ 9 days) of normal operating conditions. Table A.3 shows the
variance explained by the first two latent variables (LV).

The new measurements are transformed into the two-dimensional space defined
by the first two latent variables.

Figure A.5 (left) shows that the process variables are well inside the boundaries
until a disturbance occurs at about sample 415. In a few samples, the process
has drifted far outside the boundaries until a maximum deviation is reached at
sample 439. Using the same method as in Example 2, three phenomena are
detected. They appear in the bar-chart of Figure A.6. Four air-valve meas-
urements (#4-7) are apparent contributors to the observed deviation from the
normal operating range. There is an obvious change in the oxygen demand,
since the dissolved oxygen is controlled. Therefore, the air valve positions are
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Figure A.6: Diagnosis of the event at sample 415-435 (right) (sample time = 5

minutes).
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effluent turbidity (FTU)
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Figure A.7: The measured effluent turbidity (sample time = 5 minutes).

an indirect measurement of the activity in the aerated basins. Secondly, there
is a significant change in both the influent flow rate and in the dispersion flow
rate to the DAE. Each one of these changes can contribute to a change of the
effluent turbidity by (1) an overload situation reflected in an increased aeration,
(2) hydraulic overload (washout) or (3) an excess of small air bubbles at the
turbidity meter.

It should be noted that the effluent turbidity is not explicitly used to generate
the data of Figure A.5, instead it is only used to build the model. Therefore,
it is highly interesting to verify its behaviour by direct measurements. This
is shown in Figure A.7. The plot in Figure A.5 is exceeding the boundaries
between samples 417 and 418. The increase of the effluent turbidity at the
first peak starts at sample 419 or 420. This delay of two samples (10 minutes)
corresponds well to the expected delay if there is a case of wash out (cause
1). The turbidity beyond the first peak may most probably be explained by a
combination of causes (1) and (2).

Nonlinearities

There are more ways to further improve the performance of the dimension
reduction methods. When the modelled system is believed to be nonlinear,
which is often the case, nonlinear PLS can be used. It can be achieved by
expressing the inner relation between the X-block and the Y-block in a nonlinear
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manner (Wise and Gallagher; 1996a). A second way to deal with nonlinearities
is to take the variables in the X-block believed to be nonlinear and raise them

to a desired power, e.g. x!3 or x2.

Dynamics

The dimension reduction based methods are static, and the dynamics in the
system are not represented. For example, the time lag between the input block
X and the output block Y is not addressed. One way of dealing with this, if there
is just one quality variable in the Y-block, is to investigate the cross-covariance
function between every input variable and the output variable and calculate the
suitable lag (Astrom and Wittenmark; 1997; Wise and Gallagher; 1996a). A
second way is to use an a priori model for the time lag of every relation, for
example, depending on the retention time. By doing this the time lag between
each process variable and the quality variable will change dynamically as the
flow rate changes and we will have a quasi-dynamic representation of the flow
dynamics.

Example 4 - predicting the pH at the outlet of the aerated basin
with PLS

The time lag between the inputs and the output variable has been computed
using the cross-covariance techniques indicated above. PLS is now used as a
prediction model for detection purposes, for instance as a tool for sensor failure
detection. When the residual, i.e. the difference between the predicted and
measured value, exceeds a certain threshold, poor sensor performance can be
detected and countermeasures be taken.

In the earlier examples, we focused on the first two latent structures, but this is
to leave information out. By cross-validation, the optimum number of latent
structures can be found (Wold; 1978). The model is built from 5000 samples
(= 17 days) of normal operating conditions with nonlinear PLS.

Figure A.8 shows the residual of the prediction over a certain time period. The
limits correspond to 95 percent significance level of the total prediction residual.
There is a sensor failure at sample 7200, which is easily detected.
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Figure A.8: The prediction residual of pH predicted and measured.(1 sample = 5

minutes).

Conclusions

With an increasing instrumentation in wastewater treatment systems, there is
certainly more information available. At the same time, there is a risk for too
complex information, and the need to condense data for the operator and for
the process engineer will increase. In this paper, some powerful data reduction
methods are described. We have shown the applicability of single variable ana-
lysis and dimension reduction based methods for the detection of process devi-
ations. This paper does not claim to be exhaustive and there are other powerful
analysis methods available, such as Multiple Linear Regression (MLR), Prin-
cipal Component Regression (PCR) and Continuum Regression. From full-
scale plant data it has been shown, that advanced detection methods can be
successfully applied in wastewater treatment systems. The methods described
in this paper can be combined with classical statistical process control (SPC). In
SPC, warning and action limits are derived from the statistical properties of the
measurement signals and are used to advice the operator when to take action.
Commonly used control sharts, such as CUSUM, X-sharts and EWMA (Bissel;
1994; Chapman; 1998) are all applicable on the new variables gained from the

methods discussed above.
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Addendum

This paper presents some of the author’s first results of univariate and multivari-
ate detection in wastewater treatment operation. At the time when the results
were first presented (at the ICA conference in Brighton, 1997), it was one of
the first attempts to approach the complexity of wastewater treatment monitor-
ing from a multivariate perspective. Later it was shown (see Papers B - D) that
the somewhat naive approach was not sufficient to be practically applicable. A
number of shortcomings could be listed, but most of them will be discussed
and solved in later papers by the author.

Two important shortcomings should be mentioned. The use of PLS for mon-
itoring of specific operational states turned out to be rather problematic. It is
clear that the input-output relationships are complex, and generally not possible
to model with linear models. In Rosen (1998a), PLS modelling for prediction
of the effluent nitrate concentration proved successful using simulation models.
However, the same results have not been achieved using real data. The reason
for this is mainly twofold. First, the relations between input and output are
often nonlinear and in some cases quite severely so (e.g. effluent turbidity).
Second, the measurement quality is too low for reliable predictions. It should
be noted that no exhaustive effort was made to overcome these difficulties, and
with today’s improved sensor technology, more successful results may be obtain-

able.

The second shortcoming of the paper is its failure to stress the ability of mul-
tivariate statistics to improve data quality. Robust noise reduction and missing
data replacement can be achieved with, e.g. PCA (Nelson et al.; 1996; Grung

101
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and Manne; 1998; Walczak and Massart; 2001a,b). Thus, multivariate statist-
ics can be incorporated in the data pre-treatment as well as in the monitoring

stages .

Although the results are basic, the paper shows that especially multivariate tech-
niques display a promising potential for detection and monitoring of wastewater
treatment operation.
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Monitoring wastewater treatment operation.
Part I: Multivariate monitoring

C. Rosen and J.A. Lennox

Published together with Paper C in a combined form in
Wat. Res. 35(14): 3402-3410, 2001.

Abstract: [ this work, principal component analysis (PCA) for wastewater treatment pro-
cess monitoring is discussed. The basic approach for PCA monitoring is presented together
with more advanced approaches to handle changing process conditions. Adaptive PCA in
terms of updating of the scale parameters as well as the covariance structure is discussed.
Problems encountered using these techniques for wastewater treatment monitoring are poin-
ted out and ways to overcome some of the difficulties are proposed. The methodology is
illustrated with examples using real process dara.

Keywords: Adaptive; detection; monitoring; PCA; wastewater.
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Nomenclature

confidence percentile or forgetting factor
vector of eigenvalues
diagonal matrix of eigenvalues

> >R

I
—

diagonal matrix of the inverse of the eigenvalues
number of PCs retained in a PCA model

contribution vector

o

0]
A~

I
NN

error vector at time k

error matrix

number of samples in a data matrix
effective memory length

general matrix of rank 1

number of variables in a data matrix

zrzes®

jth loading vector

loading matrix

diagonal matrix of the jth loading vector
number of dimensions in a data matrix

ShCE

PE  sum of squared prediction error

t; jth score vector

T score matrix

T? Hotelling’s T2 statistics

xj(k) value of jth variable at time k

Z; estimated value of jth variable at time &k
x(k)  data vector at time k

X matrix of measurement variables

Introduction

In this paper we discuss multivariate statistical process monitoring and show its
applicability to wastewater treatment monitoring. We focus on principal com-
ponent analysis (PCA) as it serves, through its simplicity, as a good introduction
to multivariate statistics (MVS) for process monitoring (MacGregor and Kourti;
1995; Wise and Gallagher; 1996b). PCA-based monitoring as such is not new,
but we believe there is need for a thorough discussion of how it can be imple-
mented, what the advantages and shortcomings are and what we can expect to
achieve by using PCA in wastewater treatment monitoring. One of the short-
comings is that PCA, in its basic configuration, is not suited for monitoring
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changing processes. This is addressed in part I of this work. In part II, PCA

monitoring is extended to involve multiple time scales.

Data are collected from the process at most industrial plants. The driving forces
behind the data collection are normally related to quality, safety and economic
requirements imposed on the operation. The use of data and the methods
to acquire data may differ significantly depending on what the purpose is for
the measured entity. As new sensor techniques allow more and more entities
to be measured affordably, more sensors are installed. Thus, at many industrial
processes, data from hundreds or thousands of sensors may be collected. Most of
the sensors operate online (in real-time), giving operators the ability to observe
events and changes in the process as they occur. This is a potentially significant
source of process knowledge, if the data can be transformed into information
and interpreted in a correct and adequate way. To do this, a systematic approach
to monitoring of the data is needed.

In most process industries, monitoring of the process and its outputs is an im-
portant part of the operation. Monitoring can be said to consist of three phases:

1. detection—recognising that there is a deviating event or that the process
is not operating at its normal point;

2. isolation—finding the deviating measurement variables that have trig-
gered the detection;

3. interpretation—finding the physical causes of the deviation and assessing
its impact on the process.

The first phase is well suited for computers, as it is a monotonous and quant-
itative task. The second phase is normally be integrated with the first task
and, thus, also be carried out by computers. However, the third phase requires
process knowledge and is mainly a task for the operator relying on his experi-
ence, although attempts have been made using knowledge based systems, such
as expert systems, for interpretation. In order to facilitate the third phase, the
methods used in the first two phases must extract and organise the information
appropriately.

The extent and sophistication of monitoring differs in various fields of applic-
ation. The wastewater treatment industry cannot be considered to be among
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the more diligent and systematic users of monitoring. Up to now, monitoring
in wastewater treatment has mostly focused on a few key effluent entities, for
which regulations are enforced by governments or other authorities. However,
as more entities are regulated and the regulations become stricter, the demands
on the operation of the processes increase. Minimising the use of resources (e.g.
energy, chemicals and human resources) and decreasing the amount of sludge
products produced, have also become important issues if wastewater treatment
processes are to be adapted to the principles of sustainability. All these factors
have led to an increased need for process knowledge and better control of pro-
cess performance.

The methods for monitoring used today in wastewater treatment are normally
based on time series charts where the operator can view the different variables as
historical trends. These methods are often referred to as conventional statistical
process control (SPC) (see e.g. Thompson and Koronacki (1993) and Bissel
(1994)). Limits representing normal operation are defined, and as long as each
variable stays within these limits, the process is said to be in control. These
conventional methods have two important shortcomings. Since the effects on
the process are considered using each variable in isolation, the collective effects
of several variables are not accounted for. For example, several variables still
within their individual normal regions may together drive the process from its
normal operational state. Secondly, when the number of variables is large we
run the risk of obtaining more data than we can assess and use for decisions.
Interpretation becomes difficult: we are ‘data rich but information poor’. Con-
sequently, methods for handling large data sets as well as collective effects online
are needed.

Within the field of chemometrics, the issue of transforming multivariate data
into interpretable information has been addressed during the last three decades
(Geladi; 1988). Attempts to develop methods that extract relevant informa-
tion from process data have resulted in a number of different methods based on
MVS. One of the simplest methods is PCA (Jackson; 1980; Wold et al.; 1987b).
Many further developments of PCA now exist, including multiway PCA (Wold
et al.; 1987a), multiblock PCA (Wold et al.; 1996; Westerhuis et al.; 1998)
and dynamic PCA (Ku et al.; 1995). Regression techniques, such as principal
component regression (PCR) and projection to latent structures (PLS) are also
based on the same or similar ideas (Geladi and Kowalski; 1986; Hoskuldsson;



107

1988). During the last decade, MVS-based methods have been applied to pro-
cess monitoring and modelling, which has resulted in a multivariate approach to
statistical process monitoring (Wise et al.; 1990; Kresta et al.; 1991; MacGregor
and Kourti; 1995; Wise and Gallagher; 1996b). Recently, multivariate analysis,
monitoring and modelling have been used in wastewater-related applications
(Krofta et al.; 1995; Rosen and Olsson; 1998; Rosen; 1998a; Mujunen et al.;
1998; Teppola et al.; 1998a).

The paper is organised as follows. In the next section, we explain PCA. The
following section deals with PCA as a monitoring method. In order to handle
changing process conditions data, adaptive PCA is presented and different types
of adaptation are discussed. Then we apply these methods to monitoring waste-
water treatment data. This is followed by a discussion. Finally, the work is
summarised and concluded in the last section.

Principal component analysis

PCA can be described as a method to project a highly dimensional measure-
ments space to a space with significantly fewer dimensions. Often, for industrial
process data, many variables are highly correlated, since they reflect relatively
few underlying mechanisms that drive the process. In PCA, we use this correl-
ation between the variables to find principal components (PCs) that represent
the underlying mechanisms and, thus, reduce the data. The number of PCs is
often much smaller than the number of original variables.

Model generation

Let X be an autoscaled (i.e. mean-centred and scaled to unit variance) [m X n]
matrix of measurement values for n variables at m number of samples defining
a variable space of r dimensions. The r-dimensional matrix X can be decom-
posed into a sum of matrices M, each of which represents the variability in the
jth dimension, i.e. the jth PC:

X = Mj+Mg+...+M,+E (B.1)
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The matrix M; can be written as the outer product of two vectors t; and p;fp.

Thus:
X = t,pl +tpl +...+t.pl + E (B.2)
or
X = TPT'+E (B.3)

where E is the residual (or error) matrix and a < r. If a = r then E = 0, as
all the variability directions are described. However, if @ < 7, i.e. less PCs than
original variables are retained, then E describes the variability not described by
the sum of the TPT matrices .

The column vectors of T (t;) are called the score vectors or scores and the
column vectors of P (p;) are the loading vectors or loadings. The matrix P can
be determined by singular value decomposition of the covariance matrix of X:

cov(X) =ULVT (B.4)

where X is the diagonal matrix of the singular values s1, s2, ... , s, in decreas-
ing order of magnitude. However, since cov(X) is a square matrix and X is
autoscaled, U = V and Equation B.4 can, thus, be written:

cov(X) = PAPT (B.5)

where A is the diagonal matrix of the eigenvalues A1, A2, ... , A, in decreasing
order of magnitude. P has some interesting properties. Since it is a unitary
matrix PTP = PPT = Tand P7 = P!, If tools for eigenvalue and singular
value analysis are not available, an alternative way of identifying a PCA model
(P) is to use the iterative NIPALS algorithm. The algorithm is found in, for
instance, Geladi and Kowalski (1986).

Scaling and components

As mentioned above, the data matrix is scaled prior to analysis. This makes it
possible to compare variables with different amplitude and variability. Auto-
scaling is a simple way to scale the data but is not the sole option. Figure B.1
illustrates some different options for scaling and centring. A word of caution is
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Figure B.1: Data pre-processing. The data for each variable are represented by a
variance bar and its centre. Unmanipulated data (A), mean centred
data (B), variance scaled data (C) and mean centred and variance
scaled data, i.e. autoscaling (D).

justified when dealing with nearly constant variables with a low signal-to-noise
ratio. If such variables are scaled to unit variance, the noise contribution to the
variability will be high (Kresta et al.; 1991). Other methods for scaling can be
used when it has been established that certain variables have more influence on
the process than others. Giving higher weights to these variables may improve
the monitoring performance.

The number of components retained in the PCA model is crucial to the model
performance. Too few components implies that there are not enough dimen-
sions to represent the process variability, while too many components implies
that measurement and process noise will be modelled. There are a few different
ways to determine the optimum number of components. The simplest is to
plot the eigenvalues associated with each PC (see the scree plot in Figure B.2).
The presence of a jump or a knee often indicates an appropriate number of
components. Parallel analysis involves the calculation of the intersection in a
scree plot between the curves of the eigenvalues from the process data and the
eigenvalues from a set of uncorrelated data (Figure B.2). A simple version of
this is sometimes referred to as the ‘quick-and-dirty’ method, which means that
all eigenvalues smaller than one are excluded. Alternatively, a cross-validation
procedure can be used. The number of components that yields the smallest
prediction error is chosen. More information on the choice of the number of
components is found in, for instance, Wold (1978) and Himes et al. (1994).
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Figure B.2: The eigenvalues can be used to determine the number of compon-
ents. The knee and the intersection indicate good choices. The data
are the same as used for identification in the examples presented later.

Online monitoring using PCA

The most basic way of using PCA for monitoring involves identification of a
model from data representing normal or desired operation. New data are then
projected onto the model and the scores and/or the model residuals are then
monitored as new samples are obtained.

t(k) = x(k)P (B.6)

It is important to note that the new data must be scaled in the same manner as
the data used for identification.

Monitoring scores

Monitoring of the scores is carried out using either conventional univariate
SPC techniques or scatter plots. By plotting, for instance, the first score vec-
tor against the second, process changes can be viewed as movement of a point
in the plane as new samples are added. Points that cluster generally represent
similar process behaviour whilst points in different regions in the PC space gen-
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Figure B.3: The scores of the first and second principal component with approx-
imate 99 % confidence limits. The data are the same as those used
for identification in the examples presented later.

erally represent different operational states. A score plot is shown in Figure B.3
(the data are the identification data used in the examples presented later). Each
point represents the values of the first and second scores at a certain point in
time. Under normal operating conditions, the centre of gravity of the points
should be close to the origin, due to the mean centring of data. Points far from
the origin indicate a disturbance and, consequently, the operational state is no
longer classified as normal. Confidence or control limits are used to discern
disturbances. The ellipse in Figure B.3 represents the 99 % confidence limits of
the first and second score vectors of the training data.

Model residuals

In addition to monitoring the scores, the statistical fit of the model can be mon-
itored (Jackson and Mudholkar; 1979; Kresta et al.; 1991). Two commonly
used measures of fit are sum of squared prediction error (SPE) and Hotelling’s
T?. SPE and T? are convenient as they summarise the multivariate process
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X3

Figure B.4: The geometrical interpretation of the SPE and T? measures, re-
spectively. 1, 22 and x3 are the original variables and PC#1 and
PC#2 are the principal components. The points represent samples or
observations.

information of the variables by single values. Figure B.4 gives a geometrical in-
terpretation of SPE and T2. SPE is a measure of the distance from the model
plane to an observation. T2 is a measure of the distance within the model plane
from an observation to the origin. Consequently, a disturbance that involves a
change in the relations between the variables, will increase the SPE since the
model does not cover the direction of the disturbance. A disturbance in the
model plane, i.e. of the same nature as the identification data, will turn up as
an increase in T2

SPE and T? are normally monitored using conventional SPC charts with in-
control limits defining the normal or desired operation region. SPE is calcu-
lated as (Kresta et al.; 1991):

SPE(K) = ) (xj(k) - &;(k))* = e(k)e” (k) (B.7)

i=1
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where n is the number of variables of X and (k) is the model prediction.
e(k) is the kth row of E. Since Z (k) = x(k)Pp;F, Equation B.7 is rewritten
as:

SPE(k) = Y (z;(k) - x(k)Ppl)” (B.8)
j=1

Jackson and Mudholkar (1979) showed that the confidence limit for SPE from
a PCA model can be approximated as:

1
o/ 209h2 Osho(hg — 1) | "0
SPE;, = © 07204_1+M (B.9)

01 02
where
0, = Y X (B.10)
j=a+1
fori =1, 2, 3 and
20,03
hg = 1-— B.11

o in Equation B.9 is the standard normal deviate corresponding to the upper
(1-a) percentile and @ in Equation B.10 is the number of PCs retained. In
Figure B.5 (top) an SPE plot of the same data as used in Figure B.3 is shown.

Hotelling’s T2 statistics can be interpreted as the normalised sum of squared
scores. The T2 at time k is calculated as (Jackson and Mudholkar; 1979):

T2(k) = t(k)A T (k) = x(k)PA'PTxT (k) (B.12)

where t(k) are the scores at time k and A~! is the diagonal matrix of the
inverse of the eigenvalues associated with the retained PCs (see Equation B.5).
Confidence limits for SPE and T? can be calculated (see e.g. Jackson and
Mudholkar (1979) or Wise et al. (1990)). These limits are used to determine
whether the process is in control or not. In Figure B.5, SPE (top) and T2
(bottom) plots are shown together with their confidence limits. The confidence
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Figure B.5: The relative SPFE and T2, i.e. the ratio between the residual and its
limit. The data are the same as used for identification in the examples
presented later.

limits for T2 are obtained using the F-distribution (Wise; 1991):

a(m —1)
Tﬁm = m—a Fk’,m—a,a (B13)

where m is the number of samples in the model and a is the number of PCs.

It is important to note that SPE and T? statistics assume that the darta are
normally distributed. This is usually not the case for wastewater treatment data,
so it is important that confidence limits are not blindly trusted. In most cases
though, the distributions of the model residual are approximately normal due
to the central limit theorem. Note that the SPFE and T2 measures as such do
not depend on a certain distribution, only their confidence limits. Robust limits
can be determined empirically using, for instance, percentiles (Rosen; 1998a).
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Figure B.6: The contribution of every variable to the prediction error at sample
1490 (left). The contribution to the deviation along the first PC at
sample 1146 (right)

Isolation of deviating variables

There is more information to be gained from a deeper investigation of the PCA
model. When a disturbance is detected in score plots or in the SPE and T2
plots, a physical interpretation is found by transforming the model output back
into the original process space. Contribution plots indicate the variables that
have caused the deviation. By plotting (k) as a bar graph, the contributions
to SPE(k) are seen (Figure B.6 (left)). The relative size of the bars indicates
the contribution of each variable to the prediction error. Similarly, when 7
exceeds its limits, the variables that have forced the score away from zero along
the jth PC can be found by inspecting:

c(k) = x(k)P; (B.14)

where c(k) is a vector with the contributions from each process variable at time
k. Pj is the diagonal matrix of the column vector p;. A bar graph of the
contribution to the score changes along the first PC is shown in Figure B.6

(right).

In conclusion, PCA provides means to extract and summarise the process in-
formation into a small number of measures, which are then monitored and
presented in a graphical way. The scores represent the main mechanisms driving
the process, the SPE describes the deviations from the usual relations between
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variables and the T2 represents the magnitude of the scores. PCA also allows in-
vestigation of the contribution to deviations, which makes it possible to isolate
the deviating original variables.

Adaptive PCA monitoring

PCA monitoring, as described above, assumes that the process conditions do
not change significantly. This is rarely the case for wastewater treatment pro-
cesses. Diurnal and seasonal changes affect the variables so that their mean,
variability and correlation change accordingly. Small but important events tend
to be obscured within the residuals related to the normal variation.

Updating the scaling parameters

A way to reduce the problem of changing conditions is to make the monitor-
ing model adaptive, i.e. update the model on an adequate time scale. If the
covariance structure of the monitored variables is believed to be static, i.e. the
relations between the variables remain the same, regardless of their mean values
and variability, the adaptation may be limited to data preprocessing (Hwang
and Han; 1999). This involves, for instance, highpass filtering or updating of
the scaling parameters. A simple way of updating the scaling parameters is to
calculate them from a moving window of appropriate length. A more sophist-
icated method is to update the parameters for the jth variable recursively as:

fj(k) = ai’j(k — 1) + x?\(j:) (B.15)
and
. - 2
S2k) = add(k—1)+ (%(k]@ _xi(k)) (B.16)

where Z (k) and &?(k) are the estimated variable mean and variance at time £,
respectively, and o (0 < o < 1) is a forgetting factor with o« = 1 corresponding
to no discounting of past data. M is the effective memory length and can be
calculated as (Astrom and Wittenmark; 1989):

M = (B.17)




117

When combining Equations B.15 and B.17 it becomes clear that the updating
is equivalent to an exponential filter. This means that the scaling parameters
will depend on the exponential discounting of historical data.

Updating the covariance structure

When the covariance structure is believed to change over time, the model itself
must be updated. A new model, based on a moving window, is identified for
each new sample. The most recent score value and model residual are then
the model output. Consequently, a sample will have a constant influence on
the model until it leaves the window. The model at time £ is based on the
covariance matrix

(XTX)) = D2k = i) (x(k — 1) (B.18)

where W is the the length of the window and x(k — @) are the values at 7
samples back in time. The scaling parameters are also updated from the moving
window.

In analogy with the updating of the scaling parameters, the model can be up-
dated using exponential weights. The covariance matrix is then updated recurs-

ively (Dayal and MacGregor; 1997b):
(XTX) (k) = & (XTX)(k — 1) + (x(K) (k) ©.19)

where « is the forgetting factor from Equations B.15-B.17. The chosen value
of the updating parameter « varies significantly depending on the aim of the
monitoring. When the focus is on fast changes, the updating speed is high,
whereas when slower variation, or trends, are also of interest the choice of the
updating speed is a trade-off between model accuracy and the lowest detectable
frequencies.

Adaptation of the covariance matrix introduces some difficulties. Firstly, if no
precautions are taken, the model will adapt to disturbances and failures atypical
of the normal process behaviour. Secondly, if there is not sufficient excitation
in the process data, process information will be lost as old data are discounted.
It is therefore wise to test the information content of the data before it is used
to update the model, especially if the forgetting factor is small, i.e. the effective
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No  Variable Symbol
1 temperature T

2 sludge concentration in line 1 SS:

3 sludge concentration in line 2 SSs

4 air valve position of blower 1 in line 1 Air 1
5 air valve position of blower 2 in line 1 Aira
6 air valve position of blower 1 in line 2 Airg 2
7 air valve position of blower 2 in line 2 Airs 5
8 influent conductivity cond.
9 influent ammonia SnE
10 influent pH pHins
11  influent flow rate Q

12 pH in effluent from biological treatment  pHy;,
13 effluent turbidity FTU
14 effluent pH pHess

Table B.1: Measured variables at Ronneby WWTP.

memory is short. These issues are discussed in e.g. Wold (1994) and Dayal and
MacGregor (1997b). A third problem caused by an adapting covariance matrix
is that the coordinate system defined by the principal component will rotate.
This makes it hard to use scatter plots for interpretation of the process perform-
ance, as the coordinate system differs for each sample. An alternative method
for adapting monitoring models and handling changing process conditions are
discussed in Teppola et al. (1998a).

Results

In this section a few examples are presented and discussed to illustrate the above
discussed methodology. The data used are real data from Ronneby wastewater
treatment plant, Sweden. The Ronneby plant is operated as a biological nutri-
ent removal plant with additional chemical treatment. The sampling period is
15 minutes. Table B.1 lists the available measurements from the online meas-
urement system. The data display obvious changes in the process conditions,
which is not surprising since they span several months—from summer to late
autumn. We therefore present a few examples with different degrees of adapta-
tion. However, we begin with a fixed monitoring model as basis for comparison.
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Figure B.7: No adaption. The relative SPE and T2, i.e. the ratio between the
residual and its limit.

PCA—no adaptation

A PCA model is identified from a 20-day period when the operation is con-
sidered to be normal, except for a few brief upsets (see Figure B.7). No prepro-
cessing is carried out. Six components are chosen, using a scree test (see Figure

B.2).

New data are projected onto the model and the result is seen in Figure B.7. It
is obvious that the changing conditions cannot be covered by the fixed model.
Almost from the beginning of the new period, both SPE and T? violate their
limits and from day 40 the performance of the model deteriorates significantly.
Thus, the model is not useful for monitoring and this illustrates the problem of
monitoring data from changing process conditions.
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Figure B.8: Adaptive scaling parameters. The relative SPE and T2, i.e. the ratio
between the residual and its limit.

Adaptive scaling parameters

To overcome the problem of changing process conditions, a monitoring model
with adaptive updating of the scaling parameters according to Equations B.15
and B.16 is identified from the same data used in the previous example. Six
principal components are chosen using the ‘quick-and-dirty’ method. The for-
getting factor, «, is set to 0.9995, which corresponds to 2000 samples ~ 21
days. This is a reasonable choice, allowing detection of slower changes as well
as fast ones. In Figure B.8 the SPE and T? are shown. They are plotted as
the ratio to their limits and, hence, the limits are unity. The first 20 days are
the identification period. It can be said that the model is generally valid (i.e.
the SPE is below its limit) during the whole period, indicating a relatively con-
stant covariance structure. However, there are some periods with high SPE, for
instance, at days 20-21, 24-25, 42, 60-61 and 70 (Figure B.8).
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Figure B.9: The variables contributing to the deviation along the second PC at
day 42.4 (left). The variables contributing to the deviation in SPE
at day 42.4 (right).

Which variables have caused the deviation at, for instance, day 42? The loading
plot indicates that pHy;, and pH, s are strong contenders, but S g7 as well as
cond. may be responsible. A contribution plot, showing each variable’s contri-
bution to T2 is shown in Figure B.9 (left). There are two variables contributing
to the deviation along the second PC: pHy;, (no 12) and pHesy (no 14). This
confirms the information from the loading plot. In Figure B.9 (right), the vari-
ables contributing to the deviation in SPE at the same point in time are shown.
Now, we are certain that pHy;, and pH, ¢ are responsible for the disturbance!.
The cause of the deviations in these variables remains to be found: this is a task
for the operator.

When looking at the 7' measure, it is seen that it hardly exceeds its limit, not
even when the SPE far exceeds its limit. The reason for this is possibly that the
deviations are mainly caused by changes in the relations between the variables.
Thus, the model does not capture the variability in a correct way, and most of
the variability is outside the model plane. This indicates that the covariance
structure of data is changing. For this reason, the information obtained from
the score plots must be used with caution.

"Note that the directions in the contribution plots cannot be used directly.
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Since the covariance matrix of the model remains constant, score plots can be
used to visualise the process. In Figure B.10, the first and second score vectors
are plotted against each other. It can be seen that there are a few upsets that
force the process to deviate along the first and second PCs. Figure B.11 indicates
which variables may be responsible for these deviations. The loadings associated
with the first and second PC are plotted and the direction of a positive influence
of each variable are indicated.

Adaptive PCA

The example presented above suggests that a fixed covariance structure is not
fully capable of capturing the important variability of the process. Therefore, a
model with adaptive scaling parameters as well as adaptive covariance structure
is now used to monitor the same variables as in the example above. The result
is shown in Figure B.12. The SPFE is here mostly well inside its confidence
region, while T? violates its limit more distinctively (compare with the fixed
model in Figure B.8). This implies that the model captures the variability and
that most of the variability will show up in 7. The reason for this is that when
the covariance structure adapts to new conditions, most of the variability will
be in the model plane (72) and not orthogonal to the model plane (SPE). Put
simply, some of the variability from the SPE chart in Figure B.8 has now been
transferred to the T chart in Figure B.12. This highlights the importance of
monitoring both SPE and T? as they provide complementary information.

An example of the complementary relation between SPE and T? is seen if
we take a closer look at the event at days 41-42 (Figure B.13). Initially, there
is a change in the relation between the variables (i.e. a detection by SPE at
day 41.4). As the variable relation changes and/or the model adapts, the SPE
decreases again at day 41.6. However, T is now large, indicating high variable
magnitudes. It stays high until day 42.2, when S PE again becomes high, now
indicating a severe disturbance at day 42.4. The same methods for isolation of
the variables causing the deviations in SPE and T? used in the previous ex-
ample can be applied here. It is important, though, that when the contribution
to T2 is considered, not only the first two score vectors are investigated.
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Figure B.11: The first and second load vector. An increase in the a variable will
drive the process in the direction indicated. The distance from the
origin indicates the relative influence of each variable. Variables loc-

ated close, consequently, have similar influence on the process.



124

Part I - Paper B

meha Baee
60

80 100 120
time (days)
8
6l i
E
~=
Zoap
N
|_
2 H
0
20 40 60 80 100
time (days)

120
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General remarks

A comparison between the methods exemplified here shows the importance
of addressing the changing process conditions. The model using fixed scaling
parameters and covariance structure cannot handle the changing conditions in
the process. It makes no sense to use such a model for monitoring data from
changing conditions. When adaptive scaling parameters are used, the model
can be used with some confidence, without loosing the capability to use score
plots. This is an advantage of a fixed covariance structure since score plots are
very intuitive.

Unfortunately, the model with adaptive scaling parameters is not fully capable
of representing the process. The model based on adaptive scaling parameters
and covariance structure handles the changing conditions well, but at a price:
we can no longer use score plots, as in Figure B.10, to visualise the process. The
choice of method becomes a trade-off between visualisation and accuracy.

Discussion

The authors’ experience is that monitoring models ought to be kept as simple
as possible. This implies that the number of parameters introduced is kept at
a minimum. The reason for this is that the monitoring models should be as
transparent as possible for the users. Therefore, one may start with a static
model. If this is insufficient, updating of the scaling parameters may be enough
for the model to handle changing conditions. If not, fully adaptive PCA (i.c.
adaptive scaling parameters as well as covariance structure) is used.

The price we pay by omitting slow changes using adaptive PCA is that the mon-
itoring becomes relative. Only changes are detected; the absolute state of the
process is unknown. Depending on the updating speed, the changes possible
to detect are of different speed. Here, the focus is on long term adaptation of
the monitoring model (/N corresponding to 21 days) which leaves the diurnal
variation unaffected. However, if the focus is on the daily operation, where
small deviations from the normal pattern must be detected, the updating speed
must be high (e.g. IV corresponding to 0.1 days). Whatever adaptive method
and updating speed is used, it is a good idea to complement relative monitor-
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ing with some form of absolute monitoring, e.g. sum of squares from normal
operational point.

A few important objections to PCA as a monitoring technique for industrial
processes are found in the literature. In addition to the ones raised on PCA
and changing process conditions, it is often pointed out that PCA is a static
technique, not suitable for dynamic processes. However, this is addressed by
including a time lag or history in the analysis, i.e. the old measurements are
included in the X matrix (e.g. Ku et al. (1995) and Luo et al. (1999)). This
may further improve the monitoring model, but at a price of model complexity
and a high number of variables in the X matrix. Another objection, related to
both changing conditions and dynamics, is that PCA models a system in one
time scale. Most industrial processes display multiple time-scale behaviour, i.e.
events and disturbances occur at different scales. This introduces an error in
the model, making it more difficult to separate the stochastic and deterministic
components of data. This has been pointed out by, for instance, Kramer and
Mah (1994) and Bakshi (1998). Therefore, in part two of this work, we discuss
how more information is gained by extending the basic monitoring approach
to multivariate analysis at multiple scales.

Conclusions

We have shown the potential of principal component analysis (PCA) as a tool
for monitoring wastewater treatment processes. PCA accounts for collective
effects, as it simultaneously analyses all variables. It also reduces the dimen-
sionality of the data and extract the important information. PCA also provides
different ways to visualise the process in an interpretable and intuitive manner,
helping the user to extract information and make sensible decisions.

A PCA model is identified using data from normal or desired process opera-
tion, and then used to detect deviations from this behaviour. However, due
to changing conditions, for instance, diurnal variations, seasonal changes and
long term trends, the monitoring model must be updated. This is achieved by
making the PCA model adaptive. Several levels of adaptation can be used. We
have shown that adaptive scaling parameters are an option when the relation-
ships between the variables do not change. This approach has advantages since
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it allows intuitive graphical representation, such as score plots. When the rela-
tionships between the variables change, the covariance structure of the model
must also change. Adaptive PCA, i.e. adaptive covariance structure, together
with updated scaling parameters, provides us with a powerful tool for monitor-
ing non-stationary processes in faster time scales.
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Addendum

It is mentioned in the paper that an updating of the monitoring model must be
done in such a way that the model does not adapt to a behaviour atypical for
the process. Moreover, if the process during some periods is more or less stable,
this will also affect the updated model negatively. Only the first problem is
discussed here, since the second problem is less serious in wastewater treatment
operation.

Spikes and fast transients may be excluded from the model since this is what we
generally want to detect. Thus, we want the model to remain sensitive to these
disturbances. An updating rule based on the difference between the SPE and
the median filtered SPE could be used.

An example: Let the SPE of a static (non-adaptive) model be according to
the dashed line in Figure B.14 (top). From samples 1 to 90, the model seems
to represent the process in an adequate way, except for the short disturbance at
sample 40. After sample 90, it is evident that there has been a (more or less)
permanent change in the process. It is clear that we want the model to adapt to
the process change after sample 100, but not to the short disturbance at sample
40. Also, it is not desirable that the transient behaviour between samples 90
and 100 are used for updating, since this is typically the behaviour we want
the model to be sensitive to. By looking at the squared difference between the
SPE and the median filtered SPE (Figure B.14 (bottom)), the two periods
that should be excluded from the updating are clearly discernible. Using a limit
on the difference, a simple updating rule is obtained. Note that slow changes
do not affect the updating decision.

129
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Figure B.14: A hypothetical SPFE from a static model, (--) SPE, (—) median
filtered SPE (top). The squared difference between SPE and me-
dian filtered S P E with a decision limit (bottom).

This approach is simple and intuitive since it is based on the same measure as
used for monitoring. The only parameter of the updating rule is the length of
the filter. It is important that a median filter is used if the rule is crisp (either
include or exclude), since it preserves fast transients. If a ‘fuzzy’ rule is used, that
is the model is updated using weights between 0 and 1, a linear digital filter is
more appropriate. The limit itself may also be updated, using historical SPE
values.
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Monitoring wastewater treatment operation.
Part Il: Multiscale monitoring
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Abstract: [ this work a multiple time scale approach to multivariate monitoring of waste-

water treatment processes is presented. The methodology involves multiresolution analysis
(MRA) in combination with multivariate principal component analysis (PCA) modelling.

MRA provides a tool for investigation and monitoring of process measurements at different
time scales by decomposing measurement data into separate time scales. This makes it pos-

sible to increase the sensitivity of the monitoring and to detect small but significant events
in data displaying large variations. The decomposition into separate time scales results in

an increased number of data. Therefore, MRA is combined with the PCA to reduce the
dimensionality of data. The multiscale approach is also used to overcome the problem of
monitoring changing process conditions. The changes often appear as slow variations, i.e.

at low frequencies. Thus, time scales that display stationary behaviour may be modelled by
PCA, whereas scales that are not stationary have to be monitored by other means. The time
scale information is important information in the interpretation of a disturbance and in

[finding its physical cause.

Keywords: Monitoring; multiresolution; multiscale; PCA; wastewater; wavelets.
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Nomenclature

a; vector of scaling coefficients on scale j

d; vector of wavelet coefficients on scale j

E error matrix

o7 significance factor on scale j

g highpass filter

g* highpass reconstruction filter

G; transformation matrix corresponding to g

G submatrix of G

GJ reconstruction matrix corresponding to G

h lowpass filter

h* lowpass reconstruction filter

H; transformation matrix corresponding to h
y submatrix of H;

H reconstruction matrix corresponding to H;;
L number of scales

N number of variables

P loading matrix

P; loading matrix on scale j

SPE  sum of squared prediction error

t;(k) scores at time k on scale j

score matrix

Hotelling’s T2 statistics

W transformation matrix

x,;(k) data vector at time k on scale j

X matrix of measurement variables

X; matrix of measurement variables on scale j

Introduction

In part I of this work, we pointed out some limitations with multivariate mon-
itoring using principal component analysis (PCA). The problem of changing
process conditions was addressed by making the monitoring model adaptive. A
second related limitation is caused by the fact that PCA monitoring is carried
out in one time scale only—that of the sampling frequency. Here, we present
and discuss a multiscale approach to multivariate monitoring of wastewater
treatment operation, utilising wavelet analysis, or more specifically multiresolu-
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tion analysis (MRA) to decompose each variable into separate time scales, before
multivariate monitoring is carried out. This allows us to focus the monitoring
on phenomena that occur in different scales. It also allows for decomposition of
the data into time scales that have a physical interpretation, such as, hydraulic
dynamics, concentration dynamics and population dynamics. The time scale
information can be used in the interpretation stage to find the physical cause of
a disturbance.

Process operation monitoring is carried out to ensure that the process outputs
comply with requirements on product quality, process safety and efficient use of
resources. In most industrial applications, including wastewater treatment, pro-
cess performance and operation is measured continuously. Often, the number
of measured variables is high, demanding a structured approach to monitoring
and analysis of the process. Multivariate statistics (MVS) provide a methodo-
logy to extract and structure information from large amounts of data. MVS
have been used to monitor industrial processes for several decades. There are
many examples in the literature on applications of MVS for process monitoring
in general (see e.g. Kresta et al. (1991) or MacGregor and Kourti (1995)) and
for monitoring of wastewater treatment operation (Rosen and Olsson; 1998;
Mujunen et al.; 1998).

Normally, MVS-based monitoring is carried out at a single time scale, defined
by the sampling interval. This time scale contains frequencies from the sampling
frequency (fs) (or more accurately the Nyquist frequency fy = 0.5 f5) down to
the lowest frequencies present in the process. There are some limitations to what
can be achieved with this approach. Since only one scale is monitored, uniscale
MVS is most appropriate when the data contain events occurring at one scale,
i.e. in a narrow frequency band. This is not the case in most industrial ap-
plications, and certainly not in wastewater treatment, where both fast and slow
deviations occur (in this work, terms as fast and slow are used to describe how
fast a signal changes). The presence of different time scales introduces an error
to the monitoring model, as it becomes difficult to separate the stochastic and
deterministic components of the data (Bakshi; 1998). This error degrades the
sensitivity and, consequently, the ability to detect small, but significant, changes
in data. Another shortcoming of the basic MVS approach is encountered when
data are from periods of changing process conditions. Wastewater processes
change continuously due to diurnal, weekly and seasonal changes. This intro-
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duces two problems. Due to the changes, an MVS-based monitoring model
does not remain valid for long since it irequires that the mean of the data are
approximately constant, i.e. no trends are present. Secondly, small changes
are not recognised as they tend to be obscured by the normal variations of the
process.

Preprocessing of data sometimes improves the separation between the stochastic
and deterministic components of the data. Linear filters, such as mean and ex-
ponential filters, may be used. However, in the case of multiscale data, nonlinear
filters, such as median filters (Rosen; 1998a) and finite impulse response median
hybrid (FMH) filters (Kosanovich and Piovoso; 1997), cause less distortion due
to their multiscale nature (Bakshi; 1998). Lately, wavelet-based processing of
data has been used to identify events in different time scales from process data
(Lang et al.; 1996; Alsberg et al.; 1997; Flehmig et al.; 1998). Wavelet analysis
has also become an important tool in analysis of environmental data (Percival
and Mofjeld; 1997; Dohan and Whitfield; 1997; Whitfield and Dohan; 1997).
The problem of monitoring changing processes was addressed in part I of this
work, utilising different methods of adaptive monitoring to solve the prob-
lem. Another approach is to identify the trends and remove them from data
(Champely and Doledec; 1997). Yet another way, based on clustering tech-
niques, is described by Teppola et al. (1998a).

A framework within which both the problem of events in different scales and
the problem of monitoring changing processes can be solved, is based on a
combination of MRA and MVS. In MRA, data are split into separate time
scales, using the wavelet transform. The decomposed data can be evaluated
by MVS-based monitoring, for instance PCA, to achieve a multiscale monitor-
ing methodology. Multiscale monitoring has some important advantages. The
sensitivity of the monitoring model is increased, as every scale is monitored sep-
arately. Moreover, the separation of data into multiple time scales implies that
the higher scales (high frequencies) will have approximately a constant mean
and only the lower and/or lowest scale (low frequencies) will display trends or
long term variation. Consequently, by omitting the lower and/or lowest scale
from the monitoring, the problem of monitoring data from changing process
conditions is partly solved. Also, the information on which scale a disturbance
or event appears, may be used in the interpretation to find the physical cause of
the an event or disturbance. The result is a monitoring methodology that com-
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bines the ability of MRA to extract both time and frequency (scale) information
on an event or disturbance with the ability of PCA to reduce the dimensionality
of data and present information in an interpretable manner. This methodology
for process monitoring has been proposed by Kosanovich and Piovoso (1997)
and Bakshi (1998). Work related to multiscale monitoring is also found in Luo
etal. (1999). In this paper, we apply and further develop this methodology to
increase the flexibility of the monitoring so that the scales are linked to physic-
ally interpretable time scales. We also use the multiscale framework to solve the
problem of monitoring wastewater treatment data during periods of changing
process conditions.

This paper is organised as follows. In the next section, multiscale decomposi-
tion using MRA is presented as an interpretation of filterbanks. The following
section discusses how multivariate monitoring may be carried out in multiple
scales and three different methods are presented. The methods are applied to
wastewater treatment data and illustrated by examples. This is followed by a
discussion and some concluding remarks.

Multiscale decomposition

Wavelet analysis is a relatively recent technique for simultaneous analysis of
the time and frequency contents of a signal. Conventional frequency analysis
based on the Fourier transform consists of breaking up a signal into sine waves
of various frequencies. The frequency content of the signal is found at the
cost of time information. Wavelet analysis is similar in that it also decomposes
the original signal using waves. The major difference is that where Fourier
analysis uses sine waves of infinite length (—oo < ¢t < 00), multiresolution
analysis uses waveforms of finite length—wavelets (wavelet means ‘little wave’).
The finite length of the wavelets allows them to describe a local event in both
time and frequency. Wavelets have proven useful in many different fields, from
image processing to model identification (see e.g. Strang and Nguyen (1996)
or Alsberg et al. (1997)).

For the purpose of monitoring and detection, wavelets can be used to decom-
pose a signal into different scales with decreasing level of detail or resolution.
This is sometimes referred to as multiresolution analysis (MRA). A signal, x,
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is filtered with a highpass, & = [gm gm—1 -.- 92 91], and a lowpass filter,
h = [Ap hm—1 ... ha hi], respectively. The result is a set of coefficients
describing the details of the signal, d, and another set describing the approx-
imation of the signal, a (Figure C.1). This decomposition is carried out to a
desired number of scales, by recursively applying the highpass and lowpass fil-
ters to the approximation coefficients of the previous level. As can be seen in the
figure, after a filter is applied, the result is downsampled. This means that the
total number coefficients in the wavelet domain is the same as the number of
samples in the original signal. The coefficients still contain all the information
carried by the original signal.

For both the highpass and the lowpass filter, there are corresponding reconstruc-
tion filters, g* and h*, respectively. Using these filters for the reconstruction,
together with upsampling, will result in a perfect reconstruction of the original
signal in one scale (see Figure C.1).Alternatively it is possible to reconstruct,
separately, the components corresponding to each scale. The number of coef-
ficients in the time domain will then be the original number of samples multi-
plied by the number of scales (Figure C.2).The procedure of transformation to
the wavelet domain and then back to separate scales in the time domain can be
seen as a bandpass filter. The result is the original data decomposed into scales

with decreasing detail (Figure C.3).

Wavelet domain

Matrix algebra gives us a compact way of representing the calculations. Let the
data signal (x) be a vector of size [m x 1]. In matrix form the wavelet coefficients
on the highest level are found as:

d1 = G1X; (C.l)
where G is a transformation matrix of size [m /2 x m].
gm gm-1 -+ g2 g 0 0 -
Gi=] 0 0 gm gn1 - g2 g1 - (C.2)

Similarly, the scaling coefficients on the first level are:

a; = Hix; (C.3)
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Figure C.1: Multiscale decomposition interpreted as bandpass filtering (top).
Transformation from a uniscale time domain to a multiscale wave-
let domain. Multiscale reconstruction (bottom). Transformation (re-
construction) from a multiscale wavelet domain to uniscale time do-
main.
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Figure C.2: Transformation from a multiscale wavelet domain to a multiscale
time domain.

time (samples)

Figure C.3: Decomposition of signal into scales. Detail 1 (z1), detail 2 (z3) and
approximation 2 (z3) all sum up to the original signal (x).
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with

ho hm—1 ... ha hy 0 0 ...
0 0 hm hm—1 ... ha hi ... (C4)

The wavelet and scaling coefficients on the next level are calculated recursively
from the coefficients on the previous level. The transformation matrices on the
next level are given by:

G, = G, H;, (C5)
and

H, = H,_H, (C.6)
where G/,_; and H)_; are submatrices of size [m/27 x m/27] of G;_1 and
H;_1, respectively. For L scales a transformation matrix W’ can be constructed

from the matrices of Equations C.5 and C.6 so that transformation on all scales
is:

d; G i
dg G2
: = : x = Wx (C.7)
d; Gy,
L ar | | H |

Note that due to the dyadic downsampling the total number of coefficients are
the same as the number of data points in x. The above transformation is easily
extended to involve a multivariate data matrix X of size [m x n|, where n is the
number of variables.

Time domain

As mentioned before, wavelet decomposition allows for perfect reconstruction.
This means that the transformation matrix W has some special properties. W
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is unitary, that is W/W =T = WW7 = Tand W’ = W1, So, perfect

reconstruction of the signal x is achieved:
x = W lwx (C.8)

Here, the reconstruction is a transformation from a multiscale wavelet domain
to a uniscale time domain. However, it is also possible to make a transform-
ation from the multiscale wavelet domain to a multiscale time domain. The
multiscale time domain transformation is obtained by:

. P * .
x; = G;Gyx (C.9)
where the reconstruction matrix G7 is found as a subspace of w1

W' =[G Gy ... G} Hj ] (C.10)

The number of data points in x; is the same as the number of points in the
original data x. Moreover, the sum of all scales is now equal to the original

signal:

L+1

X = ij (C.11)

=1

MRA for process analysis

Two tasks are achieved by using MRA on measurement data: the separation
of events in both time and frequency (scale) and characterisation of the dif-
ferent events. The appearance of an event in different scales may be useful in
the determination of physical causes. An important advantage of analysing the
measurement variables in separate scales is the increase in sensitivity for small,
but significant, events. When data include diurnal variations, small changes can
sometimes be obscured by the larger variations. However, by separating the data
into scales, small events are localised in both time and frequency. For instance,
a slight change in the mean of a signal is difficult to detect since daily variations
or noise may be of much higher amplitude.
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Before MRA is carried out on a signal, a wavelet function must be chosen. The
Haar wavelet was one of the first wavelets, proposed by Haar in 1909 (Als-
berg et al.; 1997). Since then, the mathematicians have developed many differ-
ent wavelets, with properties that make them suitable for various applications.
The choice of wavelet is subject to many influential factors. In monitoring of
wastewater treatment data, the measurement signals often display discontinuit-
ies. If the monitoring aims at detecting these types of features (e.g. steps and
spikes) the square shaped Haar wavelet is suitable, due to its good localisation in
time. If the task, however, is to detect smooth and slow changes, a higher order
wavelet may be more suitable. The interested reader can consult the literature
for more information on the choice of wavelet (see e.g. Torrence and Compo

(1998) or Misiti et al. (1996)).

Here, we use the Haar wavelet. The Haar wavelet has good localisation in time
but poor localisation in frequency. This can be seen from the gain-frequency
plot of its filters (Figure C.4). The poor localisation in frequency results in
a significant leakage between the time scales. Higher order filters have better
localisation in frequency but at the cost of deterioration in time localisation.
The filters corresponding to the Haar wavelet are:

e fed s few

= [ ) v = [ ]

A practical decision is the number of scales that the original data set will be de-
composed to. This depends significantly on the application and the modelled
process. However, some general rules can be given. The number of scales should
ideally be chosen so that the separation between stochastic and deterministic
components of a variable is sufficient. This means that, under the assumption
that the high frequency content of a signal is stochastic (noise) and that the low
frequency content is deterministic, the lowest or lower scales should predom-
inately contain deterministic features. Another aspect of the choice of scales
has to do with changing process conditions. As mentioned before, the multi-
scale approach may be used to overcome the problem of monitoring changing
processes. This is done by omitting the lowest scale approximation from the
monitoring. The number of scales is then a compromise between the desire to
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Figure C.4: The gain as function of the frequency of the filters of a six scale de-
composition based on the Haar wavelet. The alias effects have been
removed for clarity.

remove the changing components of the data while being able to detect slower
changes. There is also a practical limit on the number of scales, as the filter
(window) becomes longer the more scales are included.

MRA provides a tool for decomposing a measurement signal into different time
scales. This can be utilised in process monitoring for detection of and extraction
of information on deviating events. Decomposition into separate time scales
is a natural way to investigate measurement data from processes with a wide
dynamic range.

Monitoring in multiple scales

The reason for online monitoring of multivariate data in multiple scales is not
only to determine whether the process is within normal operation, but also to
determine the scale in which the disturbance appears. From this, information
on the characteristics of the disturbance is inferred and used for interpretation.

New measurements are continuously added according to the sampling rate and
in order to use MRA online, a moving window must be used on which Equa-
tion C.9 is applied. The most recent value is the output of the decomposition.
Again, using the filter interpretation, the decomposition can be interpreted as a
number of finite impulse response (FIR) filters—one for each scale. Monitor-
ing a single variable is a straight-forward task and univariate statistical process
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control (SPC) techniques are utilised. However, if MRA is carried out on NV
original variables, decomposing the variables into L scales, we will end up with
(L + 1) x N new variables. This increase in the number of new variables calls
for multivariate methods that are capable of both reducing the dimension of
data and handling collinear variables. A natural choice is PCA. Methodologies,
combining MRA with PCA have been proposed by Kosanovich and Piovoso
(1997) and Bakshi (1998). The methods presented in this section differ slightly
to the ones of Kosanovich and Piovoso (1997) and Bakshi (1998). The main
difference is that here the monitoring is carried out in the time domain on each
scale as opposed to the wavelet domain. This gives us a flexibility to recombine
scales, which otherwise is not possible. Another difference is that to overcome
the problem of non-stationary data, the lowest scale is omitted from the moni-
toring.

Multivariate monitoring

PCA has become a popular method for multivariate monitoring. Descriptions
of PCA-based monitoring are found in the literature (e.g. Wise and Gallagher
(1996b) or part I of this work). PCA can be viewed as a coordinate transforma-
tion, where the new coordinate system is rotated in such a way that a minimum
of orthogonal directions cover as much as possible of the variability in the data
matrix (X). The transformation is expressed as:

X = TPT+E (C.13)

To identify a PCA model, P, is to find the transformation from the original
coordinate system to the new lower dimensional coordinate system defined by
the principal components (PCs). T is the transformed data or the scores. If
the number of dimensions of the new coordinate system is chosen wisely, E
contains mostly noise (see part I for choice of the number of components). As
new data are projected onto the model identified from training data, the scores
can be monitored using SPC techniques. The scores can also be visualised in
scatter plots, providing the user with a graphical representation of the process
performance. A more compact way is to monitor the statistical fit of the model,
for instance, the sum of the squared prediction error (SPE) and Hotelling’s T
at each sample. For a more detailed explanation of PCA, see part .
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Combination of MRA and PCA

A combination of the capabilities of MRA to decompose data into scales and
of PCA to reduce the dimension of the data provides a powerful tool for mon-
itoring processes with several time scales. First, PCA models are identified for
each scale from data representing normal or desired behaviour. This is done by
calculating the reconstructed data on each scale by applying a moving window
the length of the longest filter (hz, or gz,) to the training data. Monitoring new
data involves decomposition and projection of data onto the scale PCA models.
A window is used in the same manner as when the models were identified. The
transformed data from the window on scale j are:

X, = H;Hij (C.14)
Let the last sample of X; be x; and project it on the PCA model:
tj(k‘) = Xj(k‘)Pj (ClS)

where t(k) are the scores at time k and P; is the loading matrix of the PCA
model at scale j. The scores are monitored using SPC techniques or scatter

plots. The SPE can be calculated using:
xi(k) = x;(k)P;PT (C.16)

and

n

SPE;(k) = Y (&i,(k) — i (k))> (C.17)
=1

The residual is compared to the predefined limit for that particular scale model.
If the residual exceeds the limit, a detection is triggered. In the same manner,
Hotelling’s T is calculated as:

T2(k) = t(k)A T (k) = x(k)PAT'PTXT (k) (C.18)

where t(k) are the scores at time k and A ! is the diagonal matrix of the inverse
of the eigenvalues associated with the retained PCs.
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Figure C.5: Decomposition of the original data matrix into scales. The scale data
are monitored using a PCA model on each scale.

The number of data points used for detection at a certain point in time is (L +
1) x N, where L is the number of scales and N is the number of variables. This
increased number is, however, based on only the N original data points. If a
certain overall confidence limit for all the scales together is to be obtained, the
confidence limits on each scale must be adjusted. Bakshi (1998) suggests that
the confidence limit for each scale model is adjusted according to:

1
— 100 — — (100 — 1
o 00— 7100 C) (C.19)
where C' is the desired overall confidence limit and C/, is the confidence limit
used on each scale.

The original variables may not be of similar amplitude. Therefore, it is import-
ant that the data are scaled in respect to amplitude. In multivariate analysis,
mean centring and scaling to unit variance (autoscaling) is often used. Scal-
ing is done in order to give all variables the same influence on the multivariate
model, regardless of their amplitude. This is a good starting point when no a
priori knowledge is available. When using multiple scales, there are different
options as to where the scaling is applied. Applying the scaling before the de-
composition into separate scales means that the data on the different scales are
not necessary scaled equally. This is because the variables have different fre-
quency content. However, this may be advantageous since different variables
do in fact have different importance at different scales, and therefore ought to
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Figure C.6: Recombination of scales into fewer and more physically interpretable
scales.

be more or less influential on that scale. A second option is to scale the de-
composed data and then rescale it before the reconstruction. This gives every
variable the same influence at each scale.

Recombination of scales

A difficulty with the multiscale method described above is that when the num-
ber of scales increases, the number of variables to monitor increases as well. PCA
will reduce the number, but with a high number of scales, we might end up with
more variables than in the original data set. One way to solve this problem is
to recombine some of the scales so that the effective number of scales to mon-
itor decreases. For instance, the first scales are recombined to a ‘fast’ scale (e.g.
hydraulic dynamics), the middle scales are combined to constitute a ‘medium
fast’ scale (e.g. concentration dynamics) and the lower and/or lowest scale (e.g.
population dynamics) represents the ‘slow’ changes (Figure C.6). This makes
it possible to choose the number of scales that is monitored. There is another
benefit of this approach. The choice of dyadic scales has no physical justifica-
tion, but is a property of MRA. Therefore, recombining the MRA scales into
physically interpretable scales, approximately corresponding to true time scales
present in the process, may simplify the interpretation of the results.
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Multiscale PCA

Multiscale PCA (MSPCA) was originally proposed by Bakshi (1998). The idea
is that the PCA models at each scale are used to determine whether a scale
contains significant information or not at a certain point in time. If a scale is
significant, the data on that scale is used in the reconstruction of a uniscale es-
timate of the original data. The reconstructed uniscale data are then monitored
using a unifying uniscale PCA, which is based on the scales included in the re-
construction. The recombination of scales solves the problem of many scales,
while the feature extraction regards each scale separately to extract important
events.

In the version of MSPCA presented here, data from a period of normal or
desired process behaviour are decomposed into scales to the wavelet domain. A
PCA model is identified at each scale except the lowest (approximation). New
data are decomposed and projected onto the scale models. If a model residual
at any scale exceeds its value, the scale is said to be significant, and is used to
reconstruct coefficients into a uniscale set of data. The reconstructed data are
monitored using a uniscale PCA, which is based on training data of the scales
that display significance. The rule for significance can be expressed:

{ 1 if SPE;(k) > SPEjim,; or Tj (k) > Tp;,,, ; (C.20)

v5(k)

0 otherwise

The reconstruction of a uniscale data set is then:
L
x(k) =Y i (k)x;(k) (C.21)
j=1

This is possible since the reconstruction of data is the sum of all scales (see
Equation C.11). The reconstructed data sample at time £ is projected onto a
PCA model constructed from the covariance matrix:

L
X{Xo =Y (k)X Xo, (C.22)
j=1

where X ; is the training data (coefficients in the wavelet domain) and v;(k)
is the current significance factor on scale j. This means that the uniscale PCA
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Figure C.7: The MSPCA procedure.

model will change according to the scales included in the reconstruction. The
procedure is summarised as:

Identification of model:

1. Identify a period of normal process operation;
2. Decompose data into L number of scales (Equation C.9);
3. Identify a PCA model on each scale.

Online monitoring:

Decompose new data using a moving window (Equation C.9);
Project new data onto the PCA models at each scale;
Determine whether a scale is significant (Equation C.20);

Reconstruct data from significant scales (Equation C.21);

RAE N e

Calculate the corresponding uniscale PCA model and project the
reconstructed data on the model (Equation C.22);

6. Calculate model residuals and limits for uniscale model.

The procedure is illustrated in Figure C.7.
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Isolation of deviating variables

Whatever method is used to detect deviations, identification of the deviating
variables may be carried out by investigating the contributions to the resid-
uals. The approach used in the uniscale case, can here be applied at each scale.
Contribution plots have been described in the literature (e.g. MacGregor et
al. (1994) or part I of this work). In MSPCA, the variable contribution plot
can be complemented by a scale contribution plot, which provides information
on which scale is contributing the most to the residuals. This is done by in-
vestigating each term in Equation C.21. The information on which scales are
contributing the most is used to find the cause of a disturbance.

Results

In this section we demonstrate and discuss the three methods presented earlier,
i.e. PCA at each scale, PCA at a few recombined scales and MSPCA. The data
used for the examples are actual process data from the Ronneby wastewater
treatment plant in Sweden. The Ronneby plant is operated as a biological nu-
trient removal plant with additional chemical treatment. The data sampling
period is 5 minutes. Table C.1 lists the available measurements from the on-
line measurement system. The data span several months, from summer to late
autumn implying significant changes in operating conditions over the period.
In all examples the data are decomposed into six different scales, i.e. six de-
tail scales and one approximation scale, using the Haar wavelet (see Equation
C.12).

PCA monitoring of scale decomposed data

A data set from the first 20 days are decomposed and used as training set for a
PCA model at each scale. An investigation of the eigenvalues using the scree-
plot method (see part I of this work) of each scale model suggests that six com-
ponents should be retained at each scale. No preprocessing of data is carried
out.
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No  Variable Symbol
1 temperature T

2 sludge concentration in line 1 SS:

3 sludge concentration in line 2 SSs

4 air valve position of blower 1 in line 1 Air 1
5 air valve position of blower 2 in line 1 Aira
6 air valve position of blower 1 in line 2 Airg 2
7 air valve position of blower 2 in line 2 Airs 5
8 influent conductivity cond.
9 influent ammonia SnE
10 influent pH pHins
11  influent flow rate Q

12 pH in effluent from biological treatment  pHy;,
13 effluent turbidity FTU
14 effluent pH pHess

Table C.1: Measured variables at Ronneby WWTP.

New data are decomposed and projected to each scale PCA model and the res-
ulting model residuals can be seen in Figure C.8 and Figure C.9. Looking at
the SPE charts, we see that the SPE is mostly below its limit on each scale
except for scale 7—the approximation scale. This means that the scale models
are considered valid through the period. Some major events are found at, for
instance, day 25, 42, 62, 70 and 95. Here, the deviations are detected in all
scales. In most cases, the higher scales (scale 1 and 2) detect deviations before
the lower scales, meaning that most of the disturbances are fast. When invest-
igating original data, these disturbances manifest themselves as step changes or
spikes in one or several variables. However, it is interesting to note that at, for
instance, day 118 the disturbance is detected in the fourth and fifth scales first,
which means that the disturbance is slow. This is seen on the original data as
a relatively slow increase in flow rate and all air valve positions. The T charts
display similar behaviour. Most disturbances are fast, i.e. detected in the higher
scales first and, thus, commenced by a rapid change in one or several variables.
The disturbance at day 118 is most obvious in scale six, which is consistent with

the SPFE chart.

How can the scale information be used? The most straightforward way to use
the scale information is to localise the scale in which a disturbance first is detec-
ted. Fast disturbances are detected in the higher scales whereas slow disturbances
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Figure C.8: The SPE residuals for scale 1 to 7 during a time period of 100 days,
with confidence limits of 99.9 % according to Equation C.19. The
lowest scale (7) should only be used as an indication on the absolute
distance from operation defined by training data.

are detected in the lower scales. There is more information to gain, though. The
way a disturbance appears across scales can reveal information on the disturb-
ance characteristics. For instance, a spike will be strong in the higher scales but
barely visible in the lower scales. A step will appear clearly in all scales whereas
a ramp will appear most strongly in the lower scales.

A problem with multiscale monitoring is that the increased sensitivity leads to
more detections that have to be evaluated. Moreover, events that occur in sev-
eral scales will be detected with a slight delay from higher scales to lower scales.
For instance, the disturbance at day 42 is first detected in the highest scale and
is then propagated through the scales to the lowest scales, even though an in-
vestigation of original data reveals that it is the same disturbance. The increased
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Figure C.9: The T2 residuals for scale 1 to 7 during a time period of 100 days,
with confidence limits of 99.9 % according to Equation C.19. The
lowest scale (7) should only be used as an indication on the absolute
distance from operation defined by training data.

sensitivity and redundancy make the chart difficult to interpret. Therefore,
when the number of scales is more than a few, we need a way to structure all
the available information.

PCA monitoring of physically interpretable scales

When the number of scales exceeds a few, it is hard to interpret the monitoring
result. As mentioned before, a simple way to solve this problem is to recombine
the scales into a small number of reconstructed scales before applying the mon-
itoring models. Ideally, this is done in such a way that the resulting scales have a
physical interpretation. Here, we will not focus on how to obtain the different
time scales present in a system. We define fast dynamics as the first three scales.
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Figure C.10: The SPE residuals for the recombined scales defined as ‘fast’, ‘me-
dium fast’ and ‘slow’. The slow scale should only be used as an in-
dication on the absolute distance from operation defined by training
data.

This approximately corresponds to variations from 0 to 4 hours. The medium
time scale consists of scales 4 to 6, which corresponds to 4 to 32 hours. The
slow dynamics are represented by the approximation scale, i.e. approximately
everything slower than the diurnal variation. The SPFE and T? charts for the
recombined scales are seen in Figures C.10 and C.11. The charts are easier to
comprehend, as the data are split into only three components, i.e. fast, medium
and slow. The charts show that the detail scale models (fast and medium) are
valid, whereas the approximation scale (slow) model is not. This means that
the slow scale can only be used as an indication on the absolute distance from
normal operational conditions. Some of the disturbances occur in both the fast
and the medium scale. This can roughly be interpreted as continuous disturb-
ances. When a disturbance only appears in the fast scale, the disturbance is

spike shaped.
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Figure C.11: The T2 residuals for the recombined scales defined as ‘fast’, ‘me-
dium fast’ and ‘slow’. The slow scale should only be used as an in-
dication on the absolute distance from operation defined by training
data.

MSPCA monitoring

The MSPCA method is applied to the data used in the previous examples. The
identification period is the first 20 days of operation. After identification of
the scale models, the original training data set is stored in order to calculate the
uniscale PCA model. The number of scales is seven, i.e. six detail scales and one
approximation scale. Both SPE and T? are used on each scale to determine
whether a scale is significant. The limits for the model residuals are corrected
according to Equation C.19 in order to obtain an overall confidence of 99 %.

The resulting uniscale SPE and T2 can be seen in Figure C.12. The confidence
limit on the uniscale residuals are also 99 %. The SPFE chart indicates that
the model is valid throughout the whole period. Consequently, the covariance
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Figure C.12: SPE (top) and T? (bottom) from the MSPCA during a time
period of 100 days. The confidence limit for both residuals are 99
%. The lowest scale (approximation) is omitted from the analysis.

structure of the reconstructed data does not change significantly. This is because
the lowest scale or the approximation scale has been omitted from the analysis.
There are some upsets in SPE, but the major deviations can be seen in the T2,

There is an interesting and important feature of MSPCA, which distinguish it
from the other two methods. Consider a step change in one or several variables
at a certain point in time. All the methods will detect this step at the same
time. However, if the variable or variables return to normal, both the method
involving PCA on each scale and the method involving prior recombination of
scales, will continue to detect a deviation due to the delay of the filters. This is
not the case with MSPCA. When the variables return to normal, the number
of significant scales will increase making the confidence level to increase and
generally compensate for the delay. This is an appealing feature of the MSPCA.
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An example of this is seen after the disturbance at day 42, where the SPE
quickly returns to values below its limit.

Discussion

Qualitatively, the three methods presented here have similar performance and
they detect the same events equally well. However, there are some differences.
Using a PCA model on each scale results in a lot of redundant information
making the interpretation cumbersome. This is partly overcome by recombin-
ing the scales. If it is possible to discern some dominant time scales of the
studied process, the recombination of scales into physically interpretable scales
ought to simplify the interpretation considerably. MSPCA’s capability to unify
all the scales into one scale is desirable and provides a compact way of monitor-
ing. Moreover, MSPCA has an important advantage in that it returns to normal
as soon as a disturbance has ended.

It is worth mentioning that the multiscale methods only partly solve the prob-
lem with changing process conditions. This is because the changes occur in all
scales, and not only the lowest scale. Omitting the lowest scale will not remove
changes in the relationship between the variables, i.e. in the covariance struc-
ture. Removing the lowest scale is, thus, similar to the method of updating the
scaling coefficients, presented in part I.

In part I of this work, we stated that the simplest possible model should be used
for monitoring. The multiscale approach includes far more degrees of freedom
than the uniscale approach. Is it worth taking this extra step? The decom-
position into scales provides a way to discern small changes in data with, for
instance, large diurnal variations. Moreover, the multiscale approach provides
information on the scale at which a disturbance occurs, which may be used for
diagnostic purposes to find the physical cause. However, the advantages come at
a price of higher complexity of the monitoring model. The choice of approach
used depends on the complexity of the process. A simple process, or perhaps
a section of a process, where most events occur in one scale, can be adequately
monitored at one scale. In a more complex process, with different subprocesses
and different time constants, a multiscale method is more suitable.
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An interesting topic not discussed in this paper is related to integration of mon-
itoring and control. Information of the operational state is important in control
strategy design and implementation. In, for instance, PCA monitoring the op-
erational state may be determined from the process location in the PC space
and loading plots are used to find suitable control actions. In multiscale moni-
toring one additional piece of information is obtained: time scale information.
So in addition to the information on the present operational state, information
on how fast the state has changed may be used to determine the strength of
corrective measures to drive the process back to desired operation. Integration
of time information in the control strategy is one of the more interesting topics
for further studies.

Conclusions

This paper has presented a multiscale approach to monitoring of online waste-
water treatment measurement data. Multiscale decomposition of data into sep-
arate scales is combined with principal component analysis, in order to extract
significant features in different scales and to reduce data dimensionality. The
advantages of such an approach are an increased sensitivity to small but signi-
ficant changes and a way to approach the problem of monitoring of data from
changing conditions.

After decomposition of data into separate scales, a PCA model is used on each
scale to determine whether the operational status is considered normal or not.
However, if the number of scales is more than a few, the result becomes cumber-
some to interpret using SPC charts. Therefore, the scales can be recombined to
represent physically interpretable scales. By doing this, two things are achieved.
Firstly, the number of scales that has to be monitored is smaller and secondly,
the scales are ideally chosen to match observed time scales in the process, result-
ing in a more intuitive interpretation.

A more sophisticated way to simplify the interpretation is presented in the mul-
tiscale principal component analysis (MSPCA) methodology, first suggested by
Bakshi (1998). The methodology involves feature extraction from data on each
scale and then recombination using a uniscale PCA.
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Applying the methods for multiscale monitoring on wastewater treatment data
shows that they are more sensitive to small changes than uniscale monitoring.
They can also provide a solution to the problem of monitoring during changing
process conditions, since most of the changes occur in lower scales, which are
omitted from the monitoring.
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Addendum

Comments on the MSPCA algorithm

The MSPCA algorithm used in the paper involves a high degree of freedom in
the sense that there are many, slightly different, ways to implement it. This may
be conceived as a disadvantage, but if the user understands the algorithm, it can
be turned into an advantage. The algorithm is flexible and can be adjusted to
suit the particular problems at a certain plant. Thus, a more elaborate discussion
on the algorithm is needed.

In the paper, the scale PCA models are applied in the decomposed time domain.
This requires that the online discrete wavelet transform (ODWT) is used to
decompose identification data. The ODWT means retaining the last set of
coefficients on each scale from a window of data decomposed using the discrete
wavelet transform (DWT) (Lennox; 2001). At each new sampling instance, the
window is moved one step and new coefficients are retained. Thus, the number
of coefficients at each scale will be the same as the number of samples, i.e. no
downsampling. The wavelet coefficients can be transformed to the decomposed
time domain by the inverse DWT and the relation between the wavelet and time
domain coefficients is expressed as a scaling factor (Nounou and Bakshi; 1999;
Lennox; 2001). It is, thus, equivalent to apply the PCA models in the wavelet
or time domain. However, as Lennox (2001) has pointed out, it is important
to note that the decomposition of variance and covariance is inexact (hence the
approximation in Equation C.22).

159
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Figure C.13: Results when using Xj for reconstruction of data

However, it is also possible to use the exact relation of Equation C.22. If
the models are identified using data decomposed with DTW, the equality will
stand. This means that each PCA will be based on coefficient matrices of differ-
ent size. When creating the covariance matrix for each scale matrix, a compens-
ation factor must be introduced, since the coefficients carry information from
original data that consist of higher number of samples. The performance of the
two different methods does only differ marginally. In Figure C.13, the result of
a DWT-based MSPCA monitoring algorithm is shown. It can be seen that the
results are similar to the ODWT-based algorithm.

A second choice involves the number of PCs at each scale. Bakshi (1998) argues
that the same number of PCs should be used for each scale. Lennox (2001),
however, advocates a choice based on the characteristics of the scale data, and
this seems to be a wiser, albeit more cumbersome, choice. Generally, the scale
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Figure C.14: Results when using X ; for reconstruction of data. The original data
is the same as in Figure C.13.

models are only identified once, so the extra effort may prove advantageous.
In the data used for this work, the effect of different choices of PCs is not
significant.

Another freedom in the algorithm is related to the reconstruction of the unified
data. The scales that have indicated significance are added to create the unified
data. However, here we may use both the estimated data of the scale PCAs
(Xj = TjP?) or the actual scale data (X;). Using the PCA estimated data
will remove all variation not modelled by the particular scale model, and the
unified SPE measure will decrease since it will only express the non-modelled
variation between the scales. Since this measure has a tendency to be rather high
in the unified model, this may be an appropriate fix" as long as one is aware of
the information lost. This is done in Paper C. In Figure C.14, X; was used for
the reconstruction. There is an evident spikiness in the SPE that may obstruct
the interpretation. However, one should not forget that the figure shows 100
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Figure C.15: Results when using Xj in a weighted (values other than 1 or 0 in
Equation C.20) reconstruction of data. The original darta is the
same as in Figure C.13.

days of operation. Using X; for reconstruction may be advantageous for short
term (day-to-day) monitoring.

The significance weighting (v;(k) in Equation C.20) is limited to 1 or 0 in
the paper. As pointed out by Lennox (2001), the weighting can be refined
further. For instance, if it is established that higher scales are too dominant in
the unified model, these can be given lower weights. In this way, the unified
model is tailored to suit the type of disturbances that are of particular interest.
This idea can be taken further, using different weighting for different users.
The operators may be interested in small and fast changes, whereas the process
engineer’s interest may be on a slightly different time scale. The management
is normally interested in the long-term effects and has less interest in the short-
term changes. The flexibility of the MSPCA algorithm can, consequently, be

used to present information suitable for each user. This idea is also applicable on
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Figure C.16: Monitoring results using a (semi) adaptive MSPCA algorithm. The
original data is the same as in Figure C.13.

the other algorithms presented in the paper. A weighted reconstruction using
X is used to produce Figure C.15. The number and size of the spikes are
reduced, especially in the T2, but the algorithm still detects the same events.

Adaptive MSPCA

In the paper, the lowest scale, or the approximation, was omitted from the al-
gorithm to allow for monitoring of non-stationary data. Another simple exten-
sion to the MSPCA algorithm’s ability to handle non-stationary data would be
to use the ‘windowed data’, instead of the training data, to identify the unified
model. This would yield a moving window adaptive model, similar to what was
discussed in Paper B (see Equation B.18). It is important to note that the scale
models are not adaptive. However, the wavelet decomposition corresponds to
updated scaling parameters (mean value only). If the lowest scale (approxima-
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tion) is included, this matrix must be mean centred, since it will not inherently
have zero mean. If this is not done, there is a considerable risk that the lowest
scale will be significant all the time. A decision that will affect how fast the
model adapts is how long the window used for DWT is, since more than only
the last coefficients will be used to build the scale covariance matrices. In Fig-
ure C.16, the (semi) adaptive MSPCA algorithm is used to monitor the same
events as in the previous examples. A window of length 512 samples is used.
It is seen that the algorithm has similar detection properties as the algorithms
discussed above. However, the spikiness is less dominant, even though X is
used instead of Xj. The inclusion of the lowest scales can be seen as the slow
transients (e.g. at day 42). Compared to the window used for the adaptive
PCA in Paper B (=2000 samples), it should be noted that the window of 512
samples is probably too short.

A more sophisticated adaptive multiscale algorithm is proposed in Paper D. The
adaptation is there carried out on each scale, and, thus, it allows for changing
covariance structures in all frequencies.

The author would like to emphasise the further investigations carried out by
Lennox, based on the work presented in Paper C. In Lennox (2001), a deeper
analysis of the MSPCA algorithm is discussed and illustrative examples are
given. Interested readers are, thus, referred to the text of Lennox for more
information.
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Adaptive multiscale principal component analysis
for online monitoring of wastewater treatment
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Abstract:  Fault detection and isolation (FDI) are important steps in the monitoring and
supervision of industrial processes. Biological wastewater treatment (WWT) plants are diffi-
cult to model, and hence to monitor, because of the complexity of the biological reactions and
because plant influent and disturbances are highly variable and/or unmeasured. Multivari-
ate statistical models have been developed for a wide variety of situations over the past few
decades, proving successful in many applications. In this paper, we develop a new monitor-
ing algorithm based on Principal Components Analysis (PCA). It can be seen equivalently as
making Multiscale PCA (MSPCA) adaptive, or as a multiscale decomposition of adaptive
PCA. Adaptive Multiscale PCA (AdMSPCA) exploits the changing multivariate relation-
ships between variables at different time-scales. Adaptation of scale PCA models over time
permits them to follow the evolution of the process, inputs or disturbances. Performance of
AdMSPCA and adaptive PCA on a real WWT data set is compared and contrasted. The
most significant difference observed was the ability of AdAMSPCA to adapt to a much wider
range of changes. This was mainly due ro the flexibility afforded by allowing each scale

model to adapt whenever it did not signal an abnormal event at that scale. Relative detec-
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tion speeds were examined only summarily, but seemed to depend on the characteristics of
the faults/disturbances. The results of the algorithms were similar for sudden changes, but
AdMSPCA appeared more sensitive to slower changes.

Keywords: Fault detection and isolation; multivariate statistical process moni-
toring; adaptive PCA; multiscale PCA; confidence limits.

Introduction

Multivariate statistical models have become increasingly popular for online pro-
cess monitoring over the last few decades. Principal Components Analysis
(PCA) is the simplest of them, modelling static covariance relationships in a
lower-dimensional subspace. While this simplicity is appealing, ordinary PCA
models are often insufficient when dealing with the complexities of real data.
In biological wastewater treatment (WWT) plants, influent flowrate and com-
position are often highly non-stationary, varying on time-scales ranging from
hours (e.g. toxic shocks) to months (seasonal effects). The process itself evolves
over time, as the biomass adapts to different conditions. Highly nonlinear bio-
logical reactions make linearized relationships between variables dependent on
the operating point. Finally, the wide range of dynamics of the biological and
physical processes involved makes it difficult to look at correlations on a single
time-scale.

Adaptive PCA (Wold; 1994; Li et al.; 2000) updates the PCA model online as
new data are obtained, allowing changes in the measurements’ mean, variance
and correlation to be followed. The model will adapt not only to process evol-
ution but also to dynamics or nonlinearities on time-scales slower than that of
the adaptation (i.e. the model is locally linear). Gallagher and Wise (1997)
show adaptivity to be of great benefit to long-term monitoring performance
for a manufacturing process. Multiscale PCA (MSPCA) (Bakshi; 1998) uses a
wavelet transform to decompose measurement data into different time-scales. A
separate PCA model is used to monitor each scale. Scale monitoring is used to
adaptively pre-filter the data, which are then monitored by a single PCA model
based on only the most important scales at a given time. MSPCA is especially
useful for processes such as WWT that have a wide dynamic range. MSPCA
differs from the earlier combination of wavelet transforms and PCA in Kosan-
ovich and Piovoso (1997).
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Rosen and Lennox (2001) apply both Adaptive PCA and MSPCA to WWT
data and develop a modified MSPCA algorithm to accommodate mean non-
stationarity. In this paper, adaptivity and multiscale decomposition are com-
bined to create a new method: Adaptive Multiscale PCA (AAMSPCA). It is
hoped to overcome individual limitations of Adaptive PCA and MSPCA in the
context of WWT monitoring (Rosen and Lennox; 2001). AAMSPCA makes
the scale models of MSPCA adaptive and the unifying PCA model implicitly
adaptive, since it is constructed from the adaptive scale covariance matrices. Per-
formance of AAMSPCA and adaptive PCA on a real WWT data set is compared

and contrasted.

Monitoring algorithms

PCA monitoring

Process measurements are usually cross-correlated, with an effective dimension
less than the number of variables (m). Consequently, univariate monitoring
is inefficient and can even be misleading. PCA monitoring exploits cross-
correlation and redundancy, identifying a multivariate ‘process subspace’ con-
taining significant (i.e. non-random) variation. In standard PCA, identification
is performed off-line using historical data representing normal operation. The
first a principal components (PCs) in a PCA model define the process subspace.
The remaining m — a components define a complementary ‘noise subspace’.

New data can be projected onto each subspace, yielding their ‘process’ and
‘noise’ components, yielding two summarising statistics (Jackson and Mud-
holkar; 1979; Kresta et al.; 1991). The T2 statistic is a (weighted) squared
distance from the multivariate mean on the model hyperplane. The squared
prediction error (SPE) is the squared distance of a measurement from the
model hyperplane. Statistical confidence limits can be defined for both quantit-
ies (Jackson; 1980). Useful review and tutorial articles on PCA monitoring are
Wise and Gallagher (1996b) and Kourti and MacGregor (1995). SPE or T2
alone do not give information concerning the cause/s of abnormal operation.
Contribution plots (MacGregor et al.; 1994) are useful diagnostic tools, isolat-
ing individual variables making an important contribution to large SPFE or T>
values.
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Adaptive PCA

In the earliest adaptive PCA algorithm, the model is identified online from an
exponentially-weighted moving data window (Wold; 1994). Recursive PCA (Li
etal.; 2000) is a more computationally efficient approach, where the covariance
matrix, or even the PCA model, is directly updated with each new sample. In
this work, the PCA model is computed by singular value decomposition (SVD)
of the recursive covariance matrix Rj. Although covariance-based recursive
PCA is used, constant variance scaling is first applied to each variable, using
variances calculated from initial identification data. The additional complic-
ation of adaptive variances is generally unnecessary in practice, and precludes
the theoretical derivation of confidence limits (Li et al.; 2000). The number of
PCs in the adaptive model is fixed in the initial identification step, using the
variance of the reconstruction error (VRE) method (Qin and Dunia; 2000).
It could also be determined online (Li et al.; 2000) using this, or any other
method. Making the model dimension adaptive increases flexibility to model
process changes, but also increases online computation and makes the results
harder to interpret when the number of PCs changes. Here, a fixed number of
PCs also made comparison between Adaptive PCA and AAMSPCA simpler.

The following recursive equations are applied after each sample (i.e. nk = 1),

followed by SVD of Ry;:

by = pbj_p, +(1—p) 1} X, (D.1)
Xy = Xp—1,.byg (D.2)
Ab, = b —bj_,, (D.3)

Ry = p(Rion, +AbIAbg) + (1 — p) XF Xy (D.4)

where X, is the kth raw data block (X, € R"+*™ ), by, is the adaptive mean
and Ry, is the recursive covariance at sample N = Z?:l n;. The forgetting
factor 0 < p < 1 defines the weight given to past observations. It relates to the
effective window length (defining a time-scale of adaptation) as:

Nt = G (D.5)
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A practical difficulty with adaptive models is that they may adapt not only
to normal process evolution, but also to abnormal changes. To prevent this,
updating can be paused whenever the SPE is exceeding a certain limit (Li et
al.; 2000). Changes that ought to be detected in the first instance, but later
accepted as normal, are harder to deal with. Such model ‘resetting’ requires
information additional to that contained in the sensor data, and is beyond the
scope of the current work.

MSPCA

MSPCA is described in detail in Bakshi (1998). We summarise the algorithm
here. Each variable is first decomposed into a number of scales using an on-
line wavelet transform (Bakshi; 1998). Here the Haar wavelet is used. It is the
simplest wavelet and has the shape of a step. The transform splits the signal
into J details and an approximation. Details are simply successive band-pass
versions of the signal, while the approximation is a low-pass version. A defining
characteristic of wavelets is that adding up detail coefficients from every detail
scale, plus the low scale approximation coefficients, recovers the original signal.
Another defining characteristic is that the band-width of the scales is propor-
tional to their frequency. Not only can scale coefficients be added, but their
covariance matrices can be also added to give the data covariance matrix (Bak-
shi; 1998). Note that while ‘high scales’ will be taken to mean those with the
highest frequency content, scales will be numbered form 1 to J with 1 being
the highest. Figure D.1 shows the temperature time series (see Table D.1) and
its decomposition into five scales.

Separate PCA models are identified for the detail coefficients of each scale and
the approximation coefficients of scale J. Each scale is then monitored inde-
pendently using SPFE and/or T2. The scale monitoring results are not used
directly. This would increase the number of entities to monitor and could also
lead to confusion, since the same event can appear at different times in different
scales, because of different filtering delays. The scale monitoring is instead used
as a criterion for reconstructing the signals and the covariance matrix online,
including only significant scales at each instant. Scales are deemed significant
whenever their SPFE or T? exceeds its confidence limit.
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Figure D.1: Decomposition of the temperature time series by the online Haar
wavelet transform with J = 5.

A final ‘unifying’ PCA model is identified from the reconstructed covariance
matrix. The reconstructed sample is then projected onto this model and its
SPE and/or T? monitored. Figure D.2 illustrates the steps in the MSPCA
algorithm. Because the online wavelet representation is redundant (J + 1 times
as many coefficients as samples), scale limits must be adjusted as:

p;i = ""/pr (D.6)
Unlike the limit of (Bakshi; 1998), Equation D.6 accounts for the probability

of simultaneous detections at different scales—i.e. it is the probability of no
detection at any scale. The process of reconstruction tends to cancel out the
different detection delays across scales (Bakshi; 1998). Sometimes though, the
unified SPE will have a ‘spiky’ appearance, as because of the inclusion and
exclusion of scale over the course of an event.

Adaptive MSPCA (AdMSPCA)

AdMSPCA can be seen in two ways: either as making MSPCA scale models
adaptive or as a multiscale decomposition of recursive PCA. For each variable,
the order of wavelet transformation and recursive updating operations is inter-
changeable (i.e. Equations D.1-D.3 can be applied to the wavelet coefficients
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Figure D.2: Schematic of MSPCA identification and monitoring.

at each scale, or to the data directly). In the latter case, Aby and X}, must also
be decomposed into scales. Equation D.4 is then applied to recursively identify
the covariance matrix for each scale in exact analogy to the scale PCA model

identification in MSPCA.

In adaptive PCA, the adaptation rate implicitly defines a single time-scale of
interest. Identification of adaptation parameters for each scale is impractical,
but the problem of a single time-scale can be overcome by relating adapta-
tion parameters at different scales. It is often reasonable to assume that high-
frequency phenomena involve faster changes than low-frequency ones. In any
case, sampling theory tells us that more samples are required to identify lower
frequencies than higher ones. This suggests making the effective window length
(Neys) proportional to the length of the wavelet at that scale (i.e. doubling each
scale).

As with all PCA-based models, it is important to correctly identify the number
of PCs to retain. MSPCA permits a different number of PCs at each scale while
recursive PCA permits an adaptive determination of the number of PCs. Both
these options could be implemented in AAMSPCA, but here a fixed number
of PCs is used at each scale—both for simplicity and ease of comparison with
adaptive PCA. Equation D.6 is used to find the p-value (p;) for each scale
model, giving the desired overall p-value (pr). The confidence limit of the
unifying PCA model is calculated as if it were an ordinary PCA model, except
that the degrees of freedom is defined empirically as the average of the window-
lengths of the reconstructed scales.

An updating rule such as that described above can be applied at each scale. This
is not possible if the recursive Equations D.1-D.3 are applied first and the wave-
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No. Variable No. Variable

1 Infl Temp (C) 7 Infl Ammonia (mg/L)
2 Air Al (% opening) 8 Infl pH

3 Air B1 (% opening) 9 Infl Flow m3/d)

4 Air A2 (% opening) 10 Biol Effl pH

5 Air B2 (% opening) 11 Plant Effl Turbidity

6 Infl Conductivity 12 Plant Effl pH

Abbreviations: Infl = influent; Effl = effluent;Biol = biological;
Temp = temperature; Cond = conductivity; Turb = turbidity

Table D.1: List of variables used from Ronneby dataset.

let transform and Equation D.4 second. Updating control introduces a nonlin-
ear element, destroying the equivalence of the two approaches to AAMSPCA.
Here, the wavelet transform is taken first, and then the recursion equations are
applied at each scale. Since the scale details by definition have an expected
mean of zero, mean-centring is applied only on the low-scale approximation.
The updating rule cannot be based on the unifying PCA SPE, because the
same event may appear at different times on different scales. Controlling up-
dating of individual scale models affords great flexibility, since the band-pass
nature of the detail scales means that most events cause transient rather than
persistent exceedences of the confidence limit, as is observed in the case study.

Application to WWT data

Case study

The data are from the Ronneby WWT plant in Sweden (Rosen; 1998a). The
selected variables are listed in Table D.1. Obvious features of the data include
diurnal patterns in most variables and frequent abnormalities in single or mul-
tiple variables. The original data were decimated from 288/d to 48/d. This was
to simulate sampling at the latter rate, where the mostly uninformative higher
frequencies are not present. In practice, down-sampling should be performed
with appropriate pre-filtering to avoid either aliasing effects or destroying mul-
tivariate relationships. Nonlinear filters may be useful to satisfy the latter re-
quirement.
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Figure D.3: 14.6 days of the raw data record (samples 1300-2000).

Two distinct periods can be seen in the raw data (see Figure D.3). Up to sample
1400 (samples 1-1200 are not illustrated) the data are quite normal. Unusual
events appear to be of short or moderate duration. A second period can be
defined beginning at the major qualitative changes in most variables around
1400. The temperature and flowrate variables become significantly lower and
higher respectively, suggesting a prolonged influx of melt-water. Other major
changes are seen later on, for example in effluent turbidity from 1650. We
concentrate on the transition to the second period and some events within it.

Five scales were used in AAMSPCA, the fifth scale detail containing frequencies
around 1/d. The adaptation rate was chosen to give an effective window-length
of three days (144 samples). This was also the window-length used for the fifth
scale detail and approximation of AAMSPCA. As reported also by Gallagher and
Wise (1997), the results were relatively insensitive to the window-length. Dif-
ference between N, = 3d and Ny s = 4d were barely noticeable, while N, ¢
= 7d gave mainly quantitative differences except when updating was halted.
Note that the algorithms were used in their basic form as outlined in previous
sections, with a simple threshold on SPE (and arbitrary 1.2 times the 95 %
limit) to halt updating.

Results

Many significant features appeared in the S P Es of the two algorithms. Features
were sometimes qualitatively similar and/or simultaneous and sometimes not.
Sharp peaks and spikes in particular tended to be detected similarly by each al-
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gorithm, whereas many (but not all) gradual changes were detected differently—
or sometimes by only one of the algorithms. Differences were particularly
marked in the latter half (from 1646 to 1912) of the illustrated data, where
adaptive PCA had continuously large SPE. Over this same period AAMSPCA
gave many significant detections, but these were broken up into a large num-
ber of peaks and sub-peaks, separated by several significant periods of non-
detection. For example where adaptive PCA gave a major peak around 1765-
1770, there was no detection at all by AAMSPCA. Where there were such major
differences, it can be assumed that the algorithms were detecting—and hence
probably modelling—quite different things. Without complementary inform-
ation about the data set, it cannot be directly concluded that either method
performed better or worse. The results must be examined in detail to try and
determine how the two algorithms differ and their relative merits.

Qualitative and quantitative comparisons of detections are facilitated by plot-
ting detections as points along an axis (Figure D.4 - bottom). A notable qualit-
ative feature of the plot is that while the SPE of AAMSPCA generally appears
more variable than that of adaptive PCA, there were times when AAMSPCA
gave longer periods of detection. Quantitatively, it is important that the al-
gorithms detect events as quickly as possible. While the data used in this work
did not lend themselves to a detailed or objective study of detection speeds, the
results can nevertheless give indications about performance differences. Return-
ing to the above-mentioned period 1646-1912: AAMSPCA first detected seven
samples before adaptive PCA (and continuous detection began eight samples
earlier). However, the algorithms simultaneously detected the spike at the very
beginning (1649) of the period. The large peaks from adaptive PCA with max-
ima at 1662 and 1712 have clear counterparts in the SPE of AAMSPCA, as
does the spike at 1745. The latter was delayed by one sample with AAMSPCA.
Some other peaks of adaptive PCA had zero SPE with AAMSPCA. These
observations suggest that large, sudden events are detected with equal delay,
whereas gradual changes are detected with differences in delay that depend on
the nature of the changes.

Beyond 1726, AAMSPCA briefly returned to normal before two short peaks
(1736-1762) that correspond to a trough in adaptive PCA (although the lat-
ter remains above the confidence limit). The next cluster of AAMSPCA peaks
corresponds to the beginning of a broader adaptive PCA peak. It is seen that
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maxima of AAMSPCA tend to match sudden increases or decreases in the SPE
of adaptive PCA. This is intuitively reasonable, because the Haar wavelet coef-
ficients are basically differences of the data. The large and sustained peaks of
adaptive PCA seem to mirror periodic patterns in the data themselves. Given
that the adaptive PCA updating is paused during most of this period, it is likely
that significant model mismatch develops. Consequently, the adaptive PCA al-
gorithm cannot necessarily distinguish between normal and abnormal changes
at this point. AAMSPCA does not suffer from this problem, because the in-
dividual adaptation of scale models and the faster adaptation rates at higher
scales make it considerably more flexible. The shorter peaks in AAMSPCA sig-
nal rapid changes in conditions that the scale models then manage to adapt to.
A less generous interpretation is that AAMSPCA involves broader definition of
‘normal’.

Scale SPE’s (Figure D.5) can help determine the nature of an event. Note that
the low-scale approximation S PE is omitted from Figure D.5, since there were
no detections in this period. High scales are sensitive to sudden changes and
can more quickly adapt if the covariance structure of their coefficients alters.
Low scales are sensitive to slower changes and will react gradually to covariance
changes. As a general rule, features (but not necessarily detections) at higher
scales will be shorter and those at lower scales longer. While short features at
a low scale are unlikely given the smoothness of their wavelet coefficients, long
features at high scales can be caused by a (permanent or continuing) change in
covariance structure not followed by the scale model. This theory is borne out
by the features observed at different scales in the case study.

Features at scales 1-3 generally appear similar, except that their length tends
to increase with scale. The incidence of scale detections (Figure D.5, bottom)
shows a pattern of detections occurring slightly later at lower scales, consistent
with the longer filtering delays. By scale five, the peaks in SPE are distinctly
fewer, longer and smoother. As previously noted, no detections occurred at
the low-scale approximation. Comparing the size of features between scales
can give useful information about events. Around 1760 for example, there was
a detection almost entirely restricted to scale three (frequencies around 5/d).
This was therefore a slower change and/or one that did not cause a departure
from the correlation structure at the higher scales. Just beforehand, there was
a larger detection involving all detail scales. However, the highest scales were
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Figure D.5: AAMSPCA detail scale SPEs (axes 1-5) and detection location plot
for detail scales (bottom).
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dominated by a very sharp peak (1646), whereas scale four had a flat peak.
This suggests the superposition of a sharp change with a slower one, the latter
perhaps continuing into the smaller peak around 1760.

Using more complicated PCA-based methods, it can be difficult to establish a
relationship between generated features and the patterns in the raw data—and
ultimately with the underlying physical phenomena. Contribution plots can
be generated for both algorithms and are a useful tool for isolating significant
variables. It should be remembered that in periods where there is a continuing
high SPE, isolation results may be of limited value as they rely on an invalid
model. This is the case for a large section of the adaptive PCA results. Variable
‘contributions’ to SPE are the individual squared deviations of each variable
from the model hyperplane. The contribution plots here are modified to norm-
alise the proportion of each variable falling in the noise subspace. This is useful
when isolation is performed based on SPE alone (without T2).

Contributions were calculated for two samples corresponding to SPE peaks of
AdMSPCA (Figure D.6) . The earlier time was chosen to avoid the large spike
described above. Such gross phenomena are generally evident in the raw data so
sophisticated isolation procedures are of less interest. The contributions illus-
trated should then pertain to slower underlying variations, visible in the lower
scales of AAMSPCA. Both methods show that Infl NH4 (7) and Turb (11) were
significant at 1750, then Turb and Effl pH (12) at 1760. Adaptive PCA addi-
tionally showed Infl pH (8) and Flow (9) as significant at both times, although
pH only marginally so at 1760. AAMSPCA showed no additional variables to
be significant at either time. Inspection of the raw data suggests that the change
in Effl pH does not occur until after 1750, as suggested by AAMSPCA. On the
other hand, there is a large, step-like change in both Flow and Infl pH at 1750.
These correspond better to the results of adaptive PCA than of AAMSPCA. The
regular periodic pattern in Flow does not recommence until some time later, so
it is reasonable that adaptive PCA still indicates it to be important at 1760. The
importance of Infl Ammonia is not clear from examination of the variable in
isolation; however, it is likely that there is a genuine reason for this, given both
methods isolated it. Such problems of verifying results are common when using
these multivariate monitoring methods to real data, about which little is known.
Simulations or detailed, well-equipped pilot studies are often the only realistic
means of acquiring appropriate data for comprehensive testing and verification.
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SPEs at 1750 (left) and 1760 (right).

Conclusions

A new algorithm, AAMSPCA, was developed and applied to WWT measure-
ments. It combines elements of adaptive PCA and MSPCA, in order to mon-
itor evolving processes with a wide range of dynamics. Comparison of detection
speeds gave mixed results: AAMSPCA was distinctly faster in one case involving
a slower change, but the results were similar for cases involving faster changes
or spikes. The band-pass nature of the wavelet detail coefficients was reflected
in the tendency of AAMSPCA peaks to match sharp changes in adaptive PCA
SPE. Major qualitative differences between the SPEs of the two algorithms
were attributed to the updating strategy used. Unlike the adaptive PCA model,
AdMSPCA scale models, did not persistently exceed their updating SPFE lim-
its. Significantly different (and perhaps improved) results might therefore be
obtained for either algorithm using more sophisticated updating rules.

While AAMSPCA still provides concise overall SPE and T? statistics for de-
tection, isolation can be more complicated than for adaptive PCA, especially if
contributions by scale and variable are considered simultaneously. A difficulty
common to both algorithms is that changing model directions can diminish
interpretability. However, exploiting these changes for detection and/or isol-
ation might be an interesting direction for future research. Only SPE (not
T?) was used as a detection criterion here because of periodic variation within
the process subspace. This reduced isolation potential, since information was
not available in the process subspace directions. To avoid biasing isolation to-
wards variables contributing mainly to the noise subspace, variables’ contribu-
tions were weighted according to their projections on the process and noise sub-
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spaces. Future research might consider using only SPE for detection, but giving
T? a complementary—possibly qualitative—role in isolation. Non-parametric
confidence limits on scores and residuals are a more sophisticated, but also more

complicated, alternative.
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Addendum

As was pointed out in Chapter 1, the author’s contribution to this paper is
mainly in the idea stage of the work. Thus, implementation, analysis and writ-
ing are attributed to Lennox (Lennox and Rosen; 2001; Lennox; 2001) with
support from the author. However, the paper fits well into the framework of
the thesis and constitutes an ‘ultimate’ algorithm for multivariate wastewater
treatment monitoring (nonlinear relations excepted). Whether it is worth go-
ing this far remains to see. The relatively high complexity of the algorithm must
be weighed against the possible performance improvements.

181



182 Part I - Paper E




Paper E

Supervisory control of wastewater treatment
plants by combining principal component
analysis and fyzzy c-means clustering

C. Rosen and Z. Yuan

Wat. Sci. Tech. 43(7): 147-156, 2000

Abstract: [n this paper a methodology for integrated multivariate monitoring and control
of biological wastewater treatment plants during extreme events is presented. 1o monitor
the process, online dynamic principal component analysis (PCA) is performed on the process
data to extract the principal components that represent the underlying mechanisms of the
process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing
clustering on scores from PCA solves computational problems as well as increases robustness
due to noise attenuation. The class-membership information from FCM is used to derive
adequate control setpoints for the local control loops. The methodology is illustrated by a
simulation study of a biological wastewater treatment plant, on which disturbances of vari-
ous types are imposed. The results show that the methodology can be used to determine and

coordinate control actions in order to shift the control objective and improve the effluent

qualizy.

Keywords: Fuzzy clustering; multivariate monitoring; PCA; setpoint control;
supervisory control; wastewater treatment.
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Introduction

In this paper an approach to an integrated multivariate monitoring and control
system for wastewater treatment operation during extreme events (disturbances)
is proposed. The method is based on multivariate statistics combined with
clustering analysis to determine the operational state of the process. Information
on the operational state is then used to determine appropriate setpoints for
local control loops. The methodology is illustrated by a simulation study of a
biological wastewater treatment plant on which disturbances of various types
are imposed.

Automatic process control is today an important part of the operation of most
biological wastewater treatments plants. The dissolved oxygen concentration is
an example where automatic control has been successfully applied (Olsson and
Newell; 1999). A local control system is typically concerned with a sub-process
(called a unit process) of the whole system. Normally, these unit processes are
controlled using a local feedback loop where the output of the process is meas-
ured and compared with a certain setpoint from which an appropriate control
action is derived. Feed-forward control can also be utilised. Here, the control
action is derived from a model describing the dependency of a process variable
on a manipulative variable. An example is flow-rate proportional control of the
return sludge flow rate.

The low-level control constituted by feedback and feed-forward control is usu-
ally sufficient under normal conditions when the characteristics of the influent
wastewater are reasonably constant. However, as the operational conditions
change, the control setpoints often have to be changed accordingly to obtain
the desired operation. There are some different reasons why a supervisory con-
trol level is needed. Firstly, since the process is broken down into unit processes,
there is a need to coordinate different control actions so that they do not have a
counteractive effect. Secondly, a process may display nonlinear behaviour when
the operational conditions are far from the normal operating point, requiring
changes to control set points. Thirdly, during extreme operational conditions
such as hydraulic shocks or toxicity, the aim of the operation may shift signi-
ficantly. Thus, a higher-level control system is needed to determine the control
setpoints or control structure of the low-level control systems. This level is often
referred to as the supervisory control level.
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Supervisory control of wastewater treatment plants is typically performed by
operators of the plants. That is, they take the responsibility for changing the
control setpoints based on the information extracted from the online instru-
mentation data by an automatic monitoring algorithm or simply by directly
visualising the process data. A natural step towards higher degree of automa-
tion in wastewater treatment plants is to close the loop by an algorithm, which
automatically feeds the control setpoints to the local control loops. This has
not been feasible in the past, but as the number of measured entities increase,
the measurement quality improves and monitoring tools become more sophist-
icated, it is time for a discussion on how automatic supervisory control can be
implemented in wastewater treatment.

Multivariate monitoring and classification

The objectives of process monitoring are to gather data and extract useful in-
formation from the measurements. Process data can be monitored using a wide
range of different monitoring tools. Stochastic process control (SPC)! (see e.g.
Bissel (1994)) is a set of commonly used tools. In SPC, each variable is presen-
ted as a time series to the operator and control and alarm limits are used to
define normal and abnormal operation. Multivariate techniques have become
popular within many industrial fields as they can account for collective effects
and reduce the dimensionality of the monitored data (see e.g. Wise and Galla-
gher (1996b)). Principal component analysis (PCA) and other multivariate stat-
istics (MVYS) based techniques have proven useful for monitoring of wastewater
treatment operation (Rosen and Olsson; 1998; Teppola et al.; 1998a).

The information obtained in the monitoring phase can be used to classify the
current operational state. Knowledge based system or expert systems have been
used with varying success (Davis et al.; 1996). Clustering techniques represent
a different approach. Here, clustered data in the measurement space are said
to represent similar process behaviour. Fuzzy c-means (FCM) clustering has
been used to recognise clusters in wastewater treatment data (Marsili-Libelli and
Miiller; 1996). A combined approach of multivariate statistics and clustering
to wastewater data monitoring can be found in Teppola et al. (1998a). The
approach presented here goes one step further. PCA and FCM are combined

'Should be statistical process control.
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to determine the operational state of the process. The fuzzy information is then
used to derive appropriate setpoints for local control loops in the process.

Principal component analysis

PCA can be described as a method to project a highly dimensional measurement
space onto a space with significantly fewer dimensions. Often, several variables
are highly correlated, since most variables only reflect a few underlying mechan-
isms that drive the process in different ways. This correlation is used in PCA to
represent the underlying mechanisms as principal components (PCs). Let X be
an autoscaled (i.e. mean-centred and scaled to unit variance) [m X n| matrix of
measurement values for 7 variables at m number of samples defining a variable
space of  dimensions. The r-dimensional matrix X can be decomposed into a
sum of the outer product of vectors t (scores) and p (loadings):

X = tip] +t2p3 +... +tep T +E
or
X = TP'+E (E.1)
where E is the residual matrix and ar. If @ = r then E = 0, as all vari-

ability is described. However, if @ < 7, i.e. less PCs than original variables
are retained, then E describes the variability not described by TP, Ideally,
when a is chosen adequately, TP describes the underlying mechanisms and
E represents the noise in matrix X. Often, in industrial systems a << r,
which implies a significant reduction of the number of dimensions (Wise and

Gallagher; 1996Db).

PCA in its simplest form is a static modelling technique. However, there are
ways to incorporate dynamics in the model, by including old measurement
values in the analysis. The matrix X is then constructed as:

X = X, X1 ... X5 (E.2)

where Xj;,_; means matrix X}, translated [ steps back in time. In this way,
dynamic relationships between variables can be modelled.
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The basic way of using PCA for monitoring involves identification of a model
from data representing normal or desired operation. New data is then projected
onto the model and the scores and/or the model residuals are then monitored
as new samples are obtained:

ty, = x;xP (E.3)

It is important to note that new data are scaled in the same manner as data used
for identification. Other available MVS-based methods include adaptive PCA
(Wold; 1994; Dayal and MacGregor; 1997a), principal component regression
(PCR) and projection to latent structures (PLS) (see e.g. Wise and Gallagher
(1996b)).

Fuzzy c-means clustering

Fuzzy c-means (FCM) clustering is a method that allows a certain instance to be
member of several classes at the same time, i.e. it is possible to be between two
or more classes. Assuming that the cluster centres are known, the membership
u to a certain cluster (class) ¢ of an instance at time k can be calculated by:

-1

i\
up; = Z() (E.4)

d
j=1 k,j

where C' is the number of classes and dj; and dy,; are the distances from
the instance to the centres of clusters ¢ and j, respectively. The parameter m
determines the fuzziness of the classification. An m that is close to unity yields a
crisp classification, whereas an increasing m makes the classification fuzzy. The
distances can be calculated as:

d%,z’ = (tp —v) (tp — ’Uz‘)T (E.5)

where t;, is the instance and v; is the cluster centre. The cluster centre can be
determined manually. However, FCM is an unsupervised method, i.e. it can be
used to find clusters in data. This is done iteratively for all instances N using
(E.6) to find a minimum:

N

C
I Z (uk;) (E.0)

=1 k=1
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Figure E.1: Supervisory control by combining PCA, FCM and setpoint deter-
mination.

The cluster centres are calculated from:

v = Dy (k)" (E.7)

Zgﬂ (Uk:z)m

The algorithm described above assumes that process data do not change signific-
antly during the period of interest. Algorithms for adaptive FCM can be found
in the literature (Marsili-Libelli and Miiller; 1996; Teppola et al.; 1998a)and
will not be discussed here.

Supervisory control by combining PCA and FCM

In this paper an approach to automatically determine controller set points (su-
pervisory control) by means of combining PCA and FCM is proposed. This
means that measurement data are projected as scores onto a smaller space defined
by the principal components. Then, clustering analysis is carried out to locate
the process in this space and, thus, determine the current operational state. This
procedure has some advantages. Firstly, a reduced space through PCA implies
reduced computational time for clustering analysis since the dimensionality of
the problem is reduced. This is particularly beneficial for complex problems.
Secondly, only variations represented by the model is projected as scores. Thus,
measurement and process noise are, at least in the ideal case, not present in
the scores. This means less misclassifications and more robust setpoint deter-
mination. Thirdly, the convergence of the clustering algorithm is improved,
as the scores are orthogonal. Teppola et al. (1998a) have reported convergence
problem in the clustering algorithm with highly collinear data. The supervisory
control scheme is shown in Figure E.1.
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To translate the class membership to a control output or a setpoint, the classi-
fication need to be defuzzified. The centre of area method is adopted here. The
setpoint corresponding to a certain class is multiplied with the membership
function for that class:

spr = Ziuk,iSPi
Zz‘ Uk,i

Thus, the final setpoint, spy, is calculated from the setpoints for all classes.

(E.8)

Compared to the simple approach in which the class with the highest member-
ship function is chosen, the centre of area approach utilises the fuzzy inform-
ation on the class memberships. It is worth noting that when FCM is used,
the denominator in Equation E.8 is always unity. The setpoint for each class,
sp; can be predefined, which is the case in this work, or derived using models
containing process knowledge.

Case study: extreme event control

A simulation case study with application to wastewater treatment operation is
reported here. In this study, a supervisory control component is designed to co-
ordinate a couple of local control loops. The control objective is to protect the
process under extreme conditions and, whenever possible, improve the effluent
quality. The primary objectives of the study are to illustrate the proposed meth-
odology and to evaluate its applicability to wastewater treatment operation.

Simulated plant

The simulated plant comprises two biological reactors and a secondary settler
(Figure E.2). Both reactors are aerated and, consequently, only carbon reduc-
tion and nitrification are of interest. The controlled variables considered in
the design of the supervisory control system include dissolved oxygen (DO)-
concentrations in both reactors, influent feed ratio between the two reactors and
sludge-blanket level in the settler. The latter is controlled by manipulating the
return-sludge flow rate. The IAWQ Activated Sludge Model No 1 (Henze et al.;
1987) and a ten-layer one-dimensional settler model (Takdcs et al.; 1991), are
used to simulate the biological reactions and the settling process, respectively.
Influent data developed by a working group on benchmarking of wastewater
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Figure E.2: Principal layout of the simulated plant.

treatment plants within the European scientific research exchange programme
COST 624 are used in the simulation (Vanhooren and Nguyen; 1996). The
principal layout of the simulated plant is shown in Figure E.2, together with
important physical dimensions.

Monitoring algorithm and local control systems
The integrated control system consists of a number of different elements:

e monitoring of the influent water characteristics including flow rate, am-
monia and suspended solids (SS) concentration measurements with a
sampling rate of 4 hl;

o classification of the present operational state into one out of five different
states;

o determination of setpoints using the newly proposed strategies (see be-
low);

e alocal control loop for the sludge-blanket level by means of return-sludge
flow rate; local control loops for the DO-concentrations in the two re-
actors and a local control loop for the step-feed. The latter two control
loops are assumed to be ideal, and hence their dynamics is not simulated.

In COST data there are three extreme events present: storm with sewer flush-
out, i.e. high flow rate with high concentration of SS, storm with dilution
and rain, also with diluted water. In addition to these disturbances an extreme
ammonia load disturbance is included to mimic events that may occur in sys-
tems with anaerobic sludge treatment. Five operational states were defined ac-



191

20

10}

-10 -5 0 5 10 15 20 25 30

Figure E.3: Clusters with cluster centres, representing the five different opera-
tional states. Normal conditions (1), storm with sewer flush-out (2),
storm (3), rain (4) and extreme ammonia load (5).

cordingly: normal operation, storm with sewer flush out, storm, rain and high
ammonia load.

A dynamic PCA model (see Eq. (2)), including one time-lagged value for each
variable, is identified from influent data representing normal operation. From
the PCA, three principal components are used to classify the operational state
by means of FCM clustering. For each defined disturbance, a training data
set is constructed with similar disturbances to those of original COST data.
Each training data set is projected onto the PCA model and two clusters are
identified using FCM: normal and extreme event, resulting in a total of eight
clusters. The clusters representing normal conditions coincide and, thus, five
distinctive clusters are obtained. These five clusters with cluster centres are
shown in Figure E.3. Look-up tables with predefined setpoints are used to
determine the setpoints for each operational state. Two values on m in (5) are
evaluated: m = 1.01, which corresponds to a crisp (non-fuzzy) classification
and m = 1.4, which yields a fuzzy classification.
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Supervisory control strategies

A control strategy has been developed for each operational state. Each event

strategy represent a shift in control objective from that of the normal operation.

1.

Normal operation strategy. During normal operation, the sludge-blanket
level is controlled to 0.68 m. DO-concentrations are 1.0 mg/l in both
reactors and 100 % of the influent flow is directed to the first reactor.

. Storm/flush-event strategy. During flush-out, the sludge-blanket setpoint

is raised to 2.0 m to lower the hydraulic load to the settler. Influent flow
is directed to the first reactor.

. Storm strategy. The strategy during storm events is to raise the sludge-

blanket setpoint (1.5 m) for the same reason as mentioned above. The
influent flow is redirected to the second reactor. In this way, sludge is
accumulated in the first reactor with lower sludge load to the settler as a
result. The idea is that this decreases the sludge loss to the effluent. The
DO-concentration is lowered to 0.1 mg/l in the first reactor and raised
to 2.0 mg/l in the second.

. Rain strategy. The rain event strategy is similar to the storm strategy. The

sludge-blanket setpoint is set to 1.0 m.

. Extreme ammonia load strategy. The strategy during high ammonia

load is to lower the sludge-blanket setpoint (0.2 m) in order to get a
higher concentration of biomass in the reactors. The setpoint for the
DO-concentrations is raised to 3.0 and 2.0 mg/l in the first and second
reactor, respectively. 100 % of the influent flow is directed to the first
reactor.

A reference control case is defined to evaluate the performance of the controlled

case. The return-sludge flow rate is proportionally controlled to 80 % of in-
fluent flow rate. This rate yields the same sludge-blanket height as for the
controlled case during normal operation. The excess sludge removal rate is

controlled so that the reference and controlled case has the same sludge age.

The DO-concentration is kept constant at 1 mg/l and no step feed is utilised.
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Figure E.4: Detection and classification of the extreme ammonia load. Fuzzy
(top) and crisp (bottom) classification with m = 1.4 and m = 1.01,
respectively.

Results and discussion

The results of the simulation study are discussed from two separate viewpoints:
performance of the monitoring and control system and performance of the pro-
cess.

Monitoring and control system

The main objective for the supervisory control system is to identify disturbances
and to change the setpoints accordingly. Detection and an accurate classification
are achieved during all disturbances. It is worth noting that the fuzzy classific-
ation (m = 1.4) could detect a disturbance earlier and change the setpoints
accordingly (Figure E.4). Another advantage with the fuzzy classification is that
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Figure E.5: Fuzzy classification during normal operation (top). During peak load,
the state is classified between class 1 and 5, resulting in a varying DO-
concentration (bottom).

the DO setpoints were changed during ammonia peak loads, even though the
operational state is considered normal (Figure E.5). The fuzzy information also
resulted in a smoother control with less saturation of control signals.

In Figure E.6 the differences between the crisp and the fuzzy classification for
generating setpoints for the sludge blanket level are shown. The gradual trans-
ition between two operational states implies a smoother setpoint change and,
consequently, a smoother change in the manipulated variable, the return-sludge
flow rate (Figure E.7). This has the advantage that hydraulic shocks are not
introduced by the control system and that unnecessary wear on mechanical
equipment is avoided.



195

2
— crisp
- fuz
15F d B
1+ _ T I
05 1 1 1 1 1
36.2 36.3 36.4 36.5 36.6 36.7 36.8

time (days)

Figure E.6: Setpoints for the sludge-blanket level at the start of the rain event
using crisp and fuzzy classification.
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Figure E.7: Resulting return-sludge flow rate at the start of the rain event using
crisp and fuzzy classification from Figure E.6.
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Figure E.8: Effluent ammonia concentration during high ammonia load (top),
storm events (middle) and rain event (bottom). controlled case (—),
reference case(--)

Process performance

It can be seen from Figure E.8 that the controlled (according to the proposed
method) case yielded lower or as low effluent ammonia for the period of high
ammonia load, but higher effluent concentrations during the periods of storms
and rain. This is in compliance with the shift in the control objective-from
carbon reduction and nitrification to prevention of sludge loss. This strategy
shift is visible in the effluent SS concentrations (Figure E.9). During the high
ammonia load period, the effluent SS is in parity with the reference case, but
during storm and rain periods, the effluent SS is decreased compared to the
reference case.

It is important to note that the case study is carried out mainly to illustrate the
applicability of the integrated monitoring and control strategy to wastewater
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Figure E.9: Effluent SS concentration during high ammonia load (top), storm
events (middle) and rain event (bottom). controlled case (—),
reference case(--)

treatment processes. There are a number of possible improvements. For in-
stance, only influent data are used to monitor and classify the operational state.
There is more information to gain from including process measurements in the
analysis. Moreover, PCA-based monitoring as presented here cannot handle
changing process conditions. That is, the mean and variance of data have to
be approximately constant over longer periods of time. Also, no consideration
is taken to the fact that events occur in different time scales. There are solu-
tions to these problems and they are discussed in Rosen and Lennox (2001).
Another important improvement could be to incorporate the nonlinear process
behaviour in the monitoring model. This can be done by pre-processing of data
or by using nonlinear projection methods (Zhang et al.; 1997).

An issue that has not been addressed here is the ratio between the sampling/
updating time of the low-level controllers and the supervisory control scheme.
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Supervisory control together with low-level controllers can be seen as cascade
control. This means that the outer control loop (supervisory control) must have
considerably slower dynamics than the inner loop (low-level control) to avoid
oscillatory or unstable behaviour in the system. In this work, a sample/update
rate of 4 h™! was used for the supervisory control. This is perhaps too short
in most real systems, especially if sludge dynamics are included. Therefore, in
the general case the supervisory control may have to be separated into several
levels with decreasing sampling/update rate depending on the dynamics of the
controlled variables.

No strong conclusions with regard to the impact of the supervisory control
system on the performance of the plant can be drawn from this preliminary
study. However, the study indicates that the approach to supervisory control
proposed in this work may be used to coordinate local control loops and to
determine appropriate setpoints for the current operational state.

Conclusions

In this paper an approach to automatic supervisory control of wastewater treat-
ment operation is proposed. By integrating online monitoring and control, ap-
propriate low-level controller setpoint and structures for the current operational
state of the process can be determined. The simulation study indicates that the
proposed approach to automatic supervisory control is applicable to wastewater
treatment operation. Principal component analysis (PCA) is a powerful method
to extract relevant information from measurement data since it is capable of rep-
resenting the underlying mechanisms by means of principal components (PCs).
Fuzzy c-means (FCM) can be used to classify the operational state of the process
and this is preferably done in the PC-space. A comparison of a fuzzy and crisp
classification shows that fuzzy classification gives faster detection and smoother
control than crisp classification.
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Addendum

The return sludge flow rate controller deserves some further explanation. The
controller comprises one feed-forward component and two feedback loops: one
of which corrects the control error, the other imposes an upper limit on the
sludge retention time in the settler (SRT%S) to prevent excessive denitrification
or phosphorus release from taking place in the settler (Figure E.10).

When the load to a settler increases, (Q;.c¢ needs to be increased to maintain
the sludge blanket height (SBH) at the setpoint, leading to the design of the

following feed-forward control law:

Qret,ff = krrQin

where (et f7 is the return sludge flow rate, Q)i is the influent flow rate and
K is the feed-forward gain. k¢ is also determined by the supervisory control-
ler and is, consequently, a function of the current operational state. A propor-
tional feedback controller,

Qret,fp = kpo (SBHgp — SBH)

is used to reduce the control error that is produced by the feed-forward control-
ler.

Assuming that the maximum allowable SRT'WS is SRT4Sz, the sludge re-
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turn flow rate (Qret) should satisfy,

Qret > Qret,SRTiS
0 | SBHA/X s,ave
ret,SRTiS SRTiSmazXret

where A; is the sectional area of the settler, X 4ve is the average solids con-
centration below the sludge blanket and X, is the solids concentration in the
recycled sludge. Thus, in this work, the X, ¢ is assumed to be measured or
estimated.

The controller is also used in Yuan et al. (2001a). However, some changes are
introduced to improve the performance. An increasing ()re; causes a dilution
of the recycled sludge, reducing the effectiveness of (¢ in maintaining the
sludge blanket height at the setpoint. Therefore, ks is designed as shown in
Figure E.11, i.e. kg is a function of Qin. Ky, the feed-forward gain for
Qin = Qin,ave (the average dry weather influent flow rate), is designed so
that the controller is able to maintain the sludge blanket at the ordinary SBH
setpoint without the presence of the error correction feedback loop. Slope a is
chosen large enough such that,

a negative control error (i.e. SBHy, < SBH) is produced for the
feedback loop to correct, when Qin < Qinf,ave> so that the controlled
SBH will be higher than the setpoint;

a positive control error (i.e. SBH,, > SBH) is produced for the feed-
back loop to correct, when Qir, > Qinf,ave> so that the controlled SBH
be lower than the setpoint.

In dry weather, the nitrogen load is typically in phase with the hydraulic load.
Then the above feed-forward controller, together with an appropriately de-
signed feedback controller (see below), will result in a desirable variation of
the sludge inventory in the settler so that both nitrification and denitrification
are enhanced (Yuan et al.; 2001a). Moreover, if ()i, could be measured up-
stream from the treatment plant (e.g. one hour before it arrives at the treatment
system), the feed-forward controller would have time to react in advance so that
the sludge is recycled to the reactor before the high load arrives.
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Figure E.10: Sludge return control system structure.

\j

Qin,ave Qin
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A framework for extreme-event control in
wastewater treatment

C. Rosen, M. Larsson, U. Jeppsson and Z. Yuan
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Abstract:  In this paper an approach to extreme event control in wastewater treatment
plant operation by use of automatic supervisory control is discussed. The framework presen-
ted is based on the fact that different operational conditions manifest themselves as clusters
in a multivariate measurement space. These clusters are identified and linked to specific and
corresponding events by use of principal component analysis and fuzzy c-means clustering. A
reduced system model is assigned ro each type of extreme event and used to calculate appropri-
ate local controller setpoints. In earlier work we have shown that this approach is applicable
to wastewater treatment control using look-up tables to determine current setpoints. In this
work we focus on the automatic determination of appropriate setpoints by use of steady-state
and dynamic predictions. The performance of a relatively simple steady-state supervisory
controller is compared with that of a model predictive supervisory controller. Also, a look-up
table approach is included in the comparison, as it provides a simple and robust alternative
to the steady-state and model predictive controllers. The methodology is illustrated in a sim-
ulation study.

Keywords: Model predictive control; principal component analysis; supervisory
control; wastewater.
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Introduction

Operation of wastewater treatment plants has become increasingly automated
during the last decades. This has been made possible due to a significant in-
crease in the number of process variables that can be reliably measured online
together with an increased knowledge of the biochemical processes. Today, there
are automatically controlled aeration, return-sludge pumping and internal ni-
trate recirculation to mention a few simple examples (Olsson and Newell; 1999;
Yuan et al.; 2001b). In addition to a process control system, there is normally
a system for process surveillance or monitoring. Generally, different regions in
the multidimensional process space constituted by process measurements rep-
resent different operational conditions of the treatment system. By recognising
these regions, by means of multivariate process monitoring and linking them
to certain operational states, the current operational state can be classified using
online measurement data. Normally, there is an operating region in which the
process is considered to be normal or in-control. Within this region no, or lim-
ited, corrections of the local controllers are needed. However, during extreme
events, control strategies completely different from those carried out during the
in-control case may be necessary to meet the requirements on effluent quality
or process safety.

To work out strategies for the operation and determine setpoints for local con-
trollers is often referred to as supervisory control. In most plants the operators
or process engineers carry out the supervisory control. However, a step towards
more automated operation is to automatically determine the operational state
and derive appropriate control actions based on the monitoring information.
In Rosen and Yuan (2000) an approach to integrate monitoring and control to
form an automatic supervisory control scheme is presented (Figure E1). Prin-
cipal component analysis (PCA), e.g. Piovoso and Kosanovich (1994), is com-
bined with Fuzzy C-Means (FCM) clustering, e.g. Marsili-Libelli and Miiller
(1996), to identify clusters and classify the current operational state in an ortho-
gonal space of reduced dimensionality compared to the original measurement
space. The work focuses on the monitoring/classification task, and the setpoint
determination is limited to an a priori defined control sequence designed to
drive the process back to its normal state and to decrease the negative effects of
the disturbance. In this paper, model-based alternatives to predefined control
sequences (rule based or look-up tables) are discussed. These alternatives are
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Figure F.1: The structure of the supervisory control system.

based on a reduced system model that is used to derive the control sequence
either by steady-state control (SSC) or by predicting the effects and optimising
the control actions according to a loss function, i.e. model predictive con-
trol (MPC). This work, together with the work presented in Rosen and Yuan
(2000), aims at describing a framework for extreme event control in wastewater
treatment operation. In this work, normal operational control is not considered.
Thus, when the process is considered to be in the normal state, the controller
set points are set to predefined values. This is, however, a task that could be
handled within the presented framework as yet another setpoint determination
model. Supervisory control by use of inverse PCA during normal operational
conditions has been suggested in Rosen and Jeppsson (2001a).

The paper is organised as follows: First, the extreme event control scheme is
described. This is followed by a description and definition of a simulation
case study of high ammonia load control. The results of the study are then
presented, together with a discussion and comparison of different methods for
controller setpoint determination. The paper is concluded with a summary and
a discussion on future research.

Extreme event control scheme
Dimension reduction and classification of current operational state

The classification of operational states by use of a combination of PCA and
FCM clustering has been described earlier (Rosen and Yuan; 2000). The ap-
proach is based on the fact that different operational states (caused by disturb-
ances) generally manifest themselves as clusters in a space defined by the online
measurements. However, with a high number of measured and monitored vari-
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ables, the measurement space will be high-dimensional. To allow for robust
classification, a multivariate analysis technique is used to reduce the dimension-
ality and to decrease the noise level. In the reduced space, clusters representing
normal operation as well as different disturbance types are defined using cluster-
ing techniques. As new samples are collected, the clustering algorithm classifies
the current operational state.

Setpoint determination

When the current operational state is known, the setpoint can be determined
in various ways. In Rosen and Yuan (2000) look-up tables with a set of pre-
defined setpoints were used. In this paper the method is refined to compute
the setpoints using steady-state and dynamic predictions from a reduced system
model.

To use an all-embracing model, such as the ASM1 (Henze et al.; 1987), for
the dynamic prediction is difficult due to the large number of parameters that
need to be identified and updated and several non-measurable states. Instead,
the information on the operational state is used to select a reduced-order model
(Jeppsson; 1996) tailored to suit the type of disturbance currently encountered.
This can be justified since different disturbances affect the process in different
ways. Some disturbances affect the slow dynamics of the process, whereas others
affect the fast. This makes it possible to decouple the system and use simplified
models to describe the effects of each disturbance. The decoupling is generally
temporal, which implies that the prediction horizon may vary for different types
of disturbances. In some cases a static model is adequate to assess the effects of
a certain disturbance. In many other cases, however, a dynamic approach may
be required.

Look-up table. The look-up table is a set of pre-defined set points for each type
of disturbance. When a disturbance is detected and classified, the values in the
table are used until the classification results in normal (or another) type of oper-
ation. In this approach, no consideration is taken to the specific current process
knowledge obtained by measurements and, thus, the controller setpoints need
to be set so that a "safety margin" is obtained. This may lead to extreme control-
ler setpoints and, consequently, often high operational costs, but the method is
appealing due to its robustness and simplicity.
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Steady-State Control (SSC). In this approach, a reduced model of the system
is linearised at the current operational point at each sample. The linear ap-
proximation of the reduced model can be expressed in state-space form. If the
derivatives of the state-space model are set to zero, the steady-state relation-
ships between inputs (setpoints for locally controlled variables), «, and outputs,
y, can be computed. Then, the inverse relationship yields the control change
needed to reach a desired output. Assuming a setpoint, y,, for output variable
1, the SSC control vector, u, for the linearised model is calculated as:

o= Wl — (CA*B)T (yr —y)Q (E1)

where A, B and C are the model matrices in a state-space representation and ()
denotes the pseudo inverse and u* and u" are the calculated and current con-
trol states, respectively. It should be pointed out that the inverse relationship is
not always attainable. However, in this application the inverse relationship can
generally be computed. The calculated control action may be overly aggressive,
since it is based on a steady-state assumption. Therefore, a relaxation factor can
be employed so that only a fraction of the calculated control input is imple-
mented (Piovoso and Kosanovich; 1994). Here the factor is implemented as a
diagonal matrix, @), to be able to differentiate between control actions required
to meet the respective output setpoint. Apart from the obvious limitation of
SSC to account for process dynamics, another limitation must be mentioned;
SSC does not handle limits put on the control signals. This may lead to loss of
controllability when the controller yields non-applicable control actions.

Model Predictive Control (MPC). The principle of MPC (e.g. Morari and Lee
(1999) and Camacho and Bordons (1999)) is that a system model is used to
predict the future output trajectories for a set of possible control inputs (Figure
E2). The initial state of the system model is the current process state including
estimated state variables, control variables and disturbances (if measurable or
possible to estimate). A cost function is defined based on the deviation of each
predicted trajectory from the desired trajectory. The optimal control sequence,
in the sense that it minimises the cost function, is then obtained by solving the
optimisation problem online each time a new control output is to be determ-
ined. The optimisation is carried out in the control variable space limited by
the available control region and, thus, MPC can take controller limitations into
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Figure FE.2: Principle of model predictive control.

account. The cost function is expressed as:

t* 4t
Tha) = [ [o-wT@w-u+
b
(u+ — uO)TR1 (u+ — uo) +
(u+ — umm)T Ry (u+ — umm)} dt (E2)

where § = f(t,z*,u") is the predicted output trajectory using information
up to time , with piecewise constant control sequence u™ during the predic-
tion interval. y, is the reference trajectory, uY is the current control state and
Q), R and Ry are the weighting matrices for output errors, control variations
and absolute control outputs, respectively. R is used to penalise the changes in
the control output to obtain a smoother control signal, whereas I3 is used to
penalise the absolute control cost. This is useful in achieving a balance between
effluent quality and operational costs. MPC has been applied to many applic-
ations, from chemical industry (Garcia et al.; 1989) and power distribution
(Larsson et al.; 2000) to wastewater treatment (Weijers; 2000). Here, linearised
models are used to find the optimal control vector. However, nonlinear MPC
can also be used at the cost of more computationally intense solutions.
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Control Scheme

Before the calculated setpoints are applied on the local controllers, they are
weighted according to the membership function from the classification stage
(the defuzzification step in Figure E1). Thus, the controller setpoints are, thus,
the weighted sum of the results of more than one setpoint determination model.
This means that the crispness of the classification is important so that seamless
transitions between setpoints are obtained.

Case study: extreme ammonia load control

A simulation case study with application to wastewater treatment operation is
reported below. In this study, a supervisory control component is designed to
coordinate local control loops. The control objective is to minimise effluent
ammonia concentration given an ammonia load disturbance and, if possible,
operational costs. The primary objectives of the study are to illustrate the pro-
posed methodology and to evaluate its applicability to wastewater treatment
operation.

Simulated plant

The simulated plant is based on the benchmark model developed within the
cooperation of COST action 624 (Pons et al.; 1999). All model and physical
parameter values are chosen according to the official benchmark model, and the
configuration is illustrated in Figure F.3. High ammonia load is chosen as the
disturbance for this study. This is a fast disturbance in the range of hours to
one day and mimics a hypothetical increase in the ammonia load caused by, for
instance, a temporary discharge. The disturbance was introduced into the influ-
ent data file for dry weather conditions designed within the COST benchmark
programme. To make the detection task challenging, the disturbance is located
in time so that it coincides with the normal diurnal influent ammonia peak (see
Figure F4 in the Results and discussion).
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Figure F.3: Simulated plant configuration.

Reduced model for nitrogen control

The reduced system model given in the appendix is implemented as a three-
reactor model-one anoxic, one anoxic/aerobic and one aerobic reactor. No set-
tler was modelled, since only soluble states are considered. Controlled vari-
ables are the dissolved oxygen (DO) levels in reactors 2-5 (where reactors 3-5
are given the same value), internal recirculation flow rate (@Qyec) and carbon
addition flow rate into reactor 1 (Q¢). To ensure the plant is operated as a
pre-denitrification plant and avoid unrealistic control outputs, minimum and
maximum levels are defined for each controlled variable (Table E1).

One important factor in developing a reduced model is to minimise the num-
ber of parameters that need to be identified in a real application. Also, the
number of states that has to be estimated should be kept at a minimum. The
aim of the model is to represent dynamics in a time constant range of hours to
one day, which implies that a number of states, normally seen in ASM models
such as ASM1, can be omitted from the model. The result is a model with
three states in each modelled reactor: readily biodegradable substrate, Sg, ni-
trate/nitrite, Sy©, and ammonium/ammonia, Sy g. The model assumes that
total suspended solids, T'S'S, are constant for the prediction interval and that

Controlled variable Minimum value = Maximum value

DO in reactor 1 0 mg/l 2 mg/l

DO in reactors 3-5 1 mg/l 4 mg/l

Qree 1 x 18466 m3/d 5.4 x 18466 m>/d
Qc 0 m3/d 10 m3/d

Table F.1: Controlled variables and their limits.
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dissolved oxygen, So, changes instantaneously. This is a fair assumption, since
T'SS changes slowly compared to the frequencies of interest and Sp can be
considered controlled by local controllers.

State estimation

It is assumed that Sy can be measured in reactors 1 and 5 and that Sy g
is measured in the influent and reactor 5. These measurements are used to
update the reduced model states for nitrate and ammonia. The remaining states
and influent concentrations are roughly estimated based on mass balances and
empirical knowledge (see appendix). The influent estimates are based on the
fact that the correlation between influent S and Sy g is strong in the COST
influent data. This is certainly not as clear-cut in real data. However, it is not
unrealistic to assume that some correlation exists and that this, together with
other measurements, may constitute a basis for influent Sg-estimation. TSS
and So are assumed measurable, whereas the model parameters listed in Table
E3 in the appendix are assumed known.

Controller parameters

Apart from the model parameters, a number of controller parameters need to be
set. Firstly, the effluent nitrate and ammonia setpoints, used for both the SSC
and the MPC, are set to slightly lower values than those obtained during normal
operation. This implies Sy, ref = 1 mg/l and Sno ref = 11 mg/l. For the
SSC, the relaxation factor in Equation 1 is set to Qgsc = diag[0.07 0.3], i.e.
outputs are weighted so that emphasis is put on keeping the effluent ammonia
concentration low. For MPC, QMPC is set to Qarpc = diag[0.5 2.0] for
the same reasons. R; = diag[l 1 1 1] to reduce too fast controller setpoint
changes. Ry = diag[0.75 0.5 0.375 0.0625] with the values set to reflect
the costs of QC, DOs, DO3_5 and Qrec, respectively. However, since neither
the look-up table nor the SSC strategies incorporate cost penalties, a simula-
tion with Ry = 0 is carried out for comparison reasons. The MPC prediction
horizon used is 40 samples, that is 5 hours, which is adequate for most of the ni-
trogen dynamics to settle. The control horizon is set to 3 samples or 45 minutes,
which is a compromise between flexibility and computational time. The MPC
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Figure F.4: Influent ammonia disturbance. There are similar, but not as domin-
ant, disturbances in influent Sg, Xg, X7, Xp, Syp and Xnp.

is implemented in a standard way according textbooks on model predictive con-
trol. Crisp classification was used in order to simplify the comparison between
the different methods.

Results and discussion

Simulation results

The plant is simulated during 15 days prior to the ammonia disturbance using
dry weather influent data to achieve quasi-steady state conditions. The normal
operation setpoints are set to be Q¢ = 2, DOy = 1, DO3_5 = 1.5 and
Qrec = 3.5. The disturbance is introduced at day 15.4, and if no changes are
made to the controller setpoints the result can be seen in Figure E5. It is clear
that the disturbance has a significant effect on the effluent quality of the plant.

Look-up table. The look-up table values for the ammonia load disturbance is
set to the maximum for each control variable (see Table E1). Looking at the
effluent concentrations during the disturbance event (Figure E6), it is evident
that the look-up table approach decreases the effluent nitrogen discharge com-
pared to the constant control case. The effluent ammonia concentration does
not exceed 10 mg/l. However, the cost is high in terms of energy and carbon
consumption. An interesting observation is that at the end of the disturbance
event, the look-up table yields far too high controller setpoints. This is due to
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Figure E.5: Effects of the high ammonia load disturbance entering the plant at
day 15.4. The setpoints are kept at the same values as for normal
operation.

that the detection algorithm is somewhat slow to detect that the operational
state has returned to normal. This can be considered as a failure of the detec-
tion algorithm, but as will be seen later, this failure has only minor impact on
the two model-based controllers as both use updated information. Hence, the
look-up table approach is more sensitive to accurate state classification.

SSC. According to Figure E7, the SSC attenuates the disturbance. Here, it can
clearly be seen that the control signals change during the disturbance event as
the steady-state model is continuously updated. This is especially evident for
the aeration of the second reactor, which is set to zero during the period of
lower influent ammonia load around day 15.8. Also the internal recirculation
flow rate changes during the course of the event. The continuous updating,
however, implies that the model will always be one step behind, since it assumes
that the conditions will stay constant at each updating instance. The effluent
concentrations are kept at reasonable levels and the operational cost is lower
than in the look-up table case.

MPC. The MPC also suffers from the problem of being one step behind and
the performance is similar to that of SSC (Figure E8). However, the peaks
in ammonia concentration are lower resulting in a lower discharge of nitrogen
and the effluent nitrate concentration also displays a somewhat calmer beha-
viour. Except for the external carbon addition, the MPC yields lower control
setpoints. In Figure E9, the behaviour of the weighted MPC is displayed. Here,
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Figure E.8: Set-points determined by MPC without weights on u.
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Figure E.9: Set-points determined by MPC with weights on u.
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Variable No Look-up SSC MPC, MPC,
(cost) change table Ri=0 R;{#0
Sno 1 0.74 0.78 0.77 0.86
SNH 1 0.64 0.69 0.67 0.88
Kra 1 1.36 1.33 1.14 1.06
Qrec 1 1.22 0.90 0.74 0.86
Qc 1 3.03 248 2.50 1.38
Syo+Sng 1 0.72 0.76 0.75 0.86

Table E.2: Relative discharges/costs for the different setpoint determination meth-

ods.

the control set points are considerably lower as a compromise between discharge
levels and costs is obtained. The difference between the weighted and the non-
weighted MPC clearly indicates how the weighting matrices can be tuned so
that a desired balance between cost and effluent discharge can be obtained.

Comparison

It is not obvious from the plots in Figures E6-E.8 which setpoint determination
method yields the best result. By investigating the integral of each variable
during a time period, a clearer picture on the efficiency of each method can
be obtained. In Table F.2, the numbers show the nitrogen discharge, total air
added to the system (in terms of K a), external carbon addition and internal
recirculation during the period from day 15.4 to 17 relative to the reference case
(no changes in the setpoints). As expected, the look-up table yields the least ef-
fluent discharge of dissolved nitrogen, but at a high cost. A bit surprising is that
the relatively simple SSC approach yields almost as good results as the MPC.
However, SSC does not have the advantage of being able to find a compromise
between effluent discharge and control costs. Even though the total amount of
air as well as external carbon added to the system is lower for the MPC than
SSC, the total ammonia (and nitrate) discharge is lower. This indicates that the
MPC coordinates the control actions more efficiently than SSC.
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Figure F.10: Effluent nitrogen for a number of simulations where the model para-
meters are afflicted with random errors.

Parameter sensitivity

The reduced system model is based on a number of parameters that need to be
identified. This is seldom an easy task and the margin for errors must be con-
sidered to be relatively high. To get an indication on how sensitive the model is
to parameter errors, a number of simulations are carried out where the paramet-
ers are randomly afflicted with errors. All parameter values are independently
given a random normally distributed additive error with a standard deviation
of 0.15 times the parameter value. The result can be seen in Figure F.10 where
MPC was used. It is clear that when the model is used for the extreme event
control discussed here, it is relatively insensitive to parameter errors. The reason
is that during extreme events it is not crucial to obtain exactly the right results.
Instead, it is important that the control gradient, that is the direction of a cer-
tain control contribution, points in the desired direction, since the model is
continuously updated. Similar, or slightly better, results as depicted in Figure
E10 are obtained if the sensitivity of SSC is investigated.

General remarks

Employing a different controller setpoint vector during the high influent am-
monia event, considerably shortens the time during which the system is affected
by the disturbance (compare Figures F.6 and E7-E9). To do this automatic-
ally requires a detection and classification approach that can detect and dis-
cern different disturbances so that the appropriate setpoints can be determined.
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Whether this determination is based on empirical knowledge (such as a look-up
table) or models is a compromise between simplicity and flexibility. Also, it is
important that the determination is robust. The look-up table is simple, but
not flexible and it is sensitive to an incorrect classification. The model-based
approach, however, is flexible but more complex.

In this work the MPC is only implemented in extreme situations. However,
since the reduced system model is there and it needs to be continuously up-
dated, why not use it all the time? This is of course possible if the model covers
all possible operational conditions. Then the monitoring and classification al-
gorithms are used to determine appropriate weighting matrices, i.e. (), R and
Ry. For instance, during normal operational conditions, the aim of the control
may be to minimise the cost provided the requirements on the effluent wa-
ter quality are fulfilled. In an extreme situation, the operational cost is of less
importance and therefore Ry and Ry are reduced or set to zero.

Conclusions and future work

It has been shown that the framework based on operational state classification
combined with model based setpoint determination shows promising results for
supervisory control of wastewater treatment operation during extreme events.
Relatively coarse model reductions, including just a few states and parameters,
can be employed to determine appropriate setpoints. This is possible since the
disturbances are identified and models designed to suit the specific disturbances
are assigned to calculate new controller set points.

Only fast disturbances have been considered here. This is because these are the
ones most crucial to detect and control as fast as possible. Slower disturbances
can also be approached in the same way. However, if there are several temporal
layers in the supervisory control framework, coordination of the local controller
becomes ever so important. Multi-time scale coordination of local controllers
is a challenging problem and a topic for future work. Another interesting area
for further studies is automatic model reduction. Automatic temporal model
reduction would fit well into the framework, and work is currently carried out
in that direction.
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Appendix

Reduced model for nitrogen control

The reaction rates of the reduced model used in the case study presented in this
paper are expressed by:

dSs  _ (ﬁH Ss So
dt Ks + S5 Ko + So
o KSSj Ss KOI(:"OSO KNSZ—OSNO + a) neuTSS (E3)
diljzo - e Kss-i Ss Ko[i-oso Kijj-OSNO neaTSS +
K NHS + S KOSJS 55 1eaTSs (E4)
de]:H - Kmf Fac Kosf 5o 1ealss (ES)

The parameters of the model are assumed to be known from identification or
literature. An explanation of all model parameters as well as their values is given

in Table E3.

Parameter Explanation Value
TH Reaction rate factor for heterotrophs (d ™ D 5.97
TA Reaction rate factor for autotrophs (d 1) 2.08
np Factor for anoxic growth of heterotrophs 0.115
Kg Half-saturation constant for heterotrophs (mg COD d-1) 10.0
Ko Oxygen half-saturation constant (mg COD d ™ D) 0.4
Kno Nitrate half-saturation constant for denitrifying heterotrophs (mg NO-N d ™ B 0.5
KNy Ammonia half-saturation constant for autotrophs (mg NO-N d ™ D) 1.0
NBH Fractionation factor for heterotrophs in T'S'S 0.78
NBA Fractionation factor for autotrophs in T'S'S 0.046
(e Conversion rate factor from heterotrophs to readily biodegradable substrate (d ™ 1 0.225

Table E.3: Explanation and values for the parameters of the reduced system
model.
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State and influent concentration estimates

The estimations of non-measurable states and influent concentrations are based
on simplified mass-balance calculations and correlations between variables:

SNH1

SNH,?2

Sno,2

QinSs.in/V + QcSs.c/V +0.1TSS

(Qin + Qret + Qrec) /V +0.15TSS

25NH,in

2

1

QinSNH,in + (Qret + Qrec) SNu 5
Qin + Qret + Qrec

S'NH,1 — 2502

Sno1+2S02—1.5

(E0)

(E7)
(E8)
(E9)

(E10)

(F11)
(F12)
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Addendum

Parameter sensitivity

It was shown in the paper that the supervisory controller was relatively insens-
itive to parameter errors. The fact that the control objective is to return to
normal process operation is the main reason for this. The SSC is even less
sensitive, which is an important feature of SSC. In Figure E11, the result of the
same manipulation of the parameter values as is done for the MPC in the paper,
is shown using SSC.

20

1502

101

effluent concentrations

time (days)

Figure F.11: Effluent nitrogen concentration for a number of simulations using
SSC where the model parameters are afflicted with random errors
(compare with Figure F.10)
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MPC implementation

It is not obvious from the paper how the MPC is implemented. A full de-
scription of the implementation would be extensive and is outside the scope of
this work. However, there are standard ways to implement linear MPC and
algorithms are included in many application and research software packages.
For the implementation in Paper E MATLAB/SIMULINK and its function
constrrm (or fmincon.m ) are used.

The procedure for MPC can be summarised in a few steps. 1) Before imple-
menting MPC, a process model is needed. Various model structures, describing
the relations between controller outputs and process outputs, may be used. 2)
A cost (or loss) function that relates deviation from the reference value, use of
control, violation of constraints, etc., is determined. 3) At each updating in-
stance, an optimisation is carried out online, using the current state as initial
condition. MPC is often implemented with a control horizon as well as a pre-
diction horizon. Up till the control horizon, each control vector may be varied.
However, between the control horizon and the prediction horizon the control
vectors are kept constant. The control horizon is often limited to just a few up-
dating instances, whereas the prediction horizon is chosen similar to the settling
time of the dominant dynamics. It is evident that a long control horizon makes
the optimisation task computationally demanding. 4) The optimal (in terms of
minimising the cost function) choice of control is applied to the process. At the
next updating instance, steps 3 and 4 are repeated.

MPC is today a standard tool for control engineers and many text books are
available on the subject (e.g. Camacho and Bordons (1999)). Overviews of
MPC can also be found in, e.g. Morari and Lee (1999) and Mayne et al. (2000).

Supervisory controller

The supervisory control structure is not emphasised in the paper. This is in-
stead done in Paper E. If Paper F is read independently of Paper E, it is some-
what unclear how the monitoring/classification part is coupled to the setpoint
determination part. As is described in Paper E, the output of the setpoint deter-
mination is weighted using the membership function obtained from the mon-
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itoring/classification algorithm. In this paper, crisp classification was used to
facilitate comparison between the different setpoint determination strategies,
i.e. look-up tables, SSC and MPC. In a real application, a fuzzy membership
function is probably the most appropriate choice, since it provides seamless
transition between operational states.

Applicability

It is not clear that the dynamic setpoint determination scheme presented in
this paper improves the performance sufficiently to compensate for the large
increase in complexity. It is the author’s opinion that it may be one step too
far, unless there are already models available for other reasons (e.g. simulation
models for process analysis). Moreover, it is probably easier to get acceptance
among operators, if a look-up table based on their own experiences is used.
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Paper G

A chemometric approach to supervisory control
of wastewater treatment operation

C. Rosen and U. Jeppsson

Based on Rosen and Jeppsson (2001b)
J. Chemometr. (submitted).

Abstract: [ this paper, a supervisory controller for wastewater treatment processes is
presented. The controller is a steady-state controller with a PCA model representing the
process. The objective is to control the effluent nitrogen concentration in terms of ammonia
and nitrate from a five reactor activated sludge pre-denitrification plant. A PCA model is
identified from data on a ser of manipulated variables, process variables and one or sev-
eral outputftarget variables. New data are projected onto the model and the difference in the
principal component space between the desired location and the current location is computed.
The control law is expressed in terms of changes in manipulated variables by mapping the
difference in PC-space onto the measurement space. The resulting controller is a multivari-
ate controller with integral action only. To compensate for model errors due to changes in
the controlled process, identification in open loop, nonlinearities and controller saturations,
a compensation term is applied. This term expresses the the difference between the setpoint
and the current location and is implemented in a PI fashion. The fact that the control-
ler only describes the steady-state relationship between the variables may appear disturbing.
From a water recipient point of view, the mean load over longer time periods is more im-
portant and, hence, less consideration should be taken to fast disturbances. However, since

grab sample strategies sometimes are used to verify that the output quality requirements are
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met, a feed-forward term can be included in the controller, with a significant decrease in the
output quality variation as a result. Simulation studies show that the controller can be used
to control the process to desired output setpoints as well as to reduce the quality variation

significantly.

Keywords: PCA, process control, supervisory control, wastewater treatment.

Nomenclature

system matrix in state-space representation
input matrix in state-space representation
output matrix in state-space representation

A
B
C
Ka controller gain
K
K
P

I controller gain, integral part of compensation term
P controller gain, proportional part of compensation term
loading matrix
P, part of loading matrix associated with Z,,
Px part of loading matrix associated with Z,,
Py part of loading matrix associated with Y

Qree  nitrate recirculation flow rate
SNH  ammonia concentration
SNo  nitrate concentration

Sg substrate concentration

So dissolved oxygen concentration
T score matrix

t score vector

top score setpoint

u local control signal

Us supervisory control signal

X process data matrix

X process data vector

Y process output data matrix

y process output data vector

Ysp process output setpoint

dy process output control error

Z,, manipulated process data matrix
Zx non-manipulated process data matrix
Zim manipulated process data vector

Zm,sp Mmanipulated process data setpoint
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Introduction

Wastewater treatment plant (WWTP) operation is subject to a number of efflu-
ent water quality standards, which are becoming increasingly strict. From a con-
trol point of view, not only the absolute effluent concentrations are of interest.
The way the requirements are policed will have great impact on the control
strategy. In Sweden and some other countries, average values over weeks and
months are used to evaluate the compliance with the requirements. However,
in other countries, for example Germany, grab samples are used. Common to
both strategies is that the plant pays a discharge fee for excessive discharge. In a
few countries (e.g. Denmark) the plant pays for every discharged unit. It is ob-
vious that the control strategies used are dependent on what type of legislation
is used. In Sweden, the operation aims at meeting the requirements in average
and less emphasis has to be put on daily or weekly quality variations. In Ger-
many it is important to keep the effluent quality within the requirements at all
times and in Denmark there must be a trade-off between control and discharge
costs.

Whatever legislation used, the need to control the plant in a coordinated way is
significant. This involves determining appropriate setpoints for local controllers
to achieve target or quality requirements put on the overall process. This task is
often referred to as supervisory control. Compared to local control, supervisory
control distinguishes itself as high level control and is often carried out by op-
erators. To help the operators, monitoring and surveillance systems are used to
monitor the process and to detect and isolate faults and disturbances. During
normal conditions, the local controllers (typically PID controllers) will often,
with appropriate setpoints, yield a result, which meets the requirements on the
process without significant changes in the controller setpoints. However, there
are situations when this is not true. Obviously, during abnormal conditions or
extreme events, local controllers cannot compensate for the disturbances (this
is normally how abnormal conditions are defined) and the setpoints need to be
corrected and/or new actuators have to be initiated to meet the requirements
or to minimise the effect of a disturbance. Extreme event supervisory control
in wastewater treatment has been addressed in other publications (Rosen and
Yuan; 2000; Rosen et al.; 2001). However, often the process is subjected to slow
changing disturbances (e.g. ambient temperature and seasonal effects), which
must be considered as normal, and in these cases corrections must be made
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to the setpoints. Another example is when the overall process requirement is
changed. When the number of controllers is high and the process is complex,
for example with recirculation streams, it is not obvious how to correct the set
points to obtain the desired output.

Chemometric methods for process control have been addressed before in the
literature (Kaspar and Ray; 1992, 1993; Piovoso and Kosanovich; 1994; Chen
and McAvoy; 1996; Chen et al.; 1998). It is a natural step to counteract devi-
ations within the process using the information from the monitoring algorithm.
The are, however, some difficulties that need to be considered. Using informa-
tion from the monitoring algorithm to control the process will introduce a new
situation and the process system can no longer be considered as an open-loop
system, since actions based on the information closes the loop. The closed-loop
system will have different characteristics compared to the open-loop system,
such as a change in the covariance structure of the process, process gain as well
as system dynamics (Chen et al.; 1998; Pasadyn et al.; 1999). If a model is
identified in open loop, these changes will yield a model error that must be
compensated for in order to control the process to a certain process output set-
point. Another difficulty has to do with applying a linear model to nonlinear
systems. The nonlinearities may be inherent in the process, but may also be
introduced by controller saturation or physical limitations. Process changes due
to varying operational conditions as well as measurement disturbances are also
difficulties that must be addressed.

In this paper a chemometric approach to supervisory control of an activated
sludge WWTP is presented. The difficulties mentioned above are addressed
by introducing a compensation term, which compensates for model errors and
controller saturation. The approach is based on a multivariate feedback control
law, using a principal component analysis (PCA) model as a steady-state rep-
resentation of the process. The principal component space (PCS) supervisory
controller is implemented on top of the local PID control systems. Simula-
tions using the international benchmark system developed within the European
COST action 624 collaboration(Pons et al.; 1999; COST624; 2001), is used
to investigate the applicability of such a supervisory controller. The aim of the
supervisory controller is to control the effluent nitrogen concentration in terms
of ammonia and nitrate, both in terms of daily average effluent concentration,
but also in terms of variation and maximum values.
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Multivariate controller in PC-space

The approach presented below is similar to that of Piovoso and Kosanovich
(1994). However, instead of using PCA on which an output Y is regressed (i.e.
PCR), we include the output variable/variables in the PCA. This yields a more
direct algorithm, but the difference in performance is small. Another difference
is that we include a model error compensation term, which will be discussed
later.

Basic PCS controller

Assume that during different operational conditions, a number of process vari-
ables, X, can be measured in the process. In X, let Z,,, be manipulated process
variables, Z, be the non-manipulated process variables and Y be the process
output variables. X can the be partitioned as:

X = [Zn|Zx]Y] (G.1)
A PCA on X then gives:
X = TPT (G.2)
This equation is written as:
X = T[P.|Px|Py] (G.3)
where
PT = [P, |Px|Py]

If ts, is the desired operating point in the PC-space, the corresponding point
in the measurement space is then:

Xsp = toPT (G.4)

The difference between the current location and the desired position in the PC-
space at time k is denoted Aty. Then the difference can be transformed to the
measurement space as:

Ax, = At PT
= (tgyp —tp) P (G.5)
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The difference in the PC-space can be expressed as a difference in z,,:

Azm,k = AtkPm (GG)

It is now possible to design a control law based on the desire to drive the process
from its current location in the PC-space to a desired location. The control law
is incremental so that the change is added to the previous value at each control
step:

Zmk+1 = Zmk + Azm,k
Zm i + (tsp — tr) Py (G.7)

This control law inherently has integral action and, consequently, the controller
error (in the PC-space) will be forced to zero in steady state. One possible
strategy is to set the desired location in the PC-space to the origin, i.e. the
control strives to keep the process as ‘normal’ as possible. Another way, albeit
cumbersome when P spans more than just a few dimensions, is to locate the
process in desired regions using a score plot. However, it is desirable to control
the location in the PC-space to different locations depending on the current
situation. Since most control is carried out in order to comply with output
requirements, the output is used as target. Let y, denote the desired output.
A corresponding location in the PC-space is found by solving:

tspPY = Ysp (G.8)

This is an under-determined system (assumed that there are a higher number
of scores than output variables) and the solution will be a hyperplane. Using
the pseudo inverse of P, yields a solution with the smallest Euclidean norm.
This is a reasonable choice since it results in a solution that gives the desired
output as well as minimises the distance from the origin to the process location
in PC-space. The setpoint in PC-space becomes:

ty = yoPl (G.9)

where PJ{/ is the pseudo inverse of P,,. The relation between the setpoint and
the manipulated variables then becomes:

Zmk+1 = Zmk + Ka (yLepPi/ - tk:) P, (GIO)
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Zm f+1
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Figure G.1: Basic PCS controller structure.

where K A is the gain constant that determines the fraction of the implemented
change. It should be noted that the discussion above assumes that the process
output can be considered a function of process variables and, consequently, the
choice of variables is crucial.

Because the controller described above is a steady-state controller, the controller
moves may be too aggressive. By implementing only a fraction of the computed
change this can be overcome. Piovoso and Kosanovich (1994) suggest that if
the system dynamics are known, the appropriate gain can be determined by use
of pole placement techniques. The basic controller structure is illustrated in

Figure G.1.

PCS controller with compensation

The basic PCS controller does not yield an output that equals the set point.
There are several reasons for this. Firstly, there will certainly be a discrepancy
between the PCA model and the system, either due to identification difficulties
or due to unknown variations in process parameters. Secondly, as mentioned
before, closing the loop will change the behaviour of the system. This model
error cannot be eliminated by the integral action since the control law is ex-
pressed in the model domain (PC-space). A solution to this is to introduce a
compensation term in Equation G.10:

Zmk+1 = Zmk+ KA [(ySPPi/ - tk) P+

5ykP;Pm} (G.11)
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Figure G.2: PCS controller structure with a compensation term.

where

5Yk; = Ysp — Y&

Equation G.11 implies that the setpoint y, will be moved slightly to com-
pensate for the model error. To eliminate small errors the term can be computed
in a proportional/integral (PI) fashion:

Zmk+l = Zmk+ Ka [(YS;DP{/ - tk) P+

KpdyPLPo + K1y 5ykP;Pm} (G.12)

Kp is the proportional gain of the compensation term and K7 is the discrete
integral gain. When tuning the controller parameters one needs to pay attention
to the fact that the controller contains two integrators if a PI configuration is

used. The structure of the controller with a compensation term is shown in
Figure G.2.

Example

To demonstrate the properties of the compensation term, the basic controller
is exemplified using an oscillatory but stable linear system. Consider the 5:th
order linear MISO system:

z = Ax+ Bu
= Cx
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where

—0.9505 0.6142 —0.9289 —1.5075 1.7737
—1.0977 —1.2835 1.0512 0.9968 —0.2439
A = 1.1866 —0.4332 —1.0984 0.8531 0.1399
1.7525 —0.8986 0.3685 —1.2803 —0.0615
—0.9873  1.4109 0.4892 —0.1558 —1.0668

0.0412 —0.9812 —0.5062 0
—-0.7562 —0.6885 1.6197 1.9375
B = —0.0891  1.3395 0 0
—2.0089 —-0.9092 —1.0811 —1.2559
1.0839 —-0.4129 -—-1.1245 —-0.2135

C =1]1000 0]

Let u be the manipulated variables (z,,) in Equation G.3 and y be the process
output (y). A PCA model can be identified by exciting the system through u in
open loop. The model, P, is decomposed into Py, and Py and the controller is
implemented according to Equation G.12 (non-manipulated variables (z;) are
left out). To mimic a small change in the process, a disturbance in the system
matrix A is introduced:

0.0858 —0.0400 0.0669 —0.1604 0.0529
0.1254  0.0690  0.1191 0.0257  0.0219
0A = —0.1594 0.0816 —0.1202 —0.1056 —0.0922
—0.1441 0.0712 —0.0020 0.1415 —0.2171
0.0571 0.1290 —0.0157 —0.0805 —0.0059

so that the new system matrix is A + dA. The disturbed system displays qual-
itatively the same behaviour as the undisturbed system. In Figure G.3, a step
change in the setpoint for y is shown.

As can be seen, the controller will not yield the desired output. Now, the com-
pensation term is implemented as the integrated error of the setpoint, i.e. as
an I-controller (KA = 0.9, Kp = 0 and K; = 0.5). The figure shows that
the desired output is obtained. The over-shoot is due to the integral action in
the compensation term, but can be reduced at the cost of transient speed. Note
that the implemented controller is purposely delayed to avoid algebraic loops.
Consequently, the example should not be interpreted analytically.
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Figure G.3: Output response for a step change in reference value (top) and the
corresponding controller outputs (bottom). Without compensation
(dash-dotted) and with compensation (solid).

Supervisory controller

To use the above-discussed controller for supervisory control, only minor modi-
fications must be made to the algorithm. The supervisory controller is used to
derive appropriate setpoints for local controllers. If the local control is perfect
and the controller response can be considered instantaneous compared to the
supervisory controller sampling time, the only modification to the algorithm
is to replace z,, with z,, s, in Equation G.12. However, this is rarely applic-
able since there may be controller saturation due to limitations imposed on the
controllers. This implies that z,, # 2, sp and it may therefore be wise to
implement Equation G.12 so that the old setpoint of the local controllers is
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replaced by the actual value of the manipulated variables:
Zm,sp,k+1 = Zmk + Ka [(ySPPJ}r/ - tk) P+

KpoyPL Py + K1Y 5yiPLPr|  (G.13)

Obtaining a model P

To obtain a model that describes the plant in an appropriate way, the need
for experimental planning and design increases as the number of manipulated
variables increases. It is important to keep in mind that the models identified
using the multivariate techniques discussed in this paper are based on correla-
tion between variables and not on cause-effect relationships. The structure of
the identification excitations is therefore extremely important. Identification of
complex processes is a large topic of its own and will not be discussed in here.

Dynamics

The supervisory control approach described above can be regarded as a mul-
tivariate feedback controller, based on the inverse steady-state relation between
the local controller outputs, process measurements and the process outputs.
This implies that the controller has some limitations to what can be achieved
in a dynamic situation. With a feedback configuration based on a steady-state
representation of the process, the closed system cannot be made arbitrarily fast.
The implication of this is that disturbances slower than the dominant time con-
stants of the system can be reduced or eliminated by the controller. However,
faster disturbances cannot be attenuated, since the controller response is not fast
enough.

A way to circumvent this limitation is to introduce a feed-forward term in Equa-
tion G.13. A feed-forward term can easily be incorporated in the expression for

5yk. Then
oy = Ysp — Vi (G.14)

where

Ye = f(ykvxkv"')
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If the estimation of ¥, is done using upstream measurements, the model error
is estimated beforehand resulting in a faster controller response.

Model validity

The validity of the controller model can be monitored (Chen and McAvoy;
1996) using normal monitoring procedures such as the sum of the squared
prediction error (SPE) (Kresta et al.; 1991). The SPE is useful, since it
indicates if the current operational point is close to the model plane. Thus,
monitoring the SPE may provide information whether the model is likely to
produce appropriate control actions and is recommended to avoid inappropriate
controller setpoints. When used in conjunction with control limits, the SPE
can also be used to invoke predefined controller setpoints from look-up tables to
handle unknown or uncertain situations. However, the distortion of the model
due to closing of the loop, controller saturations, etc. makes it difficult to use
the confidence limit calculated from the identification phase. If limits are to
be used, these generally need to be calculated using data from the closed loop
system.

Simulation of wastewater treatment processes

In this section, the simulation model used to test and to exemplify the applic-
ability of the proposed supervisory controller is briefly described. A number
of test scenarios, which represent frequently occurring phenomena, are defined
and a short description of the implemented supervisory controller is given.

Simulation model

The simulation model used is a benchmark model developed within the collab-
oration of COST Action 624 (Pons et al.; 1999). The COST model is based
on the Activated Sludge Model No 1 (ASM1) (Henze et al.; 1987) and a ten
layer Takacs (Takdcs et al.; 1991) settler model. The nature of wastewater treat-
ment processes is nonlinear, which is reflected in the simulation model. The
complete model comprises more than 200 states, with time constants in the
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range of minutes to months. The complete configuration, including simulation
model parameter values, can be found at the COST 624 web site (COST624;
2001).

Plant configuration

The simulated plant comprises five completely mixed activated sludge reactors
and a settler. Thus, only the biological stage of a WWTP is considered. The
plant configuration is shown in Figure G.4. The measured and manipulated
variables are listed in Table G.1. Note that in addition to constraints within
the local controllers, limits are imposed on the calculated setpoints to assure in
practice achievable values. Also, a dead band is used for the dissolved oxygen
controllers, since aeration below 0.5 mg/l is seldom used in practice.

Simulation scenarios

To test the applicability of the supervisory controller, a number of scenarios
are simulated and evaluated. The scenarios involve a number of different types
of disturbances that may be encountered and that have to be accepted within
normal operational conditions.

L. Varying effluent nitrogen setpoint. To test the controller and evaluate its
ability to track setpoint changes, a sequence of different controller set-
points are applied. The minimum and maximum setpoint, respectively,
are considered to be on the fringe of normal effluent discharge.

1. Inhibition of nitrification. A very important parameter for the operation
of WWTPs is the nitrification rate (j44), that is, how fast ammonia is
converted into nitrate. Inhibition occurs more or less frequently in many
plants (due to pH changes or toxicity etc.). In the model, a nitrification
rate of 4 = 0.5 is used as the nominal value. In the scenario, the
nitrification rate is changed at day 3 from its nominal value to 14 = 0.35
and then linearly increasing to its nominal value over a period of ten days.

II1. Measurement disturbance. To evaluate the robustness of the controller, an
error is imposed on the substrate (Sg 1) measurement in the first reactor.
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Figure G.4: Simulated plant configuration with the measurement and control sig-

nals indicated.

Variable Notation ~ Meas.  Manip.  Range Control
Ammonia reactor 1 [mg N/I] SNH,1 yes no - -
Nitrate, reactor 1 [mg N/I] SNno,1 yes no - -
Substrate, reactor 1 [mg COD/I] Ss.1 yes yes 0-30 ul
Dissolved oxygen, reactor 2 [mg O2/1] So,2 yes yes 0, 0.5-5 uo
Dissolved oxygen, reactor 3 [mg O2/l] ~ So 3 yes yes 0,055  us
Dissolved oxygen, reactor 4 [mg O2/1] S0,4 yes yes 0, 0.5-5 Uy
Dissolved oxygen, reactor 5 [mg O2/1] So.5 yes yes 0, 0.5-5 us
Ammonia reactor 5 (effluent) [mg N/l  Sn g5 yes no -

Nitrate, reactor 5 (effluent) [mg N/I] SNo,s yes no - -
Nitrate recirculation rate [m3/d] Qrec yes yes 0-1.2E5 wg

Table G.1: Measured and manipulated variables.
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The nature of the disturbance imitates a drift in the sensor, with a linearly
increasing offset starting at 0 mg COD/I at day 3 and reaching 2 mg
COD/I at day 7. From day 7 to day 11 the offset is constant. At 2 mg
COD/I, the disturbance constitutes approximately 45 % of the normal
concentration in reactor 1 and, consequently, the disturbance must be
considered as severe.

IV. Control handle loss. Sometimes a control handle is lost due to malfunction
of equipment. At day 15 the aeration in reactor 4 is lost, that is, no air is
added. The challenge for the controller is to compensate for this.

V. Varying influent characteristics. The most dominant disturbance in waste-
water treatment is the variation in the influent wastewater characteristics
(as a matter of fact, this is normally considered as the state of things rather
than a disturbance). One of the test files in the COST benchmark, dry
weather data, is used to create the diurnal and weekly patterns. The vari-
ations are faster than the hydraulic retention time of the plant and, thus,
the dynamic behaviour of the controller can be evaluated.

V1. Combination of scenarios II, III, IV and V. As the last scenario, varying
influent conditions is combined with the disturbances discussed above to
evaluate the ability of the controller to handle multiple disturbances.

Supervisory controller

To identify a controller model, a data training set is used. Training data com-
prise operation during different local controller setpoints and with constant
influent conditions. The setpoints of the training set are chosen so that the de-
sired mean of the effluent nitrogen concentration is obtained (10 mg N/I). This
is done to ensure that the desired operating point will be close to the origin of
the PC-space. A PCS controller is developed according to the algorithm dis-
cussed above. Five principal components are retained and together they capture
approximately 90 % of the variations in training data. The variables included
are listed in Table G.1. However, nitrate and ammonia in reactor 5 are added
up and constitute the controlled variable Y in Equation G.1. Since the control-
ler will be applied to varying influent conditions, a simple feed-forward term is
included in the controller. The effluent nitrogen concentration is estimated as
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proportional to the nitrogen concentration in reactor 1. To avoid unnecessary
variation in the local controller setpoints, the output of the controller is filtered
with a linear first order filter using a time constant of 0.01 days. The parameters
of the supervisory control are chosen so that a balance between controller speed
and control signal variance is obtained.

Results and discussion

In this section, the result of the simulation study is presented. For scenarios
I to IV, that is the scenarios with constant influent wastewater characteristics,
no feed-forward term is included in the controller. For scenarios V and VI,
the feed-forward term is included to deal with the dynamic disturbances. In
all scenarios, the PCS controller is implemented with a compensation term
according to Equation G.13.

Scenario results

In Figure G.5, the result of the first scenario is shown. The PCS controller can
track the setpoint changes without large deviations. This is achieved by altera-
tions in all the local controller setpoints. It is interesting to note the different
behaviour of the transient at the setpoint changes. This is a clear indication
of the nonlinear nature of the system. For comparison, the result of a PCS
controller without compensation term is included. Here, it is obvious that the
controller has problems in tracking the setpoint. Note that the controller error
is not a constant offset and that it changes signs. There are a number of reasons
why. Firstly, there will be a model error due to reasons discussed before. How-
ever, more important in this case are the controller output limits. Since some
regions in the controller space are not usable, the output will deviate signific-
antly from the setpoint.

The result of the inhibition of the nitrification rate in scenario II can be seen in
Figure G.6. The impact on the effluent quality is reduced significantly using the
PCS controller (mainly by coordination of the substrate concentration in reacor
1 and the nitrate recirculation). After the initial decrease in nitrification rate at
day 3, the controller drives the output back to its setpoint within a day whereas
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Figure G.5: Scenario I. Sequence of changing reference values for the effluent ni-
trogen concentration. Results with and without compensation term.

for the case without supervisory control the effluent concentration remains well
above the setpoint for more than a week.

In scenario III, the robustness of the controller is challenged. From days 3 to 7,
the increasing offset in the S5 1 measurement results in a hardly visible deviation
from the setpoint (Fig. G.7). However, when the offset is constant between days
7 and 11, the integral part of the controller is capable of meeting the setpoint
without difficulties. When the offset is corrected, there is a transient of less
than a day before the effluent concentration is back at its setpoint. Most local
controller setpoints are varied significantly to attain the overall setpoint. In
the case with no supervisory control, the measurement disturbance has great
effect on the effluent nitrogen concentration, since the local controller does not
provide the process with sufficient carbon (remember that the measurement
disturbance results in an overestimation of the substrate concentration).

At day 15, scenario IV is applied to the system (Fig. G.7). The loss of acration
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Figure G.6: Scenario I1. Inhibition of nitrification with adaptation from day 3.
Effluent nitrogen with supervisory controller (—) and without su-
pervisory controller (--).
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Figure G.7: Scenarios III and IV. Output concentration with Sg 1 measurement
disturbance at days 3-11 and loss of control handle at day 15.

in reactor 4 leads (after a slight improvement due to system dynamics) to a
deterioration of the effluent quality if no supervisory control is applied. In the
controlled case the effluent concentration is restored in a day. The reason this is
possible is that the dissolved oxygen concentration in reactor 4 (S 4) is closely
correlated with the dissolved oxygen concentrations in other reactors and the
controller compensates for the loss by increasing the aeration in reactors 3 and
5. Thus, the controlled system is redundant in this particular PC-direction.
However, if the lost control handle is very dominant in a certain dimension in
the PC-space, the controller would have great difficulties to compensate for this
within the controller restrictions (if there are no controller restrictions or severe
nonlinearities the controller would in theory be able to compensate for such a
loss).

From the initial results, it is seen that the PCS controller is capable of handling
different types of disturbances. However, as was mentioned before, the most
severe disturbance is normally constituted by the influent characteristics. In
most WWTDPs, the control authority of the control system is limited in com-
parison to the disturbances imposed on the system through the influent and to
completely attenuate the variation in the effluent quality would be extremely
costly. However, by using supervisory control, the variation can be reduced
considerably. In Figure G.8, the effluent nitrogen is shown when scenario V
is applied to the system. To illustrate the importance of a feed-forward term,
the resulting effluent concentrations of both a feedback (fb) and a feedback
+ feed-forward configuration are displayed (top panel). It is clearly seen that
the variation is reduced when a feed-forward term is included. The feedback
configuration marginally reduces the variation compared to the case when no
supervisory control is applied (not shown for clarity reasons). An interesting
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observation is that both configurations do not handle mid day influent peaks
acceptably. The reason for this is discovered when the manipulated variables are
studied. The increase in effluent nitrogen is substantial due to an increase of
efluent ammonia. However, the dissolved oxygen concentration is lowered in
both reactors 3 and 5. The intuitive reaction is that this is not a correct strategy,
as conversion speed of ammonia to nitrate is roughly positively proportional
to the dissolved oxygen concentration. A look at the SPE for the same period
gives the answer (Fig G.9). During peak loads, the model displays poor fit and
is, consequently, not appropriate for calculating controller setpoints. The ex-
planation for this is that during peak loads, the operational state of the plant
deviates substantially from that of the remaining time. Thus, the range of op-
erating conditions in this scenario is too wide to be sufficiently described by
the model. Introducing a second controller model or predefined setpoints for
this operational state may decrease the peaks. The switching between control-
ler models can be implemented with, for instance, a combination of PCA and
fuzzy c-means clustering (FCM) as discussed in Rosen and Yuan (2000).

The result from the last scenario shows that the PCS controller can handle
multiple disturbances. In Figure G.10, it is shown that the effect of the meas-
urement disturbance in Sg 1 measurements between days 3 and 11 is hardly
discernible. The loss of a control handle from day 15 manifests itself as an in-
crease in the output concentration variation. The mean and maximum values,
however, are not affected.

The controller is able to control the process so that the sequence of setpoints
of scenario I is met during varying influent conditions (not shown). The only
exception is during the very lowest setpoint between days 6 and 9. At these
conditions, the discrepancy between the model and the process is simply too
large, which manifests itself as high SPE values. Even though the setpoint was
reachable during constant input, the varying conditions drive the process out of
control. This is not surprising since the low setpoint is a rather extreme setpoint
for the plant configuration used.

Controller performance

From an operational point of view, it is interesting to investigate the PCS con-
troller performance according to a number of different criteria. However, it is
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Figure G.8: Scenario V. Varying influent conditions during one week. Output
concentration with feedback + feed-forward (fb+ff) configuration
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Figure G.9: Scenario V. SPE for feedback + feed-forward configuration. Due to
the distortion of the model, the confidence limit calculated from the
identification data cannot be used.
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Figure G.10: Scenario VI. Output concentration during period of multiple dis-
turbances.

important to point out that no consideration has been taken to evaluate how
efficiently the various control handles are used. This is outside the scope of this
work and is only briefly discussed below.

The PCS controller with and without feed-forward term is evaluated and com-
pared with constant control (i.e. constant local control setpoints). In finding
the local setpoints for the constant control case, the mean of the setpoints of the
two PCS controllers is used and modified slightly to obtain the same output av-
erage. It must be pointed out that this choice may by all means not be optimal
in terms of control costs. The constant control values should only be used for
qualitative comparisons.

The controller configurations are evaluated in terms of effluent mean, max, min,
95-percentile and standard deviation (¢). The 95-percentile gives an indication
on how far from a maximum limit the setpoint can be set. From Table G.2
it can be seen that the PCS controller with feedback only yields the desired
mean and that it decreases the effluent quality variation. However, it does not
perform especially well in terms of maximum and minimum values and the
95 percentile is located at the same value as in the non-controlled case. Thus,
the only advantage with this configuration is that the mean can be controlled
to a certain setpoint. The relative cost is not significantly higher, except for
the aeration in reactor 2 (there is no aeration in reactor 2 when no supervisory
control is used).

When a feed-forward term is used, the desired mean is achieved at the same time
as the variation is reduced significantly. It can also be seen that the maximum
value and especially the 95-percentile are far lower than if no supervisory control
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Controller Process output properties
Mean  Max Min = 95-perc. o
Constant 10.04 17.33 423 16.03 3.37
PCS(fb) 10.00 18.57 7.07 16.14 2.49
PCS(fb+ff) 10.00 14.21 8.84 12.79 1.01

Relative control costs

(%1 u2  us Ug us U6
Constant 1 0 1 1 1 1
PCS(fb) 1.06 - 1.06 0.97 1.03 1.06
PCS(fb+ff) 1.05 - 1.03 099 096 1.15

Table G.2: Comparison of controller performance for one week of operation dur-
ing varying influent conditions.

Controller Local control signals
Ou,l Ou,2 Ou,3 Ou,4 Ou,5 Ou,6
Constant 214 0 43.8 483 63.1 0
PCS(fb) 327 359 385 519 70.8 20065

PCS(fb+ff) 329 552 445 57.0 57.8 29682

Supervisory control signals (local control setpoints)
Ous,1 Ous,2 Ous,3 Ous,4 Ous,5 Ous,6
Constant 0 0 0 0 0 0
PCS(fb) 2.15 0.113 0.200 0.260 0.291 20065
PCS(fb+ff) 4.02 0.183 0.573 0.252 0.394 29682

Table G.3: Comparison of controller performance for one week of operation dur-
ing varying influent conditions.

is used. This is important, since if a grab sample policing strategy is used, the
setpoint can be set close to the maximum limit with lower control cost as a
result. The relative costs are not affected significantly.

In Table G.3, the control signal standard deviation for each controller is listed.
The local control signal standard deviation (o) is not affected notably, which
is slightly surprising since the variation in the supervisory controller control
output is considerable. Note that the local controller signals and the supervisory
controller signals have different units.
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Practical aspects

The approach discussed above involves a number of practical difficulties of
which the identification of the controller model (P) perhaps is the most prob-
lematic. To obtain a model, which describes the plant in an appropriate way, the
need for experimental planning increases as the number of controlled variables
rises. In this work, identification is carried out with constant influent charac-
teristics. This is seldom possible in real wastewater operation. Therefore, it is
important that the excitation of the process is sufficient so that the effects of
the controller changes do not "drown" in the variation caused by the diurnal,
weekly and seasonal patterns. Furthermore, due to seasonal effects, the need for
adaptive models is significant (Rosen and Jeppsson; 2001a). Work is currently
carried out to solve these two identification problems.

Another important objection to the approach above is more of a technical
nature. In this work, the carbon addition control in the first reactor utilises
a substrate-measuring device. These devices are not yet available, at least for
direct measurement. However, indirect measurements through respirometry
(Spanjers et al.; 1994; Vanrolleghem et al.; 1994) are available, though with a
response delay. A way around this problem could be to use another approach
for carbon addition control (Vanrolleghem et al.; 1993; Lindberg and Carls-
son; 1996; Yuan et al.; 1996) or to estimate the substrate concentration based
on other measurement since it has been shown that the controller is relatively
insensitive to measurement disturbances.

In this work, no consideration has been taken to the control costs and how ef-
ficient the control handles are used. In a real application, a cost-benefit analysis
must be carried out in conjunction with the controller design to avoid excess-
ive control costs. A possible way to achieve this would be to include the cost
according to a cost function as a controlled variable in the controller.

Conclusions

An approach to supervisory control of wastewater treatment operation by means
of principal component space (PCS) control is presented. The supervisory con-
troller models the steady state relationship between manipulated variables and
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the process output using principal component analysis. The controller is imple-
mented on top of the local control systems of the manipulated variables. The
main objective of the supervisory controller is to control the average effluent
quality to certain setpoints. However, a secondary objective of the controller
is to minimise the effluent quality variation during varying influent wastewater
quality conditions. The controller is based on an earlier presented method, but
a compensation term has been introduced to compensate for model errors due
to identification problems or changing conditions (disturbances). The com-
pensation term also makes it possible to deal with loss of control handles and
local controller saturation.

The supervisory controller is demonstrated using the COST 624 wastewater
treatment benchmark simulation model. The results show that the controller
is able to meet setpoints imposed on the effluent nitrogen concentration, both
under constant and varying influent concentrations. Moreover, the variation
in the effluent concentration is reduced significantly by the introduction of a
feed-forward term in the controller. It is also shown that the controller can
compensate for controller saturation or actuator loss if the loss or saturation
occurs in a PC direction covered by other actuators and that it is relatively
insensitive to measurement disturbances.

The result of this study indicates that the PCS controller can successfully be
used in systems like wastewater treatment systems. However, further analysis of
the controller is needed to validate the general applicability of the controller.
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Addendum
Choice of pseudo inverse

It is stated in the paper that the pseudo inverse (the term pseudo inverse is
somewhat carelessly used synonymously to the Moore-Penrose-pseudo inverse)
is a sensible choice when solving Equation G.8:

1:spP‘Y = Ysp

However, it is not the only choice and a few words on a more general choice of
pseudo inverse are appropriate.

Any matrix PTy, which fulfils PJ{,PyP; = PJ{, and PyPTYPY = Py,isa
pseudo inverse to Py . Using the Moore-Penrose-pseudo inverse corresponds to
minimising

J = tt!

while t,,Py = yj), is fulfilled. However, from a control perspective, it may
be interesting to find the solution that minimises a cost function expressed in
the manipulated variables so that actual control costs can be considered. Thus,
minimising

J = f(Zm,sp)

subject to Z, sp would yield a different solution to the one of the Moore-
Penrose-pseudo inverse. The actual design of such a cost function will not be
discussed, but some important limitations need to be mentioned. Remember
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that an assumption of the PCS controller is that data are mean centred. This
implies that the pseudo inverse will be independent of the value of y,. Now,
assume the opposite and that a y, close to zero is chosen. Then, the elements
of the pseudo inverse will be large, and controller stability can no longer be
assumed. Thus, if the data of the general cost function above are not mean
centred, one must proceed with caution. This does not restrict us to use a cost
function based on z,,. A basic cost function that will yield the same pseudo
inverse for all y), is:

J = z,Qzl

tsp P Q (tspPn)”

where Q is a diagonal weighting matrix, allowing for separate weighting of the

individual control signals. A limitation with this cost function is that negative
control signals will be as heavily penalised as positive.

When the score vector t has been obtained we need the pseudo inverse for the
compensation term in Equations G.11-G.13. This can be obtained as (assumed

that y g, # 0)
PJ{/ = Ylptsp

where y};p is the Moore-Penrose-pseudo inverse of yp,. In the single output
case (as in Paper G) the pseudo inverse is tsp/Ysp.

In Figure G.11, the result of a different choice of pseudo inverse is shown for
constant influent conditions and a setpoint for effluent nitrogen concentration
of 15 mg N/I from days 1 to 3 and 12 mg N/l from days 3 to 7. Separate
weights were put on each control setpoint, using the Q-matrix. What can be
seen is a decrease in the substrate concentration (high penalty) of 5% and an
increase in internal recirculation (low penalty) of 20-40% compared to Moore-
Penrose-pseudo inverse. It is clear that the dynamic or transient behaviour is
similar. However, the qualitative behaviour of the dissolved oxygen levels in re-
actors 2, 3 and 5 is different from the Moore-Penrose solution and this further
stresses the fact that the choice of pseudo inverse is not obvious. More distinct
differences can be obtained by more sophisticated cost functions and no ex-
haustive analysis has been carried out. However, the example shows that there
is a potential improvement of the PCS controller by investigating the choice of
pseudo inverse.
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Figure G.11: Difference in the local controller setpoints generated by the PCS
controller using different choices of pseudo inverses. (—) pseudo
inverse obtained by optimising over z,,, (--) Moore-Penrose-pseudo
inverse. Constant influent conditions and effluent nitrogen set-
points of 15 mg N/I (days 1-3) and 12 mg N/I (days 3-7).
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Sensitivity to identification

The identification part must be considered as the bottleneck of the methodo-
logy. As was mentioned in the paper, it is not realistic to assume that a model
can be identified during constant influent conditions. However, the compens-
ation term makes the identification less sensitive as the term corrects minor
discrepancies between the identified model and the real process. What is im-
portant, is that the model is qualitatively correct, that is the model describes
the major directions of the process in a correct manner. This can be shown by
manipulating the loading matrix P (here denoted P,4). Two manipulations
are carried out. In the first, a disturbance matrix 6P is added to P4 to form
Pist. The disturbance matrix is a random, normally distributed matrix and
the matrix element values are chosen so that the norm of the matrix is 0.25 (the
norm of P4 is 1). The second manipulation consists of using an ‘indicator’
matrix, Pjyq, representing P ;4. To let the elements be 1 or 0 is a too crude ap-
proximation. Instead, a four level indicator matrix is used. The indicator matrix
is simply calculated by multiplying P,,;4 with 3, rounding each element to the
closest integer and then dividing the matrix with 3. The test matrices, together
with the original matrix, are shown below to demonstrate how relatively severe
the manipulations are.

[ —0.3461 0.4648 —0.0166 0.1207 —0.0154 |
—0.2474 —-0.3500 —-0.1320 0.0412 —0.0146
0.0212 —0.0898 —0.3643 0.8851 0.2143
0.0345  0.0543 —0.6230 —0.4200 0.6474
Porig = —0.1007 0.1434 —-0.6350 —0.1103 —0.7075
—0.4452 —-0.3751 0.1460 —0.0633 0.0541
0.2280 —0.5793 —0.0665 —0.0799 —0.1466
0.5010  0.3339  0.1396  0.0312  0.0088
0.5532 —0.2051 -0.1137 0.0198 —0.0976

[ —0.4758 0.4634  0.0052  0.1175  0.0700
—-0.3594 —0.3315 —-0.1769 0.0665 —0.0478
-0.0170 —-0.0192 -0.3743 0.8631 0.1397
0.0221 0.0957 —0.7863 —0.4534 0.7012
Puse = —0.1001  0.0266 —0.6035 —0.1127 —0.7047
—0.3894 —0.3287 0.1538 —0.0749 0.0036
0.1798  —0.5252 —0.1059 —0.1437 —0.1525
0.4529  0.3763  0.0960  0.1174 —0.1251
0.5398 —0.1178 —0.1857 0.0492 —0.0253
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[ —0.3333  0.3333 0 0 0
—0.3333 —0.3333 0 0 0

0 0 —0.3333 1.0000  0.3333

0 0 —0.6667 —0.3333  0.6667

Pina = 0 0 —0.6667 0 —0.6667

—0.3333 —0.3333 0 0 0
0.3333  —0.6667 0 0 0
0.6667  0.3333 0 0 0
0.6667 —0.3333 0 0 0

The results of a simulation run with numerous setpoint changes are displayed
in Figure G.12 together with results using the original P ;4. It is evident that
the P4 is relatively insensitive to the disturbances. It can be seen that it takes
longer time for the controller to reach new setpoints and the variation is larger
in the cases where Py and P, 4 are used, but it is clear that the controller
still delivers acceptable results. A few conclusions can be drawn from this: 1)
The compensation term makes the controller less sensitive to identification er-
rors. 2) It may be possible to infer the controller model from simulations and
process knowledge in the form of an indicator matrix. 3) The problem of non-
stationary data becomes simplified since no new correlation structure needs to
be identified. Instead, only adaptive scaling parameters should suffice. It should
also be noted that variations in the influent wastewater characteristics files for
the COST 624 benchmark is relatively high. If the variations are less domin-
ant, it may very well be possible to separate the effects of the changes in the
controller setpoints from those of the varying influent conditions.

Different operational states

From Figures G.8 and G.9 it is evident that the controller does not handle the
influent peaks especially well. A possible explanation is related to the region
in which the model is valid. This region is determined by the data used for
identification and how well these can be approximated by a linear model. Con-
sequently, there will be regions not covered by the model. The peak loads falls
into such a region. During low and medium load periods, there is an excess
of nitrification capacity. In this region, the model yields results that lower the
DO setpoints in some reactors to obtain a decrease in the effluent nitrogen con-
centration. However, during high loads this is not appropriate. Instead, the
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Figure G.12: The effluent nitrogen from the plant during various effluent set-
points.

correct action would be to increase the DO setpoints. There is, consequently,
a nonlinear relation between the effluent nitrogen concentration and the DO
concentrations in the reactors. Since the model is identified during constant
influent conditions, corresponding to the mean values of the dry weather data
(excess of nitrification capacity), the model does not reflect this behaviour. This
conclusion is supported by results from other simulation results on the same
simulation model (Vanrolleghem and Gillot; 2001). The fact that the model
lowers the DO setpoints in some reactors to obtain a decrease effluent nitrogen
concentration, probably puts a limit to how low the effluent nitrogen concen-
tration can be pushed, since extremely low effluent nitrogen concentration also
falls outside the region, in which the model is valid. Thus, the experimental
design to produce the identification data is crucial to the performance of the
controller.
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By implementing the PCS controller in combination with the supervisory con-
trol framework discussed in Papers E and E this problem can be resolved. Also,
by introducing a second model that better describes the operational state of in-
sufficient nitrification capacity could provide another solution. Adaptive mod-
els may also be applicable, but the task of making the model adaptive is not as
straightforward as in the monitoring case.

More control handles

In the paper, only six control handles are used. A logical extension of the super-
visory control system would be to include sludge return flow rate and wastage
flow rate. The sludge return flow rate are then used in shorter time scales as
been discussed in Paper E and in Yuan et al. (2001a), and the wastage flow rate
then works in the longer time scales to control the total amount of sludge in the
system. Another possible control handle is step feed where the influent stream
can be directed to more than one tank. Preferably, this should be done in vari-
able fashion, so that a varying percentage of the flow can be directed to each
tank.
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