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Abstract

This work focuses on observers estimating flux linkage and speed for
induction machines, mainly in the low speed region. With speed
estimation, sensorless control is possible, meaning that the speed of
induction machines without mechanical speed sensors can be controlled.
The observer based sensorless drive system has superior dynamic
performance compared to a system with an open loop frequency inverter,
yet it is neither more complex nor expensive. Using mechanical equivalent
models of the induction machine and observers, an accurate flux observer
working in the entire speed region of the induction machine is presented.
The flux observer is expanded into a combined flux and speed observer,
measuring only stator current and voltage. A method for sensorless control
is proposed, analyzed and experimentally verified. Observer and controller
calculations are performed by a digital signal processor.
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1
Introduction

The induction motor is the most widely used electrical motor in industrial
applications. The majority of induction machines are used in constant
speed drives, but during the last decades the introduction of new
semiconductor devices has made variable speed drives with induction
machines available.

Variable speed induction motors are usually fed by open loop frequency
inverters. The rotor speed of the machine is not measured, and a change in
load torque will result in a change in speed. The dynamic performance is
weak and problems such as oscillations are common.

The work presented in this thesis is a continuation of a work that started
with studies of the oscillatory behaviour of inverter fed induction machines
(Peterson, 1991). Methods were presented for damping of the oscillations.
However, there is more to improve in open loop drives; fast acceleration,
fast braking, fast reversal and constant speed independent of load changes
are all desirable properties of a drive system. This requires a fast-acting
and accurate torque control in the low speed region.

All those properties are obtained with vector controlled induction machines
(Leonhard, 1985). The drawback of this method is that the rotor speed of
the induction machine must be measured, which requires a speed sensor of
some kind, for example a resolver or an incremental encoder. The cost of
the speed sensor, at least for machines with ratings less than 10 kW, is in
the same range as the cost of the motor itself. The mounting of the sensor
to the motor is also an obstacle in many applications. A sensorless system
where the speed is estimated instead of measured would essentially reduce
the cost and complexity of the drive system. One of the main reasons that
inverter fed induction motor drives have become popular is that any
standard induction motor can be used without modifications. Note that the
term sensorless refers to the absence of a speed sensor on the motor shaft,
and that motor currents and voltages must still be measured. The vector
control method requires also estimation of the flux linkage of the machine,
whether the speed is estimated or not.
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Research on sensorless control has been ongoing for more than 10 years
(Haemmerli, 1986 and Tamai et al, 1987), and it is remarkable that reliable
sensorless induction motor drive systems are not readily available. The aim
of the work presented here is to derive an applicable method for sensorless
control of induction machines. The system must work with standard
induction machines and the inverter hardware should not be considerably
more complex than present-day open loop frequency inverters.

Problems associated with sensorless control systems have mainly included
parameter sensitivity, integrator drift, and problems at low frequencies.
Some have tried to solve these problems by redesigning the induction
machine (Jansen et al, 1994a).

As it is most unfavourable using anything but standard machines, re-
designed motors are not considered the best solution. The questions raised
in this work are: what is the best possible solution using standard motors?
To what extent can the problems at low frequencies, and the parameter
sensitivity problems be reduced?

The feasibility of such a solution is highly facilitated by the arrival of
inexpensive digital signal processors. Even though basically the same
hardware can be used for a sensorless system and a standard open loop
drive, the sensorless system requires substantially more computation
capacity.

Overview of the Thesis

After a general discussion on the induction machine model, an introduction
to flux estimation is given, with the assumption that rotor current is zero. A
discussion on flux estimation, now considering the fact that the rotor
current may differ from zero follows, assuming that the rotor speed can be
measured. In the next chapter, methods for speed and flux estimation are
described when the measured speed signal is no longer available. A
combined speed and flux observer overcoming accuracy problems and
integrator drift problems at low frequencies in earlier attempts is presented.
This is followed by a description of an experimental set-up used for testing
the proposed sensorless drive system. Finally the results obtained by
experiments are presented. Throughout the thesis, mechanical equivalent
models are used to clarify the behaviour of the induction machine and the
flux and speed estimators.
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Induction Machine Models

It is crucial to start with a good and appropriate model of the induction
machine when designing flux observers. In this chapter a complete model
for the induction machine as well as simplified models assuming that the
rotor current is zero will be discussed. The simplified models will later be
used as a start when analyzing flux observers.

Dynamic Model of the Induction Machine

The standard vector equations (2.1)-(2.2) relating stator and rotor currents
and flux linkages (Kovács, 1984), including stator and rotor leakage
inductances L sl  and L rl , are written

        ÁÁs
T = Lsl + Lm( )is

T + Lmir
T  (2.1)

        ÁÁr
T = L m is

T + L rl + L m( )ir
T (2.2)

and sometimes called the T-model, indicated by the T-superscript. This set
of equations has one redundant parameter and can be rearranged into a set
of equations with only one leakage inductance, LL  (Slemon et al, 1980 and
Peterson, 1991). The corresponding equations for this Γ -model with only
one leakage inductance are

        ÁÁs = L M is + ir( ) (2.3)

        ÁÁr = ÁÁs + L Lir (2.4)

The vector differential equations for the stator flux         ÁÁs, and the rotor flux

        ÁÁr , here in the stator reference frame, and the torque equation are the
same for both models,

        
dÁÁs

dt
= us − Rsis (2.5)

        
dÁÁr

dt
= jzpωÁÁr − R rir (2.6)

J
dω
dt

= T − Tload (2.7)
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where ω is the mechanical angular velocity of the rotor (rotor speed for
short). The scaling of the vectors is chosen so that the magnitude of the
stator voltage vector is equal to the peak value of the phase-to-neutral
voltage, and the magnitude of the current vector is equal to the peak value
of the line current (Kovács, 1984). With this scaling, the driving torque T
of the motor can be expressed

        
T = 3

2
zpℑ ÁÁs

∗is( ) = 3

2
zpℑ ir

∗ÁÁs( ) = 3

2
zpℑ ir

∗ÁÁr( ) (2.8)

where zp  is the number of pole pairs. Throughout this thesis, voltage,
current and flux vectors are represented as complex numbers. The complex
conjugate of a vector v = vx + jvy  is denoted v* = vx − jvy , and ℑ  denotes
imaginary part. The expression ℑ v∗w( ) = v x w y − v y w x  of the complex
variables v and w is equivalent to the magnitude of the cross product of the
vectors v and w.

A block diagram of the Γ-model, equations (2.3)-(2.7), is shown in Fig.
2.1, where the upper part of the diagram is the real part of the vector
equations, and the lower part is the imaginary part of the equations.

Ψsx

1/LM

isx
Rs

+
– ∫

–  +

1/LL

+
– Rr –

– ∫

zp

usx

ω

Ψrx

∫1/J
zp3

2 +
–

+
–

Tload

Ψsy
1/LM

isy
Rs

–
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–  +

1/LL

–
+

Rr
+
– ∫

usy

Ψry

irx

iry

 

Fig. 2.1 Block diagram of the Γ-model.
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The correspondence between the parameters and variables of the two
models is described by Table 2.1.

Model with one Model with two
leakage inductance (Γ)  leakage inductances (T)

magnetizing inductance L M =
Lm

k γ

leakage inductance L L =
Lsl

k γ
+ L rl

k γ
2

stator resistance Rs = Rs
T

rotor resistance R r =
R r

T

k γ
2

stator flux         ÁÁs =         ÁÁs
T

rotor flux         ÁÁr =
        

ÁÁr
T

k γ

stator current is = is
T

rotor current ir = k γ ir
T

k γ = Lm

Lm + Lsl

If Lsl = L rl, it also holds that k γ = L M

L M + L L

Table 2.1 Correspondence between models with one leakage inductance (Γ-model) or
two leakage inductances (T-model).

In matrix notation, the Γ-model is described by

dΨ
dt

= A ω( )Ψ + Bus (2.9)

is = CΨ (2.10)

where
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A (ω ) =

−Rs
1

L M

+ 1

L L







Rs

L L

R r

L L

−R r

L L

+ jzpω





















(2.11)

B =
1

0






(2.12)

C = 1

L M

+ 1

L L

−1

L L









 (2.13)

        
Ψ =

ÁÁs

ÁÁr







=
Ψsx + jΨsy

Ψrx + jΨry









 (2.14)

Note that the system described by equation (2.9) is a non-linear system, as
the rotor speed ω is varying. Saturation leads to variations in the
inductances, and the resistances will vary with temperature, introducing
additional non-linearities.

A First Approach to a Mechanical Model of the Induction
Machine

Matrices and equations give limited insight into the behaviour of a dynamic
system. A mechanical equivalent model of the induction machine can be
used to get a better understanding (Török et al, 1985 and Peterson, 1991).

A simplified example where the rotor current is assumed to be zero is used
as an introduction to the mechanical model. With this assumption,
equations (2.3) and (2.5) give

        

dÁÁs

dt
= us − Rsis = us − Rs

L M

ÁÁs (2.15)

With zero rotor current, there is no cross coupling between the x-axis and
the y-axis of equation (2.15). A block diagram of the x-axis (real axis)
equation,

dΨsx

dt
= usx − Rsisx = usx − Rs

L M

Ψsx (2.16)

is shown in Fig. 2.2, which basically is the shaded area of Fig. 2.1.
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+
–

1/LM

Rs

usx Ψsx

isx

∫

 

Fig. 2.2 Block diagram of the x-axis equation

In the mechanical model, a coil is represented by a spring. The length of
the spring is equivalent to the flux linkage of the coil, and the force acting
on the spring represents the current of the coil. Resistance is represented by
a viscous damper. The speed difference of the damper’s ends is equivalent
to the voltage over the resistance. A complete description of the mechanical
analogy is found in Appendix B.

A mechanical model of equation (2.16) is shown in Fig. 2.3.

va = usx

Fa = isx

x = Ψsx

kM = 1/LMds = 1/Rs
a b

vb

o

 

Fig. 2.3 Mechanical model of equation (2.16).

This mechanical system is described by

Fspring= k Mx (2.17)

Fdamper = ds va − vb( ) (2.18)

Fa = Fspring = Fdamper (2.19)

vb = dx

dt
(2.20)

Combining equations (2.19)-(2.20) gives

dx

dt
= va − Fa

ds

= va − k M

ds

x (2.21)
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With the substitutions shown in Fig. 2.3, equation (2.21) is equal to
equation (2.16). The mechanical model will be used later to clarify some
properties of a flux observer.

A complete mechanical model of the induction machine, including rotor
current and rotor flux, is found in Appendix C.



3
An Introduction to Flux Estimation

In order to have a fast acting and accurate control of the induction machine,
the flux linkage of the machine must be known. It is, however, expensive
and difficult to measure the flux. Instead, the flux can be estimated based
on measurements of voltage, current and angular velocity. There are
different control strategies for the induction machine. Some prefer stator
flux control, while others prefer rotor flux control (Leonhard, 1985,
Takahashi, 1989 and Lorenz, 1994). The estimators discussed in this
chapter are mainly stator flux estimators, since stator flux control is used in
later chapters. Throughout this chapter, it is assumed that the rotor current
is zero, meaning that the induction machine is running at no load. In
Chapter 4, a more accurate estimator will be analyzed.

Estimator A - the Voltage Model

A first simple flux estimator is obtained from equation (2.5) in integral
form,

        Á̂Ás = us − Rseis( )∫ dt (3.1)

often referred to as the voltage model. The ^ superscript denotes estimated
values, and index e denotes estimator parameter. Again, we consider only
the real part of the equation, and assume the rotor current to be zero (no
load torque). Most of the results obtained are valid for the imaginary axis
as well, and also when load torque is present.

The estimator for the real axis

Ψ̂sx = usx − Rseisx( )∫ dt (3.2)

is shown as a block diagram in Fig. 3.1.

The input to the estimator is the measured current and voltage of the
machine. If the stator resistance Rse  of the estimator is identical to the
resistance Rs of the machine, and if the measured current and voltage are
without any errors such as noise and offset errors, the output of this
estimator would be a perfect estimate of the stator flux, even if the rotor
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current differs from zero. This is seen in equation (3.1), where the rotor
current does not appear.

+
–

1/LM

Rs

usx

Ψsx

isx

+
–

Ψsx

Rse

ˆ

machine estimator

∫ ∫

 

Fig. 3.1 Block diagram of estimator A.

Even the slightest error in Rse  would cause the estimator to drift at low
frequencies. Fig. 3.2 shows the drift of the estimate if the estimator
resistance parameter differs from the true resistance with 5 percent. The
input voltage usx  is a step from zero at t = 0, and then held constant.
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Fig. 3.2 Simulation of estimator A, starting from zero. Rse = 0.95 Rs, f = 0 Hz (usx is
constant).

The machine parameters used throughout this thesis are for the IMEP
induction machine in ∆-connection, described in Appendix D. This 0.75
kW machine is not representative to all induction machines. The p.u. stator
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resistance is much higher for such a small machine than for a larger one.
However, the challenges in flux estimation appear at low frequencies, when
the term Rsis  of equation (2.5) is in the same order of magnitude as us. A
large value of the stator resistance accentuates this problem.

Initially the estimate tracks the flux, but then drifts to infinity, or until the
integrator saturates. The influence of the resistance parameter error is
decreasing as the frequency is increasing. Fig. 3.3 shows that the estimate
tracks the flux well already at 5 Hz. The error in the resistance is still 5
percent.
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Fig. 3.3 Simulation of estimator A, starting from zero. Rse = 0.95 Rs, f = 5 Hz.

Offset in the current measurement will cause drift at all frequencies. The
drift at 5 Hz is shown in Fig. 3.4. The offset of the measured current is 5
percent of the current peak value.

It is obvious that this method is of no practical use due to the shown
limitations. The problems related to the drifting integrators are often
pointed out as the main difficulties with flux estimation at low speeds.
(Bausch et al, 1994). In fact, the drift can easily be mastered, as will be
shown. The real problems at low frequencies will be discussed in Chapter
5.
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Fig. 3.4 Simulation of estimator A, starting from zero. Rse = 0.95 Rs, f = 5 Hz, 5%
offset in measured current.

Estimator B - the Current Model

One way to eliminate the drift is to use equation (2.3) as a base for the
estimator. Assuming zero rotor current, the estimated flux can be
calculated,

Ψ̂sx = Lmeisx (3.3)

shown in Fig. 3.5. Only the measured stator current is used as input to the
estimator.
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ˆ

machine estimator

∫

 

Fig. 3.5 Block diagram of estimator B.
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One of the drawbacks of this estimator is that a correct flux estimate
requires a correct value of the magnetizing inductance L M . Due to
magnetic saturation in the machine, the inductance is varying, making it
difficult to obtain a correct parameter LMe. Fig. 3.6 shows the estimated
flux at an error of five percent in the magnetizing inductance.
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Fig. 3.6 Simulation of estimator B, LMe = 0.95 LM.

Another drawback of the estimator in (3.3) is that it will produce poor
results when the rotor current differs from zero. To compensate for the
rotor current, which usually cannot be measured, the angular velocity of the
rotor must be measured. Estimator A has the advantage of not being
dependent on the speed or rotor current. Equations (2.3) and (2.4) give

        
ÁÁs = L Lis + ÁÁr( ) L M

L L + L M

(3.4)

In order to calculate the rotor flux in (3.4), equation (2.6) is combined with
(2.3) and (2.4) which gives the differential equation

        

dÁÁr

dt
= is

R rL M

L L + L M

− ÁÁr
R r

L L + L M

− jzpω






(3.5)

We now have the following estimator:
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Á̂Ás = L Leis + Á̂Ár( ) L Me

L Le + L Me

(3.6)

        

dÁ̂Ár

dt
= is

R reL Me

L Le + L Me

− Á̂Ár
R re

L Le + L Me

− jzpω






(3.7)

The resulting estimator requires measured rotor speed as well as measured
stator current as input, as indicated in the simplified block diagram in Fig.
3.7. The estimator, referred to as the current model has good properties at
low frequencies but is sensitive to parameter errors at high frequencies
(Jansen et al, 1994a).
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flux
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ÁÁÁÁs

ÁÁÁÁr

 

Fig. 3.7 Block diagram showing inputs and outputs of the current model.

Estimator C - Open Loop Simulation

To solve the drift problem of estimator A, the stator current can be
estimated instead of measured. If ir = 0, equations (2.3) and (2.5) suggest
the following observer,

Ψ̂sx = usx − Rseîsx( )∫ dt (3.8)

îsx = Ψ̂sx

L Me

(3.9)

shown in Fig. 3.8.
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Fig. 3.8 Block diagram of estimator C.
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This estimator is basically an open loop simulation model of the machine
since it does not feed back any measurements.

Fig. 3.9 shows that the drift in Fig. 3.2 is no longer present. However, there
is a steady state error in the estimated flux due to the error in the resistance.
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Fig. 3.9 Simulation of estimator C, starting from zero. Rse = 0.95 Rs, f = 0 Hz (usx is
constant).

An error in the magnetizing inductance parameter also leads to a steady
state error in the estimated flux.

Estimator D - Identity Observer

Various ways have been tried to combine the estimators described to get an
estimator with good properties in the entire frequency range (Jönsson,
1991). As estimator A has good high frequency properties, while estimator
B has good low frequency properties, Jansen et al (1994a) describes a way
of combining them into an estimator with good properties at low and high
frequencies. A low pass filter selects estimator B at low frequencies and
estimator A at high frequencies. This estimator will be further described in
Chapter 4.

Estimator A with ”current correction” to eliminate drift is described in
different papers (Bausch et al, 1994 and Pohjalainen et al, 1994).
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A straightforward way of combining estimator A, B and C is to use
observer theory. The structure used for example by Kalman filters can be
used for the induction machine. In matrix notation, an observer for the
system

dx

dt
= Ax + Bu (3.10)

y = Cu (3.11)

where x is the state to be estimated, u is the input and y is the output of the
system is described by

dx̂

dt
= A ex̂ + Beu + K y − Cex̂( ) (3.12)

where K is the observer gain (Åström, 1976). Note that A e , Be  and Ce  are
chosen model parameters. In a Kalman filter, exact model parameters are
assumed, A =  A e , B = Be  and C = Ce . This observer is also referred to as
an identity observer as it tracks the entire state vector contrary to a reduced
observer which tracks only a subset of the state vector (Luenberger, 1979).

The example with zero rotor current is used to illustrate this structure for
the induction machine flux observer. Estimating only the real axis, we have

x = Ψsx

x̂ = Ψ̂sx

y = isx

u = usx

A e = − Rse

L Me

Be = 1

Ce = 1

L Me

The observer takes the form

dΨ̂sx

dt
= usx − Rse

L Me

Ψ̂sx + K isx − 1

L Me

Ψ̂sx







(3.13)
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The selection of the gain can be a difficult task. One way is pole placement
(Verghese et al, 1988, Umeno et al, 1990 and Hori et al, 1987).
Unfortunately, in the complete observer where the rotor current differs
from zero, the poles depend on the speed if the observer gain is constant.

Another way is Linear Quadratic Gaussian (LQG) design, where the
obtained gain minimizes the estimation error if the noise is Gaussian
distributed (Menander et al, 1991). In the induction machine case,
parameter errors and unknown load torque are worse obstacles than noisy
measurements, limiting the usefulness of this method.

The unit of the gain parameter K is Ω. Equation (3.13) can be rearranged
into equation (3.14) with a new gain parameter, k, which is dimensionless.
This will give better physical insight into the observer, making it easier to
tune. To get the dimensionless gain parameter, equation (3.13) can be
rewritten as

dΨ̂sx

dt
= usx − Rse

L Me

Ψ̂sx + k Rse isx − îsx( ) (3.14)

where

k = K

Rse

(3.15)

and

îsx = CeΨ̂sx = 1

L Me

Ψ̂sx (3.16)

This is shown as a block diagram in Fig. 3.10.

+
–

1/LM

Rs

usx

Ψsx

isx

+ Ψsx

Rse

ˆ

machine observer

1/LMe

isx
ˆ

+
–

k Rse
+
–∫ ∫

 
Fig. 3.10 Block diagram of estimator D.
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A rearrangement of this diagram gives a much better understanding of the
observer, shown in Fig. 3.11,

+
–

1/LM

Rs

usx

Ψsx

isx

Ψsxˆ

machine observer

1/LMe

isx
ˆ

Rse
–
+

+
–

k 1+k

∫ ∫

 

Fig. 3.11 A rearranged block diagram of estimator D.

Equations (3.14) and (3.16) can be rearranged to better describe the
diagram in Fig. 3.11.

dΨ̂sx

dt
= usx − Rse

Ψ̂sx

L Me

1 + k( ) − k isx








= usx − Rse 1 + k( ) îsx − k isx( )
(3.17)

The observer is a combination of estimator A shown in Fig. 3.1 and
estimator C shown in Fig. 3.8. In estimator C, îsx  is fed directly to Rse ,
while an extra part, k îsx  is added here. As a compensation, a
corresponding part of the measured current, k isx , is subtracted. This means
that the measured current acts as a correction for errors in the estimated
current. In Fig. 3.12 it is seen how an observer gain k = 1 reduces the
steady state error of estimator C. The integrator drift of estimator A seen in
Fig. 3.2 is also eliminated.

The observer pole is the root of the first order characteristic equation,

A e − KCe( ) − s[ ] = 0 ⇔

− Rse

L Me

− kR se
1

L Me







− s













= 0 ⇔

s = − Rse

L Me

(1 + k )

(3.18)

If k = −1, the observer turns into estimator A, and if k = 0, the observer
turns into estimator C. An increasing k results in a faster observer, while
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the observer becomes unstable if k < −1. This can be seen in Fig. 3.13,
which shows a plot in the s-plane of the observer poles.
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Fig. 3.12 Simulations of estimator D comparing different observer gains. The left
diagram shows a simulation with k = 0, giving identical result as estimator
C, shown in Fig. 3.9. In the right diagram the gain is k = 1.
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Fig. 3.13 Observer poles at different observer gains k.
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An observer is unstable if the real part of a pole is greater than zero. Note
that the pole of estimator A (k = –1) is in the origin, indicating that the
estimator is not asymptotically stable.

Fig. 3.14 shows how the settling time as well as steady state error is
decreasing at increasing gain. The flux of the machine is constant, Ψsx = 1,
while the observer starts from zero.
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Fig. 3.14 Simulation of estimator D showing how the settling time and steady state
error are reduced if the observer gain k is increased.

To summarize, a large observer gain k results in a faster, more stable
observer that is less sensitive to errors in Rse . The sensitivity to L Me  is
unchanged.

Unfortunately, as k is increased, the sensitivity to noise is increased as well.
Fig. 3.15 shows the estimated current îsx  of equation (3.16) at different
observer gains. The estimated current is more noisy at k = 10 than at k = 1.
However, note that there is much less noise in the estimated current, both at
k = 10 and at k = 1, than in the measured current. The observer
automatically filters the measured current.
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Fig. 3.15 Simulation of estimator D with noisy current measurement, showing that
the noise sensitivity is increased with increasing gain k.

Mechanical Models of Estimators

In Chapter 2, a mechanical model of the simplified induction machine,
assuming zero rotor current was derived. In a similar manner, mechanical
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models of estimators will be studied. Appendix B gives a brief introduction
to electrical and mechanical equivalents.

Some people prefer equations and alphanumeric information, and find
mechanical models of no use. However, most people have a built in sense
for how a mechanical system is affected when forces are applied in
different ways. The mechanical models give a feeling of what is actually
happening either in the machine or in the observer.

Mechanical Model A

A mechanical model of estimator A is shown in Fig. 3.16 (cf. Fig. 2.3). The
inputs to the estimator are the velocity at point a and the force at point b.
The distance x̂  between point b and a fixed point o is the estimated
quantity.

va = usx

Fa

x = Ψsx

dse = 1/Rse
a b

vb

Fb = isx

ˆ ˆ

o

 

Fig. 3.16 Mechanical model of estimator A.

The mechanical system is described by

Fa = Fb = Fdamper = dse va − vb( ) (3.19)

vb = dx̂

dt
(3.20)

resulting in

dx̂

dt
= va − 1

dse

Fb (3.21)

With the substitutions in Fig. 3.16, we have

dΨ̂sx

dt
= usx − Rseisx (3.22)

which is equation (3.2) in differential form.

If the stator resistance is not perfectly matched with the resistance of the
machine of which we measure the current and voltage, point b will drift
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either to the left or to the right at low frequencies. This was also the case
for estimator A, shown in Fig. 3.2. At high frequencies on the other hand,
when point a is rapidly oscillating from left to right, the estimator will
produce a more accurate estimate of the flux.

Mechanical Model B

A mechanical model of estimator B is just a spring shown in Fig. 3.17 (cf.
Fig. 2.3).

Fb = isx

x = Ψsx

kMe = 1/LMe

b

ˆ ˆ

 

Fig. 3.17 Mechanical model of estimator B.

The estimated flux is

Ψ̂sx = x̂ = Fb

k Me

= L Meisx (3.23)

Like in Fig. 3.6, this estimator will not result in any drift, but an error in the
inductance parameter gives the same error in the estimated flux.

Mechanical Model C

Estimator C uses both the viscous damper and the spring, shown in Fig.
3.18. This is the same structure as the mechanical model of the machine in
Fig. 2.3,

va = usx
x = Ψsx

kMe = 1/LMedse = 1/Rse
a b

vb

o

ˆˆ

 

Fig. 3.18 Mechanical model of estimator C.

described by

dx̂

dt
= va − k Me

dse

x̂ (3.24)

which is equations (3.8) and (3.9) combined.
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This model gives errors in the estimated flux if there is an error in the
resistance or inductance parameters, like in Fig. 3.9.

Mechanical Model D

Just like the block diagram of estimator D, the observer, can be arranged in
different ways, shown in Fig. 3.10 and Fig. 3.11, a mechanical model of
this observer can be arranged in several ways. The base is a spring
representing the magnetizing inductance, a damper representing the stator
resistance, and some kind of variable gearing representing the variable gain
k. One arrangement is shown in Fig. 3.19 where the gearing is a winch with
drums of different diameters on the same axis. The diameters (or radii) of
the drums are functions of k, and the mass of the drums is supposed to be
negligible.

 

Fig. 3.19 Mechanical model of estimator D.

The stator resistance damper is attached to a wire wrapped around a drum
of radius 1, the magnetizing inductance spring is attached on radius rm
while the radius of the current drum is ri , shown in Fig. 3.20.

ri

1

rm

va = usx
x = Ψsx kMe = 1/LMe

dse = 1/Rse

a b

ˆ

Fd = isx

d

c

ˆ

 

Fig. 3.20 Mechanical model of estimator D, k = 0.5.
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The position of point b is the estimated flux. The following set of equations
describes this mechanical system:

dx̂

dt
= vb

Fa = Fb = dse va − vb( )
Fc = k Mermx̂

Fb ⋅1 + Fdri = Fcrm

(3.25)

giving

dx̂

dt
= va − 1

dse

Fb

= va − 1

dse

Fcrm − Fdri( )

= va + ri
1

dse

Fd − k Me

dse

x̂ rm
2

(3.26)

Substituting the mechanical quantities with their electrical counterparts
results in equation (3.27),

dΨ̂sx

dt
= usx + riRseisx − Rse

L Me

Ψ̂sxrm
2 (3.27)

which is equal to equation (3.17) if

ri = k (3.28)

and

rm = 1 + k (3.29)

Fig. 3.21 shows this observer at different values of the gain k.
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Fig. 3.21 Mechanical model of estimator D, showing how the diameters of the drums

are changing when k is changing. a) k = –1, ri = –1, rm = 0 b) k = 0, ri = 0,
rm = 1 c) k = 1, ri = 1, rm = 1.41 d) k = 5, ri = 5, rm = 2.4
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In Fig. 3.21 a), the gain is k = –1 corresponding to estimator A. The radius
of the magnetizing inductance drum rm  is zero, and we have the
mechanical observer shown in Fig. 3.16, with point b drifting either to the
left or right at low frequencies if the resistance parameter is not perfectly
matched with the true resistance.

In Fig. 3.21 b), the gain is k = 0. Now the radius of the current drum is
zero, and we have estimator C, which does not use the measured current.

As k is increased, the radius of the current drum ri = k  is increased, and the
influence of the measured current is increased. In Fig. 3.21 c), k = 1, which
gives a good balance of the trust put into measured current and measured
voltage. However, good balance is a relative measure, and noise in
measurements and estimator parameter errors are factors that must be
regarded in an actual application.

As k is further increased, the influence of the measured voltage and the
stator resistance parameter errors is decreased, as the levers for the current
and for the magnetizing inductance both are becoming dominant. This is
seen in Fig. 3.21 d). Neither the equations, the block diagram of the
observer nor this mechanical model will tell at a first glance what is
happening at a large gain.

A second mechanical model shown in Fig. 3.22 can be derived which
clearly illustrates the behaviour when k is large. The drawback of the
second model is that it will not work at k = –1. The ends of the viscous
damper representing stator resistance are attached to wires wrapped around
two drums of radius rs, the radius of the current drum is ri , while the radius
of both the magnetizing inductance drum and the stator voltage drum is
equal to 1.

ri

rs

1

a

d

e

rs

1

b c

va = usx

x = Ψsx

kMe = 1/LMedse = 1/Rse

ˆ

Fd = isx

ˆ

 

Fig. 3.22 Alternative mechanical model of estimator D, k = 0.5.

The equations for the mechanical system are
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dx̂

dt
= ve

vb = vars
vc = vers

Fb = Fc = dse vb − vc( )
Fe = k Mex̂

Fcrs + Fdri = Fe ⋅1

(3.30)

giving

dx̂

dt
= va + ri

rs
2

1

dse

Fd − k Me

dse

x̂
1

rs
2

(3.31)

This equation turns into equation (3.32) when the mechanical quantities are
replaced by electrical quantities,

dΨ̂sx

dt
= usx + ri

rs
2

Rseisx − Rse

L Me

Ψ̂sx
1

rs
2

(3.32)

This is equivalent to equation (3.17) if

rs = 1

1 + k
(3.33)

and

ri = k

1 + k
(3.34)

As k is increased, the radii of the viscous damper drums rs go towards zero,
and the radius of the current drum goes towards 1. It is seen that the stator
voltage and stator resistance no longer have much influence on the
estimated flux, while the stator current force is acting directly on the
magnetizing inductance spring. This means that when k is increased, the
observer will behave more and more like estimator B shown in Fig. 3.17.
Fig. 3.23 shows the observer at k = 5.

It is important to notice that there are no extra simplifications involved in
these mechanical models. The equations describing the mechanical systems
are both identical to the observer equation (3.17).
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Fig. 3.23 Alternative mechanical model of estimator D, k = 5.

As summarized in Table 3.1, the estimators A, B and C are all special cases
of estimator D.

k estimator

–1 A

∞ B

0 C

Table 3.1 Relation between estimator D and estimators A, B and C.

The general observations on the observers assuming zero rotor current are
valid also for the complete observer where the rotor current no longer is
assumed to be zero. With this basic knowledge of a flux observer, the
complete flux observer can now be studied.
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All the characteristics of the observers in Chapter 3, like noise sensitivity
and parameter sensitivity, are valid also for a complete observer. However,
new problems such as non-linearities arise when the rotor current no longer
is assumed to be zero.

In this chapter it is assumed that the rotor speed ω is measured. In Chapter
5, estimators without speed sensors are studied.

An observer for both stator and rotor flux can be obtained in the same way
as the simplified observer described by equation (3.13).

Again, the identity observer in equation (3.12) is the starting point for the
flux observer. An observer for the induction machine described by
equations (2.9)-(2.14), will take the form

dx̂

dt
= A ex̂ + Beu + K y − Cex̂( ) (4.1)

where

        
x̂ = Ψ̂ =

Á̂Ás

Á̂Ár













(4.2)

y = is (4.3)

u = us (4.4)

A e ω( ) =
−Rse

1

L Me

+ 1

L Le







Rse

L Le

R re

L Le

−R re

L Le

+ jzpω





















(4.5)

Be =
1

0






(4.6)
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Ce = 1

L Me

+ 1

L Le

−1

L Le









 (4.7)

K =
Ks

Kr







(4.8)

A key to make this observer easy to tune, is to make the observer gains
dimensionless, which is done with the relation

K = Re k (4.9)

where

k =
ks

kr







=
ksx + j ksy

k rx + j k ry









 (4.10)

and

Re =
Rse 0

0 R re







(4.11)

The observer in matrix notation takes the form

dΨ̂
dt

= A eΨ̂ + Beus + Rek is − CeΨ̂( ) (4.12)

This equation consists of two complex differential equations, one for the
estimated stator flux,

        
dÁ̂Ás

dt
= us − Rse 1 + ks( ) îs − ks is( ) (4.13)

and one for the estimated rotor flux

        
dÁ̂Ár

dt
= jzp ω Á̂Ár − R re îr (4.14)

where

        
îs = Á̂Ás

L Me

− Á̂Ár − Á̂Ás

L Le

(4.15)



38 Flux Observer Models

        
îr = kr îs − is( ) + Á̂Ár − Á̂Ás

L Le

(4.16)

The equations are shown as a block diagram in Fig. 4.1 a). Splitting (4.13)
and (4.14) in real and imaginary parts results in four differential equations,
shown in Fig. 4.1 b).
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Fig. 4.1 Block diagram of flux observer a) complex representation b) real valued

representation.
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The upper left corner (shaded) is basically the same as the block diagram of
the observer in Fig. 3.11, where the rotor current is assumed to be zero.

Settling Time

One major difference between the simplified observer of Chapter 3, where
the rotor current was zero, and the complete observer, is that the rotor
speed ω appears in the equations of the complete observer. First, this
makes the observer a non-linear system if ω is varying. Second, the rotor
speed must be measured or estimated in order to get an accurate flux
estimate. Speed estimation will be discussed in Chapter 5. In this chapter, it
is assumed that the speed is measured perfectly.

The non-linearities affect the settling time of the observer. An observer
with zero gain will be used as a first example to demonstrate how the
settling time varies with ω. Fig. 4.2 shows a simulation of the error in the
estimate of stator flux amplitude. The amplitude of the actual stator flux is
constant during the simulation, while the observer starts from zero.
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Fig. 4.2 Settling time at 50 Hz and 5 Hz for observer with zero gain.

The motor is running at rated torque and at a stator frequency of 50 Hz in
the upper diagram and 5 Hz in the lower one. Note the different time scales
in the two diagrams. The vertical lines at 0.02 seconds and 0.2 seconds
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respectively, correspond to the time instants when the stator flux has
completed one turn.

The diagrams show a very important property: The observer with gain
k = 0 is ten times faster at 50 Hz than at 5 Hz. However, if the settling time
is measured in stator flux revolutions instead of seconds, the observer is
almost equally fast at both frequencies. It takes about one revolution for
errors in the estimates to reach zero in both cases.

The settling time can be reduced with an appropriate selection of the gain
parameters. In Fig. 4.3, the same observer gain k is used at 50 Hz and 5 Hz.
The response is faster than in Fig. 4.2, but it is still approximately 10 times
faster at 50 Hz than at 5 Hz.
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Fig. 4.3 Settling time at 50 Hz and 5 Hz. The same gain

k = 1.3 − 51j − 30 + 85 j[ ]T
 is used at both frequencies.

Pole placement (Åström et al, 1984) is a technique that can be used to set
the settling time of the observer. The observer poles are the eigenvalues of
the matrix A e − RekCe( ) in equation (4.12). If the two complex poles of a
complex 2 × 2 matrix are denoted p1 and p2  the characteristic polynomial
of the observer can be written

P s( ) = s2 + c1s + c2 = s2 − p1 + p2( )s + p1p2 (4.17)
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The required observer gain for desired observer poles is given by

k = Re
−1P A e( )Wo

−1 0

1






= Re
−1 A e

2 − p1 + p2( )A e + p1p2I( )Wo
−1 0

1






(4.18)

where Wo is the observability matrix,

Wo =
Ce

CeA e







(4.19)

Equation (4.18) is evaluated in Appendix E. Unfortunately, the expressions
are too complicated to be of much practical use. Note that the two poles do
not have to be conjugates, as the 2 × 2 matrix is complex.

As matrix A e  is varying with rotor speed ω, the observer gain must vary
with speed if the poles are held constant. Fig. 4.4 shows a simulation at 50
Hz and 5 Hz, with the same poles at both frequencies. This means that
different gain parameters k are used at the two frequencies.
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Fig. 4.4 Settling time at 50 Hz and 5 Hz. The poles are placed in –1500 when the

observer is operating both at 50 Hz and 5 Hz. The gain is

k = 1.3 − 51j − 30 + 85 j[ ]T
 at 50 Hz and k = [481 + 579 j 793 + 996 j]T at

5 Hz.
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Note that the same time scale is used in the 50 Hz and 5 Hz diagrams. As
the poles are the same for the two cases, we have the same response time.
The two curves look different because it is the amplitude error Ψs − Ψ̂s  that
is shown, not the actual states of the observer.

At a first look, pole placement seems to be a useful technique for
manipulating the dynamic behaviour of the observer. However, the price is
high for a fast observer at a low frequency. The parameters of the gain
vector k must be increased between 10 and 400 times in order to make the
observer as fast at 5 Hz as it is at 50 Hz. Such a high gain is usually not
recommendable due to noise sensitivity. The conclusion is that with pole
placement, control of the gain vector is lost, and the gain might increase
beyond reasonable limits.

The settling time is not the most critical factor of an observer. Usually, the
observer flux tracks the flux of the induction machine, and the situation
when there is nominal flux in the machine and the observer flux is zero is a
rare case. More important is the sensitivity to errors in parameters, which
will be discussed later in this chapter.

Poles in Different Reference Frames

Another problem with pole placement is that the choice of reference frame
will affect the location of the poles. Two observers in different reference
frames, with identical behaviour, will not have the same poles. Why the
poles differ in different reference frames is further evaluated in Appendix
G. Until now, both the induction machine and the observer have been
described in a stator oriented stationary reference frame. They might as
well be described in a rotating reference frame, rotating with the angular
frequency ωk. If the observer’s frame is rotating with the same frequency as
the frequency of the stator voltage vector,

ωk = ω1 (4.20)

the estimated stator and rotor flux vectors will be constant, instead of
rotating, when the induction machine is running at constant speed and
constant torque. This observer is described by

dΨ̂ r

dt
= A e − jω1 I( )Ψ̂ r + Beus

r + Rek is
r − CeΨ̂

r( ) (4.21)
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where the r-superscript denotes vectors in the rotating reference frame1,
and

Ψ̂ r = Ψ̂ e− jω1t

⇔

Ψ̂ = Ψ̂ r e jω1t

(4.22)

us
r = us e− jω1t (4.23)

is
r = is e− jω1t (4.24)

If the gain k is the same in the observers of equation (4.12) and equation
(4.21), they will have identical behaviour, meaning that Ψ̂  of the first
observer will be identical to Ψ̂ r e jω1t  of the second observer. However, the
poles of the first observer (see Appendix E) are the eigenvalues of
A e − Re k Ce( ), while the poles of the second observer are the eigenvalues

of A e − Re k Ce − jω1 I( ). Fig. 4.5 shows the poles of both observers.
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Fig. 4.5 ’x’ marks the poles of the observer in a stationary reference frame and ’*’
marks the poles of the observer in a reference frame rotating with angular
frequency ω1 = 2π f1 = 2π50 ≈ 314 rad / s

1 the r-superscript is sometimes used in the literature for a rotor oriented reference frame.
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Note that the real parts of the poles of both observers are equal, while the
difference in the imaginary parts is equal to ω1. It must also be pointed out
that the observer is a non-linear system. Poles in the left half plane
guarantee stability only in a linear system. An example of this is given in
Appendix G.

Parameter Sensitivity

It is important to have as accurate observer parameters as possible, in order
to get accurate estimates. Various methods for parameter identification
exist (Zai et al, 1992, Krzeminski, 1991 and Vélez-Reyes et al, 1995), but
will not be further discussed here. Instead, the influence of parameter errors
will be studied.

The observer structure described by equation (4.12) is sometimes criticized
for its parameter sensitivity at low frequencies (Jansen et al, 1994a). This is
a misunderstanding due to its similarities to estimator A with poor low
frequency properties, but with a proper choice of the gain k, this estimator
will behave like anything from estimator A to estimator C. With a suitable
gain, this observer will work well in its entire frequency range.

It is difficult to derive analytic expressions for the parameter sensitivity.
Instead, the flux estimate errors at different frequencies are calculated for a
certain motor, and compared with the errors of an observer described by
Jansen et al (1994a).

As the flux vectors are rotating, the errors in the stator flux and rotor flux,

        Á̃Ás = ÁÁs − Á̂Ás (4.25)

and

        Á̃Ár = ÁÁr − Á̂Ár (4.26)

will also be rotating vectors. The relative errors in flux magnitude and
phase are better measures. Here, the magnitude of the estimated flux
related to the actual flux

        

Á̂Ás

ÁÁs

= Ψ̂s

Ψs

(4.27)

and the error in phase,
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        arg Á̂Ás( ) − arg ÁÁs( ) = ϕ̂s − ϕs (4.28)

will be studied.

These measures will be constant if the machine and observer are running
with flux of constant magnitude and constant angular velocity. To calculate
the steady state2 flux of the observer, the following relation can be used,

dΨ̂
dt

= jω1 Ψ̂ (4.29)

where

ω1 = 2 π f1 (4.30)

and f1 is the frequency of the stator voltage. Equation (4.12) combined with
equations (4.29) and (2.10) give

jω1 Ψ̂ = A eΨ̂ + Beus + Rek CΨ − CeΨ̂( ) (4.31)

or

A e − RekCe − jω1 I( )Ψ̂ = −Beus − RekCΨ (4.32)

where Ae, Be and Ce are given by (4.5), (4.6) and (4.7), respectively.

The steady state flux estimate can now be calculated as

Ψ̂ = − A e − RekCe − jω1 I( )−1
Beus + RekCΨ( ) (4.33)

and the steady state flux of the motor is given by

Ψ = − A − jω1 I( )−1
B us (4.34)

Parameter Sensitivity Comparison Between Two Observers

The error of the flux estimate in equation (4.33) will be compared to the
flux estimate of an observer described by Jansen et al (1994a), shown here
as a block diagram in Fig. 4.6. This observer was chosen as reference
because of its good properties both at low and high frequencies.

2 The term ”steady state” will be used even though the flux vectors are rotating. The term will be used
when the magnitude and the angular velocity of the flux vectors are constant.
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Fig. 4.6 Block diagram of λ-observer.

With the notation used by Jansen et al (1994a), this observer is described
by

        

d¬̂¬s

dt
= −K1

L re

Lme

¬̂¬s+K1¬̂¬ rc+K2¬̂¬+ σeLse
L re

Lme

K1 − Rse







is + us

d¬̂¬ rc

dt
= −¬̂¬ rc

1

τre

− jzp ω






+ 1

τre

Lmeis

d¬̂¬
dt

= − L re

Lme

¬̂¬s+¬̂¬ rc+σeLse
L re

Lme

is

(4.35)

where         ¬̂¬s is the estimated stator flux and         ¬̂¬ rc and         ̂¬¬  are intermediate states.
In matrix notation the observer is described by
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dλ̂
dt

= A λe λ̂ + Bλe

is

us







=

−K1
L re

Lme

K1 K2

0 − 1

τre

− jzp ω






0

− L re

Lme

1 0
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

λ̂ +

σeLse
L re

Lme

K1 − Rse 1

1

τre

Lme 0

σeLse
L re

Lme

0
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

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

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















is

us







(4.36)

where

        

λ̂ =
¬̂¬s

¬̂¬ rc

¬̂¬

















(4.37)

To distinguish between the observers, the observer described by equation
(4.12) and Fig. 4.1 will be called the Ψ-observer, and the observer
described by equation (4.35) and Fig. 4.6 will be called the λ-observer. In
the US, flux linkage is often denoted λ, while the same quantity in Europe
is denoted Ψ.

As a slightly different model of the induction machine is used in the λ-
observer (T-model instead of Γ-model), table 2.1 must be used to translate
between the models. Equal leakage inductance in stator and rotor is
assumed. The stator flux estimate         ¬̂¬s can be directly compared to the stator
flux estimate         Á̂Ás, while a new rotor flux         ¬̂¬ r  must be calculated for
comparison with         Á̂Ár . The Ψ-observer and the λ-observer can be compared
if

        
¬̂¬ r = 1

k γ

L re

Lme

¬̂¬s−σeLseis( ) (4.38)

k γ = L Me

L Me + L Le

(4.39)
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Lme = k γ L Me = L Me

L Me

L Me + L Le

(4.40)

Lse = Lme + Lsle = L Me (4.41)

L re = Lse (4.42)

σe = 1 − Lme
2

L reLse

(4.43)

τre = L re

R rek γ
2

(4.44)

        ϑ̂s = arg ¬̂¬s( ) (4.45)

The steady state value of λ̂  (actually the value when the magnitude and
angular velocity of the components are constant) is given by

λ̂ = − A λe − jω1 I( )−1
Bλe

is

us







(4.46)

The idea behind this heuristic observer is to combine the good properties of
estimators similar to estimator A and estimator C of Chapter 3. The left
part of the observer in Fig. 4.6, the current model, depends on the
measured current and works well at low frequencies. The right part, the
voltage model, is integrating the measured voltage, with good results at
high frequencies. At low frequencies, the estimated flux of the current
model is correcting the flux of the voltage model, while at higher
frequencies, the influence of the current model is reduced. The break
frequency where the observer makes a transition from the current model to
the voltage model can be set by the gain parameters K1 and K2 in equation
(4.35). The parameters can be calculated from the chosen bandwidth of the
observer, governed by the real eigenvalues –σ1 and –σ2. Having selected
the bandwidth, the gains are given by

K1 = Lme

L re

σ1 + σ2( ) (4.47)

and
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K 2 = Lme

L re

σ1σ2 (4.48)

The λ-observer and Ψ-observer are compared in Fig. 4.7 and Fig. 4.8. The
gain of the Ψ-observer is k = [5 – 1]T . This gain was chosen empirically,
mainly to get a good balance between parameter sensitivity and noise
sensitivity.

The eigenvalues of the λ-observer are −σ1 = −σ2 = −2π 20  rad / s.

Fig. 4.7 shows the error at rated torque when the rotor speed is slowly
varied from 1% of the rated speed up to 10 times the rated speed. The solid
lines represent the amplitude of the estimated flux of the Ψ-observer
related to the actual flux, Ψ̂s Ψs , and its phase error, ϕ̂s − ϕs. The dashed
lines show the corresponding measures of the λ -observer, λ̂s Ψs  and
ϑ̂s − ϕs.

It is seen that the errors in estimates of the Ψ-observer are smaller in most
cases, except for the case shown in Fig. 4.7 a), where there is an error in
Rse.

In Fig. 4.8, the two observers are compared again, now at varying slip and
load torque. Also in this case, the errors are smaller for the Ψ-observer than
for the λ-observer.

If the bandwidth of the λ-observer is increased, the sensitivity to errors in
the stator resistance is reduced, because more trust is put into the current
model which is completely insensitive to stator resistance error. However,
higher bandwidth will accentuate errors due to errors in the other para-
meters at low frequencies. The bandwidth given by σ1 = σ2 = 2 π 20 rad/s
was selected as a good compromise.
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Fig. 4.7 Comparison of parameter sensitivity between Ψ-observer (solid lines) and
λ-observer (dashed lines) at rated torque. Ψ-observer gain k = [5   -1]T,  λ-
observer eigenvalues −σ1 = −σ2 = −2π 20  rad / s a) Rse-error b) Rre-error
c) LLe-error d) LMe-error
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Fig. 4.8 Comparison of parameter sensitivity between Ψ-observer (solid lines) and
λ-observer (dashed lines) at varying slip and torque. Ψ-observer gain
k = [5   -1]T,  λ-observer eigenvalues −σ1 = −σ2 = −2π 20  rad / s a) Rse-
error b) Rre-error c) LLe-error d) LMe-error
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Fig. 4.9 Comparison of parameter sensitivity between Ψ-observers with gain
k = [5   0]T (solid) and gain k = [0   0]T (dashed). a) Rse-error b) Rre-error c)
LLe-error d) LMe-error
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Fig. 4.10 Comparison of parameter sensitivity between Ψ-observers with gain
k = [5   0]T (solid) and gain k = [5   -1]T (dashed). a) Rse-error b) Rre-error
c) LLe-error d) LMe-error
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Observer Gain Influence on Parameter Sensitivity

The gain vector k of the Ψ-observer will affect the parameter sensitivity in
a more direct way than K1 and K2 of the λ-observer. At low and high
frequencies, the error of the λ-observer is not much affected by K1 and K2.
At low frequency, the parameter sensitivity is the same as the parameter
sensitivity of the current model. At high frequencies, the sensitivity is the
same as the sensitivity of the voltage model. The gain k of the Ψ-observer
on the other hand, will affect the parameter sensitivity in the entire
frequency range. The error of the Ψ-observer in Fig. 4.7 a) can be reduced
by increasing the gain of the observer. In Fig. 4.9 and Fig. 4.10, the steady
state errors of the Ψ-observer is compared for different selections of the
gain. In Fig. 4.9, the solid lines represent a gain of ks = 5 and k r = 0 ,
while the dashed line represent an observer with zero gain.

In Fig. 4.9 it is seen that the error is smaller for ksx = 5 than for ksx = 0,
comparable to the error reduction seen in Fig. 3.12 and Fig. 3.14. The error
can be further reduced with k rx = −1 instead of k rx = 0, seen in Fig. 4.10.
However, the effects of krx are less predictable than the effects of ksx and
the observer might be unstable at certain speeds if it is not chosen with
great care. As the gain ksx has more influence on the steady state error than
krx, it is recommended to set krx = 0.

The imaginary parts of the observer gain, ksy and kry should also be zero for
stability reasons. Both parameters will have different effects if the rotor
speed is positive or negative. If they are chosen so that the observer is
stable for clockwise rotation, the observer will be unstable for counter
clockwise rotation. If, for some reason ksy and kry, are given values other
than zero, observer gain scheduling must be used, changing the signs of ksy

and kry when the direction of rotation is changed.

Flux Observer Conclusions

The parameter sensitivity of the observer structure shown in Fig. 4.1 can be
significantly reduced by selecting an appropriate observer gain. The
structure with dimensionless observer gains makes the selection much
easier. The gains rather than the poles of the observer should be held
constant at varying speed. As a result, the response time of the observer
will be slower at lower frequencies. Although the sensitivity to errors in the
stator resistance is reduced by using a large value of ks, the sensitivity to
noise is increased. Thus, it is important to have an as accurate parameter
Rse as possible. This is not a big drawback as the stator resistance is the
easiest parameter in the induction machine to measure.



5
Speed Observer Models

In earlier chapters, it was assumed that rotor speed was measured, and the
speed signal was used as input to the flux observer. In this chapter, the
speed as well as the flux will be estimated instead of measured.

Two basic strategies for speed estimation are found in the literature; one
strategy uses the machine model in equations (2.3)-(2.6) together with
measured current and voltage (Yang et al, 1993, Schauder, 1992, Tajima et
al, 1993 and Jönsson, 1991). The other strategy relies on saliency within
the machine. Unfortunately, both strategies are related with limitations.

The difficulty with the first strategy appears at low speeds and low
frequencies. Even though it is not directly apparent from the machine
model, the measured current and voltage carry no information on the speed
if the frequency of the stator voltage is zero as will be shown later. This
fact is seldom mentioned in the references. Instead, it is often stated that
these methods fail at zero speed, not at zero frequency (Jansen et al, 1993).
Extended Kalman filters have been tried to overcome the low frequency
problems (von Westerholt et al, 1992b, Henneberger et al, 1991, Kim et al,
1994), but it is obvious that none of these methods will work properly
when speed information is not present in the measured signals.

The difficulty with the second strategy is that the rotor of the induction
machine is smooth, and the ideal induction machine described by equations
(2.3)-(2.6) has no saliency at all. In the actual machine, rotor slotting is
present, resulting in current harmonics (Hurst et al, 1994, Beguenane et al,
1994, Haemmerli, 1986 and Veltman, 1994). The FFT analysis required to
extract the speed information from the harmonics is time consuming, and
the information is reduced at low speed and low frequency for this method
as well. A promising method is described by Schroedl (1992) that uses
saliency introduced by local saturation of the magnetic flux paths instead.
This method has also been reported to fail in the low speed region (Jansen
et al, 1994a). To solve the low speed problems, a new method using a
modified rotor with a modulation in the width of the slot openings has been
presented (Jansen et al, 1994a). The main drawback of this method is that a
standard induction machine cannot be used.
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The first strategy, using the machine model in equations (2.3)-(2.6), can be
implemented with standard induction machines and frequency inverters
with moderate additional hardware. Only this strategy will be studied here.

Introduction to Speed Estimation

In this section a simplified mechanical model will illustrate how the rotor
speed of the induction machine can be estimated, and also illustrate some
related problems.

With some simplifications, the mechanical model in Fig. 5.1 is a model
analogous to the torque producing part of the induction machine. In this
model, rotational movement is replaced by linear movement and torque is
replaced by force. Note that the equilibrium position of the spring is at
l = 0.

u
l 

k = d = 
a

v

m
i

1
Rs + Rr

1
R

=1
LL

Fload

 

Fig. 5.1 Simplified mechanical model illustrating induction machine speed
estimation.

In the mechanical model in Appendix C, Fig. C.2, it is seen that the leakage
inductance has the main influence in the tangential direction, the torque
producing direction, while the magnetizing inductance can be neglected.
The stator and rotor resistance can be considered connected in series. The
spring in Fig. 5.1 is representing the leakage inductance LL and the viscous
damper the sum of the stator resistance Rs and rotor resistance Rr. The
moment of inertia J is represented by the mass m. Estimating the speed v of
the carriage is analogous to estimating the rotor speed ω of an induction
machine.

The input to the system u is the speed of point a representing the tangential
part of the stator voltage vector. The force i, representing the tangential part
of the stator current vector is an output that can be measured. Fload is
representing the load torque and can not be measured.

According to the laws for a mechanical system described in Appendix B,
the system in Fig. 5.1 is described by
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dl

dt
= u − k

d
l − v = u − R

L L

l − v (5.1)

  

dv

dt
= k

m
l − Fload

m
= 1

m L L

l − Fload

m
(5.2)

  
i = k l = 1

L L

l (5.3)

or in matrix notation

dx

dt
= Ax + Bu + F (5.4)

y = Cu (5.5)

where

  
x =

l

v






(5.6)

y = i (5.7)

A =

−R

L
−1

1

m L L

0





















(5.8)

B =
1

0






(5.9)

C = [1 / LL 0] (5.10)

F =
0

Fload







(5.11)

If the load force is equal to zero, the velocity v of the carriage will be equal
to the input u at steady state. This is analogous to an induction machine
running at synchronous speed. If the load is greater than zero, the velocity v
will be less than u, comparable to a loaded induction machine running with
slip. To conclude, estimating the velocity v is analogous to estimating the
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rotor speed ω of an induction machine with unknown load torque. Deriving
a velocity observer for this mechanical system is the first step in deriving
an observer for the rotor speed of the induction machine, which will be
done later in this chapter.

Velocity Observer, Approach 1

The identity observer structure in equation (3.12) cannot be applied directly
to this system because of the unknown input Fload in equation (5.2). A first
heuristic approach could simply be to integrate the error in an estimate of
the force i, resulting in a velocity estimate, where the estimated force is a
result of the standard observer structure applied to equation (5.1). We have

  

dl̂

dt
= u − R

L L

l̂ − v̂ + k1 i − î( ) (5.12)

  
î = 1

L L

l̂ (5.13)

dv̂

dt
= k 2 i − î( ) (5.14)

The velocity estimate v̂  will be integrated until the errors in the estimates
i − î  and   l − l̂ are zero, giving also the velocity estimate error v − v̂  equal
to zero at steady state.

If we instead form an observer out of equation (3.12), neglecting the load
torque, equations (5.12) and (5.13) remain unchanged, but the velocity
estimate equation will be

  

dv̂

dt
= 1

m L L

l̂ + k 2 i − î( ) (5.15)

As long as the load force Fload is zero or varying with zero mean, an
observer consisting of equations (5.12), (5.13) and (5.15) is superior to one
using equation (5.14) for the velocity estimate. However, the steady state
value of the velocity estimate of equation (5.15) will always equal the input
u, even when Fload is present, resulting in a steady state error in the velocity
estimate. The reason is that in the system equation (5.2), the terms

  l m L L( )  and Fload m  will be equal at steady state, and the time derivative
of the velocity will be zero. In the observer equation (5.15), there is no
term Fload m  that can balance   l̂ m L L( ) . Instead,   ̂l  will be driven to zero
at steady state. If the term   l̂ m L L( )  simply is deleted, the steady state error
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is eliminated, and we are back to the first heuristic approach, equation
(5.14).

In conclusion, one term,   l̂ m L L( ) , must be deleted, to get zero error at
steady state out of the identity observer originating from equation (3.12), in
order to handle the unknown input Fload.

Velocity Observer, Approach 2

Another way of handling an unknown input is to augment the state vector
(Glad et al, 1981 and von Westerholt et al, 1992b).

  

x =
l

v

Fload

















(5.16)

The last row of the system matrix will consist only of zeros, as Fload is
unknown,

A =

−R

L
−1 0

1

m L L

0 − 1

m

0 0 0

























(5.17)

The B and C matrices must be extended with zeros,

B =
1

0

0

















(5.18)

C = 1 L L 0 0[ ] (5.19)

As the unknown force is a state and not an input, the identity observer can
be used. Inserting the matrices above into equation (3.12) gives

  

dl̂

dt
= u − R

L L

l̂ − v̂ + k1 i − î( ) (5.20)

  

dv̂

dt
= 1

m L L

l̂ − 1

m
F̂load + k 2 i − î( ) (5.21)
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dF̂load

dt
= k 3 i − î( ) (5.22)

  
î = 1

L L

l̂ (5.23)

The steady state value of this observer is equal to the steady state value of
the observer in equations (5.12)-(5.14), that is, no error in the velocity
estimates.

The two observers have different dynamic behaviour, making it difficult to
say which one is the better. However, the first observer has an advantage in
less computational costs.

Speed Calculation through Differentiation

The velocity observers discussed so far are all based on integration. If we
look at the complete description of the induction machine, instead of at the
simplified model in Fig. 5.1, there is another way of estimating the rotor
speed based on differentiation.

The speed of the rotor is present in equation (2.6) which can be used to
derive an expression for the speed. Equation (2.6) gives

        

jzp ω =

dÁÁr

dt
ÁÁr

+ R r
ir

ÁÁr

=
ÁÁr

∗ dÁÁr

dt
ÁÁr

∗ÁÁr

+ R r
ÁÁr

∗ir

ÁÁr
∗ÁÁr

=
ÁÁr

∗ dÁÁr

dt
ÁÁr

2 + R r
ÁÁr

∗ir

ÁÁr
2

(5.24)

As zp and ω are real, the real part of equation (5.24) must be zero resulting
in

        
jzp ω =

jℑ ÁÁr
∗ dÁÁr

dt







ÁÁr
2 + R r

jℑ ÁÁr
∗ir( )

ÁÁr
2 (5.25)

The speed of the rotor can now be calculated,
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ω = 1

zp

ℑ ÁÁr
∗ dÁÁr

dt







ÁÁr
2 + R r

ℑ ÁÁr
∗ir( )

ÁÁr
2

















(5.26)

The first term of the right hand side of equation (5.26), the cross product of
the rotor flux vector and its time derivative, divided by the square of the
length of the vector, is equal to the angular speed ωe of the rotor flux
vector,

        
ωe =

ℑ ÁÁr
∗ dÁÁr

dt







ÁÁr
2 = d

dt
arg ÁÁr( ) (5.27)

The second term includes the motor torque. Combining (2.8), (5.26) and
(5.27) gives

        
ω = 1

zp

ωe − 2

3

R r

zp

T

ÁÁr
2









 (5.28)

At steady state, ωe is equal to ω1, meaning that the first term represents the
synchronous speed, while the second term represents the slip.

If the stator flux together with all the parameters of the machine are known,
the rotor flux can be calculated from equations (2.3) and (2.4),

        
ÁÁr = ÁÁs 1 + L L

L M







− L L is (5.29)

It looks simple to calculate the speed of the rotor: when the stator flux is
known, calculate the rotor flux from equation (5.29). Then, assuming the
speed estimator is implemented as a sampled system, use numerical
differentiation to calculate ωe. Calculate the torque from equation (2.8),
and the speed is calculated from (5.28). However, there are problems
involved:

• calculation of the stator flux;

• differentiation is sensitive to noise, giving problems when calculating
ωe;



66 Speed Observer Models

• the slip term is proportional to the rotor resistance. If the rotor
resistance, which varies with temperature, is not precisely known, the
calculated speed will differ from the actual speed.

The first problem is ”solved” by using one of the flux observers described
in Chapter 3 and Chapter 4. The observer in equation (3.1) is often used to
calculate the flux (Pohjalainen et al, 1994, Bausch et al, 1994, Takahashi et
al, 1989 and Baader et al, 1992). As was shown in Chapter 3, this method
cannot be used at low frequencies. Various tricks such as low pass filtering
and ”current correction” are used in the mentioned publications to prevent
the integrators from saturating at low frequencies. Even though the
integrator drift is pointed out in many articles to be the main problem about
observers, there are more severe problems than integrator drift at low
frequencies as will be discussed later in this chapter.

It was shown in previous chapters that the integrator drift problem is solved
by using the flux observer described by equations (4.13) and (4.14). This
observer also estimates the rotor flux directly and equation (5.29) is not
needed. However, this observer requires the speed as an input. Trying to
calculate the rotor speed from equation (5.28) and then feeding it to this
observer results in an algebraic loop, making it impossible to use.

Instead, the flux observer together with a new speed observer based on
integration rather than differentiation will be studied here. The steady state
speed of this observer will be the same as the speed calculated by equation
(5.28).

Speed Observer Based on Integration

A speed observer based on the ideas that earlier led to a velocity observer
described by equations (5.12)–(5.14) will overcome the problems related to
differentiation.

By simply adding a lever to the force error i − î  in equation (5.14), a
torque error is obtained. The lever in the induction machine is the stator
flux vector. The torque error is the result of a cross product,

        
T̃ = ℑ is − îs( )∗

Á̂Ás




 (5.30)

and is analogous to the force error i − î . In (5.14), the integrated force error
resulted in the velocity estimate. Correspondingly, the torque error can be
integrated into a rotor speed estimate,
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dω̂
dt

= k ω

Je

T̃ = k ω

Je

ℑ is − îs( )∗
Á̂Ás





 (5.31)

where the gain kω  determines the response time but not the steady state
value of the estimated speed. A block diagram of this observer is shown in
Fig. 5.2.

ˆ kω / Je

+
–

∫

isx

ω
+
–

+
–

isy

isx

isyˆ

Ψ̂sx

Ψsyˆ

ˆT
~

 

Fig. 5.2 Block diagram of speed observer. isx is the real part of the stator current, isy
is the imaginary part.

The inputs of this observer are the estimated stator flux and stator current
of the flux observer in Fig. 4.1 and the measured stator current. The output
ω̂  is connected to the ω-input of the flux observer.

This speed observer is related to speed observers based on model reference
adaptive systems, MRAS (Tamai et al, 1987, Schauder, 1992 and Tajima et
al, 1993). Two models of the induction machine, usually the voltage model
(estimator A in Chapter 3) which is speed independent, and the current
model (estimator B in Chapter 3), which does depend on the speed, run in
parallel. If the speed input to the current model is incorrect, the current
model and voltage model will yield different flux estimates. This difference
is treated as an error signal, and is adjusting the speed input to the current
model until the error is zero. This method has the disadvantage of using the
voltage model which does not work at low frequencies due to integrator
drift.

The speed observer proposed here use the machine itself as the reference
system, and the observer described in Chapter 4 as the adjustable system,
solving the integrator drift problems. A similar approach was suggested by
Yang et al (1993).

A second velocity observer for the system in Fig. 5.1 was suggested, where
a new state, F̂load, was introduced. The same approach can be used when
designing a rotor speed observer, where the unknown load torque must be
introduced as an estimated state. The observer would have the same
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structure as the estimator in equations (5.21) and (5.22). This observer is
not further investigated here but is mentioned by von Westerholt et al
(1992a and 1992b).

Steady State Value of Speed Estimate

The steady state value of the speed observer is more difficult to calculate
than that of the flux observer. Calculating the flux meant solving a linear
set of equations with two unknown complex variables. Now we have a
non-linear set of equations with two unknown complex variables and one
unknown real variable. The equations to solve are the two equations (4.31)
(with ω replaced by ω̂ ), and equation (5.31), with the derivative equal to
zero. The system matrices Ae, Be and Ce of equation (4.31) are defined by
(4.5)-(4.7).

        
jω1 Á̂Ás = us − Rse 1 + ks( ) Á̂Ás

1

L Me

+ 1

L Le







− Á̂Ár

1

L Le







+ Rseksis (5.32)

        

jω1 Á̂Ár = jzp ω̂ Á̂Ár + R re

L Le

Á̂Ás − Á̂Ár( )

− R rekr Á̂Ás
1

L Me

+ 1

L Le







− Á̂Ár

1

L Le

− is








(5.33)

        
0 = k ω

Je

ℑ is − îs( )∗
Á̂Ás





 (5.34)

The last equation expresses that, at steady state, the estimated stator flux
vector is parallel to the error in the estimated current. It follows that

        îs − is = çÁ̂Ás (5.35)

where ç is a real valued constant. The estimated stator current can
according to equation (4.15) be written

        
îs = Á̂Ás

1

L Me

+ 1

L Le







− 1

L Le

Á̂Ár (5.36)

Inserting the estimated stator current in equation (5.35) followed by some
rearranging gives

        Á̂Ár = çÁ̂Ás − LLeis (5.37)
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where ç still is a real valued constant, but different from the one in (5.35).
We have now introduced an extra unknown variable, but also replaced
equation (5.34) by equation (5.37), which can be considered as two
equations, one for the real and one for the imaginary part. The steady state
value of the speed observer can now be calculated by solving equations
(5.32), (5.33) and (5.37). Step one is to express stator and rotor flux
estimates as functions of the estimated speed,

        Á̂Ás = f1 ω̂( ) (5.38)

        Á̂Ár = f2 ω̂( ) (5.39)

which is equivalent to solving a linear system of two complex variables.
The functions are then inserted into equation (5.37),

f2 ω̂( ) = ç f1 ω̂( ) − L̂ Lis (5.40)

These functions are found in Appendix F. Inserting them in (5.40), and
some rearranging gives

ç = n − mω̂
h − pω̂

(5.41)

where n, m , h and p are explicitly written in Appendix F. As ç is real,
equation (5.41) can be solved by setting the imaginary part of the right
hand side equal to zero, giving a new equation,

nx − mxω̂
hx − pxω̂

=
ny − myω̂
hy − pyω̂

(5.42)

where index x denotes real parts and index y denotes imaginary parts. This
equation has two solutions,

ω̂ =
hymx + pynx − hxmy − pxny

2 pymx − pxmy( )

+
hymx + pynx − hxmy − pxny( )2

− 4 pymx − pxmy( ) hynx − hxny( )
2 pymx − pxmy( )

(5.43)

and
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ω̂stat = ω̂ =
hymx + pynx − hxmy − pxny

2 pymx − pxmy( )

−
hymx + pynx − hxmy − pxny( )2

− 4 pymx − pxmy( ) hynx − hxny( )
2 pymx − pxmy( )

(5.44)

The first solution, (5.43), represents an unstable operating point, while the
second one, (5.44), represents a stable operating point equal to the steady
state value of the speed observer. This is illustrated in Fig. 5.3 which show
a graphical solution of equations (5.32)–(5.34). In this example the true
speed of the induction machine is 3 rad/s. The operating point is stable if

dT̃

dω̂
< 0 (5.45)
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Fig. 5.3 Graphical solution of equations (5.32)–(5.34) showing stable operating
point (3 rad/s) and unstable operating point (68 rad/s).

Inserting the expressions for hy, mx etc., would lead to an expression about
four pages long, and is unfortunately of no help in understanding the speed
observer.
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If the estimated parameter errors are too large (e.g. Rse > 1.5Rs), there is a
risk that the other solution will be the stable solution.

Just like equation (2.6) can be rearranged into equation (5.26), equation
(4.14) can be rearranged into equation (5.46),

        

ω̂ = 1

zp

ℑ Á̂Ár
∗ dÁ̂Ár

dt







Á̂Ár

2 + R re

ℑ Á̂Ár
∗îr( )

Á̂Ár

2



















(5.46)

At steady state, the first term of the right hand side is equal to ω1, defined
by (4.30) and the steady state speed estimate is equal to

        

ω̂stat = 1

zp

ω1 + R re

ℑ Á̂Ár
∗îr( )

Á̂Ár

2













(5.47)

This equation says that there is no error in the speed estimate at steady state
if the parameters of the observer are correct.

Fig. 5.4 and Fig. 5.5 show the parameter sensitivity of the speed estimate,
when the speed observer is connected to the flux observer described in
Chapter 4. Fig. 5.4 shows the relative slip error

s̃

s
= s − ŝ

s
(5.48)

in a wide speed range at rated torque, while Fig. 5.5 shows the absolute
speed error at low speed operation from zero to nominal torque. The same
conditions with different gain vectors k of the flux observer are shown.
Note that the gain of the speed observer kω does not affect the steady state
value of the speed estimate.

It is important to notice that a relative slip error of 10% as shown in Fig.
5.4 b) correspond to 0.5% error if the speed error is related to nominal
speed,

ñ

nn

= n − n̂

nn

(5.49)
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Fig. 5.4 Relative error of estimated slip at rated torque. k = [0.7   0]T (solid),
k = [-0.7   0]T (dashed) a) Rse-error b) Rre-error c) LLe-error d) LMe-error
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Fig. 5.5 Error of estimated speed at varying slip and torque, k = [0.7   0]T (solid),
k = [-0.7   0]T (dashed) a) Rse-error b) Rre-error c) LLe-error d) LMe-error

Note that the error in the speed estimate is smaller at k = [−0.7 0]T  than
at k = [0.7 0]T . In Chapter 4, the result was the opposite when studying
the error in the flux estimates. The explanation to this is that the flux
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observer and the speed observer use the same error signal, ĩs = is − îs, to
correct the estimated quantities. A large gain vector k in the flux observer
will reduce the error in ĩs , resulting in less information for the speed
observer. Note also that with a gain ks < –1, the flux observer will be
unstable as was indicated in Fig. 3.13.

Speed Observer Poles

The flux observer in Chapter 4 is a non-linear system, but can be
considered linear if the speed is constant; consequently the poles can be
calculated. The linearization of the speed observer, necessary if the poles
shall be calculated, is more complicated. If the poles should say anything
about local stability, the system must be linearized around an operating
point where all derivatives are zero. This is not the case with the observer
consisting of the flux observer in Fig. 4.1 and the speed observer in Fig.
5.2; the flux estimates will be rotating vectors. To get all derivatives equal
to zero, the observer in a rotating reference frame described by equation
(4.21), combined with the speed observer, can be used.

At the operating point, the flux, speed, current and voltage are Ψ̂0
r , ω̂0, is0

r

and us0
r , where

Ψ̂ r = Ψ̂0
r + δΨ̂ r =

Ψ̂sx 0
r + j Ψ̂sy0

r

Ψ̂rx0
r + j Ψ̂ry0

r

















+
δΨ̂sx

r + jδΨ̂sy
r

δΨ̂rx
r + jδΨ̂ry

r

















(5.50)

ω̂ = ω̂0 + δω̂ (5.51)

is
r = is0

r + δis
r (5.52)

us
r = us0

r + δus
r (5.53)

As the states of the observer are both complex (stator and rotor flux
estimates) and real (speed estimate), the linearization is simplified if the
real and imaginary parts of the two complex equations are separated,
resulting in four equations with real coefficients. This is further discussed
in Appendix E.

Inserting equations (5.50)-(5.53) into equations (4.21) and (5.31), and
separating real and imaginary parts, gives the following equation,
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where M is a 5 × 5 matrix and N is a 5 × 2 matrix,
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and A e
r  is the observer matrix A e , but adjusted for the rotating reference

frame,
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Ce is the same as for the stationary reference frame, defined by equation
(4.7).

This observer, still non-linear, is equivalent to the observer of equations
(4.21) and (5.31), but if the last term of (5.54), is neglected, we have the
following linear approximation,
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This linear system can be used for studying local stability.

Poles of Linearized Speed Observer

The poles of the linearized speed observer are the eigenvalues of matrix M.
If kω = 0, the poles will be the same as for the observer in a rotating
reference frame discussed in Chapter 4, plus a pole in the origin. Fig. 5.6
shows how the observer poles move when kω is increased. As is seen in the
figure, a pair of the poles will move to the right half plane if the speed
observer gain is increased to much, resulting in an unstable observer.
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Fig. 5.6 Poles of linearized speed observer as kω is varied.

The pole plots also give some information on the settling time of the speed
estimate. The speed observer pole, moving from the origin to the left as kω
is increased, indicates that the settling time of the speed estimate is
decreasing as the gain is increasing. This is true to a certain point, but as
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the flux and speed observers work hand in hand, all poles must be
considered, and while the speed observer pole is moving to the left, a pair
of the flux observer poles are moving to the right. If the flux observer
becomes too slow, the speed observer will be slower as well.

Sensitivity to Rotor Resistance

A very important property of the speed observer is seen in Fig. 5.4 b); if
there is a ten percent error in the estimated rotor resistance, there will be a
ten percent error in the estimated slip.

At steady state, it is actually the ratio R r s that can be estimated if only
voltage and current is measured. This is independent of the structure of the
speed observer. As the rotor resistance is varying with temperature, which
in turn is varying with load, it is practically impossible to have a correct
value of the rotor resistance at all times.

Various parameter adaptation techniques can be used to keep track of the
rotor resistance. One way is to measure stator winding temperature, and
adjust both rotor and stator resistance according to varying temperature.
The rotor temperature differs from the stator temperature, but the
performance will still be improved. Other techniques such as
superimposing ac components on the current exist (Kubota et al, 1994 and
Sugimoto et al, 1987).

Important Problems at Low Frequencies

Integrator drift, noise sensitivity in differentiation, error in rotor resistance,
these are all problems often pointed out in articles about speed estimation
(Bausch et al, 1994, Schauder, 1992 and Pohjalainen et al, 1994). However,
the most important problem, lack of information in the measured signals at
low frequencies, is often neglected.

The reason that this fact so often is neglected might be that the equations
do not reveal it at a first look. Equation (3.1) gives the stator flux, equation
(5.29) gives the rotor flux, and finally equation (5.28) gives the speed. This
scheme seems to work at all working condition, at least in theory, if the
parameters are perfectly matched.

If the stator frequency f1 is zero, meaning that the stator voltage vector us is
constant, the flux vectors will be constant as well. They can be calculated
from equation (2.9) with the left side set to zero, as the derivatives of
constant vectors are zero. We have
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0 = A Ψ + Bus (5.59)

giving

Ψ = −A −1 B us = us Rs

R r

L ML L

− j zp ω 1
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L L








R r

L L
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
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
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








(5.60)

The current is given by equation (2.10). The flux calculated by equation
(5.60) inserted into equation (2.10) gives

is = CΨ = us

Rs

(5.61)

The last two relations show why speed estimation based solely on
measured voltage and current is impossible at zero frequency: if f1 = 0, the
flux is varying with varying rotor speed, while the current is independent of
the speed.

The problem can be illustrated in a second way. At steady state, when all
vectors are rotating with constant magnitude and angular velocity, it holds
that

        
dÁÁs

dt
= j2π f1 ÁÁs (5.62)

Inserting (5.62) in equation (2.5) gives

        
ÁÁs = us − Rsis

j2π f1

(5.63)

When f1 = 0, the denominator of (5.63) becomes zero, and the stator flux
vector cannot be calculated. As the current is independent of the speed
when f1 = 0, the measured current carries no information on the speed. As
soon as the flux vectors start to rotate, the current will be a function not
only of stator voltage us, but also a function of speed ω. The current will
vary little at low frequencies, making it difficult to separate the speed
information from noise and parameter errors. As the frequency is
increasing, the variation of the current vector is increasing, and the easier it
gets to estimate the speed. Fig. 5.7 shows current vector variation at
different frequencies and speeds, all at rated flux, Ψs = 0.6 Vs.
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Fig. 5.7 Current vector dependency on rotor speed ω and stator voltage frequency f1.

Note how the current vectors coincide at all speeds when f1 = 0 Hz, and
that the current and voltage vectors are parallel to each other. At 0.25 Hz,
different speeds result in a small variation of the current vector, while the
variation is considerable at 5 Hz.

If the induction machine is operating at a point where the frequency is
close to zero, there is not much information for the speed observer. Fig. 5.8
shows current vectors at the operating point ω = –1 rad/s and T = 1.6 Nm.
The required frequency at rated flux, Ψ = 0.6 Vs, is f1 = 0.25 Hz. With
constant amplitude and frequency of the voltage, the load torque is varied,
resulting in a speed variation. At this frequency, the variation of the stator
current vector is negligible if ω is varying from –1.5 to –0.5 rad/s. If,
however, the flux is reduced to half of its nominal value, a frequency of
f1 = 2.0 Hz is required to produce the same torque at ω = –1 rad/s. At this
frequency, the variation of the stator current is increased. This variation
gives more information to the speed observer.
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T = 1.6 Nm at ω = –1 rad/s, ω = {–1.5, –1, –0.5} rad/s
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Fig. 5.8 Current vector dependency on rotor speed ω, and flux magnitude Ψs. Each
group of three vectors shows the current vector at the speeds ω = -1.5,
ω = -1 and ω = -0.5 rad/s at the same stator voltage. The middle vector in
each group is the current vector at a load torque of 1.6 Nm.

Speed Observer Conclusions

The main problems in estimating speed based on current and voltage
measurements is first that current and voltage carries information not on
the speed but on the relation R r s  and second that this information
disappears at f1 = 0 Hz. This means that the lower the frequency, the more
difficult it is to estimate speed. To overcome the second problem, the flux
can be reduced at operating points with low frequencies, resulting in a
higher frequency.



6
Controller Structure

This thesis is focusing on the estimation of flux and rotor speed of the
induction machine. The estimated flux and speed serve as inputs to a
controller, controlling both speed and flux. The controller is not the main
subject here, still a controller is needed for experimental verification of the
flux and speed observer properties.

No attempt has been made to look systematically for the ”best” controller.
A basic stator flux oriented controller is used. However, rotor flux oriented
controllers can also be used, as the observer estimates both stator flux and
rotor flux. Further discussions on controllers for induction machines are
found in the literature (Leonhard, 1985, Lorenz et al, 1994, Baader et al,
1994, Takahashi et al, 1989 and Habetler et al, 1992).

Controller Overview

The complete control scheme is divided into three PI-controllers, one for
the magnitude of the stator flux vector, Ψs, one for the torque T, and one
for the speed ω. This separation can be done for example if the induction
machine vector equations (2.3)-(2.6) are split, not in the real and imaginary
axis directions (x and y), but in directions parallel and perpendicular to the
stator flux vector. These directions will be referred to as the d- and q-
directions. Index d will designate vector components parallel to the stator
flux vector, and index q will designate components perpendicular to the
stator flux vector. The stator flux component in the d-direction will equal
the magnitude of the stator flux vector,

        Ψsd = ÁÁs = Ψs (6.1)

while its component in the q-direction is zero,

Ψsq = 0 (6.2)

The first cross product in torque equation (2.8) is actually expressing the
product of the magnitude of the stator flux vector, and the component of
the stator current vector at right angle to the stator flux, isq,
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T = 3

2
zp ℑ ÁÁs

∗is( ) = 3

2
zp Ψsd isq (6.3)

Appendix C describes the mechanical equivalent model of the induction
machine. Fig. 6.1 shows the springs representing magnetizing inductance
and leakage inductance. In Fig. 6.2, the stator resistance drag-pad (a two
dimensional viscous damper) is replaced by two dampers, one
perpendicular to the stator flux vector shown in a), and one parallel to the
stator flux vector shown in b).

LM

is

LL

ÁÁÁÁs ÁÁÁÁr

Rs Rr

 

Fig. 6.1 Mechanical model of induction machine. The springs represent magnetizing
inductance and leakage inductance.

It is seen in Fig. 6.2 a) that the magnetizing inductance LM has no influence
in the q-direction. In Fig. 6.2 b) it is seen that the leakage inductance LL has
little influence in the d-direction as the leakage inductance spring is almost
at right angle to the d-direction.
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a) b)

Fig. 6.2 d- and q-axis decomposition of mechanical model.
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Assuming that the leakage inductance spring and magnetizing inductance
spring are at right angles to each other, the d-axis and q-axis will be
decoupled, and we have the following model shown in Fig. 6.3. This
assumption is not completely correct. At steady state, the rotor flux vector
is perfectly perpendicular to the leakage inductance spring, while the stator
flux vector is almost perpendicular.

LLRs Rrisq

usq

Ψsd

isd

usd

Rs

zp ω Ψr

a b bc d

LM

 

a) b)

Fig. 6.3 approximate dq-decomposition. a) q-axis model b) d-axis model.

The purpose of one controller, the flux controller, is to keep the magnitude
of the stator flux constant. With constant stator flux magnitude, the torque
can be controlled by controlling isq, which is done by the torque controller.
Finally, the speed controller gives the torque reference, as indicated in Fig.
6.4. There are methods referred to as direct torque control (Takahashi et al,
1989, Baader et al, 1992 and Pohjalainen et al, 1994) where the flux and
torque controllers are not separated, with reported better dynamic
performance than the controller structure described here.

flux
controller

torque
controller

speed
controller

coordinate
transformation

isq

isqref

Ψsdˆ

ω̂

ωref

usd

usq

usx

usy

Ψsdref

 

Fig. 6.4 Block diagram of controller structure. Estimated flux and speed are used as
controller inputs.
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Note that the estimated flux, and not the actual flux is controlled, as the
actual flux usually cannot be measured.

Flux Controller

The flux controller is approximately controlling the system in Fig. 6.3 b),
described by

dΨ̂sd

dt
= usd − R s

L M

Ψ̂sd (6.4)

or with the Laplace transform

        
sÁ̂Ásd = usd − R s

L M

Á̂Ásd (6.5)

where         Á̂Ásd  is the Laplace transform of Ψ̂sd , and u sd is the Laplace
transform of usd. In the following sections of this chapter, bold typeface
will distinguish Laplace transforms from the corresponding time function.

A PI-controller is described by

y = k p e + 1

Ti

e dt∫






(6.6)

where kp is the proportional gain, Ti is the integration time, e is the error of
the controlled quantity, and y is the controller output. Let usd be the output
of the controller, and let Ψsdref − Ψ̂sd be the error. With these substitutions
together with the Laplace transform, equation (6.6) can be written

        
usd = k p 1 + 1

sTi







ÁÁsdref − Á̂Ásd( ) (6.7)

Combining (6.5) and (6.7) gives the transfer function H(s) of the closed
loop system,

        

Á̂Ásd = H s( )ÁÁsdref = k p

s + 1

Ti

s2 + s
R s

L M

+ k p







+

k p

Ti

ÁÁsdref (6.8)

with the characteristic polynomial
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P s( ) = s2 + s
Rs

L M

+ k p







+

k p

Ti

(6.9)

A general polynomial of the second order can be written

s2 + 2ζ Ω s + Ω2 (6.10)

where Ω is the natural frequency and ζ is the relative damping. The natural
frequency of the flux controller system is

Ω = k p Ti (6.11)

and the relative damping is

ζ = Rs

L M

+ k p







Ti

4k p

(6.12)

Torque Controller

The torque controller structure is similar to the flux controller structure
with one exception; the equation describing Fig. 6.3 a) contains one term
dependent on the rotor speed ω and the magnitude of the rotor flux Ψr

(assumed to be constant to avoid non-linearities),

        sL L isq = usq − Rs + R r( )isq − zp ∑∑ Ψr (6.13)

This term can be dealt with by adding a feed forward term yff to the PI-
controller in equation (6.6),

y = k p e + 1

Ti

e dt∫






+ yff (6.14)

The output of the torque controller is usq and the error signal is isqref − isq .
The feed forward term should be equal to the rotor speed dependent term,
zp ω Ψr. The Laplace transform of the torque controller is described by

        
usq = k p 1 + 1

sTi







isqref − isq( ) + zp ∑∑ Ψr (6.15)

If the rotor speed ω and rotor flux magnitude Ψr are estimated instead of
measured, the feed forward term in (6.15) should be replaced by         zp ∑̂∑ Ψ̂r.
Equation (6.13) and (6.15) give the closed loop transfer function,
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isq = H s( )isqref =
k p

L L

s + 1

Ti

s2 + s
Rs + R r + k p

L L

+
k p

TiL L

isqref (6.16)

The natural frequency is

Ω =
k p

TiL L

(6.17)

and the relative damping is

ζ = Rs + R r + k p( ) Ti

4k pL L

(6.18)

Speed Controller

The system regulated by the speed controller is described by equation (2.7),
with the Laplace transform

        s J∑∑ = T − Tload (6.19)

Again, a PI-controller will be used, where Tref is the output and ωref − ω  is
the error. The Laplace transform of the controller can be written

        
Tref = k p 1 + 1

sTi







∑∑ ref − ∑∑( ) (6.20)

Assuming that the torque controller is significantly faster than the speed
controller, Tref and T can be considered equal in the speed controller time
scale. With

T = Tref (6.21)

equations (6.19) and (6.20) can be combined into

        

∑∑ =
k p

J

s + 1

Ti

s2 + s
k p

J
+

k p

JTi

∑∑ ref − 1

J

s

s2 + s
k p

J
+

k p

JTi

Tload (6.22)

with the natural frequency
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Ω =
k p

JTi

(6.23)

and relative damping

ζ =
k p Ti

4 J
(6.24)

According to Fig. 6.4, the output of the speed controller should be a
reference for the current isq and not the torque reference Tref as in equation
(6.20). Equation (6.3) gives the relation between isq and the torque T. The
desired current reference is given by

isqref = 2

3zp Ψsdref

Tref (6.25)

If the speed is estimated instead of measured,         ∑∑  should be replaced by         ̂∑∑
in equations (6.19), (6.20) and (6.22).

Further connections between the controller, the observer, the motor and
power electronics are discussed in Chapter 7.



7
Implementation

The flux observer, speed observer, and controller described in earlier
chapters have been tested in a laboratory set-up described in this chapter.

General Configuration of Laboratory Set-up

The set-up is shown in Fig. 7.1 and Fig. 7.3. On top of the instrument rack
in Fig. 7.1, an induction machine with an incremental encoder is placed,
shown in detail in Fig. 7.2. The incremental encoder is used only for
comparison of the estimated and actual speed of the induction machine.
The ratings and parameters of the induction machine are found in
Appendix D.

a)  b)       
Fig. 7.1 Instrument rack with controlled induction machine at the top and braking

DC machine at the bottom. a) side view b) top view
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The 0.75 kW machine used in the set-up is in no way representative to all
induction machines. The p.u. stator resistance is much higher for such a
small machine than for a larger one. However, as a large stator resistance
makes flux estimation and speed estimation more difficult at low
frequencies, the chosen machine represents a ”near worst case”.

a)  

b)  

Fig. 7.2 a) induction machine with incremental encoder b) permanent magnet DC
machine providing load torque for the induction machine.
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A DC machine with torque control providing load torque for the induction
machine is placed at the bottom of the rack.

The induction machine and DC machine are connected via a belt drive. An
IGBT inverter bridge, current and voltage sensors and computer interface
hardware are placed between the two machines. The same set-up has been
used for position control experiments (Samuelsson, 1994).

a)  

b)  

Fig. 7.3 a) Macintosh computer holding the DSP board. b) DSP board.
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The rack is connected to computer hardware consisting of a digital signal
processor (DSP) board and a multi purpose I/O board, both from National
Instruments, placed in a Macintosh IIci computer, shown in Fig. 7.3. The
DSP, a TMS320C30 from Texas Instruments is of floating point type, and
was chosen because of its ease of use in an experimental environment. In
an industrial application, the floating point DSP would be replaced by a
less expensive fixed point DSP.

 

Fig. 7.4 LabVIEW control panel.

The observer and controller calculations are performed by the DSP, while a
graphical user interface is running on the Macintosh. The user interface is
realized as a virtual instrument, developed with the LabVIEW software
from National Instruments. The LabVIEW control panel is shown in Fig.
7.4. The user can select inverter (inv) or controller (ctrl) mode. In inverter
mode, the induction machine is running in open loop as if it was connected
to a standard open loop frequency inverter with features like RI-
compensation, ramp times, and set-point frequency (Peterson, 1996). With
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the observer running at the same time, the estimated and measured speed
can be compared, and the observer can be tuned. In controller mode, the
closed loop controller described in Chapter 6 is controlling the induction
machine based on the estimated flux and speed. The measured speed
instead of estimated speed can also be chosen as controller input.

Excluding the machines, the set-up consists of four logical blocks shown in
Fig. 7.5: the control panel, the observer, the controller, and a voltage source
inverter.

IM DCobserver controller
voltage source 

inverter

controlled 
induction 
machine

braking DC 
machineus, is

LabVIEW
control panel

observer gain

controller gain 
and speed 
reference

 
Fig. 7.5 Connections between control panel, observer, controller and inverter.

Voltage Source Inverter Implementation

Diagrams of the voltage source inverter are shown in Fig. 7.6.

IMDSP timer x 3
IGBT

inverter
bridge

a)

dead time logic
and gate driver

+
dc link
voltage

–

switch command 
signal from timer

IM
b)

idc

 
Fig. 7.6 Voltage source inverter. a) block diagram of the inverter b) IGBT inverter

bridge. Each leg is controlled by a timer.
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The inverter consists of a pulse width modulator and an IGBT inverter
bridge supplied by a diode rectifier which is not shown in the figure. The
pulse width modulator is realized by three timer circuits together with the
DSP. For each sample interval, the DSP loads the timers with appropriate
switch patterns for the desired voltage vector, emulating the pulse width
modulation method where a triangular wave form is compared with a
control voltage (Mohan et al, 1989). Each timer controls one leg of the
inverter bridge.

Observer Implementation

The observer can be implemented in several ways. If the DC link voltage of
the voltage source inverter is measured, and the states of the switches in the
inverter are known, the stator voltage vector us can be calculated. However,
this method requires the switches to be ideal if an accurate value should be
obtained. Normally there is a delay between the time when one transistor is
turned off and the other transistor is turned on in one inverter leg. This
delay is usually called the deadtime, and makes the calculated output
voltage differ from the true voltage. Resistive voltage drop in the
transistors contribute as well to the error in the calculated voltage. To avoid
problems due to deadtime and voltage drop, the output voltage of all three
phases can be measured. This method gives a new problem; as the output
voltage is a switched voltage, it must be filtered before it is A/D-converted
and fed to the DSP, introducing time delays in the measured voltage.

These problems are solved if analogue integrators are used instead. Fig. 7.7
shows how the output voltage us of the inverter is fed to an analogue
integrator. The output of the integrator is then A/D-converted and fed to the
DSP. If Fig. 7.7 is compared with Fig. 4.1, it is seen that only the stator
flux integration and one subtraction need to be performed outside the DSP,
while all the other observer calculations can be done by the DSP. The input
voltage to this combined analogue and digital observer is identical to the
voltage seen by the induction machine, and no compensation for deadtime
and voltage drop is needed.

The rotor flux integration in equation (4.14) and the speed integration in
equation (5.31) are approximated by first order Euler approximations.
Instead of Euler approximations of the continuous time system, a discrete-
time representation of the system can be calculated (Åström et al, 1984).
With periodic sampling time h, the discrete-time representation of the
general system in (3.10) is given by
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x kh + h( ) = Φx kh( ) + Γu kh( ) (7.1)

where

Φ = eAh (7.2)

and

Γ = eAsdsB
0

h
∫ (7.3)

This is straightforward for a time-invariant system, but as the matrix A for
the induction motor is varying with ω, the discrete-time representation
must be updated for each sample. Using (7.2) and (7.3) for an on-line
update is too time consuming. However, an approximation of (7.2) and
(7.3), presented by Böcker et al (1991) makes on-line calculation possible.
Still, the Euler approximation was chosen here due to its simplicity. There
have been reports on disastrous performance by flux observers using the
Euler approximation (Verghese et al, 1988), but it must be noted that all
integrators were approximated in those examples. In the set-up described
here, the analogue integrators shown in Fig. 7.7 are working continuously,
and need not be approximated at all.
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– ∫

 

Fig. 7.7 Observer implementation combining analogue and digital integrators.

Controller Implementation

All controller calculations are performed by the DSP, again using first
order Euler approximations for the integral parts. The output of the
controller is the desired stator voltage vector. Based on this vector, the DSP
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calculates an appropriate switch pattern and loads the timers as described
above.

DSP programming

The DSP is programmed using the high level C language (Peterson, 1996).
To further facilitate high level programming, a real time kernel (Carlsson,
1993) has been developed. Both the controller and the observer run with a
sample period of 500 µs. The choice of sample period in this configuration
is limited by the relatively slow A/D-converters being used. The
calculations can be done in a fraction of this time. As this thesis is focusing
on the low frequency region, where flux vectors and other quantities are
slowly varying, the sample period of 500 µs is acceptable, even though a
shorter sampling period would be preferred.



8
Measurements

To evaluate the performance of the system, a series of measurements has
been accomplished. The measurements can be divided into three groups:

• a step change of the load torque at constant speed reference;

• a step change of the speed reference at constant load torque;

• a slow ramp of the speed reference at constant load torque.

As the most critical problems arise at low speed and low frequency, all
measurements are done in a speed range of 0–20% of rated speed.

Step Change of Load Torque

Fig. 8.1 shows two cases of a change in load torque at constant speed
reference ωref = 0. The upper diagram shows a step change in the load
torque at an observer gain k = −0.7 0[ ]T  while the gain is k = 2 0[ ]T in
the lower diagram. It can be seen that the steady state error is smaller in the
upper diagram. In Fig. 5.4 and Fig. 5.5 it was also seen that
k = −0.7 0[ ]T  resulted in a small steady state error. It is seen in the upper
diagram that there is a slow beat in the speed signal when the load torque is
zero. At zero speed and zero torque, the frequency f1 of the stator voltage
should be zero. At zero frequency, there is not enough information for the
observer to keep the speed perfectly at zero, as was described in Chapter 5,
in the section Important Problems at Low Frequencies.

In Fig. 8.2 and Fig. 8.3, the speed reference is 5 rad/s (3.5% of rated speed)
and 10 rad/s (7% of rated speed) respectively. In both cases, the stator
frequency will differ from zero, and the beat that occurred at zero
frequency is no longer present. Again, the steady state error is smaller at
k = −0.7 0[ ]T .
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Fig. 8.1 Step change of load torque at constant speed reference ωref = 0. a)

k = −0.7 0[ ]T
 b) k = 2 0[ ]T
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Fig. 8.2 Step change of load torque at constant speed reference ωref = 5 rad/s (3.5%

of rated speed). a) k = −0.7 0[ ]T
 b) k = 2 0[ ]T
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Fig. 8.3 Step change of load torque at constant speed reference ωref = 10 rad/s (7%

of rated speed). a) k = −0.7 0[ ]T
 b) k = 2 0[ ]T
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Step Change of Speed Reference

In Fig. 8.4 and Fig. 8.5, the load torque is equal to rated torque in the upper
diagrams and equal to zero in the lower diagrams.
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Fig. 8.4 Step change of speed reference from –10 to +10 rad/s (7% of rated speed).
a) rated load b) zero load



104 Measurements

The speed reference is changed from –10 to +10 rad/s and back to –10
rad/s in Fig. 8.4. At negative speed and positive torque, the slip is negative,
and the induction machine is running as a generator. As the diode rectifier
supplying the inverter bridge in Fig. 7.6 does not accept a negative current
idc, power cannot be fed from the induction machine to the supply.
However, the generated power at ω = −10 rad / s is less than the internal
losses in the induction machine. It is seen that the error in the speed is
larger at ω = −10 rad / s than at ω = +10 rad / s. This is no surprise as the
frequency of the stator voltage is lower in generator case (about 1 Hz) than
in the motor case (about 5 Hz), and the lower the frequency, the harder it is
to estimate the speed. In the lower diagram of Fig. 8.4, the load is zero and
the machine is running approximately with zero slip in both directions,
giving identical performance at positive and negative speed. The overshoot
in the speed is a combination of observer and controller properties. A
change of the gain of the controller can reduce the overshoot, but as the
speed controller input is the estimated speed and not the actual speed, a
perfectly tuned controller would not have perfect performance due to
observer dynamics.

Fig. 8.5 shows a step in the speed reference from 0 rad/s to +10 rad/s and
back to 0 rad/s, with rated load torque in the upper diagram and zero load
torque in the lower. When the speed reference is going from 10 to 0 rad/s at
rated load, it takes some time before the speed stabilizes. The reason is that
the stator voltage frequency f1 must fall from about 5 Hz down to 1 Hz.
There is an undershoot in the frequency, almost reaching 0 Hz. When the
frequency temporarily is close to 0 Hz, there will be an error in the speed.
This is further accentuated in the next section, when the speed reference is
slowly changed. Comparing the upper diagrams of Fig. 8.4 and Fig. 8.5
shows that f1 = 0 at rated torque at ω = 0 and ω = −10 rad / s. However, the
stator voltage vector is rotating in different directions in the two cases.

Both diagrams in Fig. 8.6 show a step change of the speed reference at zero
load torque, but up to 25 rad/s instead of 10 rad/s as before. The response is
comparable to that of Fig. 8.4 and Fig. 8.5.
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Fig. 8.5 Step change of speed reference from 0 to +10 rad/s (7% of rated speed). a)
rated load b) zero load
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Fig. 8.6 Step change of speed reference at zero load a) 0 to 25 rad/s (17% of rated
speed). b) –25 to 25 rad/s.

Slow Ramp of Speed Reference

Fig. 8.7 shows a positive and a negative ramp of the speed reference,
between –10 rad/s and +10 rad/s.
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Fig. 8.7 Slow change of ωref at rated load. a) –10 to +10 rad/s (7% of rated speed) b)
+10 to –10 rad/s.

At –10 rad/s, the stator voltage vector is rotating in one direction, and at
+10 rad/s it is rotating in the opposite direction. When the stator flux vector
is changing direction, the frequency of the stator voltage is zero. At rated
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load, this occurs at about ω = −3rad / s, and it is clearly seen that there is
an error in the estimated speed in a region close to ω = −3rad / s. This
could be expected from the results in section Important Problems at Low
Frequencies of Chapter 5.

In conclusion, the results regarding parameter sensitivity at different
observer gains, and the problems at low frequency operation, as well as the
general behaviour of the observer discussed in earlier chapters, have been
experimentally verified.



9
Conclusion

With mechanical analogies, and simplified examples, many of the hidden
mysteries of speed and flux observers have been clarified. With the
knowledge acquired from these examples, it has been possible to obtain an
observer which does not suffer from integrator drift and other problems
reported elsewhere.

This observer can be used in a sensorless vector control drive system,
filling the gap between open loop frequency inverter systems and vector
control systems using speed measurement. The dynamic performance of
the sensorless system with speed estimation is superior to an open loop
frequency inverter system. Even though it will never show the same
accuracy near zero speed as a system with a speed sensor on the motor
shaft, the sensorless system can increase the performance in applications
where open loop inverters are used today, and it can be used in many
applications which otherwise would require a speed sensor.

The sensorless system uses the same inverter bridge configuration as in an
open loop frequency inverter, with little additional hardware, and any
standard induction motor can be used. The main difference is that observer
and controller calculations are performed by a digital signal processor. As
the cost of a suitable fixed point DSP is less than $10 (1995), the overall
cost of the sensorless system is equal to the cost of an open loop inverter
system.

Future Topics

The remaining problems are two; the lack of information at zero frequency,
and the error in estimated speed due to errors in the rotor resistance
parameter of the observer.

It is believed that both problems can be reduced by superimposing
perturbation signals on the supply voltage. A perturbation in the d-axis,
parallel to the magnetizing flux, would not directly affect the produced
torque of the motor, but would give additional information to the observer.
This would only require additional calculations, without any modifications
of motors or inverters.
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A
List of Symbols

Bold typeface is used for complex quantities, v = v x + jv y = v e jϕ  where

v = v = vx
2 + vy

2  and ϕ = arg v( )

A system matrix

B input matrix

C output matrix

C capacitance F

ç real valued constant

d viscous damping coefficient Ns/m

e controller error

F force N

f1 stator voltage frequency Hz

H rated start time s

I identity matrix

i, i current A

J inertia kg m2

j −1

k spring constant N/m

K, k, k observer gain

kp controller proportional gain

L inductance H

m mass kg

n mechanical speed of rotor in revs/min min–1
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nn rated mechanical speed of rotor in revs/min min–1

P power W

p pole

R resistance Ω

r radius m

s Laplace variable

s slip

T torque Nm

Ti controller integration time

u system input

u, u voltage V

v velocity m/s

x state vector

x̃ error in estimate, x − x̂

x̂ estimate of x

y system output

zp no. of pole pairs

ζ relative damping

σ leakage factor

τ time constant s

ϕ flux vector angle °

Ψ, ÁÁÁÁ flux linkage (referred to as ”flux” for simplicity) Vs

Ω natural frequency

ω angular velocity of rotor (referred to as
 ”rotor speed” for simplicity) rad/s

ω1 angular frequency of stator voltage vector rad/s
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ωe angular frequency of rotor flux rad/s

subscripts

e parameter of estimator

L, l leakage

M, m magnetizing

n rated value

r rotor

ref reference value

s stator

stat steady state value

x real part, vx = ℜ (v)

y imaginary part, vy = ℑ (v)

0 operating point

superscripts

r rotating reference frame

T T-model (as opposed to Γ-model)

T transpose

symbols

* complex conjugate

^ estimated quantity

~ error in estimate



B
Mechanical Analogy

An electric motor is both an electrical and a mechanical system. The
interaction between the electrical and mechanical parts are often
complicated to analyse. By representing the electrical part of the system by
its mechanical analogy, the complete system becomes mechanical and
more intuitive and easier to analyse.

If the product of two quantities in the electrical system yields power, then
the product of the corresponding mechanical quantities must be power. In
the electrical system, the product of current and voltage is power. If current
is represented for example by force the voltage should be represented by
speed as the product of force and speed is power. This gives a very useful
mechanical analogy. Table B.1 lists some corresponding electrical and
mechanical quantities, and Fig. B.1 shows mechanical components
corresponding to the electrical ones.

Electrical system Mechanical equivalent

power P [W] power P [W]

current i [A] force F [N]

voltage u [V] speed v [m/s]

flux linkage Ψ [Vs] distance x [m]

resistance R [Ω] inverse of damping 1/d [m/Ns]

inductance L [H] inverse of spring stiffness 1/k [m/N]

capacitance C [F] mass m [kg]

Table B.1 Corresponding electrical and mechanical quantities.
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i = u 1
R

F = v d

resistance viscous damper

i =        Ψ1
L

inductance

F = k x

spring

i =  C du
dt

capacitance mass

F =  m dv
dt

m v

x

 

Fig. B.1 Electrical components and corresponding mechanical components.

Note that the equilibrium position of the spring is when the length of the
spring is zero and x = 0. A negative force results in x < 0.



C
Mechanical Model of the Induction

Machine

A mechanical equivalent model of equations (2.3) and (2.4) is shown in
Fig. C.1, where inductances have become springs and currents are forces
pulling the springs (Török et al, 1985). The inductance is the inverse of the
stiffness of the spring. (Appendix B gives a complete description of
corresponding parameters in the electrical and mechanical models.)

LM

is

irLL

ÁÁÁÁs ÁÁÁÁr

 

Fig. C.1 Mechanical equivalent model of equations (2.3) and (2.4).

The flux linkages are vectors with a length and a direction corresponding to
the original flux linkages. The torque on the springs developed by the force
representing the current is is

        T = ℑ ÁÁs
∗is( ) (C.1)

which for a two pole machine is two thirds of the driving torque in
equation (2.8). The point in Fig. C.1 where the force ir is attached to the
spring LL follows the restrictions of equation (2.6) if the resistance Rr is
represented as a two dimensional viscous damper which can be a drag-pad
on an oily surface shown in Fig. C.2. The velocity difference between the
drag-pad and the surface is proportional to the force applied to the drag-
pad, and the velocity and the force have the same direction. The time
derivative of the flux in the mechanical model is the velocity of the tip of
the flux vector. If the oily surface is a rotating disc with the angular speed
zp ω (Fig. C.2) then the relative velocity difference between the drag-pad
and the disc is
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vdiff = dÁÁr

dt
− jzpω ÁÁr (C.2)

The force on the drag-pad is –ir and then the velocity difference between
the disc and the drag-pad can be expressed as

vdiff = −irR r (C.3)

Combining equations (C.2) and (C.3) gives equation (2.6).

LM
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LL

ÁÁÁÁs ÁÁÁÁr

zp ω

rotor disc
(viscous surface)

stator pane
(viscous surface)

us

us us

stator pane

rotor disc

Rs Rr

Rr
Rs

shaft

drag-pads

 

Fig. C.2 Mechanical model of the induction machine.

The torque transferred from the drag-pad to the disc is given by equation
(C.1). If the rotating disc represents the rotor and has two thirds of the
actual rotor moment of inertia divided by the number of pole pairs
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Jdisc = 2

3zp

J (C.4)

and the same relation holds for the actual load torque and the load torque of
the disc,

Tdiscload = 2

3zp

Tload (C.5)

we have an exact mechanical analogy of the set of equations (2.3), (2.4),
(2.6) and (2.7). To get a complete analogy of equations (2.3)-(2.7), the
stator resistance must be modelled. Equation (2.5) can also be represented
by a mechanical equivalent if Rs is represented as a drag-pad on a viscous
surface. The drag-pad is transferring the force is to the springs. The viscous
surface is moving with the velocity us independently of the stator flux. All
points of this surface are moving in the same direction at the same speed.
Contrary to the rotor disc, this surface cannot rotate. The velocity of the tip
of the stator flux will be the difference between the stator voltage and the
resistive voltage-drop in the stator. Fig. C.2 shows the mechanical model
with the stator resistance included. It is important to observe that the
equations describing the mechanical system in Fig. C.2 are identical to the
equations describing an ideal induction machine.



D
Parameters of Machines

The 0.75 kW machine used in simulations and experiments is not
representative to all induction machines. The p.u. stator resistance is much
higher for such a small machine than for a larger one. However, as a large
stator resistance makes flux estimation and speed estimation more difficult
at low frequencies, the chosen machine represents a ”near worst case”.

machine: IMEP type TAM 80-19

rating: 3~ M

∆/Y 220/380 V 3.63/2.1 A

0.75 kW, 5.2 Nm

1390 r/min 50 Hz cosϕ 0.76

parameters of ∆-connected machine: p.u. parameters

Rs = 3.60 Ω 0.10

Rr = 2.47 Ω 0.070

Lsl = 0.0128 H 0.11

Lrl = 0.0128 H 0.11

Lm = 0.148 H 1.32

kγ = 0.920

LM = 0.160 H 1.44

LL = 0.0291 H 0.26

J = 2.1 · 10–3 kg m2

H = 37 · 10–3 s

Ψsn =
Uphase,peak

2 π f1

= 2 Un

3 ⋅ 2 π f1

= 2 ⋅ 220

3 ⋅ 2 π 50
= 0.57 Vs

Zn = Un

3In

= 220

3 ⋅3.63
= 35Ω



E
Observer Poles

The dynamic behaviour of the observer described by equation (4.12) is
determined by the poles of the system. The poles are eigenvalues of the
system matrix A e − Re k Ce( ) and can be calculated as the roots of the
characteristic polynomial

P s( ) = det sI − A e − Re k Ce( )( ) (E.1)

where I is the identity matrix. Equations (E.1), (4.5), (4.7), (4.10) and
(4.11) give

P s( ) = s2 + Rse ks + 1( ) 1

L Me

+ 1

L Le







+

R re 1 − kr( )
L Le

− jzp ω






s

+
Rse ks + 1( ) R re − jzp ω L Le + L Me( )( )

L Le + L Me

(E.2)

The required observer gain k for a desired characteristic polynomial,

P s( ) = s2 + c1s + c2 (E.3)

with the poles p1 and p2  where

c1 = − p1 + p2( ) (E.4)

c2 = p1 p2 (E.5)

is found with the following relation (Åström et al, 1984),

k = Re
−1K

= Re
−1P A e( )Wo

−1 0

1






= Re
−1 A e

2 + c1A e + c2I( )Wo
−1 0

1






= Re
−1 A e

2 − p1 + p2( )A e + p1p2I( )Wo
−1 0

1






(E.6)
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where Wo is the observability matrix,

Wo =
Ce

CeA e







(E.7)

With equations (4.2) and (4.4) inserted in (E.7), we have after inversion
and multiplication with 0 1[ ]T

Wo
−1 0

1






=

L MeL Le R re + j zp ω L Me + L Le( )( )
R re

2 + zp
2 ω 2 L Me + L Le( )2

L Le
2 + L MeL Le( ) R re + j zp ω L Me + L Le( )( )

R re
2 + zp

2 ω 2 L Me + L Le( )2























(E.8)

The observer gain will be

k =

1

Rse

0

0
1

R re



















A e
2 + c1A e + c2I( )

L MeL Le R re + j zp ω L Me + L Le( )( )
R re

2 + zp
2 ω 2 L Me + L Le( )2

L Le
2 + L MeL Le( ) R re + j zp ω L Me + L Le( )( )

R re
2 + zp

2 ω 2 L Me + L Le( )2























=

c2

L MeL Le

Rse

R re + j zp ω L Me + L Le( )( )
R re

2 + zp
2 ω 2 L Me + L Le( )2 − 1

L Le

L Me + L Le

R re

R re + j zp ω L Me + L Le( )( )
R re

2 + zp
2 ω 2 L Me + L Le( )2 + 1 − L Le

R re

c1 + j zp ω( )



























(E.9)

The gain vector k consists of four components,

ksx =

L MeL Le

Rse

ℜ c2( )R re − ℑ c2( )zp ω L Me + L Le( )( )
R re

2 + zp
2 ω 2 L Me + L Le( )2 − 1 (E.10)
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ksy =

L MeL Le

Rse

ℑ c2( )R re + ℜ c2( )zp ω L Me + L Le( )( )
R re

2 + zp
2 ω 2 L Me + L Le( )2 (E.11)

k rx =
L Le

L Me + L Le

R re

ℜ c2( )R re − ℑ c2( )zp ω L Me + L Le( )( )
R re

2 + zp
2 ω 2 L Me + L Le( )2 + 1 − L Le

R re

ℜ c1( )

(E.12)

k ry =
L Le

L Me + L Le

R re

ℑ c2( )R re + ℜ c2( )zp ω L Me + L Le( )( )
R re

2 + zp
2 ω 2 L Me + L Le( )2 − L Le

R re

ℑ c1( ) + zp ω( )

(E.13)

Poles of System with Complex Variables

The observer system matrix A e − Re k Ce( ) is a 2 × 2 matrix with complex
coefficients. As the coefficients are complex, complex eigenvalues of this
matrix need not be complex conjugates. For a 2 × 2 matrix with real
coefficients on the other hand, complex eigenvalues come in pairs of
complex conjugates.

The observer can also be described with a 4 × 4 matrix with real
coefficients. If the observer is described by the real state vector

Ψ̂sx

Ψ̂rx

Ψ̂sy

Ψ̂ry





















instead of the complex state vector

        

Á̂Ás

Á̂Ár











the new observer have the following 4 × 4 system matrix
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ℜ A e − Re k Ce( ) −ℑ A e − Re k Ce( )

ℑ A e − Re k Ce( ) ℜ A e − Re k Ce( )

















with real coefficients. The eigenvalues of this matrix are the same as the
eigenvalues of A e − Re k Ce( ), but there are also two new eigenvalues
which are the conjugates of the old ones.



F
Steady State Value of Speed

Observer

The following steps give the solution to the system of equations (5.32)–
(5.34). The first two equations can be written

        
Á̂Ás jω1 + Rse 1 + ks( ) 1

L Me

+ 1

L Le













− Á̂ÁrRse 1 + ks( ) 1

L Le

= us + Rseksis

(F.1)

        

Á̂Ás R rekr
1

L Me

+ 1

L Le







− R re

L L







+ Á̂Ár jω1 − jzpω̂ + 1 − kr( ) R re

L Le








= R rekris

(F.2)

Introduce a, b, c, d, e and f to make the equations more compact,

        aÁ̂Ás + bÁ̂Ár = c (F.3)

        d Á̂Ás + e − jzpω̂( )Á̂Ár = f (F.4)

solving this system for the stator and rotor flux estimates gives the
functions f1 and f2 of equations (5.38) and (5.39),

        
Á̂Ás = f1 ω̂( ) =

ce − jczpω̂ − bf

ae − jazpω̂ − bd
(F.5)

        
Á̂Ár = f2 ω̂( ) = af − dc

ae − jazpω̂ − bd
(F.6)

Inserting this in equation (5.40), and some rearranging give

ç =
af − dc + LLeis ae − bd( ) − LLeisjazpω̂

ce − bf − jczpω̂
= n − mω̂

h − pω̂
(F.7)

As ç is real, it follows that
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ℑ n − mω̂
h − pω̂







= 0

⇔

ℜ n − mω̂( )
ℜ h − pω̂( )

=
ℑ n − mω̂( )
ℑ h − pω̂( )

⇔

nx − mxω̂
hx − pxω̂

=
ny − myω̂
hy − pyω̂

(F.8)

where index x denotes real parts and index y denotes imaginary parts. The
estimated speed ω̂  can now be calculated from this equation of the second
order. The two solutions are

ω̂ =
hymx + pynx − hxmy − pxny

2 pymx − pxmy( )

+
hymx + pynx − hxmy − pxny( )2

− 4 pymx − pxmy( ) hynx − hxny( )
2 pymx − pxmy( )

(F.9)

and

ω̂ =
hymx + pynx − hxmy − pxny

2 pymx − pxmy( )

−
hymx + pynx − hxmy − pxny( )2

− 4 pymx − pxmy( ) hynx − hxny( )
2 pymx − pxmy( )

(F.10)

where
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n = af − dc + L̂ Lis ae − bd( )

= usR re
1

L Le

− kr
1

L Me

+ 1

L Le














+ is krRseR re
1

L Me

+ 1

L Le







+ ksRseR re

1

L Le

+ jω1 R re − L Leω1
2








+ is jω1RseL Le 1 + ks( ) 1

L Me

+ 1

L Le







+ 1 + ks( )RseR re

1

L Me








(F.11)

m = jzp L Leisa = jzp L Leis jω1 + Rse 1 + ks( ) 1

L Me

+ 1

LLe













(F.12)

h = ce − bf

= jω1 us + jω1 Rseisks + R re

L Le

us 1 − kr( ) + Rseis ks + kr( )( ) (F.13)

p = jzpc = jzp us + Rseisks( ) (F.14)



G
Non-linear Systems and Linearized

Systems

A few simple examples will demonstrate that linearization and calculation
of poles of non-linear systems must be done with great caution.

Stability of Non-linear Systems

The non-linear system

dx

dt
= x2 + x + u

y = x
(G.1)

where u is the input and y is the output will be used to demonstrate some
traps. In this example, the input is

u = 0.5sin 10t( ) (G.2)

A linearized approximation of the system can be obtained if x is replaced
by x 0 + δx ,

x = x 0 + δx (G.3)

where δx is the deviation from an operating point x 0 . As x 0  is constant it
follows that

dx 0

dt
= 0 (G.4)

and

d

dt
δx = dx

dt

= x 0 + δx( )2 + x 0 + δx + u

= x 0
2 + 2x 0δx + δx 2 + x 0 + δx + u

= 2x 0 + 1( )δx + x 0 + x 0
2 + δx 2 + u

(G.5)
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Neglecting the non-linear term δx2  gives a linear system,

d

dt
δx = 2x 0 + 1( )δx + x 0 + x 0

2 + u

ylin = x 0 + δx
(G.6)

The pole p of this system lies in

p = 2x 0 + 1 (G.7)

resulting in a stable system if

x 0 < −0.5 (G.8)

Fig. G.1 shows a simulations of the non-linear system of equation (G.1)
and the linear system of equation (G.6). The non-linear output y is solid
and the linear output ylin is dashed.

In Fig. G.1 a) the system is linearized around two operating points,
x 0 = 0.1 and x 0 = −0.1, and the simulations start from the operating points
( x 0( ) = x 0 and δx 0( ) = 0). Note how the linear system is unstable in both
cases while the non-linear system solution is converging if x 0 = −0.1. This
example shows that the linear model cannot be used to determine if the
non-linear system is converging or not. However, the linear system can be
used to simulate the non-linear system for a short period of time, as long as
the deviation from the operating point is not too large. It is seen that the
linear system follows the non-linear for about one or two seconds,
depending on the operating point.

If the operating point is close to a point where the non-linear system is at
steady state when the input is zero, in this case at x = –1, the linear system
will provide a better approximation. In Fig. G.1 b) the operating point is
x 0 = −0.8. Both the linear system and the non-linear system solution are
now converging, and their outputs lie close during the complete simulation.

To conclude this example:

• if x 0 > 0, neither system is converging

• if −0.5 < x 0 < 0, the non-linear solutions, but not the linear system, are
converging

• if x 0 < −0.5, both systems are converging



Non-linear Systems and Linearized Systems 133

A linearized solution gives a faithful description of a non-linear solution
only in an immediate neighbourhood of the operating point.
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Fig. G.1 Simulation of non-linear (solid) and linearized (dashed) system. a)
simulations starting from operating points –0.1 and 0.1 b) simulation
starting from operating point –0.8
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Non-linearities Introduced by Change of Reference Frame

A linear system with the complex state variable x = x x + j x y  described by

d

dt

xx

xy









 =

−k 0

0 −k










xx

xy









 +

ux

uy









 (G.9)

will be used as an example to demonstrate some consequences of changing
the reference frame. The system is shown as a block diagram in Fig. G.2.

+
–

k

ux xx
∫

–
+

k

uy
xy

∫

−k 0

0 −k










u x

system in stationary frame
b)

a)

 

Fig. G.2 Block diagram of a system in a stationary reference frame. a) detail b)
overview.

Both poles of this system are equal and real-valued,

p1,2 = −k (G.10)

Let the input u = ux + juy  be rotating with angular velocity ω1,

ux

uy









 =

u cosω1t

usin ω1t






(G.11)
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After the transient, the state x will also be rotating with angular velocity ω1.
If instead the reference frame is rotating synchronously with the input u,
the system is described by equation

d

dt

xx
r

xy
r













=
−k ω1

−ω1 −k






xx
r

xy
r













+
ux

r

uy
r













(G.12)

where the r-superscripts denote quantities in the rotating frame. The system
is also shown as a block diagram in Fig. G.3.

+
+
–

k

ux xx
∫

–
–
+

k

uy

xy
∫

u x

r r

r

r

ω1

−k ω1

−ω1 −k






r ru xcosω1t sin ω1t

−sin ω1t cosω1t






cosω1t −sin ω1t

sin ω1t cosω1t






transformation matrix system in rotating frame transformation matrixb)

a)

ω1

 

Fig. G.3 Block diagram of a system in a rotating reference frame. a) detail b)
overview.

Any vector v = vx + jvy  in the stationary frame can be transformed to the
rotating frame with the following relation,

vx
r

vy
r













=
cosω1t sin ω1t

−sin ω1t cosω1t






vx

vy









 (G.13)

The real and imaginary parts of the input ur = ux
r + juy

r  will be constant in
the rotating frame,
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ux
r

uy
r
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

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



=
cosω1t sin ω1t

−sin ω1t cosω1t






u cosω1t

usin ω1t






=
u

0






(G.14)

and also the state xr = xx
r + jxy

r  will be constant after the transient. If this
state is transformed back to the stationary frame as in Fig. G.3 b), using a
transformation matrix which is the inverse of the matrix in equation (G.13),

xx

xy









 =

cosω1t −sin ω1t

sin ω1t cosω1t






xx
r

xy
r













(G.15)

x = x x + j x y  will be rotating with angular velocity ω1. After the
transformations, the outputs of both the system in Fig. G.2 and the system
in Fig. G.3 will be identical. However, the system in the rotating frame
have its poles in

p1,2 = −k ± jω1 (G.16)

Here we have two systems with the same behaviour, but one of the systems
has its poles on the real axis, indicating a well damped system, while the
poles of the other system have moved a distance ω1 from the real axis,
indicating a system with less damping. The explanation is that the
transformation from the stationary reference frame to the rotating frame
introduces a non-linearity to the system. In Fig. G.3 it is seen that states, xx

and xy are multiplied by an input variable ω1. As the angular frequency of
the input u might be changing, ω1 should be considered an input, and not a
constant. The poles are meaningful only for a linear system, i.e. if ω1 is
held constant. Such a limitation does not exist for the system in the
stationary frame. The conclusion is that even though equation (G.9) and
(G.12) describe the same physical system, the first equation is a linear
description, while the second equation is non-linear.


