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Abstract

Wastewater treatment processes are inherently dynamic because
of variations in the influent flow rate, concentration, and
composition. The adaptive behaviour of the microorganisms
further emphasizes this fact. Mathematical models and computer
simulations are essential to describe, predict, and control the
complicated interactions of the processes. Any attempt to model
all details of the various reaction mechanisms are, however,
destined to fail due to lacking knowledge and the extreme
complexity required for such models.

A reduced order dynamic model for an activated sludge process
performing carbonaceous removal, nitrification, and denitri-
fication is presented herein. The identifiability of the model is
investigated using both off-line and on-line methods and its
dynamic behaviour is verified against simulations of a recognized
model - the IAWPRC Activated Sludge Model No. 1.

The required data for the identification algorithms is based on
directly measurable real time data. The simplified model may
serve as a tool for predicting the dynamic behaviour of an
activated sludge process since the parameters under varying
operating conditions can be tracked on-line. The model is aimed
for operation and control purposes as an integral part of a
hierarchical control structure. 

Abstract for the Novice

A model contains condensed knowledge of a physical process
described by mathematical equations. The model may predict
how the physical system will react under various conditions and
is therefore an excellent tool for design, control, forecasting,
education, etc. Though a model is seldom a perfect representation
of a true system but more often a necessary simplification. 

Depending on the purpose of the model, it may look quite
different. For example, a combustion engine is an extremely
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complex dynamic system. A scientific model which aims to get an
insight into the intricate details of the process has to consider
phenomena such as geometry of the cylinder, the mixing of air
and fuel just as they meet the cylinder compartment, the
chemical composition of the fuel, the propagation in time and
space of the combustion, and the resulting movement of the
piston. The timescale is from the millisecond range and upwards.

A model for the control of the air/fuel ratio will reflect a much
more macroscopic view of the motor. Here the flow ratio of air to
fuel has to be controlled close to the stochiometric relation. The
spatial distribution of the combustion is not considered, only the
mass flows of air and fuel. The timescale is no longer in the
millisecond range, but rather 10-100 times longer. Finally, the
driver requires another type of model for the motor. How the car
acceleration responds to the throttle pedal becomes more
important and the details of the combustion phenomena or of the
air/fuel mixing process may be neglected. 

The same reasoning holds for modelling of wastewater treatment
plants. A number of scientific models have been proposed, but
due to the high complexity they are not suited for control
purposes. This work is aimed towards simplified models which
only take the most important events into consideration. The
situation is further complicated by factors like uncontrollable
inputs to the process, many important quantities are not possible
to measure accurately, and the various reactions have very
different time constants. Moreover, the process (the activated
sludge system) is a biological system and therefore adaptive to
changing conditions. This means that the parameters of the
models are not constants but have to be updated (identified and
estimated) on a regular basis.

In order to check the results of the simplified models, they are
tested (verified) against a scientific model to investigate whether
they incorporate the same dynamic behaviour for the key
variables or not. It is an aim to apply the reduced models for
automatic control actions and thereby allowing the human
operator at a wastewater treatment plant to focus on supervision
and overall control without having to be concerned with the
details of the processes and the low level reactions (like a driver
of a car).
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Preface

This thesis for the degree of Teknisk Licentiat1 summarizes my
current work on the subject of Modelling and Control of the
Activated Sludge Process at the Department of Industrial
Electrical Engineering and Automation (IEA) at Lund Institute
of Technology. Parts of the work have already been accepted for
publishing and presentation at the 6th IAWQ Workshop on
Instrumentation, Control and Automation of Water and
Wastewater Treatment and Transport Systems in Banff-
Hamilton, Ontario, Canada, June 17-25, 1993 [Jeppsson and
Olsson, 1993]. 

The following text contains numerous references to the
International Association on Water Pollution Research and
Control (IAWPRC). This organization was recently renamed and
is today known as the International Association on Water
Quality (IAWQ). The former name has been used throughout the
thesis mainly for nostalgic reasons. It is not to be considered as a
contribution to the ongoing debate on the appropriateness of the
newly chosen name.
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1
______________________________________________________

Introduction

Ever since Isaac Newton published his grand work
Mathematical Principles of Natural Philosophy in 1687 where
the fundamental laws of force and motion were formulated, the
conclusion within the scientific community has been: Nature has
laws, and we can find them. The importance of this statement
can not be overestimated. It implies that every system, whether
mechanical, electrical, biological or whatever, can be accurately
modelled. Although proved wrong by the recently developed
theory of chaos, the influence on the way scientists think has
been enormous.

At the present time, models are usually the basis for
understanding, controlling and predicting events and
mechanisms in the world around us. Mathematical models
describe everything from how electrons move and interact with
other particles to how clusters of galaxies are formed in the
universe. However, for a model to be really useful, a number of
criteria exist which should be fulfilled. These criteria are related
to the following areas: 

• model validation;

• state and parameter identification;

• model verification.

First of all, a model should be properly validated, i.e. ensure that
it provides results which are highly correlated with the true
system and not only a fit of the specific data used for the
modelling work. The conditions under which the discrepancy is
such that a model can not be regarded as valid should also be
clearly stated. 

A set of methods for identifying and estimating the parameters of
the model for calibration purposes should be given. The methods
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may be be either mathematical or experimental, or a combination
of both. If the model is mechanistic though, it is extremely
important that the calibration process gives a unique solution for
the different parameters, since a parameter often has a certain
physical interpretation.

In order to verify the model, the state variables of it must in some
way be comparable to measurable conditions (directly or
indirectly) of the true process. This implies that the complexity of
a model should be related to the amount of reliable
measurements available from the physical process.

Unfortunately, for the activated sludge process a number of
difficulties exists, which increase the problems when developing
new mathematical models for it. First of all, results from
experiments on full scale plants are seldom reproducable due to
the high degree of site specific conditions. The input (flow rate
and concentrations) is only to a small amount controllable and,
moreover, highly variable. Historic data and weather forecasts
may provide some possibilities of predicting flow rate variations
and the sewer system or special equalization  basins may be used
as a buffer for smoothing these variations out, though only to a
certain degree. Moreover, the entire system is time variant which
implies that the dynamic behaviour is changing over time due to
the fact that the microorganisms adapt to new environmental
conditions. Parameters of a model must therefore also be updated
but since available measurements from the activated sludge
process are generally poor (especially the lack of on-line
instruments), the situation is troublesome. 

The complexity of wastewater treatment processes has increased
over the years. In order to control and predict the behaviour of
the plants, the appertunant mathematical models have also
increased in complexity. The measurement problems have thus
led to that some of the more complex models are not possible to
verify. There are so many degrees of freedom that by adjusting
the parameters of the model in one way, a good fit to
experimental data can be achieved. A different set of parameters,
however, may fit the experimental data equally well which
implies that the models are too complex when compared to what
can actually be measured. This is a serious problem since the
models are highly mechanistic and the parameters have specific
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physical interpretations which are used for comparing plants and
to reach conclusions about their internal conditions and
performance.

The purpose of this thesis is to point out the importance of
concepts such as identifiability and verifiability when developing
mathematical models, both generally and for the activated sludge
process specifically. High model complexity does not serve a
purpose of its own. It makes the intuitive understanding of the
model more difficult and thereby hinders people from using it.
The complexity should if possible coincide with what state
variables and parameters are actually possible to measure in the
real process. In this work a reduced order model for the activated
sludge process is developed and results are compared to the
IAWPRC ’Activated Sludge Model No. 1’ [Henze et al., 1987a and
1987b] by means of computer simulations.

A simple example

Modelling of substrate uptake and cell growth in biological
systems is highly complex as evidenced by the number of
publications addressed to even the relatively simple biological
system involving the uptake of glucose by yeast or red blood cells.
A multiplicity of reactions and reaction mechanisms occur in
even the simplest biological reaction. Adsorption, enzyme
catalysis, and diffusional processes represent the major
functional mechanisms which may control the uptake of a
specific substrate. Furthermore, these mechanisms are
dependent upon a number of physical, chemical, and biological
variables within a given system.

The by far most common way of modelling how the growth rate of
microorganisms (µ) depends on the substrate concentration (S) is
by applying the Monod relationship2 :

µ S  = µ S
Ks + S

  1.1

where: S = concentration of growth limiting substrate [mg/l];
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µ = maximum specific growth rate [day-1];
KS = substrate half-saturation coefficient [mg/l].

In a controlled laboratory environment in which no
environmental conditions limit growth and a monoculture
organism grows on a single substrate (only one specific carbon
source), the Monod equation provides an adequate model.
However, when applied to the activated sludge process, the
situation is quite different.

First of all, the biomass is a mix of many types of organisms,
each with its own set of growth parameters. The influent
material consists of a variety of carbon, nitrogen and phosphorus
compounds mixed with artifically manufactured chemical
compounds and toxic materials, which all organism types react
differently to. Conditions like the dissolved oxygen concentration,
temperature, and pH may vary within a treatment plant. All
have a significant influence on the parameters of the model,
although different organisms may react very different to a
certain change. These transient behaviours of the process will
undoubtedly result in frequent changes of the rate controlling
mechanisms. Moreover, none of the model parameters above can
be measured directly. By investigating the oxygen uptake rate,
substrate concentration changes, and dry mass of the biomass
and combining it with other models (for the oxygen transfer rate,
for the decay material, what reactions take place within the flocs,
etc.) the model may be adjusted if the yield factor (Y) and decay
rate (b ) of the organisms are also known (or estimated
simultaneously).

All difficulties mentioned above introduce uncertainties and
errors in the model and every required measurement also adds
noise to the calibration process. One way of dealing with this is to
increase the complexity of the Monod model. For example,
growth on n multiple substrates in which the different
components exhibit a competitive inhibition effect on the
utilization of the other components, may look like:
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µ S  = µi Si

KSi + aij Sj∑
j=1

n∑
i=1

n
  1.2

where aii = 1 and aij represents the inhibition effect of the j’th
substrate on the utilization of the i’th substrate by the organism.

This more complex structure would however only take into
account the multiple substrate problem but all the other
difficulties would still remain unsolved. It would also be
practically impossible to calibrate such a model mainly due to the
problem of measuring several different substrates accurately and
it would only improve model performance under very special
conditions.

The relevance of the basic structure of the empiric Monod
equation is also a matter of dispute. A large number of rival
models which exhibit practically the same behaviour have been
suggested and investigated [Boyle and Berthouex, 1974 and
Dochain and Bastin, 1984]. Some of these variants are,

the Haldane model:

µ S  = 
µ S

Ks + S + S
2

Ki

  1.3

the Tiessier model:

µ S  = θ1 1 – eθ2 S  1.4

the second order analog of the Tiessier model:

µ S  = θ1 1 – 1
θ1 θ2 S + 1

 1.5
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the Powell model:

µ S  = θ1 θ2 + θ3 + S 
2 θ3

 1 – 1 – 4 θ3 S 

θ2 + θ3 + S  2
1.6

the Blackman model:

µ S =  

µ S
Kb

         if  S <  Kb

µ             if  S ≥ Kb

1.7

and the Contois model:

µ S, X  = µ S
Kc X + S

  1.8

where: X = concentration of microorganisms [mg/l].

A simple comparison based on computer simulations of some of
the alternative models and their behaviour is shown in Figure
1.1. The similarities are obvious and an identification based on
real measurements would most likely show that it is impossible
to determine which one provides the best fit (and certainly which
one best mimics the true reaction mechanism), based on the
commonly used statistical criteria.

It is more fruitful to realize that the Monod model and the
similar models are rough simplifications of the true reaction
mechanisms. They can be accepted as reasonably good tools for
determining the average growth rate of various organisms under
different load conditions. The model parameters must however be
adjusted and updated as the environmental and physical
conditions of the process change. But this gives rise to a new
problem - even if the low complexity equation (1.1) is used. Its
inherent structure makes it difficult to determine the optimum
values of the model parameters. The model is quite sensitive to
measurement noise but it is generally insensitive to the number
of measured points. In certain regions, however, it is essential to
obtain several data points of high accuracy (to estimate µ it is
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important to have measurements for large substrate
concentrations (Smax), while data from substrate concentrations
close to µ(Smax)/2 have to be provided to identify KS). The growth
rate can only be determined by indirect methods and as a part of
a larger model. Estimation algorithms therefore often show poor
convergence properties and in many cases the formulation lack
practical identifiability.
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(1.1) (1.3) (1.4) (1.5).............

Figure 1.1 Simulations of the Monod (1.1), Haldane (1.3),
Tiessier 1 (1.4), and Tiessier 2 (1.5) equations behaviour.

In Figure 1.2 it is illustrated how different sets of parameters for
the Monod equation (1.1) produce similar results, in this case for
quite low substrate concentrations (which is the normal
operating condition for wastewater treatment plants receiving
municipal wastewater). The same situation can be constructed
for other regions of the graph. If a realistic amount of noise is

17 The Extended Kalman Filter



added to the system as well, an ’uncertainty deadband’ - within
which no guarantied better estimates can be found - occurs. A
further investigation of this example is performed in Chapter 4.
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µ = 9, KS = 20µ = 6, KS = 10 µ = 4, KS = 4^^^

Figure 1.2 Simulations of the Monod equation (1.1) for different
sets of model parameters.

This introduction is presented in order to point out some of the
problems addressed in this work and motivate the need for
simple, well structured models. The purpose of this discussion is
not to reject the Monod equation, which has been used with
success on many occasions; the purpose is to point out some
general problems. These difficulties are naturally present - only
much more so - in the traditional mathematical models for
biological wastewater treatment. The Monod formulation is here
merely a small part but due to the overall increased complexity
the identifiability and verifiability difficulties are more severe. 
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Goals and contributions

The main goal for the work presented in this thesis is to combine
knowledge of the activated sludge process dynamics with
mathematical methods for estimation and identification as well
as model reduction methods in order to obtain the simplest
possible model capable of reasonably describing the carbonaceous
and nitrogeneous activities at a wastewater treatment plant. The
reduced model should preferably be globally identifiable from on-
line measurements and thereby provide an appropriate basis for
the future development of automatic control strategies applying
feed forward and adaptive control algorithms. The reactions
should be modelled in a physical reasonable manner whenever
possible. This goal has to a large part been accomplished.

The last decade has seen a dramatic upheaval in the field of
environmental protection. The immense environmental
challenges facing the world in the beginning of the next
millenium will require scientists in these areas to focus on better
and more cost-effective solutions. The field of wastewater
treatment is no exception. However, in the western world the
majority of the wastewater treatment plants needed are now
either operating or under construction. The dominant problems
of this field have thus shifted from those of design and
construction to those of plant operation. A better understanding
of the dynamic behaviour of these plants and the use of control
systems to convert unsatisfactory to satisfactory dynamic
behaviour have significant potential for solving operational
problems as well as reducing operational costs. Thus, the work of
this thesis is motivated.

The results of this work are summarized in Chapter 6. The major
contributions are believed to be:

• reduced order models aimed for operation of activated sludge
systems together with suggestions for further refinement;

• a thorough analysis of the identifiability properties of the
reduced models provided for a large number of cases using
different methods;

• an approach for model reduction including the combination of

19 The Extended Kalman Filter



sophisticated mathematical algorithms with process
knowledge of the activated sludge system dynamics; 

• an extensive bibliography which summarizes much of the
innovative work in the area of model reduction, identification,
and verification of the activated sludge system dynamics;

• a base for operational models suitable for on-line parameter
tracking and process diagnosis.

Outline of the thesis

An introduction to mathematical modelling of the activated
sludge process is given in Chapter 2, by reviewing a number of
biological reactor models developed over the last twenty years.
Depending on what quantities can be measured and controlled,
the influence on different state variables and parameters is
discussed. In Chapter 3 the concepts of validity, identifiability,
and verifiability of mathematical models are introduced. A short
literature review of some of the earlier work in this field is also
given here. Principles for reducing complex models are discussed
in Chapter 4 and a simplified model of the activated sludge
system is developed and examined. Ways of estimating state
variables and parameters - which are not possible to measure
directly - by mathematical means are also described and tested
on the reduced order model. The simplified model is compared to
a ’state-of-the-art’ model for different operating conditions by
means of computer simulations in Chapter 5 involving both off-
line and on-line methods. A discussion of the advantages and
drawbacks of the different approaches is given. Chapter 6
contains some final conclusions.

A guide for the reader

Due to the fact that modelling of wastewater treatment processes
requires knowledge from several different scientific areas - not
possible to describe in detail in this thesis - some references are
given where the interested reader may improve his knowledge in
fields not usually encountered. 
A comprehensive guide to the principles of biological wastewater
treatment is given in [Grady and Lim, 1980]. Hundreds of
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references and suggestions to further reading are also presented
there. Another excellent book describing the same area is [Henze
et al., 1992]. Both books incorporate numerous solved examples
where the reader may verify his (or her) new knowledge.

A number of good books describe the fundamentals of
mathematical modelling, process dynamics, and automatic
control in general, for example [Seborg et al., 1989, Åström and
Wittenmark, 1990, and Kuo, 1991]. All these aspects are of great
importance to understand the intentions of this thesis.

Unfortunately, a great deal of mathematical knowledge is
required of the reader to fully understand the three books above.
For the novice seeking a basic understanding of system dynamics
and control methods a better choice is [Olsson and Piani, 1992].
Several examples from wastewater treatment plants are used to
illustrate these areas.

Mathematical methods for estimating and identifying state
variables and parameters which are not directly measurable, as
well as determining the optimal set of model parameters for a
specific set of data is thoroughly described in [Ljung, 1987,
Söderström and Stoica, 1989 and Fletcher, 1987]. These methods
are, however, complicated and need not be understood in detail.
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2
______________________________________________________

Biological Reactor Models

This chapter reviews a number of different models and modelling
approaches for activated sludge wastewater treatment plants.
The investigated is restricted to biological reactor models
performing carbon oxidation, nitrification, denitrification and to
some extent biological phosphorus removal. Firstly, a number of
fundamental aspects concerning mathematical modelling is
discussed. A commented literature review is given in section 2.2
and a further examination of the most commonly used state
variables and parameters which influence the models, is
performed in sections 2.3 and 2.4. Finally, the possibilities of
measuring and manipulating different state variables and
process parameters are commented in the last two sections.

2.1 Modelling - Purpose and Problems

During the last twenty years the complexity of biological waste
water treatment processes has increased dramatically from
simple plug flow reactors performing carbon oxidation, to plants
with advanced flow schemes combined with nitrification-
denitrification processes and recently even biological phosphorus
removal. These new process developments have created an
increasing demand for reliable, yet simple and understandable
mathematical models, able to describe not only the stationary but
also the dynamic behaviour of the activated sludge system.

Mathematical models are powerful tools by which a great deal of
insight and knowledge about the processes can be gained as well
as being an important instrument for practical operations at a
modern plant. However, before starting the development of a new

22 The Extended Kalman Filter



model it is extremely important to clearly state the purpose of the
model since this is most likely to influence its structure. Some of
the more general purposes are listed below.

• Design - models allow the exploration of the impact of
changing system parameters and development of plants
designed to meet the desired process objectives at minimal
cost.

• Research - models serve as a tool to build and test hypotheses
and thereby gaining new knowledge about the processes.

• Process control - models allow the development of new control
strategies through the possibilty of investigating the system
response to a wide range of inputs without endangering the
actual plant.

• Forecasting - models are used to predict future plant
performance when exposed to foreseen input changes and
provide a framework for testing appropriate counteractions.

• Performance analysis - models allow analysis of total plant
performance over time when compared to laws and regulations
and what the impact of new effluent requirements on plant
design and operational costs will be.

• Education - models provide students with a tool to actively
explore new ideas and improve the learning process as well as
allowing plant operators constant training and thereby
increasing their ability to handle unforseen situations.

Another decision which often coincides with the purpose of the
model, is to determine who should be the end user. Operators,
design engineers, process engineers, plant managers, researchers
- all have different goals and reasons for using a model, leading
to an abundance of more or less suitable model structures.

Mathematical models may serve many purposes but they can
also be of different types. At one extreme, the models are highly
mechanistic, linking the inputs and the outputs together through
rate equations which seek to mimic the true reaction
mechanisms. The equations are then glued together through
mass balance equations. The mechanistic model serves as an
excellent tool for researchers trying to understand the events
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occuring in the real system as well as for educational purposes.
At the other extreme, the models are highly empirical (time-
series models). Some experiments are performed on the system
and a model is then fitted to the recorded data by assigning
suitable numerical values to its parameters. Numerous methods
for this type of system identification are given in [Söderström
and Stoica, 1989 and Ljung, 1987]. The main disadvantages of
these ’black-box’ models are their limited validity, they provide
little physical insight of the process, and some of the important
variables may be difficult or impossible to measure.

Since the dynamics of the activated sludge process change with
time, the use of pure empirical models are limited. On the other
hand, the processes are so complicated that it may be practically
impossible to obtain reasonable models using only physical
insight as the tool for modelling. Between the two extreme model
types described above, exists a wide spectrum of alternatives
leading to more or less ’grey-box’ models, which combine the
main physical understanding of the processes with the possibility
to identify and estimate unknown states and parameters (with
no direct physical interpretation) in the model by mathematical
methods.

A problem which is often more or less neglected when a model is
developed, is the fact that many of the parameters in the model
are not possible to measure. Although numerous variables are
measurable in the activated sludge process, some of the most
essential ones are not - at least not without lengthy and
expensive laboratory investigations. Furthermore, uncertainties
connected with sampling and measurements introduce severe
noise into the models and the lack of reliable on-line
measurements is a permanent source of problems. This implies
that any model which is to be used successfully, must take this
into  account.

The development of mathematical models often imply a balance
between high complexity and the possibility of intuitive
understanding of the model. Potential users are reluctant to use
models that are overly complex and even more important - the
more complex a model is, the more difficult it is to verify and to
determine and identify the parameters involved. This problem is
associated with the measurement problem mentioned earlier.
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Therefore, unless a significant improvement in model per-
formance (according to some preset criteria) can be statistically
proved, new complexities should not be added - except for
research purposes where possible hypotheses must be tested in
order to gain new knowledge. 

A final difficulty when modelling the activated sludge process is
the different time constants involved. The timescale for the
process varies from seconds (for the airflow) to seasons (for the
temperature and certain flow patterns), [Olsson, 1987 and
Olsson, 1989]. This leads to a very stiff system of differential
equations which is not only hard to solve numerically (this will
not be further discussed in this thesis) but also give rise to the
question if different model structures should be used for different
time horizons. For long term goals, the model might emphasize
other parts of the process than if the fast dynamical behaviour is
being examined.

2.2 Literature Review

A large number of different models for the activated sludge
system have been presented over the last twenty years. To
review all of them is outside the scope of this thesis. Though in
order to give an indication of how the work has proceeded, some
examples are discussed below.

Mathematical models for some parts of the wastewater treatment
process have quite a long history. For example, Thomann
proposed a dynamic model for river water quality in 1963
[Thomann, 1963], Eckenfelder presented a biokinetic model for
the activated sludge process in 1966 [Eckenfelder, 1966], and
Andrews developed a dynamic model for anaerobic digestion,
which dates back to 1969 [Andrews, 1969]. During the 1970s the
improved computing power together with the falling price for
computers liberated mathematical modelling from most
constraints. Large systems of partial and ordinary differential
equations could now be numerically solved and a number of new
models were presented. However, the complexity of these models
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also seemed to increase as the computers became more
sophisticated and the essential questions - whether theory
reasonably approximated reality and how the results should be
interpreted in order to verify new knowledge about the processes
- were often not sufficiently investigated.

Some of the most important and impressive work concerning
modelling of the activated sludge process has been performed at
the University of Cape Town (UCT), South Africa. In 1976, a
steady state aerobic model was presented [Marais and Ekama,
1976] for carbonaceous and nitrogenous conversion and removal.
This model was in turn based on earlier proposals [McKinney,
1962 and  McKinney and Ooten, 1969] which had suggested a
number of new approaches. Some of these are listed below.

• The mixed liquor can be divided into three volatile solids
fractions: active, endogenous-inert and inert (from the
influent). 

• A relationship between the mass of substrate utilized and the
active mass of organisms synthesized was stated.

• An accumulation of endogenous-inert solids takes place
because of endogenous respiration.

• A relationship between the oxygen demand and the organisms
synthesized and the active mass loss due to endogenous
respiration was stated.

• An accumulation of inert solids takes place due to the presence
of this material in the influent wastewater.

Marais and Ekama accepted these proposals but added the idea
from [Lawrence and McCarty, 1970] linking the specific organism
growth rate to the substrate concentration via the Monod
relationship (the Monod equation will be further discussed later
on). They further suggested that influent carbonaceous material
should be divided into three fractions: 

• biodegradable;

• unbiodegradable particulate;

• unbiodegradable soluble;
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and the influent nitrogen should be divided into four fractions:

• unbiodegradable soluble;

• unbiodegradable particulate;

• biodegradable organic;

• free/saline ammonia.

Again the Monod approach was used to describe the conversion of
ammonia to nitrate. The biochemical oxygen demand (BOD) was
rejected as a suitable parameter for defining the carbonaceous
material and instead they accepted the electron donating
capacity in its equivalent form, the chemical oxygen demand
(COD). The oxygen utilization rate was also recognized as the
most sensitive parameter against which to test the behaviour of
proposed models to the activated sludge process.

The Marais/Ekama model was furher refined to include the
denitrification process and the dynamic behaviour of the
activated sludge system. In accordance with practical
experiments with cyclic loadings, it was proposed that the
biodegradable COD in the influent actually consisted of two
fractions: readily biodegradable and slowly biodegradable COD
[Ekama and Marais, 1979]. This was the bi-substrate hypothesis.
The readily biodegradable COD was assumed to consist of simple
molecules able to pass through the cell wall and immediately be
used for synthesis by the organisms. The slowly biodegradable
COD, which consisted of larger complex molecules, were
enmeshed by the sludge mass, adsorbed and then required
extracellular enzymatic breakdown (often referred to as
hydrolysis) before beeing transferred through the cell wall and
used for metabolism. 

Based on the above concept, an aerobic activated sludge kinetic
model including nitrification was presented, which produced very
good predictions of system behaviours under cyclic load and flow
conditions [Dold et al., 1980]. Another new approach was also
introduced, namely the death-regeneration hypothesis. This was
an attempt to single out the different reactions which take place
when organisms die. The traditional endogenous respiration
concept described how a fraction of the organism mass
disappeared to provide energy for maintenance. However,
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practical experiments with anaerobic tanks in connection with
aerobic (or anoxic) ones showed that the endogenous respiration
model was not satisfactory. In the death-regeneration model, the
cell material was released through lysis. One fraction was
unbiodegradable and remained as an unbiodegradable residue
while the remaining fraction was considered to be slowly
biodegradable. It could thus return to the process and be used by
the remaining organisms as substrate through hydrolysis.

Finally, denitrification was incorporated in the model to produce
a general nitrification/denitrification activated sludge kinetic
model [Van Haandel et al., 1981]. This was done by using the
same formulations regarding readily and slowly biodegradable
COD under aerobic conditions for anoxic conditions instead. The
main difference being that the hydrolysis rate under anoxic
conditions had to be reduced.

In 1983, the International Association on Water Pollution
Research and Control (IAWPRC) formed a task group which were
to review existing models for the activated sludge process. The
main goal was to develop the simplest model having the
capability of predicting the performance of single sludge systems
carrying out carbon oxidation, nitrification, and denitrification.
The result was presented in 1987 [Henze et al., 1987a and 1987b]
as the IAWPRC Activated Sludge Model No. 1 (Appendix B). 

Many basic concepts were adapted from the UCT model
discussed earlier, such as the bi-substrate hypothesis and the
death-regeneration hypothesis. Again the standard Monod
relationship was used to determine the growth rate of both
Heterotrophs and Autotrophs. COD was selected as the suitable
parameter for defining the carbonaceous material.

Some substantial changes were also proposed by the IAWPRC
task group in regard to the UCT model. Firstly, the enmeshed
slowly biodegradable substrate was not considered to be adsorbed
on the organism mass but directly hydrolysed and released to the
bulk liquid as readily biodegradable substrate. Secondly, the fate
of organic nitrogen and source of organic nitrogen for synthesis
were treated somewhat differently.
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As a comparison, the fourteen process equations of the UCT
model were reduced to eight equations in the IAWPRC model. An
evaluation of the two models [Dold and Marais, 1986 and Dold et
al., 1991] showed more or less identical predictions under most
conditions when properly calibrated. The task group also
introduced the concept of switching functions to turn process rate
equations on and off as the environmental conditions were
changed (mainly between aerobic and anoxic conditions). The
switching functions were Monod-like expressions which were
mathematically continuous and thereby reduced the problems of
numerical instability during simulations. Furthermore, the work
of the group promoted the structural presentation of biokinetic
models via a matrix format, which was easy to read and
understand. The IAWPRC model also consolidated much of the
existing knowledge on the activated sludge process and is today
considered as the principle ’state-of-the-art’ model. It will be
further examined and discussed later on. 

Another approach to develop a structured kinetic model for the
activated sludge system is given in [Padukone and Andrews,
1989]. The proposed model is stated to be the simplest one
capable of giving a realistic description of the contact
stabilization process for carbonaceous removal although no
validation of the model using experimental data is presented in
the paper. Based on a traditional storage/metabolism hypothesis
for the substrate, the rate equations are chosen in a way which
reduce them to the Monod equation during ’balanced growth’
(when the external conditions to which the cell is exposed change
so slowly that its composition remains perfectly acclimated to
them, for example in the completely mixed activated sludge
process). Because the rate equations are linear, the cell growth
and substrate uptake in a stirred tank can be defined exactly in
terms of the average composition of the biomass. The composition
of the flocs is described by the ratio of stored substrate to active
biomass. The number and type of parameters and state variables
make this model difficult to verify and would require lengthy
experiments in order to update the parameters for changing
environmental conditions.

A simplified model is presented in [Fujie et al., 1988]. It predicts
the concentration of organic material in the aeration basins and
in the effluent from a wastewater treatment plant performing
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only carbonaceous removal. Only soluble organic substance is
modelled since the particulate material is considered to be
immediately adsorbed by the activated sludge and thereby
remain within the system. The model is easily verified since
practically all parameters and state variables are directly
available through simple measurements.

In the paper the predictions are validated against experimental
data and they show a large degree of agreement. It has to be
emphasized however, that the effluent concentration of organic
substrate is not the most suitable variable for modelling a
modern treatment plant receiving municipal wastewater. This
concentration is usually so low that the uncertainty of any
measurement is considerable. Since most modern plants also
perform nitrification/denitrification, the sludge age is usually so
long that the effluent concentration of organic soluble material is
more or less negliable.

A number of mechanistically simplified models for the organic
substrate and the active biomass are given and tested against
each other in [Sheffer et al., 1984]. Ways of automatically
selecting the best possible model for a certain purpose are also
discussed as well as the need for on-line updating of model
parameters. A similar comparison between different levels of
mechanistic simplification of the IAWPRC model to experimental
data is given in [Gujer and Henze, 1991]. Complete models for
entire wastewater treatment processes, including primary
settling, aeration, secondary settling, gravity thickening,
anaerobic digestion, waste disposal etc., have also been proposed,
for example [Tang et al.,1988]. Such large models are usually
only valid under steady state conditions and are mainly used to
analyse the most cost-effective approach for an entire plant.

A somewhat different modelling approach is suggested in
[Benefield and Molz, 1984]. It is based on a modified Monod
relationship and the transfer of nutrients into the flocs is
modelled as spherical molecular diffusion depending on the floc
radius. Biological phosphorus removal is also included in the
model though in a very rudimentaryform. The rate of the
removal is simply stated to be directly proportional to the rate of
microbial growth. The model is further investigated and
validated in [Benefield and Reed, 1985].
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Several new models including biological phosphorus removal has
been proposed in recent years, e.g. [Wentzel et al., 1986, Dupont
and Henze, 1989, and Dold, 1992]. The phosphorus part is often
added on as an extension to an earlier accepted model, for
example the IAWPRC model. Due to the complexity of the
processes controlling the phosphorus removal mechanism, any
attempt to model it will significantly enlarge the model. As an
example, the mathematical model suggested by Dupont increases
the number of state variables from thirteen to twentyone and the
number of rate equations from eight to twentyone when
compared to the standard IAWPRC model, on which it is based.
This implies a huge problem when trying to calibrate the model
to any realistic set of data and an impossible task to verify each
individual parameter. The need for model simplifications is again
emphasized. 

As a complement to the mechanistic models discussed above,
models based on stochastic analysis and other methods of system
identification are gaining interest. Although often incorporating
some physical knowledge of the process, the possibilities of
adapting such models to the amount of information available is
good. The identifiability and verifiability become easier. Maybe
more important is the potential of estimating and identifying
parameters and state variables of traditional mechanistic
models, which are not accessible through direct measurements.
The difficulties of model calibration and lacking model reliability
can this way be minimized. These possibilities will be further
discussed later on.

An excellent introduction to the potential of process identification
in wastewater treatment is given in [Beck, 1989] and a
comprehensive survey of different examples of identification for
wastewater treatment applications is presented in [Beck, 1986].
Often the identification methods are applied to certain specific
but important parts of the treatment process. The processes are
usually identified in specially designed experiments created to
excite the unknown variables as much as possible. For example,
the respiration rate and oxygen transfer rate can be identified
on-line by allowing the dissolved oxygen setpoint to oscillate in a
certain way, [Holmberg, 1991]. In a similar manner, special
experiments may be used for identification of the nitrification
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process [Ossenbruggen et al., 1991]. A nonlinear stochastic model
for adsorption in batch reactors is suggested in [Argyelan et al.,
1991].

Finally, one of the most fundamental relationships for modelling
wastewater treatment systems is discussed. The Michaelis-
Menten equation was originally proposed to describe the
enzymatic reaction rate as a function of the substrate
concentration. Monod adapted this relationship [Monod, 1942] to
model the microorganism growth rate µ as a function of the
limiting substrate concentration S, defined by equation (1.1). It
was originally presented as an empirical expression for
monocultures but is today used in practically every dynamical
model for wastewater treatment systems in the original or
slightly modified form.

The growth rate is one of the most sensitive parameters in most
models. It has been shown [Holmberg and Ranta, 1982] that both
µ and KS are theoretically identifiable from perfect measure-
ments but the situation is more difficult when using true
measurements including noise. This means that unique sets of
parameters can rarely be obtained. Parameters estimated from
data obtained during apparently similar conditions show
considerable variations and parameter estimation methods show
poor convergence properties, [Holmberg, 1982].

In [Vialas et al., 1985] ways of improving the practical
identification of the Monod equation by using different sample
times depending of the current state of the process, is suggested.
Both linear and nonlinear regression techniques are applied for
estimating the growth model parameters as well as the yield
coefficient Y and the decay rate b from true plant data in
[Vaccari and Christodoulatos, 1990].

The estimates for KS and b were, however, not significant at the
95% confidence level and therefore the use of a simple first order
rate equation instead of the Monod expression is proposed. A
comparison of the nonlinear Monod equation and a linear
simplification is also performed in [Derco et al., 1990a and Derco
et al., 1990b]. The investigations show that a linear rate model is
not as good for predicting actual transient responses in biomass
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and substrate concentration as the traditional formulation. The
standard Monod equation does, however, not provide perfect
results either, when compared to true data.

2.3 State Variables

The state variables characterize a dynamic system; each
describing an internal process variable at a certain time. These
states may have a physical significance, be artificial, or even
symbolize statistic probabilities. By integrating the state
equations forward in time, the future state of a system can be
predicted.

In the specific case of a biological wastewater treatment process
performing carbon oxidation and nitrification/denitrification, the
state variables of most models are related to concentrations of
different types of microorganisms, carbonaceous fractions,
nitrogen fractions and dissolved oxygen. They have a direct
physical interpretation though some of them have been more or
less adapted because of their empirical importance and without
regard to the possibility of verification. This will be discussed in
section 2.5. 

The number of states in most activated sludge models presented
in the literature, vary between ten and fifteen for a completely
mixed system. If biological phosphorus removal also is to be
included in a model, between five and ten more state variables
are usually added. Though for every new state, a differential
equation describing the reaction rates has to be included, which
indirectly implies adding new parameters to the model. Since
many of the state variables are non-measurable, the complex
models are extremely difficult to verify.

Altogether, increased complexity may actually make a model
worse due to calibrational problems, lack of unique solutions, and
lost observability and controllability. For similar reasons, the
possibilities to develop improved automatic control systems for
the processes and better parameter estimators based on the
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current models is reduced, due to the higher complexity. Finally,
the financial investments in personal and equipment for
measurement and analysis - in order to keep such models ’on-
track’ when used in real applications at wastewater treatment
plants - are increased.

As an example, the different state variables introduced by the
IAWPRC and the UCT models are presented in Table 2.1.

Soluble inert organic matter SI Sus
Readily biodegradable substrate SS Sbs
Particulate inert organic matter XI -
Inert mass - ZI
Endogenous mass - ZE
Slowly biodegradable substrate XS -
Adsorbed slowly biodegradable substrate - Sads
Enmeshed slowly biodegradable substrate - Senm
Active heterotrophic biomass XB,H ZBH
Active autotrophic biomass XB,A ZBA
Particulate products arising from biomass decay XP -
Oxygen SO O
Nitrate and nitrite nitrogen SNO No3
Ammonia nitrogen SNH Na
Soluble biodegradable organic nitrogen SND Nobs
Particulate biodegradable organic nitrogen XND Nobp
Alkalinity SALK Alk

State Variables IAWPRC UCT

Table 2.1 State variables of the IAWPRC and UCT models.
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2.4 Model Parameters

The selection of values for the kinetic and stochiometric
coefficients of a mathematical model is known as model
calibration. In the case of activated sludge models, the
calibration has traditionally been carried out through specific
and well controlled experiments at pilot and bench scale plants
assuming constant operating conditions. The values obtained in
such a way may not be reliable mainly for two different reasons.
The first reason being the difficulty of configuring and operating
a small scale plant in exactly the same way as a full scale plant
and therefore introducing a risc of changing the behaviour of the
microorganism population and also the conditions which
influence the values of the parameters which should be
determined. The second reason is that the experiments and
calculations are often based on the fact that the coefficients are
constants. Since the experiments may take several weeks to
perform, they are not carried out very often. Many of the
parameters are time variant  and some of them may show
considerable change over a limited period of time. Factors such
as plant configuration, operating conditions, microorganism
population dynamics, degree of inhibition by toxic compounds,
composition of incoming wastewater, temperature, pH, etc., all
affect the values of the process parameters. 

By examining the sensitivity, variability, and uncertainty of the
model parameters, an indication is given as to which coeffients
are most important to determine accurately. Such an
investigation is performed in [Henze, 1988]. It is stated that for
plants including nitrification/denitrification, models show very
little sensitivity to the COD. The parameters which are most
important are the heterotrophic decay rate, denitrifying growth
rate, denitrifying hydrolysis rate, hydrolysis rate and saturation,
and maximum growth rate of nitrifyers (for the IAWPRC
Activated Sludge Model No. 1). It is also shown how different sets
of parameter values may lead to approximately the same model
behaviour.
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Another problem is the fact that many coefficients are correlated.
This implies that parameters can often not be adjusted one by
one, but rather the whole set must be tuned to each other. Some
examples of these interrelations are given here.

• Growth rate and decay rate - increased growth and decay rate
may give identical net growth rate but will increase the oxygen
demand and speed up the substrate cycling.

• Yield and growth rate - increased yield and growth rate may
outbalance each other with respect to substrate conversion
rate but will increase the oxygen consumption.

• Yield and heterotrophs in inflow - high yield and low
concentration of heterotrophs in feed equal low yield and high
concentration of heterotrophs in feed.

As an example, the model parameters used in the IAWPRC
model are presented together with their default values (as
suggested by the IAWPRC task group for 20°C) in Table 2.2. As a
comparison, values commonly found in the literature are
provided for some of the coefficients.

The same type of problems are even more emphasized for
characterizing the incoming wastewater. Some mechanistic
models distinguish between ten different fractions of nitrogen
and organic material in the influent although only three or four
of these fractions are possible to measure on-line. But while the
parameters discussed above may change their values
considerable over a few days, the characteristics of the incoming
wastewater may change significantly within a few hours. The
fact that the influence of the influent wastewater composition on
model behaviour is usually large, further amplifies these
difficulties.

The situation outlined above is an indication that methods for
identifying and estimating the non-measurable state variables
and model parameters have to be employed. This should be done
in order to extract all possible information from the actual on-
line measurements.
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Heterotrophic max. specific growth rate [day-1] 6.0 1.5-13.2

Heterotrophic decay rate [day-1] 0.62 0.05-1.6
Half-saturation coefficient for 

Heterotrophs [g COD m-3] 20.0 5-180
Oxygen half-saturation coefficient for 

Heterotrophs [g O2 m-3] 0.20 0.01-0.20
Nitrate half-saturation coefficient for 

denitrifying Heterotrophs [g NO3-N m-3] 0.50 0.1-0.5

Autotrophic max. specific growth rate [day-1] 0.80 0.2-1.0

Autotrophic decay rate [day-1] 0.20 0.05-0.20
Oxygen half-saturation coefficient for 

Autotrophs [g O2 m-3] 0.4 0.5-2.0
Ammonia half-saturation coefficient for 

Autotrophs [g NH3-N m-3] 1.0 -
Correction factor for anoxic growth of 

Heterotrophs [dimensionless] 0.8 0.6-1.0

Ammonification rate [m3⋅(g COD⋅  day)-1] 0.08 -
Max. specific hydrolysis rate 

[g slowly biodeg. COD (g cell COD⋅day)-1] 3.0 -
Half-saturation coefficient for hydrolysis of 

slowly biodegradable substrate 
[g slowly biodeg. COD (g cell COD)-1] 0.03 -

Correction factor for anoxic hydrolysis 
[dimesionless] 0.4 -

Heterotrophic yield 
[g cell COD formed (g COD oxidized)-1] 0.67 0.46-0.69

Autotrophic yield 
[g cell COD formed (g N oxidized)-1] 0.24 0.07-0.28

Fraction of biomass yielding particulate 
products [dimensionless]  0.08 -

Mass N/Mass COD in biomass 
[g N(g COD)-1 in biomass] 0.086 -

Mass N/Mass COD in products from biomass 
[g N(g COD)-1 in endogenous mass] 0.06 -

IAWPRC model parameters Default Literature

Table 2.2 Parameters of the IAWPRC model (20 °C).
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2.5 Measurable Quantities

The earliest models for the activated sludge system used state
variables which were readily measurable. Calibration techniques
were based on results obtained by operating continuous plants at
steady state for different sludge retention times. Since then,
mechanistic models have evolved considerably. In order to more
precisely explain the phenomena taking place, many state
variables and parameters which are not directly measurable,
have been introduced.

It is obvious that the measurement technique has not evolved as
fast as the complexity of the models. Due to this fact there are two
principle ways to proceed:

• to accept large models;

• to use simplified, reduced order models.

The first implies accepting the complex models in their current
form and improve matters by measuring as much as possible,
designing special identification experiments, and developing new
and better measuring techniques and instruments. Identifiability
may be improved by means of exciting the system, perturbing the
input and control signals in an optimal manner, properly choose
the sampling instants, use various methods of signal processing,
etc. The best design of identification experiments is a very
troublesome task but of the outmost importance in order to
produce reliable results and is further discussed in [Söderström
and Stoica, 1989 and Ljung, 1987]. The major drawbacks are the
large amount of resources required (both equipment and
personnel), the high degree of uncertainty (two equally skilled
persons may reach quite different results when performing
identical experiments due to the need for subjective interpretation
of many results), the long time to perform certain experiments
(some results may be obsolete by the time they are reached), and
the lack of standarized methods (different methods for
determining the same quantity may show considerable
variations). Furthermore, many parameters used by complex
models have to be considered as constants because of the practical
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difficulties of performing identification experiments as often as
would be needed in order to keep track of their variation.

The second possibility is to use simplified, reduced order models
and fully take advantage of the quantities which are measurable
on-line. In combination with mathematical identification-
estimation algorithms the model should be automatically
calibrated on-line and always be tuned to the current situation of
the plant (adaptive models). The drawbacks in this case are the
lack of reliable on-line sensors (only a few quantities can be
measured). The lack of data may leed to an overly simplified
model for producing any realistic predictions (the number of
parameters which can be accurately estimated is directly related
to the amount and quality of the data available). Moreover, the
cost and need of maintenance for advanced instrumentation are
quite high.

A combination of the two described approaches is naturally an
alternative. Depending on the purpose of the model and for what
time scale the model is to be used, the best procedure can be
selected. A model used for design of new plants simulates plant
behaviour over long periods of time. The variations which are of
real relevance are those with time constants of days and weeks.
On the other hand, an oxygen regulator for an aerobic reactor
reacts within minutes and parameter changes with time
constants of seconds and minutes have to be detected. This can
only be accomplished by on-line measurements.

The main measurement problem for wastewater treatment
plants is usually not lack of data. On the contrary, a large
amount of information is being logged at a modern plant. The
number of inputs from sensors usually vary between a few
hundred and several thousand. The problem is often how to
obtain the most important quantities for modelling purposes with
adequate accuracy and sampling frequency.

Traditionally, on-line measurements have been restricted to
physical/chemical variables such as flow rates (of both water,
sludge and air), power to pumps, levels in reactors, temperature,
pH, redox potential, water conductivity, etc. The introduction of
on-line meters for measuring the oxygen concentration of the
wastewater led to intensive research and development of
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regulators, estimators and models for controlling the dissolved
oxygen concentration as a key variable. This work has continued
over the last two decades. The meters are today quite reliable
and the oxygen consumption is today the most commonly used
parameter for verifying mathematical models as well as being
used for control purposes.

On-line meters for measuring the COD (chemical oxygen
demand), the ammonia concentration, and the nitrate
concentration in the wastewater have also become available. Due
to this fact, the possibilities of developing adaptive and
selftuning models have increased considerably. New technologies
for advanced sensors also provide interesting possibilities for the
future. Ultrasonic sensors for on-line determining the sludge
level as well as the concentration profile in the settler and optical
UV sensors for on-line measurements of the bacteriological
activity are now becoming available. On-line respirometers of
various construction and philosophy [Spanjers and Olsson, 1992
and Vanrolleghem and Verstraete, 1993] are also being
prototyped. Furthermore, the substrate concentration can be
estimated from respirometry data [Spanjers et al., 1993]. In the
future, models will have to be modified to include information
from these types of sensors.

A large number of parameters and quantities can today be
determined off-line using special experimental setups, either by
direct or indirect methods. Such experiments are generally batch
or dynamic tests in continuous plants operated in bench or pilot
scale under very special conditions. In this manner only the
coefficients to be determined are supposed to influence the
measurable variables throughout the experiment. Whether the
acquired results are directly applicable to full scale plants or not
are a matter of debate. Since this thesis deals mainly with on-
line measurements it is beyond its scope to describe the methods
any further but a number of possible procedures and experiments
are described in [Cech et al., 1985, Ekama et al., 1986, Grady et
al., 1989, and Kappeler and Gujer, 1991].

As an example, the IAWPRC model contains five stochiometric
coefficients, fourteen kinetic parameters, and five non-
measurable state variables [Larrea et al., 1991]. A general
description of an extensive experimental procedure to determine
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the unknown values of the model is given in [Henze et al.,
1987a]. This is a combination of practical experiments and curve-
fitting procedures and it is clearly stated that an error introduced
when determining certain coefficients will be compensated when
determining another parameter. This might seem satisfactory
but is actually an indication of lacking identifiability (non-unique
solutions) of the model since different sets of model parameters
will produce identical results. Consequently, the model will fit
practically any set of data if the model coefficients are allowed to
vary sufficiently.

The possibility of employing mathematical estimation algorithms
for model calibration on-line during normal plant operation will
be discussed in Chapters 4 and 5.

2.6 Manipulative Variables

Traditionally, biological wastewater treatment processes have
been regarded as more or less self-controlled and quite inflexible
in their operation. The plants normally function under pseudo
steady state conditions for long periods of time which are
suddenly interrupted by abrupt failures. Some of these
instabilities can be attributed to high frequency, external
disturbances of high amplitude but most are probably due to the
propagation of slowly variable, internal perturbations in the
largely inaccessible microbiological state of the system. The
available control usually depends on the expertise of the plant
operator in combination with a few automatic, single-loop
controllers (mainly for the concentration of dissolved oxygen and
other local variables). 

Apart from the previously discussed problems of reliable and
relevant measurements, the difficulties of controlling the
activated sludge process are further emphasized by lack of
suitable control variables. Flow rates can usually be controlled -
both of wastewater and sludge. For example, a desired sludge age
can be determined by the sludge recycle flow and the sludge
waste flow. Different modes of operation may also be imposed,
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such as step feed, contact-stabilization, pre-fermentation, etc.

Apart from changing the internal flow schemes and controlling
the concentration of dissolved oxygen, the ways to influence a
plant are quite limited. At some modern plants tests are being
performed in order to investigate the possibility of using the
sewer system or large equalization basins to smooth out dramatic
flow variations of the influent as well as adding different sources
of substrate at specific points of the plant to improve certain
reactions, for example the denitrification. Different types of
chemical inhibitors may also be added to slow down other
biological reactions, the pH may be changed, etc. Finally, the
dissolved oxygen setpoint or spatial distribution can be used to
favour growth of certain organism species.

One of the major problem when attempting to control an
activated sludge plant is the lack of control of the different
concentrations in the influent wastewater. The control strategy is
therefore often based on empirical knowledge and statistic
information for each specific plant. Factors such as temperature
(which is basically not controllable) also affect plant performance
dramatically.

The preferred situation would naturally be that every parameter
of the system could be individually manipulated but the situation
is quite the opposite. When the internal flow scheme is changed
and various substances added, practically all process parameters
are indirectely affected in a very complex way. Over longer
periods of time, the system behaviour may change significantly.
This problem is often not considered in most mathematical
models. Instead the model coefficients are considered to be more
or less constant. More adequate and adaptive models are
necessary in order to predict both the long and short time
behaviour of a plant and to determine suitable control strategies.
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3
______________________________________________________

Validity of Mechanistic Models

In this chapter the concept of model validity is discussed. A short
introduction is given in section 3.1 and a commented literature
review is performed in the following section, concerning issues
such as verifiability, identifiability, and validity of biological
wastewater treatment models. The problem of model complexity
versus model verifiability is discussed in section 3.3. Finally, a
more detailed investigation of model identifiability and
verifiability implications is performed in the last section.

3.1 What is a valid Model?

Writing a mathematical model is generally easier than verifying
it. Just as it is extremely important to determine the purpose of a
model prior to its development, it is equally important to test the
validity of a model once it is implemented, e.g. investigate how
well and under what specific conditions a model realistically
mimics the true system behaviour and verify that the purpose of
the model is fulfilled. A model may for example be valid for:

• steady state behaviour (no transients);

• various types of dynamic behaviour and time horizons;

• certain operating conditions;

• certain input (amplitude, variability, frequency) conditions;

• specific noise distributions;

• qualitative comparisons.

This situation is especially true for highly complex processes like
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those of biological wastewater treatment, where no such thing as
the true model exist. Different models have different advantages
and purposes.

Model discrimination and model verification are closely related
because in both cases the model must be subjected to suitable
practical tests to discover its weaknesses. It is important that the
performed tests put the model in jeopardy and a godness of fit is
not a sufficient condition for model acceptance. Several models
may in fact fit the same data (as shown in the small example in
Chapter 1). A related problem for model verification is that
different postulated reaction mechanisms may lead to the same
mathematical function, thus making it impossible to verify
certain mechanisms by model fit.

Since most models for biological processes are mechanistic, it is
actually not sufficient that only the output of the model is
validated against the true process. Most model parameters have
a direct physical interpretation which implies that the validation
has to include an evaluation of those parameters when compared
to the actual process parameters. However, mechanistic models
nearly always have empirical qualities and it is unlikely that any
biological or biochemical system has ever been described exactly
by a theoretical model. Thus, a ’true’ mechanistic model is one
which describes the mechanisms well enough to assist
understanding and to allow useful - but not exact - extrapolation.
Clearly, the classification of biological models as empirical or
mechanistic depends on what is expected of the ultimate model.

Models are often considered to be validated when they have been
identified from a couple of different data sets. Strictly speaking
such models are simply a convenient mean of describing collected
data or of summarizing current knowledge. Situations may arise
in which two or more models based on partly contradictory
hypotheses may explain experimental results equally well
[Holmberg, 1981]. It should, however, be noted that no methods
exist which provide a completely validated model. A certain
degree of uncertainty and untested conditions always remain.
The ultimate validation of a model can only be performed using it
in practice and checking the results over a longer period of time
[Söderström and Stoica, 1989].
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3.2 Literature Review

As the complexity of wastewater treatment models have
increased, so have the needs for verification and identification.
During the last five years the number of publications dealing
with adaptive models and control, fuzzy logic, on-line parameter
estimation, and other quite sophisticated methods applied to
wastewater treatment have risen dramatically. This may be
considered as a new trend in an otherwise rather conservative
research area.

A very good introduction to the possibilities and difficulties of
identification, estimation and control of biological wastewater
treatment processes is given in [Beck, 1986]. A list of more than
one hundred relevant references covering much of the work
produced in this area up to 1986 is also provided. In [Beck, 1991]
the concept of model calibration versus model uncertainty is
further emphasized.

In a paper by [Thomann, 1982] the need for verification of water
quality models is discussed. The conclusions are, however, valid
for all kinds of complex models and quantitative statistical
measures such as regression analysis, relative error, root mean
square error, and comparision of means are suggested to be
useful. Acollection of more general methods for identifiability
analysis is presented in [Godfrey and DiStefano, 1985]. Five
different approaches are thoroughly described, though only one of
them is suitable for nonlinear models, i.e. the Taylor series
expansion of observations. The difficult question of identifiability
in the presence of real, noisy data is also considered.

One of the more extensive investigations concerning
identifiability, verifiability, and state estimation in wastewater
engingeering is presented in [Holmberg, 1981]. The Michaelis-
Menten equation is analyzed and it is shown that the parameters
are not generally identifiable in the presence of noisy
measurements. The usefullness of sensitivity analysis as a mean
for model calibration, experiment planning, and model reduction
is also described.
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The term ’flexible modelling’ is introduced in [Sheffer et al.,
1984]. Depending on the situation and quality of the available
data a suitable model - from a set of mechanistic models for
carbon removal at different levels of simplification - is
automatically selected according to a predefined criteria. The
model comparison program is further connected to a program for
on-line parameter fitting although the identifiability problem is
not investigated. 

The use of state and model coefficients estimation for the
activated sludge process is investigated for model calibration
purposes in [Ayesa et al., 1991]. A modified Kalman filter
algorithm is proposed and tested on a simplified form of the
IAWPRC model, excluding denitrification. Unique solutions are
reached also when noise is present in the computer simulated
data. The work is continued in [Larrea et al., 1991] where
suitable identification experiments are suggested, to be used in
combination with the identification algorithms of Ayesa, though
verified only in theory. 

In order to determine (by direct measurements) the kinetic
parameters of heterotrophic biomass and the COD wastewater
fractions of the IAWPRC model, a simple method based on three
different types of batch tests is proposed in [Kappeler and Gujer,
1991]. The results are achieved simply by measuring the oxygen
respiration and are used for model calibration. It is also useful as
a mean for verifying the results based on different mathematical
estimation algorithms.

The identifiability of the respiration rate and oxygen transfer
rate is investigated in [Holmberg, 1991]. The two parameters are
found to be impossible to identify from a single experiment and
any identification algorithm will produce a biased result.

It is interesting to study the evaluation of the IAWPRC model
performed in [Dold and Marais, 1986]. Although based on an
excellent understanding of the process kinetics involved and a
very thorough model validation based on actual plant data under
various conditions, the identifiability problem is not discussed at
all. It is essential to realize that the more complex a model is, the
greater is the necessity for such an analysis in order to ensure
that model results are not misused or misunderstood. 
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3.3 Mechanistic Model Complexity

The choice of a model structure is in practice greatly influenced
by the intended use of the model. A stabilizing regulator can
often be based on a crude low-order model, whereas more
complex and detailed models are necessary if a model is aimed at
giving physical insight into a process.

The complexity of a system makes model simplification necessary
and the final model is probably a compromise between a practical
need for easily handled models and a desire for biologically
explanatory models. The most common statistical criteria to
discriminate between models are normally based on [Boyle and
Berthouex, 1974]:

• minimum sum of squares of residual errors;

• fewest parameters;

• simplest form.

From these criteria it is apparent that a low model complexity is
as important as the actual fit of the model. Notice that these two
demands are often contradictory and a compromise has to be
reached.

When modelling the activated sludge process, the difficulty in
relating measurable variables to model variables constitute a
serious problem. A further difficulty is the fact that the process is
time variant. Even in a complex model the parameters still have
to be updated in some way. Strong nonlinearities and varying
time constants of the process do not improve matters.

By combining the most essential processes of the mechanistic
models with some empirical input/output relationships, a low
complexity ’grey-box’ model may be developed which can be made
adaptive by the use of mathematical estimation algorithms and
thereby useful for automatic control purposes. Such a model
should, however, not be expected to explain all the phenomena
involved in the physical process. Some statistical means of
determining whether a model is overly complex or not are
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discussed in [Söderström and Stoica, 1989].

It should also be realised that not only the complexity of a model
determines whether there will exist an identifiability problem or
not. Various algebraical structures and nonlinearities within an
otherwise simple differential equation may give rise to similar
difficulties. On the other hand, a linearization of a nonlinear
system may very well be non-identifiable whereas the original
system shows no such weaknesses [Godfrey and DiStefano, 1985]
- if it is at all possible to perform an analytical investigation.

3.4 Identifiability and Verifiability

The concept of identifiability can be introduced in a number of
ways. In a mathematical sense it may be defined as follows. An
identification method I applied to a parametric model structure
M will yield the resulting estimate denoted by θ(N; S, M, I, E).
The estimate will depend not only on I and M but also on the
number of data points N, the true system S, and the
experimental condition E. The system S is system identifiable
under M, I, and E, abbreviated SI(M, I, E), if

θ(N; S, M, I, E) --> DT(S, M) as N --> ∞ (3.1)

with probability one and DT(S, M) is nonempty. The set DT(S, M)
is a description of those parameter vectors for which M gives a
perfect description of S and may theoretically be empty (model
under-parametrization), consist of one point (ideal - the true
parameter vector) or consist of several points (model over-
parametrization).

The system S is further considered to be parameter identifiable
under M, I and E, abbreviated PI(M, I, E), if it is SI(M, I, E) and
DT(S, M) consists of exactly one point. The  parameter estimate
will both be unique for large values of N and consistent, i.e.
converge to the true value. The system identifiability property
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basically depends on the identification method. It is most
desirable that this is true for as general experimental conditions
as possible and it is then ’only’ the model parametrization or
model structure that determines whether the system is also
parameter identifiable.

Most tests developed for studying the identifiability properties of
a system are aimed at linear model structures. A general test
which can also be applied to nonlinear systems is described in
[Pohjanpalo, 1978] but practical limitations makes this method
unsuitable for more complex models. A further difficulty is the
fact that a model structure which is theoretically identifiable
may lack practical parameter identifiability due to poor
measurements, noise, etc. This may give rise to problems that
unique sets of parameters can rarely be obtained, parameters
estimated from data obtained during apparently similar
conditions show considerable variations, and that the estimation
methods show poor convergence properties. Estimation
algorithms where the results vary depending on the selected
initial values of the parameters, is also an indication to proceed
with care. Altogether, it is often easy to obtain sets of parameters
which give a good model fit. Since these parameters may be far
from the correct ones, situations where they are given an exact
biological interpretation should be avoided.

As far as verifiability is concerned, a truly verifiable mechanistic
model would not have any internal state variables which are not
possible to measure in the real system. As an example, most
models for wastewater treatment include two such troublesome
state variables - active heterotrophic biomass (XB,H) and active
autotrophic biomass (XB,A). There is today no way of directly
determining these quantities accurately and therefore it is not
possible to verify that a model based on XB,H and XB,A really
mimics the real process. Several models based on different
reaction mechanisms may fit the measurable data well and be
valid but provide different estimates for the active biomass
concentration. The problem of verifying which model is ’most
true’ is an awkward task. Although this is not a very serious
problem, it should be recognized. Otherwise, it may lead to a
situation where new models are rejected not because they do not
fit actual measurable data but because the estimates of the non-
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measurable variables do not equal the ones provided by more
traditional and accepted models - which are not necessarily true.

On the other hand, a model which shows a high correlation
between its output signals and the corresponding signals from
the real process is regarded to be valid (at least under certain
conditions) whether or not the model provides a realistic
description of the different reactions taking place. This situation
is typical for ’black-box’ (empiric) models where the internal
states seldom have any physical relevance at all and implies that
a model may actually be valid, although it is not fully verifiable.

Most models used today are only partly verifiable, i.e. only a few
of the internal state variables are possible to measure in the real
process. The awkward situation where the models are used to
quantify the real process behaviour instead of the other way
around - due to measurement difficulties - may arise, although
the mechanistic models used today are still largely based on
theoretical hypotheses. It must also be realised that a model is
always a simplification of reality. This is made obvious by the
fact that a model which appears to produce reliable results at one
specific treatment plant may very well give misleading results if
tested on another plant. This is because the internal reactions
are not fully understood and many model quantities are neither
measurable nor identifiable.
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4
______________________________________________________

Model Reduction

In this chapter the mathematical modelling approach is taken
one step further by introducing some means for reducing model
complexity and applying them to the activated sludge process. A
brief discussion of the importance of using simple models is given
in section 4.1 and the small example from Chapter 1 is further
investigated. In the following section a simplifed model for the
activated sludge system is developed, mainly based on physical
reasoning. The limitations and assumptions for the model are
also discussed and its structure is analysed. The issue of model
verification is penetrated in section 4.3 together with methods for
off-line and on-line model calibration, state and parameter
estimation of important non-measurable quantities, etc. The
effectiveness of some of the estimation algorithms are also
illustrated in the simple example under various operating and
initial conditions.

4.1 Why are Reduced Models needed?

A model is nothing more than a mathematical abstraction of a
real process. The equation or set of equations that comprise the
model are at best an approximation of the true process. Hence,
the model can not incorporate all of the features, both
macroscopic and microscopic, of the real system. The engineer
normally must seek a compromise involving the cost of obtaining
the model, that is, the time and effort required to obtain and
verify it and the expected benefits to be derived from its use. The
ultimate application and purpose of the model finally determines
how accurate it needs to be.

51 The Extended Kalman Filter



In general, modelling is still much of an art. The modeller must
bring a significant level of creativity to the task, namely to make
a set of simplifying assumptions that result in a realistic model.
An ’optimal’ model incorporates all of the important dynamic
effects, is no more complicated in its structure than necessary,
and keeps the number of equations and parameters at a
reasonable level. The failure to choose an appropriate set of
simplifying assumptions invariably leads to either a rigorous but
overly complicated model or models that are overly simplistic.
Both extremes should be avoided.

Activated sludge models are often derived from simpler unit
operations and later combined to large plant models. The model
parameter values consequently may not be the same. Moreover,
several parameter combinations can often explain the same
dynamical behaviour. This is further accentuated when the
influent wastewater composition is taken into consideration; a
change in its characteristics can quite often be explained by kinetic
parameter changes. 

Even if a major problem of the models has to do with the complex
structure and the too large number of states and parameters to be
uniquely identified, instrumentation problems amplify the
difficulties. As earlier discussed in section 2.5, available on-line
instrumentation and laboratory procedures are usually not
adequate to verify the details of such a complex model.
Furthermore, for a reliable identification result, the operation has
to be perturbed (or purposefully disturbed) in such a way that all
interesting dynamical modes of the process are excited. This
creates a demand not only in amplitude but also in the time frame
of the disturbances.

It is of course practically impossible to develop a model which is
reliable on a microscopic level - this would require a system of
several hundred equations. Though available models are quite
complex they are still greatly simplifying the representation of
many species of organisms. As the microbial population changes
this would be reflected in changing kinetic parameters and even
adding new state variables. For example, filamentous organisms
ought to be represented during many operating conditions. On
the other hand, a quite simple model can be used effectively if
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key model parameters are properly fitted to operating data of the
actual process, especially if the process is time variant.

A simplified model does not provide a fully explanatory model for
every physical reaction. Several parts of the process are often
lumped together in order to reduce the complexity. For a non-
expert, the intuitive understanding of the process is however
often enhanced by such models (if its basic structure is
mechanistic). Furthermore, in many cases the model output
needs only to be qualitatively significant, e.g. show trends and
whether a variable is increasing or decreasing, without providing
exact quantitative results. This may allow effective use of
simplified models for highly complex processes. 

The activated sludge process is suited for a hierarchical control
structure based on several simple models. The process can in a
natural way be devided into unit operations - aerobic reactor,
anaerobic reactor, anoxic reactor, clarifier, thickener, presettler,
sludge digester, etc. It can also be modularized based on different
process time constants - oxygen (minutes), flows (hours), carbon
oxidation/denitrification (a few days), nitrification (many days),
temperature (months), etc. Each model controls and predicts the
behaviour of its specific area in some optimal way but is also
syncronized with a high level control system which optimizes the
performance of the entire plant according to preset criteria which
are often contradictory. The inclusion of a knowledge based
system at the top level to allow for logical reasoning, diagnosis,
and decision support would further enhance the possibilities. In
Figure 4.1 a schematic view of such a hierarchical system is
suggested.

Simplified models like the ones aimed at in this work should
therefore not be evaluated and judged separately but put in a
broader perspective and in the context of a full scale hierarchical
control structure. This type of distributed automation has been
successfully applied to many complex industrial applications, for
example chemical, paper, and pulp processes. A similar approach
could be applied to wastewater treatment (WWT) processes.

If the main purpose of a model is control, the need for simplicity
is evident. Due to the internal structure of a closed loop system, a
reasonably small error will automatically be compensated for.
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Figure 4.1 Hierarchical control structure of the WWT process.

As the practical control possibilities for the activated sludge
process are quite limited, it is even more important to use the
ones available to their full extent. Due to the large time
constants and the difficulties to early detect problems, traditional
control strategies based on feedback are probably not the best
solution. Methods using feed forward, prediction, or adaptive
algorithms appear to be better suited for this purpose. However,
all these methods require a process model which is relatively
simple in its structure, robust, uniquely identifiable, and possible
to update on-line as the operational conditions change.

A model for operation and control has to be sufficiently complex to
describe the major phenomena taking place but still so limited
that its parameters can be updated while the plant is runing
normally either by taking advantage of the natural disturbances of
the process or by introducing small deliberate perturbations. The
need for highly complex models is recognized for design purposes
so the operational model has to be considered as a special case,
either for certain operational levels or for particular time scales. In
an operational model it is not always necessary to know the
absolute values of certain parameters but rather their relative
change. 
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A simple example (continued)

One of the simplest possible models to include the Monod growth
equation describe a single-substrate/single-organism batch
reactor with no other growth limitations. It can be formulated as:

 
dX
dt

 = µ S X  – bX

dS
dt

 = – 1
Y

 µ S X
4.1

where: X = concentration of microorganisms [mg/l];
S = concentration of growth limiting substrate [mg/l];
Y = yield factor [g cell COD formed (g COD oxidized)-1];
b = decay rate [day-1];
µ(S) = specific growth rate defined by equation (1.1).

It is assumed that both X and S are possible to measure directly
and that only X and S are time variant. The measured data is
further assumed to be perfect, e.g. no noise and continuously
available.

Question: Can all model parameters (µ, KS, Y , b) be uniquely
determined from such measurements?

This may be investigated using various methods. In this case the
simplest one is to analytically analyze the system (this is seldom
practically feasible for more complex systems). For every time t
perfect measurements of X(t) and S(t) are assumed to exist. 

Define the following nomenclature:

 X 0 = X 0
S 0 =  S 0

4.2

 
X 0  = 

µ S 0

KS + S 0
 X 0 – bX 0 = X 1

S 0  = – 1
Y

 
µ S 0

KS + S 0
 X 0 = S 1

4.3
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µ = µ S 0

KS + S 0
4.4

Equation (4.3) can now be formulated in a less complex way:

 
X 1 = µ –  b  X 0

S 1 = –
µ
Y

 X 0

4.5

If equation (4.3) is differentiated one more time, it gives after
some simplifications:

 
X 0  = µ –  b  X 1 + 

µ KS X 0 S 1

KS + S 0  S 0
 = X 2

S 0  = –
µ
Y

 X 1 + KS X 0 S 1
KS + S 0  S 0

 = S 2

4.6

From equations (4.5b) and (4.6b) an analytic expression for the
substrate half-saturation coefficient KS can be determined:

KS = S 2 S 0
2 X 0 – S 1S 0

2 X 1 

S 1
2 X 0 – S 2 S 0 X0 + S 1 S 0 X 1

4.7

From equations (4.5a), (4.6a), and (4.7) the expression for µ can
be formulated as:

µ  = X 2 X 0 S 1 –  X 1
2 S 1 

S 2 X 0
2 – S 1 X 1 X 0

4.8

from which an expression for the maximum specific growth rate
µ can be determined by applying equations (4.4) and (4.7):

µ  = X 2 X 0 S 1 –  X 1
2 S 1  KS + S 0

S 2 S 0 X 0
2 – S 1 S 0 X 1 X 0

4.9

The decay rate b is easily found from equations (4.5a) and (4.8):
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b  = S 1 X2 – S 2 X1

S 2 X 0 – S 1 X1
4.10

and for the yield factor Y from equations (4.5b) and (4.8):

Y  = X 1
2 – X 2 X 0

S 2 X 0 – S 1 X1
4.11

The analysis shows that all parameters µ, KS, b, and Y of the
model (4.1) are theoretically globally identifiable (e.g. when
perfect data is available) from measurements of X and S if
neither of the values for X(0) and S(0) are equal to zero. 

The method described above is actually a special case of the
Taylor series expansion of observations method. The analysis is
often quite difficult because for nonlinear systems there is no
theoretical upper limit to the number of derivates which may
provide new information and simpler methods are therefore
needed.

An easier way to test for local identifiability is to examine the
rank of the Jacobian for the model [Godfrey and DiStefano,
1985]. Another approach is to linearize the model about a
suitable operating point (if such a point exists) and apply one of
the many methods of analysis for linear systems. However, fewer
identifiable parameter combinations than for the full nonlinear
model may result and parameters of the nonlinear model may
not even appear in the linearized one. Therefore unidentifiability
of a linearized system does not necessary indicate that the
original nonlinear model is unidentifiable.

Finally, a sensitivity analysis may be performed which gives an
indication of possible identifiability problems. Such an analysis
was performed in [Holmberg, 1982] on this exact model (4.1) and
reveals a difficulty of distinguishing between the effects of µ and
KS from measurements of X and S during a batch experiment.
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Figure 4.2 (Previous page) Simulation of system 4.1 with very
different sets of model parameters compared to the noisy
measurements of system 4.12 and 4.13 (dotted). For all
simulations X(0) = 2 mg/l and S(0) = 100 mg/l. For the noisy
system the parameter values are: µ = 6.0 day-1, KS = 10 mg/l, b =
0.48 day-1, Y = 0.66.

Question: How is the system affected when noise is added?

Assume the same batch reactor system as earlier described but
with noise added. The process noise (ν) is Gaussian with a mean
value of zero and a standard deviation of 10 % of the current
state variable value. The measurement noise (ε) is specified in
the same way together with an added Gaussian noise component
with a mean value of zero and a standard deviation of 2 mg/l to
reflect the difficulties of measuring very low concentrations
accurately. It should be noted that the choosen noise level is not
ver high when compared to real measurements (particularly for
X, which is not possible to measure directly) and especially the
selected mean noise value of zero, greatly simplifies matters.

Real measurements are normally affected by outliers, noise with
non-zero mean and changing variance, trends, etc., and need to
be adjusted with different kinds of filters which in turn affect the
signals. These problems are, however, neglected and the
following system results:

 
dX
dt

 = µ S X  – bX + ν1

dS
dt

 = – 1
Y

 µ S X + ν2

4.12

 X measured  = X + ε1

Smeasured  = S  + ε2
4.13

A simulation of the disturbed system (4.12 and 4.13) is shown in
Figure 4.2. A theoretical analysis of how noise changes the
behaviour of the system is not provided, instead computer
simulations are used to point out some major problems.
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The analytical approach described earlier is no longer applicable
since the derivatives of the measured variables are no longer
practically available due to the added noise. By simulating the
above system for different sets of model parameters without
noise, several sets can be found which model outputs are well
within the noise deadband of the measurable signals. Some
simulations with extreme parameter values (compared to the
ones used under noisy conditions) are also presented in Figure
4.2, and are found to produce a similar system output. This
indicates the importance of noise on the discussed system and
the identifiability problem. The structure of the model leads to
small variations of the measurable quantities even when the
internal model parameters are changing significantly and the
small output differences are easily dominated by noise.

To improve the outputs of the disturbed system (4.12 and 4.13)
various means of filtering may be applied. An on-line filtered
signal is always affected by an undesired time lag. If the signals
are manipulated off-line this problem can be avoided. In this
example a special lowpass filter with exactly zero phase
distortion is used [Little and Shure, 1988] to transform the
measurable data into a more applicable form (Figure 4.3). It
should be noted that this is an ideal filtertype which can not be
physically implemented and any real time filter would produce a
poorer result. Since the applied noise in this example is so
favourably chosen, filtering is not necessary for estimation
purposes but is used to examplify some problems.

By applying an optimization algorithm to the filtered data, a set
of model parameters which provides the best possible fit to the
supplied data according to a certain criteria (normally
minimizing the sum of squared residuals), can be found. In this
example the two algorithms below were tested [Fletcher, 1987]:

• Nelder-Mead’s algorithm (NM) - a simplex method which is
very robust but requires a large number of iterations
(Appendix D).

• Gauss-Newton’s algorithm (GN) - a generalized least squares
method with linear search, not as robust but faster
convergence than NM.
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In Figure 4.3 some results of the NM algorithm are shown, based
on filtered noisy data. It should be noted that the found set of
parameter values provide an excellent fit to the filtered data,
though the actual values are quite far from the true set. Both
methods are quite suited for off-line model calibration. The
disturbed system sometimes show a rank deficiency if all four
parameters are to be fitted simultaneously, which makes the
results uncertain even though the algorithms often converge. By
imposing a few simple restrictions on the algorithms the
situation may be improved. Such restrictions include:

• predefining certain reasonable intervals within which the
parameter values are to be found;

• realizing that measurements of concentrations can not have
negative values;

• estimating the ratio µ/Y from equation (4.1b) instead of
adjusting the two parameters separately.

The GN method is quite sensitive to the selected initial values of
the parameters - significant differences between the true and
guessed values causes divergence. The NM algorithm is more
reliable for that type of problem which is why all presented
results are based on this algorithm. However, it is difficult to
determine whether the final parameter values are the best ones
in a global sense or only a local optimum.

By running the algorithm for a large number of different initial
values and comparing the final results, the global identifiability
can be made plausible although it is not a theoretical proof. A
very small change in the noise characteristics of the system or of
the lowpass filter parameters will also greatly influence the best
model parameter set found by the optimization algorithm.
Especially the parameters µ and KS are difficult to determine
accurately and should therefore be considered to be uncertain (if
not practically non-identifiable), whereas the estimates of b and
Y seem to be more reliable (from this type of idealized batch
experiment). Therefore situations where the parameters µ and KS

are used to characterize the biological process should be avoided
if possible.
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Figure 4.3 (Previous page) Simulation of system 4.1 with the
optimum parameter set (solid) found with the NM algorithm
based on filtered data, compared to the unfiltered (dotted) and
filtered (dashed) noisy measurements. For all simulations X(0) = 2
mg/l and S(0) = 100 mg/l. For the noisy system the true parameter
values are: µ = 6.0 day-1, KS = 10 mg/l, b = 0.48 day-1, Y = 0.66 and
the found optimum parameter set is: µ = 6.6 day-1, KS = 19 mg/l,
b = 0.47 day-1, Y = 0.67.

If no noise is added, both optimization algorithms detect the true
parameter values practically independent of the selected initial
values, i.e. the system is fully identifiable when perfect data is
continuously available. This is not the case even under quite
’favourable’ noise conditions.

The discussed example points out some of the problems which
may appear, even for small models. Take into account that the
model is actually only valid for single-substrate/single-organism
batch processes (a traditional wastewater model involves several
Monod type functions). The model parameters are usually
dependent on other factors such as temperature, pH, time, etc.
Measurements are seldom continuously available and
determining the concentration of active biomass (X) is extremely
difficult. It is easily recognized that the uncertainty of any
estimated results are considerably increased when applied to real
data. 

Instead of trying to develop increasingly complex models an
attempt will be made to take the simplification process one step
further in order to develop a practically identifiable model. It is
based on the fact that measurements are normally scarce and
uncertain. A low complexity model is easier to calibrate (even
possible to calibrate on-line) which may lead to more reliable
results even though the biological and physical interpretation of
some model parameters may be lost in the process.

One possible way to adjust the small model in this example is to
use a simplified Monod formulation of the form,
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Figure 4.4 (Previous page)  a) Illustration of the standard (1.1,
dashed) and simplified (4.14, solid) Monod equations. The
parameters used are: µ = 6.1 day-1, KS = 11.6 mg/l, r = 0.22 l/(mg
day), Ssat = 24.0 mg/l.  b) Simulation of system 4.1 using the
simplified (solid) and the standard Monod equations (dashed) with
the optimum parameter sets found with the NM algorithm based
on unfiltered, noisy data (4.12 and 4.13, dotted) with the standard
Monod formulation. For all simulations X(0) = 2 mg/l, S(0) = 100
mg/l, and the noisy system uses: µ = 6.0 day-1, KS = 10.0 mg/l, b =
0.48 day-1, Y = 0.66.

µ S =  r S            if S <  Ssat

r Ssat       if S  ≥ Ssat

4.14

where: r = reaction rate factor [l·(mg day)-1];
Ssat = growth saturation concentration [mg/l].

The expression is reduced to a first order rate expression for low
substrate concentrations (the normal case) and a zero order
expression for high substrate concentrations. Since the model in
this case is to be used for a batch experiment both cases have to
be included. It means that the number of parameters is not
reduced (both r and Ssat have to be estimated), only the structure
is simplified. However, if the model is applied to WWT plants for
municipal wastewater, the substrate concentrations are usually
sufficiently low to motivate the use of a first order reaction only
which would provide a significant simplification.

In Figure 4.4a, a comparison of the traditional (1.1) and the
simplified (4.14) Monod expressions are given. The model (4.1) is
simulated with the simplified and standard Monod equations
with the optimum parameter sets found with the NM algorithm
based on noisy data and is also compared to the original
disturbed system (4.12 and 4.13) using the standard Monod
expression. The result for the organism concentration is
presented in Figure 4.4b. The result is equally good for the
substrate concentration. It is apparent that the results of the
simplified model are very similar to that of the more complex
model. If only a few measurements are available, the parameter
r is much easier to identify than µ and KS.
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For the parameter estimations examplified above, the number of
samples have been considered to be continuously available and
distributed over the entire interesting range of substrate
concentration. This is, however, often not the case. In order to
show how one of these factors influences the results, two series of
estimations are performed:

• sampling rate = 10 hour-1 (case A);

• sampling rate = 1 hour-1 (case B).

The only difference is the number of samples; in case A the
sampling rate is ten times per hour and in case B one time every
hour (which is more realistic). In both cases the standard Monod
equation is used in combination with the batch model to generate
three data sets on which the estimations are based - (1) no noise;
(2) including noise (distributed as earlier described); (3) including
noise and lowpass filtering (as in Figure 4.3).

The NM algorithm is then applied for the estimations and
optimum sets of parameters are found for both the standard and
simplified Monod equations based on the above data series.
Various initial estimates are used as a rough investigation of
global identifiability and the results are presented in Table 4.1.
The impact of the number of samples is obvious when noise is
present as well as the effects of filtering. It should be noted that
the model fit to the available data is satisfactory in all cases (in
the least squares sense) even though the estimated parameter
values differ significantly. It should also be noted that the
convergence rate for Y and b is in all cases much higher than for
the other model parameters. In order to achieve good estimates of
µ and KS, several hundred iterations are required.

In this example it has been shown how difficult it is to globally
determine the parameters µ and KS of the Monod function when
noise is added to the system. The difficulty is mainly due to
nonlinear parameter interactions, especially obviuos when
measurable data is not continuously available.
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Standard Monod initial estimates final estimates

µ KS b Y µ KS b Y

no noise 5.0 5 0.4 0.5 6.00 10.0 .480 .660
6.0 10 0.5 0.65 6.00 10.0 .480 .660
7.0 20 0.6 0.8 6.00 10.0 .480 .660

including noise 5.0 5 0.4 0.5 6.13 11.6 .472 .664
6.0 10 0.5 0.65 6.13 11.6 .472 .664
7.0 20 0.6 0.8 6.13 11.6 .472 .664

including noise and 5.0 5 0.4 0.5 6.65 18.7 .473 .665
lowpass filtering 6.0 10 0.5 0.65 6.65 18.7 .473 .665

7.0 20 0.6 0.8 6.65 18.7 .473 .665

no noise 5.0 5 0.4 0.5 6.00 10.0 .480 .660
6.0 10 0.5 0.65 6.00 10.0 .480 .660
7.0 20 0.6 0.8 6.00 10.0 .480 .660

including noise 5.0 5 0.4 0.5 7.07 23.2 .474 .677
6.0 10 0.5 0.65 7.07 23.2 .474 .677
7.0 20 0.6 0.8 7.07 23.2 .474 .677

including noise and 5.0 5 0.4 0.5 10.7 74.4 .488 .687
lowpass filtering 6.0 10 0.5 0.65 10.7 74.4 .488 .687

7.0 20 0.6 0.8 10.7 74.4 .488 .687

Simplified Monod r Ssat b Y r Ssat b Y

no noise 0.15 10 0.4 0.5 .224 23.7 .481 .660
0.25 25 0.5 0.65 .224 23.7 .481 .660
0.4 50 0.6 0.8 .224 23.7 .481 .660

including noise 0.15 10 0.4 0.5 .222 24.0 .472 .663
0.25 25 0.5 0.65 .222 24.0 .472 .663
0.4 50 0.6 0.8 .222 24.0 .472 .663

including noise and 0.15 10 0.4 0.5 .161 33.4 .474 .666
lowpass filtering 0.25 25 0.5 0.65 .161 33.4 .474 .666

0.4 50 0.6 0.8 .161 33.4 .474 .666

no noise 0.15 10 0.4 0.5 .222 24.0 .481 .660
0.25 25 0.5 0.65 .222 24.0 .481 .660
0.4 50 0.6 0.8 .222 24.0 .481 .660

including noise 0.15 10 0.4 0.5 .141 39.2 .476 .679
0.25 25 0.5 0.65 .141 39.2 .476 .679
0.4 50 0.6 0.8 .141 39.2 .476 .679

including noise and 0.15 10 0.4 0.5 .097 59.3 .491 .690
lowpass filtering 0.25 25 0.5 0.65 .097 59.3 .491 .690

0.4 50 0.6 0.8 .097 59.3 .491 .690
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Tabel 4.1 Optimizations of the standard and simplified Monod equations.
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Signal filtering also affects the estimations in a dramatic way.
Several parameter sets provide a close fit to the measurable data
but it is difficult to determine whether the found parameters are
really the true ones when interpreted in a biological sense.
Because of this, it is motivated to use simplified models when
possible, in order to improve the identifiability and verifiability of
the investigated system.

4.2 Model Development and Analysis

The basis for any reliable mathematical model development is a
thorough understanding and experience of the true processes
involved. To some small extent a stochastic (empiric) model may
be achieved simply by using a fast computer, the proper software
and a sufficiently large amount of experimental data. This is the
area of system identification, which can be roughly described as
multi-dimensional curve-fitting procedures.

True physical (deterministic) modelling is, however, an analytical
approach where basic laws from physics, chemistry, etc., are used
to describe the behaviour of a process. Based on this process
knowledge a model suited for the required purposes is
hypothesised. Its structure may then be analysed using the
available tools (pole analysis, frequency analysis, sensitivity
analysis, etc.) and stepwise further tested, adjusted, and verified.

One of the main difficulties when developing a model is usually
to determine which reactions are the most significant ones and
describe these in a simple, yet comprehensive manner. A good
deterministic model should realistically mimic the true dynamic
behaviour of the process but still contain a minimum number of
equations, parameters, and variables without losing the physical
interpretation of those.
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Overall considerations

Activated sludge systems are described by deterministic
mathematical models based on mass balance equations. These
equations relate the changes of the state variables of the system
(concentrations) to transport and transformation processes.
Transport processes are often especially characteristic for the
design of a system (reactor configuration, distribution of influent,
mixing, excess sludge removal, etc.) but they leave the chemical
structure of all materials unchanged. Transformation processes
are governed by the local conditions and involve the change of the
chemical structure of the components. A mass balance equation
for a single component within a defined system boundary can be
schematically described as:

input – output + reaction = accumulation

In the IAWPRC model (Appendix B), a total of seven dissolved
and six particulate components are used to characterize the
wastewater and the activated sludge (compare Table 2.1). These
include seven fractions of organic matter (measured as COD) of
which two are different types of biomass and four fractions of
nitrogen. Eight transformation processes are considered which
include a total of 19 stochiometric and kinetic model parameters
(Table 2.2). The ’Activated Sludge Model No. 1’ is particularly
useful for the prediction of:

• biological degradation of organic material and denitrification;

• nitrification;

• the distribution of oxygen consumption along a ’plug flow’ type
reactor and in the course of diurnal variations;

• sludge production;

• variation of effluent quality under dynamic loading conditions.

In order for the above to be completely true there is normally a
need to combine the biological model with accurate models for
other parts of a wastewater treatment plant, for example the
settler and the oxygen transfer mechanisms. In this work,
however, the biological processes will be focused on and problems
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due to other process units will not be regarded. Although the
IAWPRC model comprises much of the current expert knowledge
of the biological reactions (except biological phosphorus removal)
in a WWT plant - and does so in a ’fairly simple’ way - a number
of drawbacks exist. Some of those are summarized below.

• Lacking identifiability - non-unique solutions for model
parameters exist (e.g. the model may produce practically
identical results for different model calibrations).

• Lacking verifiability - certain state variables and parameters
are not directly measurable and therefore it is very difficult to
experimentally verify the biological interpretations.

• Poor understanding and knowledge about some of the applied
processes (e.g. the hydrolysis mechanism).

• Very troublesome practical characterization of the incoming
wastewater, although essential for the model behaviour.

• Difficulties to estimate and update the varying model
parameters (functions of time, pH, load, temperature, etc.) on-
line.

• Troublesome nonlinearities (Monod, switching functions, etc.).

• Too high complexity for on-line control purposes.

• Expert knowledge required in order to understand all model
interactions (complicated cause-effect relationships).

• Need for highly sophisticated instrumentation and laboratory
facilities for calibration and verification purposes.

The goal of this work is to approach some of the problems listed
above and develop reduced order models which can adequately
represent both carbonaceous and nitrogeneous activities with a
minimum number of variables and model parameters. In the
same way as the IAWPRC model is considered too complex for
on-line use, it is obvious that the model in the simple example
(4.1) is overly simplified for describing the biological reactions of
a WWT plant. The final result will be a compromise between
these two extremes.

Instead of applying general methods for model reduction it is
important to make use of physical insight of the process
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behaviour. This means that the significant reactions should still
be described in a physically reasonable manner, i.e. a
mechanistic model structure should be maintained whenever
possible. Therefore the selected basis to be used for the model
simplifications is the standard IAWPRC model due to its
widespread use, acceptance, and mechanistic structure.

Measurable variables

Models for on-line control purposes must naturally be based on
quantities and variables which are possible to measure on-line.
This is especially important as the model parameters are not
constants but vary with time and operational conditions. Results
from laboratory experiments and bench scale tests should of
course be used for verifications and further improvements of the
model output whenever possible but not be vital or even essential
for the basic reliability and performance of the model.

The quantities which are possible to measure and quantify in the
activated sludge process have been discussed in section 2.5. New
instruments and measurement technologies are also constantly
being developed. For this work the following set of quality
variables are assumed to measurable on-line:

• biodegradable organic matter concentration;

• ammonia nitrogen concentration;

• nitrate nitrogen concentration;

• flow rates.

In some cases measurements of the oxygen uptake rate (OUR) or
respiration rate are considered to be available as well (by
methods discussed in section 2.5). 

Cost, precision, accuracy, sensitivity, repeatability of the above
measurements are not considered nor are the practical aspects of
where to place the sensors, how data should be transfered to the
computer systems, etc. All these questions are of great
importance at a later stage of the work. Until the more basic and
principal questions about the models have been thoroughly
investigated the measurement quality questions are overlooked.
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Simplifying assumptions

The assumptions for simplifying models of the activated sludge
process are from a physical and biological viewpoint mainly
based on a discussion how the following components are treated:

• dissolved oxygen;

• organic matter;

• nitrogen;

• microorganisms.

For the reduced models, measurements of the dissolved oxygen
(DO) concentration is not considered although it is usually
regarded as the most reliable on-line instrument for the activated
sludge process. This is because the oxygen concentration is
excluded as a state variable. It is assumed that the DO is
controlled on a routine basis, so that corresponding growth
expressions become independent of DO variations. Still the DO
mass balance contains plenty of useful information. It is the basis
for the estimation of the oxygen uptake rate, which is recognized
as a fundamental information for further control.

As a result, the models describing the DO, oxygen transfer rate,
blowers, etc., make up an important but separate modules of the
whole control structure as shown in Figure 4.1. These sub-models
need to be synchronized with the overall model of the plant. This
approach makes it possible to separate the biological model from
the oxygen model on the first level of control. It also allows a
clearer borderline to be applied between the anoxic (with nitrate
as the terminal electron acceptor) and aerobic (with oxygen as
the terminal electron acceptor) environments from a modelling
point of view. The existing DO control is assumed to provide a
sufficient amount of oxygen to the aerobic part while minimizing
the oxygen concentration in the anoxic reactor.

This type of separation allows models of lower complexity but
may seem too rough a simplification. It must however be noted
that the approach does not imply that the biological models are
insensitive to the DO concentration. The effects are rather
combined with other inhibitory circumstances and reflected as
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changes in the estimated growth rate factors whereas the
IAWPRC model applies a switching function to single out the
effects of various DO concentrations.

The assumption of a constant DO concentration is valid only if
the reactors are truly completely mixed. The situation is often
different at real WWT plants. Experiments show that an aerobic
(assumed completely mixed) reactor with a DO probe in the
center of the tank and connected to a control system with a DO
setpoint of 2 mg/l may have a true DO concentration of 0.5 mg/l
close to the influent flow and 5 mg/l near the effluent flow. The
expected value exists only close to the probe.

The reasons for this difference are mainly due to improper
mixing and varying concentrations of available sustrate. There is
no easy way of modelling these effects in a reasonable manner
which can be verified (for example turbulence phenomenas are
nowadays considered a chaotic process [Stewart, 1990]). A
possibility often applied to improve matters is to increase the
number of reactors (each completely mixed) to reduce the
discrepancies, but practically, the number of reactors in a model
is limited to approximately ten due to high complexity and
computational problems. Another possibility is to use partial
differential equations to describe the spatial distribution (as well
as the distribution in time) of the concentration variations for all
components including DO. Such an approach would however
result in a highly complex model.

Compared to these problems, the assumption of truly anoxic and
aerobic reactors is only a small additional simplification. The
major simplification is actually to assume completely mixed
reactors. In the IAWPRC model it is also possible to include the
DO concentration in the model transport terms which may
improve matters but many difficulties still remain.

The representation of organic matter presents the second
considerable difference compared to the IAWPRC model. In the
IAWPRC model four fractions of organic matter are considered: 
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• soluble inert organic matter (SI);

• readily biodegradable substrate (SS);

• particulate inert organic matter (XI);

• slowly biodegradable substrate (XS).

All these fractions are replaced by a single one in the reduced
models (XCOD) which is considered to be made up of all
biodegradable organic matter and also assumed to be
measurable. The approach can be motivated in several ways.

The two inert fractions are not important from a biological point
of view. The S I fraction passes right through a WWT plant
without any effect and the XI fraction - together with a special
fraction describing the particulate products arising from biomass
decay (XP) - is used to predict the total amount of sludge in the
system in order to determine the wastage and recirculation rates.
On the other hand, the two biodegradable fractions are of the
utmost importance for the biological reactions. SS is considered to
be directly available for the microorganisms while XS first has to
be enzymatically broken down into SS (the hydrolysis
mechanism) before the organisms can use it for metabolism.

The hydrolysis process is, however, not very well known. The
IAWPRC description of it is quite complex but still a
simplification of the true reaction. Due to the uncertainty of the
reaction it is not included in the reduced models.

Another reason for lumping the organic matter together is the
difficulty of measuring the SS and XS fractions separately. In a
laboratory scale experiment it is possible to monitor the oxygen
uptake rate of a small batch reactor and thereby determining an
average of the two fractions. To do this on-line at a full scale
plant is more difficult. In practice, COD measurements on
filtered samples of the wastewater is often considered to be equal
to the amount of SS and CODtotal - CODfiltered is used as the XS

fraction. Since there is no evidence that all soluble biodegradable
matter is readily biodegradable and all particulate biodegradable
matter is slowly biodegradable, this is not satisfactory. A further
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complication is the fact that S indicates soluble and X indicates
particulate matter in the IAWPRC nomenclature.

The organic matter which is received by a WWT plant includes
all kinds of different molecular structures. Different organisms
deal with different substrates in different time scales which
makes it probable that an entire set of biodegradation processes
with time constants ranging from fast to slow biodegradability is
at work here. This has been made even more plausible as it has
been recently proposed by some researchers to extend the
number of fractions of organic matter to include very slowly
biodegradable substrate and directly available substrate (in order
to explain biological phosphorus removal).

Since there is no apparent upper limit to the number of
substrates which would really need to be included, the opposite
solution is suggested in this work. This is why the reduced
models do not take rapid uptake phenomena into consideration.
Rather it makes some averaging of biosorption and growth by
combining soluble and stored organic substrate. Consequently
fast dynamics (of the order less than an hour) is neglected.
Together with the earlier discussed way of modelling the DO
concentration, these simplifications make the models less stiff,
i.e. the ratio between the smallest and the largest dynamical
time constants is reduced. The complexity and the number of
model parameters are naturally also significantly reduced and
the possibility for achieving an identifiable model structure is
increased.

The third major difference between the IAWPRC model and the
reduced models concerns the nitrogen. In the IAWPRC model
four fractions of nitrogen are considered:

• nitrate and nitrite nitrogen (SNO);

• ammonia nitrogen (SNH);

• soluble biodegradable organic nitrogen (SND);

• particulate biodegradable organic nitrogen (XND).

The only two nitrogen fractions included in the reduced order
models are the nitrate nitrogen and the ammonia nitrogen, which
both are assumed to be measured on-line. The reasons for this is
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firstly to reduce the model complexity and number of parameters.
Secondly, the two organic nitrogen fractions SND and XND are
mainly used to describe the formation of SNH through hydrolysis
and ammonification (the knowledge of both mechanisms is
uncertain). In the reduced models, ammonia nitrogen is assumed
measured and therefore its formation mechanism is not
considered to be crucial for control purposes.

The two types of organisms from the IAWPRC model (and many
others) are maintained in the reduced models:

• active heterotrophic biomass (XB,H);

• active autotrophic biomass (XB,A).

Heterotrophs are considered to grow under both anoxic and
aerobic conditions whereas  Autotrophs only grow in an aerobic
environment. A kind of death-regeneration principle (section 2.2)
is also applied for the organisms but in a somewhat different
way. The decayed biomass is considered to form into available
COD and ammonia nitrogen directly. In the IAWPRC model the
decay material is suggested to be partly inert and partly formed
into XS and XND which after hydrolysis and ammonification
become available as SS and SNH.

The reduced model

The simplifications discussed until now has reduced the number
of state variables to five compared to the twelve variables of the
IAWPRC model (alkalinity is not considered). The reaction
mechanisms for hydrolysis of entrapped organics, hydrolysis of
entrapped organic nitrogen, and ammonification of soluble
organic nitrogen have also been left out, mainly due to
measurement problems, uncertainties of the actual processes,
and reduction of the overall model complexity.

It is possible to go one step further. As illustrated by the example
in the previous section there are good reasons to reconsider the
parametrization of the Monod and the similar switching
functions. The basic idea is to approximate the Monod function
by straight lines (Figure 4.4), i.e. a first order reaction followed

76 The Extended Kalman Filter



by a zero order reaction and observe that during most normal
operations of WWT plants receiving municipal wastewater there
is only need for the first order reaction.

Due to the assumed existing DO control, the DO influence on the
switching functions is constant. The switching functions are
regarded solely as functions describing growth limitation due to
DO or various kinds of substrate. Therefore the estimated
parameter of the first order rate equation includes both
maximum specific growth rate and possible limitation by DO,
nitrate, etc. The switching functions are removed.

The differential equations for the first reduced order model
(model A) of the activated sludge process can now be formulated.
It describes carbonaceous oxidation as well as nitrification and
denitrification according to the simplifications discussed above.
Altogether three summary reaction processes are proposed to
describe the anoxic environment - growth of Heterotrophs, decay
of Heterotrophs, and decay of Autotrophs - and four parameters
have to be estimated - rH, YH, bH, and bA - preferably on-line.
Under anoxic conditions the following model is suggested (see
also Appendix C):

dX COD
dt

 = – 1
YH

 rH X COD X B,H + bH X B,H + bA XB,A 4.15

dSNH
dt

 = –  iXB  rH X COD X B,H – bH X B,H –  bA XB,A 4.16

dSNO
dt

 = –  1 – YH

2.86 YH
 rH X COD XB,H 4.17

dX B,H

dt
 = rH X COD – bH  X B,H 4.18

dX B,A

dt
 =  –  bA X B,A 4.19

In an aerobic environment four main reaction mechanisms are
proposed - growth of Heterotrophs, growth of Autotrophs, decay
of Heterotrophs, and decay of Autotrophs - and six parameters
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need to be updated - rH, rA, YH, YA, bH, and bA. This suggests the
following model for aerobic conditions (see also Appendix C):

dX COD
dt

 = – 1
YH

 rH X COD X B,H + bH X B,H + bA XB,A 4.20

dSNH
dt

 = –  iXB  rH X COD X B,H – bH X B,H –  bA XB,A

–  iXB + 1
YA

 rA SNH X B,A

4.21

dSNO
dt

 = 1
YA

 rA SNH X B,A 4.22

dX B,H

dt
 = rH X COD – bH  X B,H 4.23

dX B,A

dt
 = rA SNH –  bA  X B,A 4.24

where: rH = reaction rate factor for Heterotrophs [l·(mg day)-1];
rA = reaction rate factor for Autotrophs [l·(mg day)-1];
YH = yield factor for Heterotrophs;
YA = yield factor for Autotrophs;
bH = decay rate coefficient for Heterotrophs [day-1];
bA = decay rate coefficient for Autotrophs [day-1];
iXB = mass N/mass COD in biomass.

The factor 2.86 (see eq. 4.17) in the stochiometric coefficient for
anoxic growth of heterotrophic biomass is the oxygen equivalence
for conversion of nitrate nitrogen to nitrogen gas included to
maintain consistent units. The parameter iXB is considered to be
a known constant with a value which equals 0.086 as suggested
by the IAWPRC task group [Henze et al., 1987a]. The other
parameters are considered unknown and need to be identified for
proper model performance. 

Note that the model parameter values are not assumed to be the
same under anoxic and aerobic conditions and should therefore
be separately estimated.
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For purposes of comparison, the oxygen uptake rate is in some
cases considered to be measurable (as discussed in section 2.5). It
is basically modelled in the same manner as in the IAWPRC
model apart from the simplified Monod equation and the lack of
switching functions:

OUR = 1 –  YH

YH
 rH X COD X B,H + 4.57 –  YA

YA
 rA SNH X B,A 4.25

The factor 4.57 (see eq. 4.25) in the stochiometric coefficient for
aerobic growth of Autotrophs is the theoretical oxygen demand
associated with the oxidation of ammonia nitrogen to nitrate
nitrogen.

Further simplifications

While maintaining the basic structure of ’model A’ it is possible
to impose some further simplifications in order to improve the
identifiability. It is not unrealistic to assume the decay rates for
Heterotrophs and Autotrophs to be equal under both anoxic and
aerobic conditions. This will reduce the total number of
parameters to be estimated from ten to eight.

Taking this approach one step further, bH and bA can be lumped
together into one single decay rate for all conditions, b, reducing
the number of unknown parameters to seven. The simplification
is not crucial - the assumption of only two kinds of
microorganisms representing many dozens of species is a more
significant simplification. A more practical reason for such a
suggestion is the difficulty to estimate decay rates during normal
plant operations.

In the small example of section 4.1 the decay rate factor was
easily estimated from a batch experiment. This is because during
the final stage of such an experiment, the decay rate is the sole
factor to influence the behaviour of the reaction (when all the
substrate has been consumed). Its identifiability is therefore
enhanced. From continuous reactors, however, the effects from
growth and decay rates are difficult to separate, especially when
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the oxygen consumption is not simultaneously monitored. This
problem will be more closely investigated in Chapter 5.

The second proposed reduced order model (model B; see
Appendix C) which will be investigated, contains the same basic
equations as ’model A’ (4.15 - 4.24) but with all parameters bH

and bA replaced by a single decay rate, b, which is assumed to be
identical under both anoxic and aerobic conditions.

In much the same way as outlined above, identifiability
difficulties may arise when trying to estimate the yield and
reaction rate factor simultaneously. An increased value for the
yield and reaction rate factor may outbalance each other with
respect to the substrate conversion rate. In the example (section
4.1), the situation was improved because both the substrate and
organism concentration were assumed to be measurable plus the
fact that a batch experiment excites all modes of the system.
Unfortunately this is not true under normal plant operation. For
this reason ’model B’ might be even further reduced by assuming
the same value for the heterotrophic yield, YH, under both anoxic
and aerobic conditions (model C). This final simplification leaves
a total of six model parameters to be estimated. This model will,
however, not be further investigated. 

As for the reaction rate factor of the Heterotrophs, rH, it does not
seem realistic to assume this parameter to be the same under
both anoxic and aerobic conditions. Experiments have shown that
either is only a fraction of the heterotrophic biomass able to
function with nitrate as the terminal electron acceptor or is the
maximum specific growth rate lower under anoxic conditions
[Batchelor, 1982]. The reaction rate factor must therefore be
separately identified in order to take these effects into account.
The minimum realistic number of parameters to be updated
would therefore be the six suggested for ’model C’ - rH (anoxic and
aerobic), rA, YH, YA, and b.
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Summary of reduced order features

A basic reduced order model for the activated sludge process has
been developed and analysed based on several assumptions and
criteria; model complexity, model and control structure,
measurable quantities, simplicity of measurements, wastewater
characterization, significance and reliability of various reaction
mechanisms, identifiability/verifiability, possibility for on-line
applications, etc. Two slightly modified and further simplified
versions of the model have been proposed due to more practical
estimation problems.

Such simple models will naturally not show all the intricate
details of the more complex models since many reactions and
variables have been lumped together. The basic biological
interpretations of the models, however, have been maintained
when possible. The presented models serve a major purpose as
experimental platforms in order to investigate how far the model
reduction idea can be pursued without losing the possibility of
adequately predicting the main phenomena of the true processes
while simultaneously gaining the possibility to determine unique
estimates and perform on-line model calibration.

4.3 Model Verification Methods

Model verification is concerned with determining whether an
obtained model is adequate or not. It should always be seen in
the light of the intended purpose of the model. Therefore the
ultimate verification can only be performed by using the model in
practice and monitoring the results. However, there are a
number of ways which can be used to test if the model is likely to
describe the system in a proper way (complexity vs. flexibility),
before using the model effectively. The best one is often to use
plots and common sense while others are usually based on
statistical tests of the prediction errors (residuals). These may
include:
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• tests of whiteness of the residuals and of independence of the
prediction errors and the input;

• tests for detecting a too complex model structure, for example
by means of pole-zero cancellations and singular information
matrices;

• tests on the values of the loss functions corresponding to
different model structures, for example the χ2-test [Söderström
and Stoica, 1989].

It is also of importance to check the applicable a priori
assumptions. A number of such tests are listed below.

• Test of linearity. If possible the experiment should be repeated
with another amplitude (or variance) of the input signal in
order to verify for what operating range a linear model is
adequate.

• Test of time invariance. A convenient way of testing time
invariance of a system is to use data from different
experiments. The parameter estimates are determined in the
usual way from the first set. Then the model output is
computed for the second set of data using the parameter
estimates obtained from the first set. If the process is time
invariant the model should explain the process data equally
well for both sets.

• Test for the existence of feedback.

Unfortunately, the activated sludge process is known to be both
nonlinear and time variant which makes the reproducability of
the system poor. Under normal operating conditions, a WWT
plant is further exposed to several alternative feedbacks. All
these factors create difficult problems when trying to apply
traditional methods of verification and identification.

Overall considerations

Writing a mathematical model is generally easier than verifying
it. The two aspects of modelling are however not meant to be
separated and it is better to use an iterative model building
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approach like the one principally outlined in Figure 4.5.
Otherwise the tiring and costly verification work is often
neglected and any resulting mathematical model must in such a
case be treated with scepticism.

New model

Data collection Experiment

Model inadequateParameter estimation
Identifiability?

Theoretical knowledge

Technical
knowledge

yes
Verification

Criterias fulfilled?

Model adequate

no

Design to
generate new data

no

yes

Modify model

 

Figure 4.5 Adaptive model building approach.

At this early stage of the work, no verifications have been carried
out on real data but only on simulated data mainly based on the
IAWPRC model. Therefore it is not a true verification but still
sufficient to reach some principle conclusions on the behaviour of
the reduced order models. Future examinations must naturally
also include real WWT plant data. Due to this fact the main
verification principle applied has been based on comparisons of
model outputs from the IAWPRC and simplified models to
determine if they incorporate the same dynamical phenomena -
both quantitatively and qualitatively - of importance in the
actual time scales when subjected to the same type of influent
conditions. A number of such comparisons will be presented and
discussed in Chapter 5.
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As for state and parameter estimation and the crucial question of
identifiability (globally or locally) a more stringent analysis has
been performed. It should be noted that such an investigation is
of the utmost importance when determining the suitability of the
reduced order models. The question of identifiability and
verifiability should not be treated separately but be considered as
two necessary aspects for reaching a credible conclusion. A highly
complex model may very well be possible to fit excellently to a set
of experimental data but is of limited use for predictions if the
model parameters are not uniquely identifiable because its
validity is restricted to the exact conditions under which it was
calibrated.

Different sets of parameters may produce very similar results
under certain conditions and then diverge completely when
exposed to slightly different conditions. If the parameters also
have a physical interpretation the problem is further
emphasized. On the other hand, a model which is globally
identifiable but does not provide a result which reasonably
mimics the true process output is obviously of little practical use. 

The result of the estimation problem depends on how the
problem is formulated. The accuracy and reliability of an
obtained model is significantly influenced by the amplitude and
frequency content of the input signal. In order to identify a
dynamical system it has to be sufficiently excited since it is from
the variations that the most information are made available.
Other factors which play important roles are the experimental
conditions, available measurements, noise conditions, etc. There
are also many different ways to organize the computations.
Consequently, the number of available identification methods
are large.

One broad distinction is between on-line methods and off-line
methods. The on-line methods give estimates recursively as new
measurements are obtained and are the only alternative if the
identification is going to be used in an adaptive controller or if
the process is strongly varying with time. In many cases the off-
line methods give estimates with higher precision and are more
reliable, for instance in terms of convergence. Depending on the
time scale and amplitude of the parameter changes, an off-line
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approach can provide a good result even for time varying systems
if the estimation is repeated at sufficiently short intervals (the
result is an optimum average parameter set over a specific time).
The property of identifiability was defined in a strict
mathematical way in section 3.4. It is related to the problem of
determining if model parameters can be uniquely calculated from
dynamical data. This means that both the states and  parameters
have to converge towards the same values, independently of the
initial values of the estimates if the same set of data is used.
Such a practical analysis is no guarantee for global identifiability
(since not every possible combination can be tested) but it gives a
hint. The method does, however, show if a model is not globally
identifiable. A theoretical identifiability analysis like the one
performed in the small example of section 4.1 is more or less
impossible to perform due to the complexity of the models. In
order for a model to be practically identifiable other factors have
to be considered too. For example, the convergence has to be
acceptable also for noisy measurements. Furthermore, numerical
problems may appear.

Fortunately, it appears that the choice of identification method is
not such a crucial issue. Moreover, the purpose of this study is
primarily to verify that there is any convergence at all and not to
determine which method is the optimum one. Therefore, one off-
line optimization algorithm using a simplex search method and
an on-line approach using a simplified extended Kalman filter
were selected for the identification of the reduced order models.
Both methods have been used in numerous applications and are
well known. 

General model representation

It is often unrealistic to assume that all the states of a system
and the disturbances can be measured. If a mathematical model
of the system is available, the states can often be computed from
measured inputs and outputs - state estimation. For the basic
theory refer to a textbook in control such as [Åström and
Wittenmark, 1990 and Kuo, 1991]. In this work, the two reduced
order models (A and B) are supposed to describe the dynamics of
the process and can be schematically described in the format:
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dx
dt

 = f x, t  + g u, t

y = h x, t
4.26

where x(t) is a vector that represents all the concentrations
indicated in (4.15 - 4.24), i.e. five for each completely mixed
subreactor and y(t) represents the vector of measurable
concentrations (normally XCOD, SNH, SNO). The term g(u, t)
indicates the input from the influent flow to each reactor,
respectively. The same system can also be described by a time
discrete representation:

x tk+1  = F x tk , tk  + G u tk , tk

y tk  = H x tk , tk
4.27

where tk and tk+1 are consequtive measurement times.
Alternatively, it may be written on the form (4.28) when it is
linearized for every time step. Note that the Φ, Γ, and C matrices
may change as x and u vary.

x tk+1  = Φ x tk  + Γ u tk

y tk  = C x tk

4.28

The relationship between the measurable quantities y and the
state vector x is in this case very straightforward since all
elements in y are also directly available in x (except in the
special case when the OUR in the aerobic reactor is assumed
measurable). Therefore C is normally an identity matrix.

The idea of estimation

If the model (4.28) is fully observable, the complete state vector
can be directly calculated from the inputs and outputs. One
disadvantage of such a method is that it may be sensitive to
disturbances. But more important, a good result depends on the
model being sufficiently accurate. As discussed in section 2.4,
several model parameters (the Φ and Γ matrices) are time
variant and it is essential to keep track of their values as the
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conditions change over time. Therefore a direct method is not
sufficient. It is possible, however, to use the dynamical model to
reconstruct the state variables as well as performing parameter
estimation, simultaneously.

Basicly, the method of reconstruction is based on the assumption
that the true state x can be approximated by the state x of the
model:

x tk+1  = Φ x tk  + Γ u tk 4.29

which has the same input as system (4.28). If the model (4.29) is
perfect in the sense that the parameters are identical to those of
system (4.28) and if the initial conditions of (4.28) and (4.29) are
the same, then the state x will be identical to the state x of the
true system. If the initial conditions are different, then x will
converge to x only if system (4.28) is asymptotically stable.

The reconstruction in (4.29) does, however, not make use of the
measured output y. Therefore the method can be improved by
introducing the difference between the measured and estimated
output as a feedback to obtain:

x tk+1|tk  = Φ x tk|tk-1  + Γ u tk  + K y tk  – C x tk|tk-1 4.30

The system in (4.30) is called an observer and exists in many
variations depending on how the K matrix is chosen. The
notation x(tk+1|tk) is used to indicate that it is an estimate of
x(tk+1) based on measurements available at time tk. In order to
use this method for simultaneous state and parameter estimation
is has to be slightly modified and x will become a generalized
state vector which contains not only the state variables but also
the unknown parameters to be estimated.

Estimation as an optimization problem

Parameter estimation problems can also be formulated as an
optimization problem where the best model is the one that best
fits the data according to a given criterion. Such a criterion (J) is
usually based on the difference between the real measurements y
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and the model outputs y in the form:

J = y tk  – y tk
T  W  y tk  – y tk∑

k=1

n
4.31

where n is the number of discrete time measurements and W is a
weight matrix. J is a function of all the unknown model
parameters. They are adjusted until J has obtained a minimum.
If there is only one unique minimum for J then the system is
defined as globally (or parameter) identifiable. The loss function
in (4.31) is an example of a weighted least squares criterion.

In this work the weight factors (wii) have been chosen in such a
way that a 10% difference between the measured value and the
model estimate around the steady state behaviour gives
approximately the same contribution for all measured quantities.
This means that the measurements are considered to be of the
same quality and that the model is capable of estimating all
variables with the same accuracy. If this was not the case, less
weight could have been given to some of the residuals. It is also
possible to let the weight factors vary with time and the current
value of the measurements. Finally, some other commonly used
criteria are extended least squares, generalized least squares,
and maximum-likelihood (which involves computation of the
gradient of J with respect to the parameters, as well as a matrix
of second partial derivatives).

The simplex method applied for this work is actually an ad hoc
method and applies a type of random search by calculating and
examining the function value (i.e. the loss function) at several
points - together forming a simplex - and moving towards lower
values until convergence. The method has already been used in
the small example in section 4.1 with good results. The main
advantage is the robustness of the algorithm and its insensitivity
to noise, whereas the convergence rate is slow and the
computational effort goes up rapidly (typically as 2n) with the
dimension (n) of the model. A more detailed description of the
simplex optimization algorithm is given in Appendix D. Some
results of the method applied to the reduced order models are
presented in section 5.2.
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The Kalman filter

The Kalman filter is based on the reconstruction algorithm of
(4.30) [Åström and Wittenmark, 1990]. By updating the gain
matrix K in a special way, the estimation of the states is optimal
in the sense that the variance of the reconstruction error is
minimized. The problem is that the disturbances and character of
the noise have to be very well known. For the extended Kalman
filter not only the states x are updated according to the
measurements but also the unknown parameters. The filter
algorithm can be divided into two phases, prediction and
correction. The principle structure of the on-line identification
procedure is illustrated in Figure 4.6.

REDUCED ORDER
MODEL

'prediction phase'

Predicted values

Updated values

VERIFICATION &
MODEL ANALYSIS

All states and parametersAll states and parameters

ESTIMATOR

'correction phase'

sampling time = 6 minutes

'WWT PLANT'

IAWPRC model

On-line
measurements

noise added • COD
• ammonia
• nitrate

Influent
noisy data THE KALMAN FILTER

utk

ytk

x̂tk|tk-1

x̂tk|tk

Figure 4.6 Structured identification using an extended Kalman filter.

In the prediction phase the dynamical equations of the model are
integrated between two measurements, from time tk-1 to time tk

(using a smaller integration time) as shown below:

x tk|tk-1  = Φ x tk-1|tk-1  + Γ u tk-1 4.32
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The states (i.e. the concentration variables) and the parameters
are now based on measurements up until time tk-1. As new
measurements are acquired at time tk, they are used to update
the generalized state vector. The latter is called the correction
phase and is based on the calculation:

x tk|tk  = x tk|tk-1  + K y tk  – C x tk|tk-1 4.33

A Kalman filter is, however, based on the assumption that the
dynamics are linear, which is not the case for this application. In
order to calculate K , the dynamical equations are linearized
around the existing operating point for each measurement
instance. At the correction time, K is calculated from the
linearized equations at time tk and depends not only on the
linearized states but also on the character of the noise that
affects both states and measurements.

In this work the gain matrix K has been kept constant in order to
simplify the computations. The value of K will influence the
convergence speed of the parameters towards their final values.
The chosen value of K has been calculated as the ultimate values
which are obtained by the Kalman filter algorithm using the
actual steady state values from the IAWPRC model as the
operating point and the current noise conditions. In Appendix E,
a more detailed description of the extended Kalman filter is given
and some of the computational results are presented in section
5.3.

The different concentrations in the models have significantly
different values, expressed in mg/l. In order to obtain reasonably
accurate identification results, it is mandatory to scale the
equations or normalize them to a reference point so that the
concentration values are expressed in the same order of
magnitude. This is even more important when the parameter
values are considered. If scaling is not performed, the K matrix
will contain so largely different elements that the estimation
becomes numerically infeasible.
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Sensitivity analysis

Sensitivity analysis is another important tool when analysing
model characteristics. It expresses the influence of a small
parameter change on the state variables and can therefore
provide strong indications as to which parameters are most
difficult to identify either because of their limited influence on
the total system behaviour or due to the fact that several
parameters compensate one another. A good example of the
latter was the effect of µ and KS in the example (section 4.1). A
number of parameter sets gave approximately identical system
behaviour because the effects of one parameter were
compensated by another.

The method is also useful for experiment planning and model
reduction. Since the aim is to identify the parameters of the
reduced order models under normal operating conditions the
analysis is performed under such conditions, i.e. varying influent
flow rates and concentrations, both anoxic and aerobic zone
active, changing internal recirculation and sludge recycle flow
(conditions described in section 5.1). By simulating such a
process using ’model A’, changing one parameter slightly, rerun
the simulation, etc. and storing the value of the loss function
(4.31) for each simulation, a rough ’map’ describing the influence
of the parameters on the model behaviour is acquired. The
relative change of the parameters are the same every time in
order to get a fair comparison. The results of such an analysis are
presented and discussed in section 5.2. 

It is often more practical to do a sensitivity analysis on decoupled
systems (only anoxic or aerobic part) under batch conditions and
without feedback (recirculation). Results from this type of unit
operation may show quite different results, which are not
applicable for real plant operation since special modes which do
not appear under normal operation are often emphasized. For
example, the decay rate factor, b, in the small example was easily
identified from a batch experiment because its effect was made so
obvious when no substrate was available (as a sensitivity
analysis will show). A situation like that would, however, not
occur under normal operating condition and in a continuous
reactor the identification would be much more difficult.
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Therefore, since the purpose of the work is aimed at on-line
parameter identification under normal operating conditions, it is
important to perform the sensitivity analysis under the same
type of conditions. On the other hand, if the purpose of the work
is aimed at experiment design, the possibility of investigating
how different conditions affect the identifiability properties may
prove very useful.

Summary of verification methods

The number of principles and methods which may be applied for
the identification and verification phase of a mathematical model
is obviously large. Some of the factors which influence the results
are listed below:

• type of identification method (on-line or off-line);

• noise conditions (amplitude, variance, character);

• process input perturbation;

• operational conditions (feedback, unit or coupled operation);

• physical outline and limitations of the process;

• measurable quantities (which ones, accuracy, sampling rate).

It is practically impossible to investigate all possible
combinations of these factors. In Chapter 5 the results from a
reasonable selection of cases are presented.

92 The Extended Kalman Filter



5
______________________________________________________

Computational Results

In this chapter some results based on computer simulations of
the simplified models are presented using off-line as well as on-
line state and parameter estimation methods. A short
introduction describing the simulation conditions, physical
configuration of the plant, influent conditions, and special
assumptions applied is given in section 5.1. In the next section a
comparison of the dynamic behaviour of the IAWPRC model and
the reduced order models is performed for both unit and coupled
operation based on an off-line optimization method under
different assumptions of which measured quantities are
available. The sensitivity of the reduced model to parameter
changes under normal operating conditions by examining the loss
function is also performed. Finally, an on-line estimation
algorithm is tested under similar conditions. These results are
discussed in section 5.3.

5.1 Plant Configuration

As discussed in section 4.3, all data used for the model
identification and verification in this work have been based on
simulations. There are several reasons for such an approach.
Since the analysis is mainly theoretical, principal model
weaknesses can be more thoroughly investigated using simulated
data where the possibility exists to change the noise
characteristics, repeat an experiment under identical conditions
but for a change in one specific variable, control the input to the
system, etc. Furthermore, the time and effort required to collect
the data from a full scale plant can not be motivated at this early
stage of the work. When the structural modelling problems have
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been satisfactory solved, investigations based on real data are
called for.

In order to test the reduced order models, the IAWPRC model
has been used as the true ’plant’. The reason for choosing this
model is mainly because of its widespread use and quite general
acceptance. The physical outline of the plant includes a
completely mixed anoxic reactor for pre-denitrification followed
by a completely mixed aerobic reactor and a settler. The process
involves an internal recirculation from the aerobic to the anoxic
reactor as well as sludge recycling from the thickener to the
anoxic reactor. All influent wastewater is fed into the anoxic
reactor. The system is operated at a sludge age of ten days and a
hydraulic retention time of ten hours. The default parameters for
the IAWPRC model at 20 °C are used for the simulations. A more
detailed description of the volumes, flow rates, influent
wastewater characteristics, etc., is given in Figure 5.1.

The IAWPRC model does not, however, include any structured
model of the sedimentation process. Since it is beyond the scope
of this work to develope a new settler model, a fairly simple one
was selected from the available literature. The thickener is
modelled as a constant compaction ratio (γ) between the
underflow sludge concentration and the average sludge
concentration in the reactors with no internal biological activity
[Olsson and Andrews, 1978]. Here a steady state relationship
over the clarifier-thickener unit has been derived. From there the
compaction ratio can be expressed in terms of flow rates and the
sludge retention time as:

γ   = 
Qin  + Qr – Vanox  + Vair

θx

Qr
5.1

where: Qin = influent flow rate to WWT plant;
Qr = sludge recycle flow rate from settler;
θx = sludge retention time;
Vanox + Vair = total reactor volume.
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The hydraulic retention time of the settler is taken into account
by a subsequent time lag. It should be noted that all the
biodegradable organic matter of the reduced models (XCOD) is
considered as part of the floc (which is why the IAWPRC
nomenclature for particulate matter X, is used) and consequently
settles. In the IAWPRC model, however, only the XS fraction is
treated in this way while the SS fraction is considered soluble.

Influent flow rate (Qin) = 3000 m3/day
Recycle flow rate = 0.5*Qin

Internal recycle flow rate = 3*Qin

Anoxic tank volume = 250 m3

Aerobic tank volume = 1000 m3

Settler volume = 1250 m3

Sludge age = 10 days
Hydraulic retention time = 10 hours

SS = 30 mg COD/l
XS = 70 mg COD/l

XI = 10 mg COD/l
SNO = 2 mg N/l
SNH = 10 mg N/l

SND = 1 mg N/l
XND = 0 mg N/l
SO = 0 mg (-COD)/l

XB,H = 0 mg COD/l   
XB,A = 0 mg COD/l

µH = 6.0 day-1

KS = 20 mg COD/l

KO,H = 0.2 mg O2/l
KNO = 0.5 mg NO3-N/l
bH = 0.62 day-1

µA = 0.8 day-1

KNH = 1.0 mg NH3-N/l
KO,A = 0.4 mg O2/l

bA = 0.2 day-1

ka = 0.08 mg/(mg COD day)
kh = 3.0 mg COD/(mg COD day)

KX = 0.03 mg COD/(mg COD)
ηg = 0.8
ηh = 0.4

YH = 0.67 mg COD/(mg COD)
YA = 0.24 mg COD/(mg COD)
fP = 0.08

iXB = 0.086 mg N/(mg COD)
iXP = 0.06 mg N/(mg COD)

^

^

Influent wastewater characteristics

Operational variables Model parameters [Henze et al.,1987a]

+

Setpoint for oxygen concentration in aerobic reactor = 2.0 mg O2/l

Figure 5.1 Configuration of the simulated WWT plant.

The impact of this difference on the process behaviour is not
significant since the SS concentration is normally very low by the
time the wastewater reaches the settler in systems performing
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nitrification, due to the long retention time. This difference has a
larger impact when the total biodegradable substrate
concentration (i.e. SS + XS in the IAWPRC model) of the influent
to the two models change. In the IAWPRC model only the SS

fraction is directly available for growth whereas the entire XCOD

fraction in the reduced models is available for growth. The
clarifier behaviour is hidden behind the definition of γ.

The importance of process excitation was discussed in section 4.3.
For this work the system was perturbed using pulse disturbances
of the following variables in the influent:

• flow rate;

• total biodegradable organic substrate concentration;

• ammonia concentration. 

The reduced order models have a somewhat different behaviour
than the IAWPRC model, especially for transients in an hourly
time scale. The accuracy of the reduced models for such
responses is not so good mainly due to the fact that the
hydrolysis mechanisms are neglected. Thus, the pulse transients
appear to be the most decisive model test. The type of
disturbances applied is not optimal from an identification point
of view but sudden changes of the input signal have the
advantage that they excite several time modes of the system
whereas sinusodial variations excite only one specific frequency.

At a real WWT plant it is usually quite easy to excite the influent
flow rate in a steplike manner by varying the pumping capacity
into the plant. It is more difficult to achieve a similar change for
the biodegradable substrate concentration and the ammonia
concentration. At certain times, abrupt sudden changes of the
above concentrations may occur and can be used for identification
purposes. Such natural variations of the influent variables
should of course be used in order to achieve a good estimation
result.

For the off-line optimization in section 5.2, the influent variables
are usually perturbed according to Figure 5.2. The identification
is based on measurements during a ten day period which begins
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Figure 5.2 Pulse disturbances of the influent variables (normalized).

with a steady state period for three days followed by a 50%
increase of the three quantities discussed above during a two day
period (each disturbance lasting for one day) and finally a five
day period to allow the transients to settle. Such a time series
includes steady state behaviour, fast transients during the
disturbance period, and slow transients as the system settles
down towards steady state again. For the on-line identification in
section 5.3, different types of disturbances have been applied.

The available measurements are assumed to be quite favourable.
The basic case considers the following concentrations to be
directly measurable on-line:

• biodegradable organic matter concentration;

• ammonia concentration;

• nitrate concentration.
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The applied sampling time for the simulations have been six
minutes. It is assumed that the variables are measured not only
in the influent wastewater stream but also in both the anoxic and
aerobic reactor. This is not unrealistic but requires a number of
sophisticated and expensive sensors. Besides the concentrations
above, the influent flow rate is assumed to be continuously
available. 

In the second case the oxygen uptake rate is also considered to be
continuously available as a measurable quantity in the aerobic
reactor. This is quite difficult to achieve at a true plant. Some
methods aiming at this were discussed in section 2.5. 

In the final case, in order to further investigate the identifiability
properties of the reduced models, the concentration of organisms
(both Heterotrophs and Autotrophs) are assumed to be
measurable. Although this is an unrealistic assumption, the
reason is to examine the behaviour of the models if all state
variables are possible to measure directly (thereby locked). Then
only the model parameters will determine a good model fit.  

The applied noise conditions for the simulations vary
significantly. For the off-line estimation, noise is usually not
added because the main purpose is to investigate the basic
identifiability properties. If the number of measuring points is
sufficiently large then the same results will usually be reached
whether noise is added or not (for the selected noise distributions
of this work) as was illustrated in the example of section 4.1.

In the simulations where noise is added to the system (mainly for
the on-line identification), this is done in two steps. Input noise is
provided by adding Gaussian white noise to the variables in the
input signal (influent flow, biodegradable organic matter, and
ammonia concentration). The white noise has a mean value of
zero and a standard deviation which is 10% of the actual value of
the specific variable. This means that all variables are subjected
to the same relative noise level. Measurement noise of the same
character is added to the measurable quantities above in the
same manner which implies that all measurable variables are
considered to be equally uncertain. The selected noise level
appears quite realistic although problems like ’outliers’, trends,
and uncalibrated sensors have not been considered.
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All computer simulations in this work have been carried out
using the simulation platforms Simnon™ [SSPA Systems, 1991]
and Simulink™ [MathWorks, 1992]. A more detailed description
of these two programs is provided in Appendix F.

5.2 Off-line Simulations

In order to perform a principle investigation of the behaviour of
the reduced order models and the ability to identify the
parameter sets from the type of data available from full scale
WWT plant, a number of simulations are carried out. This kind
of analysis does not provide certain proof whether a model is fully
identifiable or not but it gives a strong indication of the major
characteristics of the models and points out some of its potential
weaknesses.

The assumed outline of the plant, the varying influent conditions,
and the measurable variables were defined in the previous
section together with the chosen values of the IAWPRC model
parameters used to simulate the true WWT plant. The off-line
optimization algorithm (a simplex method) and the type of loss
function applied, have already been discussed in section 4.3 and
the algorithm is described in more detail in Appendix D. In
section 4.2 the reduced order models were developed and
analysed from a biological/physical point of view and in this
section they will be further investigated mainly from an
identifiability/verifiability point of view. All the illustrated off-
line estimations are based on simulated data without any noise
added (compare with the example in section 4.1).

The results and conclusions are based on a large number of
massive computations. Only a limited number of these are
presented here. The selection of case studies to be discussed
below are based on a combination of the following principle
situations:
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• different quantities assumed to be measurable;

• unit or coupled operation of the two reactor types;

• identification based on ’model A’ or ’model B’.

An examination of the applied loss function and its sensitivity to
parameter changes will also be performed for ’model A’ under
both unit and coupled operation. Such an analysis may explain
and verify some results of the model optimization.

All results and plots are presented in the units milligram [mg],
litre [l], and day [day]. During the actual computations the
variables have been suitably scaled to satisfy numerical accuracy. 

Case 1 – anoxic reactor, model A

The first case is an investigation of the anoxic reactor of ’model
A’. Data is generated by simulating an IAWPRC model of a full
scale plant according to the description in section 5.1. The
variables of the total influent flow into the anoxic reactor as well
as the internal variables of the reactor are stored to be used for
the optimization. The anoxic reactor of ’model A’ is then driven
with the stored influent data.

The loss function on which the optimization is based, is
calculated as the sum of weighted squares of the residuals. These
residuals are the difference between the measurable quantities of
the IAWPRC and the reduced model anoxic reactor. The simplex
method finally suggests a new set of parameters for ’model A’ and
another iteration is started until an optimum solution is reached.
The complete procedure is illustrated in Figure 5.3.

Two special cases are examined depending on which quantities
are assumed measurable. In case 1A the XCOD (i.e. SS + XS of the
IAWPRC model), SNH, and SNO fractions of the anoxic reactor are
assumed measurable and in case 1B the above variables plus the
XB,H and XB,A fractions are assumed possible to measure. This
difference affects the value of the loss function and thereby the
achieved optimum. In both cases all five quantities are assumed
available from the influent data (necessary if an optimization is
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Figure 5.3 Optimization procedure of an anoxic reactor in unit operation.

to be performed on a single anoxic reactor, isolated from the rest
of the plant).

It should be noted that the generated data are based on a
simulation of a plant with both an anoxic and aerobic reactor,
settler, sludge recirculation, etc., and not a special identification
experiment with only an anoxic reactor. Such an approach would
probably make the optimization easier but since the aim of the
work is towards identification during normal operation and
configuration, all data are generated from a complete plant.
However, the situation is simplified because the anoxic reactor of
’model A’ is simulated as a single unit operation although the
data driving it is not. This means that the effects of the
recirculation of ’model A’ do not influence the results of these
preliminary estimations.  

It is important to determine whether the anoxic part of the
reduced model is at all capable of mimicing the behaviour of the
IAWPRC model (under the simplified assumption of unit
operation). It is also a first rough test of the identifiability
properties of ’model A’ since several sets of initial values are used
for the model parameters and different variables are assumed to
be measurable for the different cases. The results of the
optimization are presented in Table 5.1.
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Optimization initial estimates final estimates

'model A' anoxic part rH YH bH bA rH YH bH bA

Case 1A .024 .35 .46 .06 .013 .498 .000 .014 19.3
(measured: .046 .69 .94 .12 .013 .502 .000 .207 19.5

 XCOD, SNH, SNO) .057 .86 1.18 .15 .025 .663 .326 .000 31.9
.068 1.03 1.42 .18 .013 .498 .000 .000 19.3

Case 1B .024 .35 .46 .06 .013 .498 .000 .014 19.5
(measured: .046 .69 .94 .12 .013 .506 .000 .383 20.4
XCOD, SNH, SNO, .057 .86 1.18 .15 .013 .500 .000 .079 19.5
XB,H, XB,A) .068 1.03 1.42 .18 .013 .502 .000 .159 19.6

value
of loss
func.

Table 5.1 Results of the parameter optimization for case 1.

An analysis of the final estimates suggests some conclusions.
First of all, the autotrophic decay rate is extremely difficult to
estimate under the applied conditions. The concentration of
Autotrophs does not change much due to reaction mechanisms in
the anoxic reactor (see 4.19) but more due to the variations of the
influent data (since an aerobic reactor was included to generate
the data). Moreover the volume of the anoxic reactor is only 20%
of the total reactor volume (Figure 5.1). Therefore bA may assume
practically any small value and its effect will be negligible. The
situation is emphasized by the fact that the estimations are not
improved in case 1B when XB,A is considered measurable. Its
effect on XCOD and SNH through the transformation of dead
microorganisms is also small due to the low XB,A concentration.
Part of the above holdsalso for bH and its effect may be
compensated for by the value of rH under the current conditions.

Secondly, the parameters rH and YH determine the main
behaviour of the investigated system. In most situations these
two parameters converge more or less globally (when the initial
estimates are ’reasonable’) for both cases 1A and 1B. The effect of
including XB,H and XB,A in the loss function is small (the same
optimum is reached for both cases) which could be expected since
the effects of the recirculation are neglected. However, for the
initial estimates of case 1A(row 3), a completely different
optimum is reached which shows that the system is not globally
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identifiable under those circumstances. When XB,H and XB,A are
included in the loss function, their influence is significant enough
to draw the optimization algorithm away from this local optimum
and towards the truly best parameter set even when the values
from the local optimum are used as initial seeds.

The reason why both optimums produce a similar output (Figure
5.4) is mainly due to the fact that the numerical values of the
reaction rate expressions (rH·XCOD – bH) and (rH·XCOD/YH + bH) are
practically the same for both parameter sets. By optimizing the
system for several initial parameter sets and examine the value
of the loss function it is possible to detect such difficulties. 

Unfortunately it is not realistic to assume XB,H and XB,A to be
measurable. The situation may be improved if instead
measurements of the denitrification rate are included in the
optimization. Such measurements can be to performed with
reasonable accuracy but the possibility has not been tested in
this work.

In order to verify the behaviour of the anoxic reactor in ’model A’
after the optimization, the system is simulated with the obtained
parameter sets and the values of the internal state variables are
compared to those of the IAWPRC model when exposed to the
same set of influent data. Such a comparison is illustrated in
Figure 5.4.

It is obvious from the graphs that the anoxic part of the reduced
model is capable of producing a result close to that of the
IAWPRC model, both during transient and steady state
operations. The main difference is observed for the biodegradable
organic substrate since it is treated quite differently in the two
models (as discussed in section 5.1). The discrepancy, however, is
not very significant.
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Figure 5.4 Behaviour of the anoxic reactor of ’model A’ (dashed -
case 1A(row 4), dotted - case 1A(row 2)) compared to the IAWPRC
model (solid) simulated with identical influent characteristics.

Case 2 – aerobic reactor, model A

The second case is an investigation of the aerobic part of ’model
A’. It is carried out in the same principal way as described for
case 1. Data is generated by simulating an IAWPRC model of a
full scale plant according to section 5.1. The variables of the total
influent flow into the aerobic reactor as well as the internal
variables of the reactor are stored to be used for the optimization.
The aerobic reactor of ’model A’ is then ’driven’ with the stored
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influent data. The loss function on which the optimization is
based, is calculated as the sum of weighted squares of the
residuals. These residuals are the difference between the
measurable quantities of the IAWPRC and the reduced model
aerobic reactor. The iteration is proceeded until an optimum
parameter set is achieved.

Four special cases are examined depending on which quantities
are assumed measurable from the aerobic reactor. These are:

• case 2A: measurements of XCOD, SNH, SNO;

• case 2B: measurements of XCOD, SNH, SNO, OUR;

• case 2C: measurements of XCOD, SNH, SNO, XB,H, XB,A;

• case 2D: measurements of XCOD, SNH, SNO, XB,H, XB,A, OUR.

Depending on which quantities are considered measurable, the
loss function assumes different values and various optima may
be achieved. In the described cases, all five fractions are assumed
available from the influent data.

This analysis shows whether the aerobic part of the reduced
model is capable of mimicing the basic behaviour of the IAWPRC
model or not. It is also a preliminary test of the identifiability
properties of the aerobic part of ’model A’ since several sets of
initial values are investigated for the model parameters and
different variables are assumed to be measurable for the various
cases. Some results of the optimization are presented in Table
5.2.

Two principal situations may be observed - when the OUR is
included in the optimization and when it is not.  This leads to
similar results for cases 2A and 2C on one hand and for cases 2B
and 2D on the other. The effect of assuming the concentration of
microorganisms (XB,H and XB,A) to be measurable is small. As in
case 1 it is extremely difficult to estimate the autotrophic decay
rate factor bA in a satisfactory way under the applied conditions.
The impact of this parameter is negligible and easily
compensated for by other parameters.
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Optimization 'model A' aerobic part

initial estimates final estimates

rH rA YH YA bH bA rH rA YH YA bH bA

Case 2A (measured: XCOD, SNH, SNO) 

.046 .111 .33 .10 .42 .064 .029 .004 .494 .004 .172 .000 376
 .093 .222 .66 .20 .86 .126 .035 .066 .558 .075 .227 .000 376

 .116 .278 .83 .25 1.08 .157 .034 .000 .552 .000 .213 .072 369
.140 .333 .99 .30 1.30 .188 .032 .000 .528 .000 .219 .096 375

Case 2B (measured: XCOD, SNH, SNO, OUR)

 .046 .111 .33 .10 .42 .064 .044 .043 .582 .045 .358 .000 472

.093 .222 .66 .20 .86 .126 .044 .000 .588 .000 .364 .153 468

 .116 .278 .83 .25 1.08 .157 .044 .001 .583 .000 .357 .018 466
.140 .333 .99 .30 1.30 .188 .043 .000 .581 .000 .342 .309 469

Case 2C (measured: XCOD, SNH, SNO, XB,H, XB,A)

.046 .111 .33 .10 .42 .064 .033 .012 .554 .013 .207 .116 380

.093 .222 .66 .20 .86 .126 .034 .000 .554 .000 .208 .042 375

 .116 .278 .83 .25 1.08 .157 .034 .000 .552 .000 .210 .080 377
.140 .333 .99 .30 1.30 .188 .033 .025 .544 .028 .209 .000 374

Case 2D (measured: XCOD, SNH, SNO, XB,H, XB,A, OUR)

.046 .111 .33 .10 .42 .064 .044 .042 .583 .043 .362 .000 474

.093 .222 .66 .20 .86 .126 .044 .000 .584 .000 .359 .009 470

 .116 .278 .83 .25 1.08 .157 .044 .000 .589 .000 .368 .000 472
.140 .333 .99 .30 1.30 .188 .043 .024 .579 .025 .352 .000 472

value
of loss
func.

Table 5.2 Results of the parameter optimization for case 2.

It is interesting to observe that many parameters appear to
converge more or less globally - rH, YH, and bH. For example, it
was not possible to determine bH realistically in case 1 (converged
towards zero in most cases). The found optimum parameter set is
quite different when the OUR is included in the calculations due
to the added information. 
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Moreover, the parameters rA and YA do not appear to converge
globally. However, the ratio rA/YA does always converge towards
practically the same values (0.89 for cases 2A and 2C, 0.98 for
cases 2B and 2D). This implies that the small difference in the
XB,A concentration is not sufficient to separate the effects of the
two parameters (see 4.24) even when the quantity is assumed
measurable - especially as bA varies as well. Only the combined
effect of the parameters is possible to determine under the above
conditions.

A change of the weight factors defined for the loss function may
improve matters slightly. It should also be noted that for case 2A
there exist a number of local minima close to each other
depending on the strong correlation between rH and bH. It is quite
natural since in this case, the optimization is based on the
smallest amount of information (fewest number of measured
quantities assumed).

The behaviour of the aerobic part of the reduced model is quite
good when compared to the IAWPRC model for both steady state
and transient situations (Figure 5.5). The differences are,
however, larger than for the anoxic part of the model (amplified
by the fact that the aerobic reactor volume is 80% of the total
reactor volume). This is clear when the values of the loss
functions for cases 1 and 2 are compared. For case 2 the values
are about ten times larger, although the weight factors for both
cases are chosen to show approximately the same impact for the
same relative value of the squared residuals.

The behaviour of the aerobic reactor of the reduced order model
is verified against the data from the IAWPRC model by
simulating the system with the obtained parameter sets for
identical influent conditions. In Figure 5.5 such a comparison is
illustrated for two measurable quantities, namely SNH and OUR.
For the other variables, the results are quite similar to the ones
already presented in Figure 5.4.

It is clear from the graphs in Figure 5.5 that the discrepancy for
the SNH fraction is larger for the aerobic reactor than it was for
the anoxic one when compared to the IAWPRC model. This is
among other things explained by the fact that the
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ammonification and hydrolysis of organic nitrogen is neglected in
the reduced order model.
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Figure 5.5 Behaviour of the aerobic reactor of ’model A’ (dashed -
case 2A(row 3), dotted - case 2D(row 3)) compared to the IAWPRC
model (solid) simulated with identical influent characteristics.

The amount of readily biodegradable substrate (SS) is also highly
dependent on the hydrolysis of slowly biodegradable substrate
(XS) in the IAWPRC model because the influent SS has already
been consumed in the anoxic reactor. Variations of the SS/XS ratio
is therefore an important factor in the IAWPRC model whereas
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the reduced model does not respond to such changes as long as
the SS+XS concentration is constant. For the applied conditions
this effect is more prominent in the aerobic reactor than in the
anoxic part of case 1. It emphasizes the impact of hydrolysis of
organic matter in the IAWPRC model. Abrupt changes in the
ratio of organic matter fractions are therefore troublesome to
mimic (especially in an off-line estimation approach) and
problems occur because the reduced order model does not include
a hydrolysis mechanism. Due to the above reasons, a discrepancy
also exists for the XCOD fraction and thereby an effect on the
other measurable quantities is observable.

As for the OUR it shows that the reduced model produces a
reasonable result even when the optimization is not based on
information of this quantity. It is naturally improved when
included in the loss function, especially in the steady state
region. The discussed differences in the XCOD and SNH fractions
though, lead to a result which is not in complete agreement.

If the optimization of cases 1 and 2 are performed on stationary
data or data with a ’small’ perturbation, the parameters will not
converge towards the values found in this work. The result in
such a case will to a large degree depend on the initial values of
the parameters. The information from that type of data is not
sufficient to draw the algorithm towards the true optimum set.

Loss function analysis of cases 1 and 2

In cases 1 and 2, the anoxic and aerobic reactor of ’model A’ were
examined for their identifiability properties. Investigations were
performed using different sets of initial parameter estimates as
well as assuming various variables to be measurable. The reactor
models were identified in unit operation and the effect of
recirculation was therefore not included (although the data
driving the single reactors was taken from a complete WWT
plant simulated with the IAWPRC model). It was clear that the
reduced model was capable of mimicing the behaviour of the
IAWPRC model under these simple conditions although it proved
troublesome to identify all the parameters - especially bH and bA

but also to some extent rA and YA - in a global sense.
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In order to investigate the sensitivity of the model when exposed
to parameter variations, the value of the applied loss function is
analysed. This is not to be considered as a complete sensitivity
analysis of the model but since the result of the optimization
algorithm is based on the how the value of the loss function
changes, it may serve as an indication of convergence problems.

The actual case chosen to be examined is when the earlier
described weighted loss function is based on measurements of
only XCOD, SNH and SNO (i.e. case 1A and 2A). By simulating each
reactor repeatedly with identical influent data, introducing a
small change of the value of a parameter for each run and storing
the value of the loss function, an ’image’ of how this value  varies
is achieved. The initial sets of parameters are the optimums
found in case 1A(row 2) and case 2A(row 2) and each parameter
varies ±20% around its initial value in steps of 2% for each run.
This means that the relative change of every parameter is the
same. 

The situation is first illustrated in Figure 5.6 for the anoxic part
of ’model A’. The model is simulated under the same basic
conditions as described in case 1. Contour plots show how the
value of the loss function is affected as the parameters change.

In the first plot in Figure 5.6 the parameters bH and bA are held
constant at the optimum values and in the second plot rH and YH

are held constant. Therefore not all parameter interactions are
shown (only two parameters change at a time). To show the
complete effect of the parameter variations would require a four
dimensional plot which would be awkward to interpret.

A small complication occurs when the sensitivity of bH and bA is
to be examined. Since the optimum values found in case 1A for
these parameters are so close to zero, the effect of a 20% change
would be negligible. Because of this fact, the values for bH and bA

are set to vary from 0.0 to 0.4 day-1 (quite realistic values) for the
second plot in Figure 5.6 while the other two parameters remain
at the optimum value. To be able to compare the plots, two
contour lines next to each other indicate that the value of the loss
function has changed 10 units (also in Figure 5.7).
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Figure 5.6  Contour plots of the loss function for the anoxic reactor, case 1.

The first plot above shows that the value of the loss function is
sensitive to small changes in both rH and YH and the direction of
the gradient is obvious. This implies a good convergence although
a problem occurs as the optimum is approached. Two different
optima appear, very close to each other. The values of the
parameters are almost the same for both optima but it is an
indication that the information on which the loss function is
based, is not sufficient or that there is a structural problem in
the model. If the analysis was extended, another optimum would
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show for the parameter set found in case 1A(row 3), though not
as distinctly. It is also obvious that the ratio between the
parameters are of importance for the model behaviour. Within
the ’valley’ - indicating a low value of the loss function - this ratio
is quite constant.

The second plot illustrates the previously discussed difficulty of
identifying bA. The gradient of the loss function clearly indicates
how the optimization algorithm would change the value of bH to
improve the result though a significant change in bA does
practically not affect the loss function at all. The model is very
insensitive to this parameter under the applied conditions which
explains some of the results from case 1. In Table 5.1 it is also
shown that the sensitivity is not notably improved when XB,H and
XB,A are included in the calculations of the loss function (case 1B).

In Figure 5.7, results from the same type of analysis as described
above are shown for the aerobic part of ’model A’. The initial
parameter values are the optimum found in case 2A(row 2) and
the simulations are carried out under the same conditions as
described there. In order to detect any influence whatsoever
when changing the bA parameter, its value is set to vary between
0.0 and 0.4 day-1 in the last plot (for reasons discussed above).

The first plot in Figure 5.7 illustrates the strong sensitivity of the
model to the two parameters rH and YH. A clear optimum is
achieved although from the results in Table 5.2 it is clear that
the best parameter set is also dependant on the convergence of
the other model parameters.

The second plot shows that the loss function is also sensitive to
the parameters rA and YA. However, their individual values are
obviously of practically no significance under the applied
conditions; it is only the ratio of the two that matters. The ’valley’
is extremely long and narrow which means that the optimization
algorithm has no problems determining the best ratio but no
possibility to find the right individual values of the parameters.
This explains some of the results discussed in case 2.
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The final plot indicates the much smaller influence of bH and bA

on the model behaviour. A variation of the value of bA has a very
limited effect. It is also notable that the optimum for bA in this
case appears to be a negative value. However, a deliberate
restriction in the optimization algorithm hinders any of the
model parameters to assume negative values even if it would
further lower the value of the loss function.

YH

r H
 [l

/(
m

g 
da

y)
]

YA

r A
 [l

/(
m

g 
da

y)
]

114 The Extended Kalman Filter



bA [day-1]

b H
 [d

ay
-1

]

Figure 5.7  Contour plots of the loss function for the aerobic reactor, case 2.

Case 3 – anoxic/aerobic reactor combination, model A

Somewhat strengthened by the results already discussed, the
optimization is now generalized. A natural extension would be to
investigate the anoxic and aerobic part of ’model A’ separately
but under conditions where the effect of the recirculation is
included in a direct way. However, the number of different cases
to examine have to be limited for practical reasons and therefore
the algorithm is applied to the complete model (coupled operation
of the two reactor types) and all parameters are simultaneously
estimated. The principle of the optimization is shown in Figure
5.8.

The required data is generated by simulating the IAWPRC model
(the ’true’ WWT plant) as earlier discussed. The influent data to
the plant is identical to what was used in the earlier cases (see
Figure 5.2). The reactor volumes, recirculation rates, settler
model, etc., are also the same for both the IAWPRC and the
reduced model (see Figure 5.1). Measurements are assumed to be
available from the influent wastewater, the anoxic reactor, and
the aerobic reactor.
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Figure 5.8  Optimization procedure of the complete ’model A’.

From the influent wastewater four quantities are always
considered measurable - XCOD, SNH, SNO, and Q (the concentration
of microorganisms in the influent is assumed negligible).
Depending on which quantities are considered measurable in the
two reactors, five interesting cases are examined:

• case 3A: measurements of XCOD, S NH, SNO in both the anoxic
and aerobic reactor;

• case 3B: measurements of XCOD, SNH, SNO in both reactors plus
OUR in the aerobic reactor;

• case 3C: measurements of XCOD, SNH, SNO in both reactors plus
OUR, XB,H, XB,A in the aerobic reactor;

• case 3D: measurements of XCOD, SNH, SNO in both reactors plus
XB,H, XB,A in the anoxic reactor;

• case 3E: measurements of XCOD, SNH, SNO, XB,H, XB,A in both
reactors plus OUR in the aerobic reactor.

The results of the optimization are presented in Tables 5.3 and
5.4 for different sets of initial estimates. The two tables show the
anoxic and aerobic part respectively but the results should be
interpreted simultaneously. They are separated only to make the
results easier to read. This means that the value of the loss
function in Table 5.4 represents the combined loss function for
both the anoxic and aerobic part of the model.
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Optimization initial estimates final estimates

'model A' anoxic part rH YH bH bA rH YH bH bA

Case 3A .024 .35 .46 .06 .023 .723 .372 .111
(measured: .046 .69 .94 .12 .014 .726 .131 .071

 XCOD, SNH, SNO) .057 .86 1.18 .15 .008 .711 .015 .073
.068 1.03 1.42 .18 .030 .626 .579 .040

Case 3B .024 .35 .46 .06 .050 .872 1.10 .090
(measured: .046 .69 .94 .12 .013 .660 .117 .057
XCOD, SNH, SNO) .057 .86 1.18 .15 .021 .743 .302 .086

.068 1.03 1.42 .18 .047 .862 1.02 .158

Case 3C .024 .35 .46 .06 .043 .744 .830 .120
(measured: .046 .69 .94 .12 .032 .691 .521 .139
XCOD, SNH, SNO) .057 .86 1.18 .15 .019 .573 .172 .110

.068 1.03 1.42 .18 .029 .671 .452 .101

Case 3D .024 .35 .46 .06 .031 .675 .510 .116
(measured: .046 .69 .94 .12 .037 .711 .644 .128
XCOD, SNH, SNO, .057 .86 1.18 .15 .020 .566 .185 .070
XB,H, XB,A) .068 1.03 1.42 .18 .041 .733 .782 .136

Case 3E .024 .35 .46 .06 .027 .647 .360 .209
(measured: .046 .69 .94 .12 .028 .652 .340 .075
XCOD, SNH, SNO, .057 .86 1.18 .15 .025 .630 .335 .163
XB,H, XB,A) .068 1.03 1.42 .18 .027 .646 .380 .286

Table 5.3 Results of the parameter optimization for case 3 (anoxic part).

It is clear that the value of the loss function is much larger for
case 3 than would be expected if the results from cases 1 and 2
could simply be added together for coupled operation. This is
because the influent characteristics to the unit reactors in cases 1
and 2 were identical to the applied influent of the IAWPRC
model. In case 3 only the influent wastewater into the plant is
the same. An error introduced in the anoxic reactor is propagated
into the aerobic reactor, amplified, and propagated into the
anoxic zone again through the recirculation. This emphasizes the
differences between the reduced and the IAWPRC model. 
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Optimization 'model A' aerobic part

initial estimates final estimates

rH rA YH YA bH bA rH rA YH YA bH bA

Case 3A (measured: XCOD, SNH, SNO) 

.046 .111 .33 .10 .42 .064 .078 .156 .766 .202 .780 .042 1430
 .093 .222 .66 .20 .86 .126 .041 .180 .728 .059 .385 .097 1238

 .116 .278 .83 .25 1.08 .157 .019 .250 .643 .716 .123 .174 979
.140 .333 .99 .30 1.30 .188 .042 .162 .478 .052 .385 .069 1499

Case 3B (measured: XCOD, SNH, SNO, OUR)

 .046 .111 .33 .10 .42 .064 .025 .142 .555 .129 .203 .030 1361

.093 .222 .66 .20 .86 .126 .028 .192 .602 .141 .234 .107 1112
 .116 .278 .83 .25 1.08 .157 .029 .196 .576 .707 .248 .105 1200
.140 .333 .99 .30 1.30 .188 .028 .214 .568 .500 .239 .108 1370

Case 3C (measured: XCOD, SNH, SNO, XB,H, XB,A, OUR)

.046 .111 .33 .10 .42 .064 .091 .232 .714 .208 .944 .138 2359

.093 .222 .66 .20 .86 .126 .041 .223 .539 .204 .406 .124 2146
 .116 .278 .83 .25 1.08 .157 .050 .238 .586 .219 .503 .152 2121
.140 .333 .99 .30 1.30 .188 .044 .244 .556 .222 .439 .160 2150

Case 3D (measured: XCOD, SNH, SNO)

.046 .111 .33 .10 .42 .064 .042 .141 .528 .128 .409 .023 1369

.093 .222 .66 .20 .86 .126 .038 .208 .501 .188 .374 .107 1413
 .116 .278 .83 .25 1.08 .157 .043 .221 .530 .199 .421 .138 1376
.140 .333 .99 .30 1.30 .188 .033 .201 .466 .180 .315 .095 1429

Case 3E (measured: XCOD, SNH, SNO, XB,H, XB,A, OUR)

.046 .111 .33 .10 .42 .064 .044 .148 .548 .136 .443 .021 2149

.093 .222 .66 .20 .86 .126 .041 .189 .526 .173 .401 .097 2169
 .116 .278 .83 .25 1.08 .157 .044 .189 .549 .172 .442 .075 2156
.140 .333 .99 .30 1.30 .188 .042 .166 .536 .152 .418 .015 2153

value
of loss
func.

Table 5.4 Results of the parameter optimization for case 3 (aerobic part).
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The different way the organic matter is treated by the settler
model (as discussed in section 5.1) also has an influence on the
behaviour. On an average more biodegradable organic matter is
recirculated in the reduced model (γ·XCOD) than in the IAWPRC
model (SS + γ·XS) and fed into the anoxic reactor. In cases 1 and 2
this discrepancy had no impact.

In order to avoid the influence of the initial transients when the
parameters are adjusted during the optimization, the reduced
model is simulated towards steady state for each new parameter
set before the actual optimization is started.

The results from case 3A show large variations. Ten parameters
are optimized based on six measurable quantities and several
local optima are detected. Not even the most sensitive
parameters rH and YH converge towards the same values.
However, a strong correlation between rH and bH is apparent in
both reactors. A high value of rH is always coupled to a high value
of bH. This is because the algorithm attempts to minimize the
residuals of XCOD. A high rH indicates a high growth rate and a
large consumption of organic matter. This is compensated by a
high bH which leads to a high conversion rate of decayed material
into X COD. The mathematical relationship between the two
parameters is not clear due to the different values of YH (among
other things). However, the model sensitivity to the bH parameter
is increased due to the recirculation when compared to cases 1
and 2.

The same basic correlation seems to exist for rA and bA in the
aerobic reactor due to the minimization of the residuals of SNH.
This conclusion is, however, more uncertain since a large part of
the SNH formed from decayed material originates from the
Heterotrophs (i.e. bH). The heterotrophic yield coefficient in the
anoxic reactor appears quite stable whereas the other yield
coefficients and the anoxic bA show very large variations.

Another important factor which also has to be considered does
not show in the tables. Since the concentrations of
microorganisms are not assumed measurable, the different
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parameter sets lead to very different values of XB,H and XB,A.
Based on the available measurements in case 3A, the
optimization algorithm can not determine whether the true
system involves a high concentration of organisms with a low
reaction rate or vice versa. This fact affects all parameter values
and is the major reason why the estimated sets are so different.

In an attempt to restrict the behaviour of the simplified model
and enhance the optimization, OUR (4.25) is included as a
measurable quantity in case 3B. The effect is apparent on the
parameters rH, YH, and bH in the aerobic zone which now
converge towards approximately the same values independent of
the initial estimates. Therefore the predicted value of XB,H is
much more stable (although not the same as the concentration
suggested by the IAWPRC model). Since the concentration of
Autotrophs is much smaller than XB,H its effect on the OUR is
quite small. Consequently, XB,A converges towards different
values and the estimates of the autotrophic parameters rA, YA,
and bA are not significantly improved by the extra information.
The same behaviour could be observed for case 2B. In the anoxic
reactor, the earlier discussed correlation between rH and bH still
holds although the actual results are not improved when
compared to case 3A.

In case 3C the concentrations of Heterotrophs and Autotrophs in
the aerobic reactor are also assumed measurable. This will force
XB,H and XB,A in the reduced model towards the values of the
IAWPRC model and thereby eliminating one of the problems
discussed for cases A and B. Note that the concentration of
microorganisms will be approximately the same in both reactors
due to the recirculation although it is only assumed measurable
in the aerobic reactor. The result of row 1 is clearly a special case
where the algorithm has converged towards a local optimum
quite far from the best one. The other three examples reach
almost identical values of the loss function but with quite
different parameter sets although the autotrophic parameters
converge remarkably consistent. In case 3B the situation was
almost the opposite. There are a number of reasons for this.
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Apart from the earlier discussed correlation between rH and bH in
the two reactors a new correlation occurs between the reactors. A
low rH in the aerobic zone leads to a high rH in the anoxic zone
and vice versa (the same holds for the ratio rH/YH). In case 3A the
opposite relationship could be observed. This implies that the
model deals with the dynamic disturbances differently in the two
reactors which can be observed in simulations but not in the
value of the loss function where all errors are lumped together.
The expression (1-YH)·rH/YH in the aerobic reactor is also
practically the same for all examples of case 3C due to the OUR
measurements and the fact that XB,H is almost identical.

A further problem is that the measurements of the organism
concentrations are in conflict with the OUR measurements. In
order to reach the best estimation of the OUR behaviour, the
reduced model requires a set of parameters which leads to a
significantly higher XB,H whereas the measurements of this
variable force the optimization algorithm away from this set to
achieve the low concentration predicted by the IAWPRC model.
Therefore the values of the loss function are much higher in cases
C and E when compared to cases B and D.

In case 3D the concentrations of microorganisms in the anoxic
reactor are considered measurable. Only the three basic
quantities are assumed measurable in the aerobic zone. The
results are very similar to case 3C. The values of the loss
function are almost identical for all examples although much
lower than in C. The parameter values of cases C and D are also
within the same region which is an indication that the weight
factor for the OUR residuals should maybe be increased in order
to make the effect of these measurements more prominent.
However, it is clear that the information of XB,A is essential for
identifying many of the autotrophic parameters. 

In the final case all internal state variables of ’model A’ are
assumed measurable in both reactors. Furthermore, the OUR is
available for more information. In practise it is unrealistic to
have so much data available but the case may be used for model
analysis. Parameters which do not converge globally in this case
will probably never be possible to estimate from this type of
experiments based on full scale plant operations. The conclusion
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would be that the influence of certain parameters is either
negligible or the model suffers from basic structural problems.

The results from case 3E clearly indicate that most model
parameters converge practically globally when this much
information is available. The slightly different parameter values
are mainly due to the large number of iterations required and in
some cases the optimization has been stopped somewhat early.
However, the autotrophic decay rate coefficient does not converge
globally under the applied conditions in neither the anoxic nor
the aerobic reactor (which to a small extent also influence the
values of rA and YA though the ratio rA/YA is perfectly constant). A
low bA value in the anoxic reactor is compensated by a higher
value in the aerobic reactor and vice versa. The recirculation
then equalizes the differences in the XB,A concentration between
the reactors.

The low concentration of Autotrophs (2-10%) when compared to
Heterotrophs, implies that bA, from the model point of view, is
basically only important to keep the XB,A concentration at the
proper level (if it is assumed measurable). It has no real
significance on the process of transforming decayed material into
XCOD and SNH. This is a basic problem and motivates the
modification of ’model A’ into ’model B’ which is further discussed
in case 4. A small correlation is still apparent between the values
of rH and bH.

An investigation of the behaviour of the loss function for the
complete ’model A’ during coupled operation has also been
performed. By varying the model parameters (the same principle
as for cases 1 and 2) the model sensitivity to parameter changes
is examined. Although not presented here, the results of this
analysis further motivate the conclusions discussed above.

The behaviour of ’model A’ is verified against data from the
IAWPRC model by simulating the systems separately but with
identical influent wastewater characteristics, flow rates,
recirculation rates, etc. In Figure 5.9 such a comparison is
illustrated for some of the state variables.
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All plots show that the qualitative behaviour of the two models
are quite similar. The first three plots also indicate that the
optimization in regard to XCOD, SNH, and SNO is practically
identical for both cases 3A and 3E although based on different
amounts of information. The reason for the discrepancy of XCOD

between the IAWPRC and reduced model has already been
commented (the hydrolysis process, the changing ratio of SS and
XS, and the settler behaviour).

The third plot shows a significant difference between the two
models in the predicted ammonia concentration, especially
around day five. This is mainly because the ammonia half-
saturation parameter of the IAWPRC model is set to 1 mg/l. As
the SNH concentration is increased from 1 to 3 mg/l (the most
nonlinear part of the applied Monod expression) in the aerobic
basin it is practically impossible to achieve the same result with
the first order approximation of the nitrification process in ’model
A’. Therefore the nitrification rate increases more rapidly in the
simplified model when the ammonia concentration goes up and
the high peak predicted by the IAWPRC model is flattened. Due
to this problem a slightly higher concentration of nitrate in the
anoxic reactor is also predicted by the reduced model during the
same time period (second plot).

The fourth plot illustrates how differently the quantitative
concentrations of microorganisms are predicted for cases A and
E. This is naturally a major reason for the different sets of
parameters found. If instead the concentrations are normalized
around the steady state values, the results are almost
inseparable.

Finally, the OUR is shown in the fifth plot. It appears
remarkable that the predictions from case 3A are better than
from case 3E although the OUR was not considered measurable
for the first case. The large error for case E is due to the
simultaneous optimization of the organism concentrations. While
the predictions of XB,H and XB,A are improved, the OUR is
deteriorating. There is a conflict between these quantities.
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XCOD, anoxic zone [mg/l]SNO, anoxic zone [mg/l]
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Figure 5.9 Behaviour of a complete WWT plant simulated with
’model A’ (dashed - case 3A(row 2), dotted - case 3E(row 3)) and
compared to simulations of the IAWPRC model (solid) with
identical influent wastewater characteristics (see Figure 5.2).

If the OUR for case 3B would have been presented, it would show
a perfect agreement with the IAWPRC results (as the value of
the loss function indicates). On the other hand, the heterotrophic
concentration would have a stationary value close to 800 mg/l.
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Case 4 – anoxic/aerobic reactor combination, model B

The results from case 3 show that the problems concerning global
identifiability are apparent. Even when a large number of
quantities are assumed measurable it is practically impossible to
obtain an optimum global set of parameters. This is mainly
caused by the effects of recirculation and the varying time
constants of the system. However, the problem is also due to the
high model complexity. Although ’model A’ is a quite
straightforward model for the activated sludge process when
compared to the IAWPRC model, there is still ten parameters to
be identified simultaneously (if one anoxic and one aerobic
reactor are assumed for the model) during standard operating
conditions (no specialized identification experiments) for a WWT
plant. 

In an attempt to further reduce the number of degrees of freedom
for the model and improve its global identifiability, ’model A’ is
further reduced into ’model B’. This is done simply by assuming
the decay rate factors bH and bA to be identical, both for anoxic
and aerobic conditions. The number of model parameters are
hereby reduced from ten to seven. Moreover, the difficulty of
identifying bH and especially bA, which has been discussed for the
previous cases, may also be reduced since the effect of each of the
four parameters on the model behaviour are now combined into
one. Therefore the possibility for the optimization algorithm to
detect significant changes in the value of the loss function is
improved, i.e. the model sensitivity to that parameter is
enhanced.

From a biological point of view there is no motive to differentiate
the two decay rate factors depending on the applied condition
(anoxic or aerobic) since the microorganisms are circulated
through the plant and exposed to both situations during their life
cycle. As for the assumption that the decay rates for both
Heterotrophs and Autotrophs are the same, this is more
debatable. However, both bH and bA are rough average values
because Heterotrophs and Autotrophs are large groups which
consist of many different organism species with individual
variations. Moreover, when exposed to the same operational
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conditions and identical influent wastewater there is no obvious
microbiological reason to assume different decay rate coefficients
for the two groups.

It should be noted that the quite different values for bH and bA

suggested in the IAWPRC model (see Table 2.2) mainly depends
on the fact that bA represents a traditional decay rate coefficient
whereas bH does not. This follows from the fact that the recycling
of organic matter that results from decay (the death-regeneration
hypothesis, see section 2.2) occurs through the activity of the
heterotrophic biomass and not the autotrophic biomass [Henze et
al., 1987a]. By applying the formula:

b H  = b H,trad

1 – Y H 1 – f P
5.2

where: bH,trad = traditional decay rate factor;

with default values for the other parameters and calculating
bH,trad, the difference between bH and bA are no longer very
significant but more a result of the interpretation of the model. 

In most AS models the decay coefficient is important in order to
predict the sludge production and the oxygen consumption. This
is not the purpose of the simplified models presented in this
work. Since the reduced models only deal with active biomass
and all material which results from decay is transformed into
XCOD and SNH directly, the so called specific decay rate factor in
this case actually represents a transformation rate coefficient,
describing this process. To compare identified values of bH and bA

from the reduced models with values normally applied to
traditional AS models may therefore prove without any real
relevance. This is a major drawback of reduced models.

The reasons discussed above motivates the simplification of
’model A’ into ’model B’. It is also considered important to apply a
model structure which enhances parameter identification and
automatic calibration from full scale plant operation. The
possibility of determining the traditional bH from lab experiments
by monitoring the OUR exists although such an experiment
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usually requires several days and is based on a small sample of
sludge. To practically determine bH of the IAWPRC model is
much more complicated (unless YH and fP are assumed perfectly
known) since it includes the transformation of decayed material
into organic matter. Also bA is difficult to determine from actual
experiments.

The optimization algorithm is now applied to ’model B’ under
exactly the same conditions as were described in case 3. The
selection of cases to investigate (A to E), depending on which
quantities are assumed measurable, are also identical. In Table
5.5 the results of the optimization are presented for different sets
of initial estimates.

When the results are compared to case 3, there are three
important observations to be made immediately. The first is the
fact that ’model B’ is capable of mimicing the behaviour of the
IAWPRC model practically as well as ’model A’ although the
number of model parameters have been reduced from ten to
seven. A small increase in the value of the loss function (10-15%)
is noticeable for the cases where the microorganism
concentrations are considered measurable (C, D, and E) whereas
the results for cases A and B are actually improved.

Secondly, the variation of the values for the optimized sets of
parameters are significantly smaller for ’model B’ when
compared to ’model A’. This also leads to a smaller variation in
the values of the loss function for each case which more than
adequately compensates for the somewhat higher values for some
cases. The possibility of finding the truly best optimum (or an
optimum very close to it) is thereby greatly enhanced.

Finally, the algorithm appears to converge towards a practically
global optimum parameter set not only for case E but also for
case B. This is a dramatic improvement since the assumption of
being able to monitor the different organism concentrations on-
line (case E) is not realistic. On the other hand, the
measurements assumed for case B are not impossible to achieve.
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Optimization 'model B'

initial estimates final estimates

rH YH rH rA YH YA b rH YH rH rA YH YA b

Case 4A (measured: XCOD, SNH, SNO) 

.024 .35 .046 .111 .33 .10 .20 .011 .772 .018 .209 .635 .577 .114 992

 .046 .69 .093 .222 .66 .20 .40 .011 .754 .017 .197 .615 .160 .101 958

 .057 .86 .116 .278 .83 .25 .50 .014 .700 .012 .167 .434 .226 .073 1171

.068 1.03 .140 .333 .99 .30 .60 .015 .780 .027 .302 .679 .188 .209 1075

Case 4B (measured: XCOD, SNH, SNO, OUR)

.024 .35 .046 .111 .33 .10 .20 .016 .697 .024 .282 .564 .236 .189 1192

 .046 .69 .093 .222 .66 .20 .40 .016 .697 .025 .295 .568 .209 .202 1193

 .057 .86 .116 .278 .83 .25 .50 .016 .697 .021 .257 .539 .055 .163 1185

.068 1.03 .140 .333 .99 .30 .60 .016 .700 .025 .287 .568 .206 .195 1189

Case 4C (measured: XCOD, SNH, SNO  plus XB,H, XB,A, OUR in aerobic reactor)

.024 .35 .046 .111 .33 .10 .20 .018 .631 .033 .393 .476 .363 .309 2363

 .046 .69 .093 .222 .66 .20 .40 .015 .567 .023 .290 .403 .258 .196 2507

 .057 .86 .116 .278 .83 .25 .50 .018 .564 .028 .330 .443 .299 .238 2431

.068 1.03 .140 .333 .99 .30 .60 .034 .699 .052 .609 .586 .550 .533 2509

Case 4D (measured: XCOD, SNH, SNO  plus XB,H, XB,A in anoxic reactor)

.024 .35 .046 .111 .33 .10 .20 .022 .600 .027 .343 .418 .310 .253 1585

 .046 .69 .093 .222 .66 .20 .40 .021 .588 .031 .374 .447 .330 .281 1604

 .057 .86 .116 .278 .83 .25 .50 .017 .531 .019 .244 .330 .216 .147 1659

.068 1.03 .140 .333 .99 .30 .60 .020 .572 .021 .274 .356 .248 .181 1614

Case 4E (measured: XCOD, SNH, SNO, XB,H, XB,A, OUR)

.024 .35 .046 .111 .33 .10 .20 .026 .633 .032 .398 .465 .364 .314 2450

 .046 .69 .093 .222 .66 .20 .40 .024 .622 .034 .408 .479 .372 .323 2448

 .057 .86 .116 .278 .83 .25 .50 .025 .628 .034 .408 .474 .371 .323 2447

.068 1.03 .140 .333 .99 .30 .60 .025 .631 .035 .425 .487 .385 .340 2449

value
of loss
func.anoxic anoxic

Table 5.5 Results of the parameter optimization for case 4.

When the five investigated cases are more closely examined, the
major part of the conclusions from case 3 still hold. In case 4A a
strong correlation between b and rH, rA in the aerobic reactor is
clear. Since the organism concentrations converge towards quite
different values the yield coefficients also vary significantly.
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The inclusion of OUR in the calculation of the loss function in
case 4B leads to an almost global set of optimum parameters. In
case 3B only the convergence of the heterotrophic parameters in
the aerated reactor were improved to this extent. The sole major
discrepancy is seen in row 3 for the autotrophic parameters. In
this case the concentration of XB,A is about one fourth of what is
predicted by the other rows and consequently, YA is four times
smaller. The main reason for this is that the autotrophic
parameters are less sensitive to the OUR because the
concentration of XB,A is very low compared to XB,H. Apart from
this the results are remarkably consistent and is clearly the
greatest advantage of ’model B’.

Case C shows a number of local optima with approximately the
same values of the loss function but with very different
parameter sets. Row 2 and 4 illustrate this very well. For the
parameters in row 2, the OUR is somewhat better predicted
whereas the XB,H concentration is more accurately predicted by
row 4. The differences are, however, quite small and the total
value of the loss function is the same. The parameter values of
row 4 is clearly a local optimum whereas row 1, 2, and 3 show
much more consistent values. The increased loss function when
compared to cases A, B, and D is an indication of the difficulty of
a simultaneous good prediction of both the organism
concentrations and the OUR for the reduced ’model B’. The same
fact was observed for ’model A’. The main reason for this is once
again the different description of the organic substrate in the
reduced models and the IAWPRC model. Note that the ratio of rA

and YA is identical for all examples in cases C, D, and E (when
XB,A is considered measurable) and the correlation between b and
rH, rA in the aerobic reactor is apparent.

In case D the OUR is excluded from the optimization. This leads
to that also the ratio of rH and YH converges towards almost the
same values for all examples in both the anoxic and the aerobic
reactor.
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Finally, a global optimum is reached for case E. Due to the
assumed measurements of XB,H and XB,A in both reactors the
effect of the OUR measurements is reduced and the convergence
is improved when compared to case C.

The behaviour of ’model B’ is verified against data from the
IAWPRC model by simulating the systems separately but with
identical influent wastewater characteristics, flow rates,
recirculation rates, etc. In Figure 5.10 such a comparison is
illustrated for some of the state variables. The behaviour of the
other variables (organic substrate, ammonia, and nitrate) are
very similar to the ones presented in Figure 5.9.

The first two plots show how the concentration of Heterotrophs is
overestimated and the concentration of Autotrophs is
underestimated when the OUR is used for the optimization and
measurements of the organisms are assumed unavailable (case
B). On the other hand, the predictions of the OUR are for this
case quite accurate (third plot).

In order to decrease the predicted concentration of Heterotrophs
for case E the yield factor (YH) is reduced (among other things).
Consequently, to increase the predicted concentration of
Autotrophs, the yield factor (YA) is almost doubled (see Table
5.5). This has an immediate effect on the OUR . The factor
(1–YH)/YH in the expression (4.25) is doubled which however is
compensated by the fact that the XB,H concentration is reduced
with almost 50%. But since rH is simultaneously increased to
maintain the good predictions of XCOD and the denitrification
process the predicted oxygen uptake rate reaches too high values.
The OUR  for the Autotrophs are on the whole quite constant for
both cases B and E since the factor (4.57–YA)/YA is decreased by
50% while the factor rA·XB,A is increased by the same amount and
compensates for the very different yield factor.
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XB,H, aerobic zone [mg/l]XB,A, aerobic zone [mg/l]
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Figure 5.10 (Previous page) Behaviour of a complete WWT plant
simulated with ’model B’ (dashed - case 4B(row 1), dotted - case
4E(row 3)) and compared to simulations of the IAWPRC model
(solid) with identical influent wastewater characteristics.

Summary discussion

A number of case studies have been presented in this section to
illustrate the behaviour and identifiability properties of the
reduced models in regard to operational conditions, assumed
measurable quantities, initial parameter values, etc. Naturally
the investigations do not cover all important aspects of the
models but provide a basis for further analysis. 

In cases 1 and 2 it was shown that the reduced model was
capable of mimicing the behaviour of the IAWPRC model with
reasonable accuracy in unit operation (only one type of reactor).
The main differences were due to the fact that the reduced
models do not include a hydrolysis process for the organic matter
which affects the time constants of the models. Difficulties to
determine global optimum parameter sets for the simplified
model were also clearly indicated. 

This difficulty was further investigated by examining the
behaviour of the loss function when the model parameters were
changed. The models proved especially insensitive to variations
of the decay rate coefficients but also rA and YA were impossible
to determine separately under the applied conditions and
available measurements.

In case 3 the complete ’model A’ was used to simulate a WWT
plant with both anoxic and aerobic reactors and the results were
compared to simulations of an identical plant simulated with the
IAWPRC model. The recirculation introduced new problems
when trying to detect a global optimum parameter set by means
of optimization. Not even under extremely favourable conditions
could the autotrophic decay rate factor be uniquely determined.

This motivated the use of a yet further simplified model - ’model
B’. Here all the decay rate factors of ’model A’ were identical. The
approach significantly improved the optimization result without
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deteriorating the basic behaviour of the model, as was shown in
case 4. What appeared to be an almost global parameter set could
be determined without assuming the concentrations of
microorganisms to measurable. 

However, it seems troublesome to uniquely identify the
parameters of the models based on measurements of XCOD, SNH,
and SNO alone. In many cases, when measurements of the OUR
was considered available the results were significantly improved,
especially for parameters describing the heterotrophic biomass in
case 3 and for all parameters in case 4. New technology like on-
line respirometers which are currently being developed (see
section 2.5) may therefore provide a very useful tool for
identification and verification of the AS process. A main reason
for this is that the OUR provides direct information about the
activity of the process while traditional measurements of
concentrations only give indirect knowledge.  

In some cases it was assumed possible to measure the
concentration of active heterotrophic and autotrophic biomass.
This is unrealistic but useful when principal properties of a
model is investigated. When XB,H and XB,A are not measurable,
these quantities may converge towards very different values
when the model is optimized, depending on the initial parameter
estimates. This leads to non-unique parameter sets because high
concentrations of microorganisms with a low activity result in
approximately the same model behaviour as low concentrations
of microorganisms with a high activity.

Since it is practically impossible to measure the concentration of
active biomass directly, it may prove useful to base an AS model
on estimations of actual reaction rates instead of rate
coefficients. Knowledge of the reaction rates are necessary for
process control whereas the rate factors are more important for
biological interpretations concerning the state of the process. For
example, estimations of rH·XB,H as a combined parameter and not
as two separate variables could improve the identifiability of a
model especially since the XB,H concentration is not verifiable. All
parameters rH, rA, bH, and bA of the reduced models do always
appear in multiplicative combinations with XB,H or X B,A and
therefore an identification may be global in the sense that the
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combinations converge towards identical values but assume
practically any value if all parameters are analysed separately.
Simple measurements like the suspended solids concentration or
the total COD content may also prove useful since they contain a
certain amount of information about the microorganism
concentration (though as a complicated combination of several
quantities). Future work will include the development and
analysis of an AS model which applies the concept of direct
estimation of reaction rates.

For all case studies presented, the assumed measurements were
perfect (i.e. no noise). An analysis of the impact of noise
(Gaussian noise within reasonable limits) shows that the effect is
negligible for this type of optimization since it is based on such a
large number of measurements. The results of the optimization
have also been verified against other types of dynamical
behaviour of the influent wastewater than presented here (sine
waves, ramps, etc.). The different behaviours of the reduced
models and the IAWPRC model were, however, most prominent
for steplike variations, which motivated the selection.

No thorough analysis has been performed on how the system
should be perturbed in order to enhance the model identifiability
further. Influent variations syncronized with the time constants
of the model, repeated rapid changes of high amplitude, etc., may
improve matters. But since the possibilities to control the
influent wastewater to most WWT plants are quite limited, such
an investigation would probably lead to results which are not
practically feasible, though theoretically interesting.

As a final remark the computational effort is commented. In
order to determine one set of optimized parameters the system of
differential equations describing the dynamics of the plant has to
be simulated between 500 and 1000 times (the simplex algorithm
converges slowly). This means that the required CPU time for
one optimization on a ’standard’ workstation should be measured
in hours and days rather than seconds and minutes. The work
presented in this section is based on several hundred such
optimizations. For practical use the algorithm would have to be
modified and the error tolerance increased.

135 The Extended Kalman Filter



5.3 On-line Simulations

The main disadvantage of the optimization approach is that the
resulting model is fitted to certain operational and influent
conditions. The model is capable of predicting the behaviour of
the real process as long as these circumstances are not
dramatically changed. Over longer periods of time, smaller
variations will accumulate in the plant and the behaviour of the
microorganisms will be affected. Therefore it may prove
necessary to update the model parameters on a regular basis.
One possibility is to make a new optimization when needed but
better still is to automatically update the model and track the
parameters on-line as new measurements become available. It
will guarantee that any required model predictions are as
reliable as possible since the model is always calibrated to the
most current conditions. In this section some results from such
an approach are illustrated and discussed.

The off-line and the on-line methods should produce
approximately the same results under identical operating
conditions if the algorithms are applied for a sufficient amount of
time. However, since the simplex method is more robust it has
been chosen for the principal model investigations reported in
5.2. Although the Kalman filter (see Appendix E) is one of the
more robust on-line estimation algorithms, difficulties may occur.
This is mainly due to the recirculation and the long time delays
of the activated sludge system. When a parameter is adjusted the
effect on the system is only partly ’instantaneously’ measurable.
After a period of time (several hours) the input is also changed
through the recirculation, which is interpreted as a new
disturbance of the system and consequently may lead to new
parameter adjustments. In certain cases this can lead to stability
problems where the parameters are over-compensated back and
forth. Especially the effect on the microorganism concentrations
is very slow and may take days to become significant. To some
extent it is possible to modify the estimation algorithms to take
the correlation between a changing parameter and a later change
in the recirculated material into account. Such modifications,
however, have not been tested in this work. Instead the
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maximum rate of change for the model parameters is set quite
low (by adjusting the Kalman gain matrix).

The reasons given above motivate a combination of the two
investigated methods. By first applying an off-line optimization
algorithm, a set of reasonable parameter values can be
determined. They may be used as initial seeds for the on-line
estimation methods,  thereby reducing the risc of divergence and
unwanted oscillations. 

When performing on-line identification on real data it is also
more important to know about the noise characteristics of the
process and the measurements. Whereas the off-line methods are
based on a very large number of data points and the effect of
noise is reduced by the averaging calculations, the on-line
methods react practically immediately to sudden changes. By a
thorough investigation of the noise character of the process this
information can be included in the identification algorithm in
order to prevent the estimated parameters to vary rapidly back
and forth in an unrealistic manner due to noise. Furthermore the
measurements should be ’logically’ analysed before the data is
used for on-line identification. The reason for this is to detect
trends, outliers, drastic sudden changes, etc., which may indicate
that a certain sensor is not properly calibrated or does not
function as supposed to, before the identification procedures are
applied and produce an erroneous result. This would be one
important function of the top level expertsystem in Figure 4.1.

A number of cases will be presented below in order to determine
the principle model behaviour when used for on-line parameter
identification. The basic conditions will be those already
described in section 5.1 and previously applied for the off-line
optimization. The following situations will be more closely
investigated: 

• a case study of a modified ’model A’ for various assumed
available measurements and initial estimates as in section 5.2
(cases 3A, 3B, and 3E (without the OUR));

• the effect of both measurement and input noise on the
identification results;

• the effect of a change in one of the IAWPRC parameters on the
reduced model behaviour during on-line estimation.
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Results from Tables 5.3 and 5.4 indicate that the decay rates (b)
may assume almost any values especially when only XCOD, SNH,
and SNO measurements are available. If all ten parameters of
’model A’ are identified simultaneously with the extended
Kalman filter this is manifested as divergence. The correlation
between the decay rate factors and the other parameters often
lead to a trend-like behaviour of the estimates, i.e. one parameter
keeps changing at a certain rate and another variable changes
with the same relative rate and the total effect on the
measurable state variables is negligible. Finally, the model
identification process collapses. 

To avoid this problem the elements of the Kalman gain matrix
related to the decay parameters are set to zero, e.g. the decay
rate coefficients are kept constant. The more variables that are
measurable the more parameters may be estimated successfully.
If the OUR or the organism concentrations are assumed to be
measurable as well, one or two of the decay parameters may be
estimated too. All ten parameters, however, can not be estimated
simultaneously for those cases either. In order to allow the
results of the different estimations to be compared, all decay
parameters are kept constant in this section. The model applied
for the on-line estimations is consequently a simplification of
models A and B since only six parameters are assumed to vary.

The basic problem is the one discussed in section 5.2. It is ’quite
easy’ to estimate the net reaction rates for the organisms but
much more difficult to determine the growth rates and the decay
rates separately. Future models will be developed taking this fact
into account.

In Figure 5.11 the results from an on-line estimation are shown
for some key variables. The measurements assumed available for
the identification are the ones described for case 3A (XCOD, SNH,
and SNO i both reactors) but the process is now stationary. In
order to start the on-line estimation with reasonable initial
parameter values, the off-line results from case 3A(row 2) are
used (solid line). This parameter set is then increased (dashed)
and decreased (dotted) by 15% (not the decay rate coefficients)
and the identification is repeated for the new sets to check for
’global’ convergence.
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Figure 5.11 On-line state and parameter estimation of a
simplified ’model A’ based on assumed measurements of the
organic substrate, ammonia, and nitrate concentrations from a
stationary AS process.
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The graphs illustrate that the heterotrophic parameters (shown
for the anoxic zone) converge towards the same values
independent of the initial estimates. This is possible since the
decay rate factors are identical for all simulations (if not, the
identification algorithm would be forced to find different
estimates). For the autotrophic parameters, however, these
measurements are not sufficient. The autotrophic reaction rate
converges towards the same value whereas the yield factor
reaches quite different values (it does converge though). Since
XB,A is not assumed measurable, this variable may compensate
for the different yield values. A high value of the yield factor
leads to a high concentration of Autotrophs and vice versa. The
ratio of XB,A to YA converges towards the same value but the
Kalman filter can not determine a global estimate for the two
variables separately, especially not under steady state
conditions. The entire model is also less sensitive to variations of
the autotrophic parameters due to the low concentration of
Autotrophs when compared to the Heterotrophs.

The low sensitivity is a major reason why the convergence rate is
considerably slower for the autotrophic parameters, which is
clearly illustrated in Figure 5.11. This is natural since the time
constants for changes of the autotrophic biomass are larger than
for other reactions in the activated sludge process. Furthermore,
the convergence rates for all parameters are very low in the first
examples because of the steady state data which leads to very
small residuals and consequently a slow convergence. The
applied simplified Kalman filter (constant gain matrix) further
enhances this. The rate of convergence is also correlated to the
amount of available measurements (see Figure 5.13) and the
number of parameters to be estimated. Comparisons of the
convergence rates for the different parameters and cases are
informative.

The estimation procedure described above is repeated to obtain
the results shown in Figure 5.12. In this case the identification is
based on the assumption that the OUR is also measurable. The
first initial parameter set is taken from case 3B(row 2) and then
varied ±15%. Apart from this, the same data from the IAWPRC
model simulating a complete WWT plant under stationary
conditions is applied.
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Figure 5.12 On-line state and parameter estimation of a
simplified ’model A’ based on assumed measurements of the
organic substrate, ammonia, and nitrate concentrations plus the
OUR from a stationary AS process.
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The graphs of Figure 5.12 show that the additional information
from the OUR measurements is not enough for the identification
algorithm to determine a global set of the estimated variables. It
was already discussed in section 5.2 that the effect of the OUR is
most apparent on the heterotrophic parameters because of the
low concentration of Autotrophs. The autotrophic yield factor and
the concentration of autotrophic biomass still converge towards
different values depending on the initial set. The situation is
however somewhat different when compared to the previously
investigated case. The ratio of XB,A to YA does not converge
globally. Rather the weighted mean value of this ratio and the
expression (4.57-YA)·XB,A/YA which is part of the calculation of the
oxygen uptake rate (4.25) converge in a global sense. Thereby the
reduced model may provide a good fit to the data from the
IAWPRC model for several sets of estimates also when the OUR
is available.

In Figure 5.12 no estimations of the heterotrophic parameters in
the anoxic reactor are shown. For this zone the OUR does
however not provide any new information and the estimation
results are therefore very similar to what was illustrated in
Figure 5.11. A comparison of rH and YH in the two figures
indicate that the rate of convergence is considerably higher for
the anoxic reactor. The main reason for this is the smaller
number of variables to be estimated simultaneously in the anoxic
zone. A similar examination of the autotrophic variables in
Figures 5.11 and 5.12 show a higher rate of convergence when
the OUR is measurable. Its effect is not enough to determine a
global set of estimates but is still a help for the algorithm. The
more information available, the faster and more accurate is the
convergence.

Finally, the identification procedure is tested on a new case. Now
the OUR is not considered measurable; instead the organism
concentrations (XB,H and XB,A) for both reactors are assumed
available. Some results are presented in Figure 5.13. The initial
parameter set is taken from case 3E(row 3). Note that two
different time scales are used in the diagrams. Neither of the
scales are the same as those applied in Figures 5.11 and 5.12. 
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Figure 5.13 On-line parameter estimation of a simplified ’model
A’ based on measurements of the organic substrate, ammonia,
nitrate, and organism concentrations from a stationary AS process.
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The graphs illustrate how all parameters converge globally for
the different initial sets. The rate of convergence is also
significantly higher than for the earlier shown cases. In order to
determine a global set of estimates it would actually be sufficient
to assume measurements of XB,A from the aerobic reactor.
Possibly, assumed measurements of the total organism
concentration (XB,H +XB,A) would also be enough instead of
requiring data from both types of organisms separately. This
would, however, lead to slower convergence. The prediction of the
oxygen uptake rate based on the estimated parameters also
converges and, moreover, towards the same value as predicted by
the IAWPRC model (244 mg O2/(l·day)).

The actual values of the parameters determined in this section
are not identical when compared to the optimum sets found in
section 5.2. The reason for this difference is that the scaling of
the residuals performed by the gain matrix of the Kalman filter
is not exactly the same as for the weighted loss function used by
the simplex method. The off-line optimization was also based on
data generated during varying influent conditions whereas the
on-line identification uses steady state data.

The large initial variations for some of the estimates shown in
the figures are not an error produced by the identification
algorithm. They are the result of the very large residuals which
appear at the early stage of the estimation. This is because the
reduced model is simulated towards steady state prior to the
identification and the stationary values are used as initial
predictions of the simplified model. Consequently, they may be
quite different when compared to the assumed measured
variables of the IAWPRC model. The use of a constant gain
matrix for the Kalman filter also emphasizes the large initial
variations.

In order to investigate how noise affects the results of the
estimations the assumed measurements are corrupted by
Gaussian white noise with a mean value of zero and a standard
deviation which is 10% of the actual value of the specific variable.
Noise of the same type is also added to the flow rate, organic
substrate concentration, and ammonia concentration of the
influent wastewater to the IAWPRC model to further complicate
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the situation. Otherwise the conditions are identical to those that
have already been described. Note that the noise added to the
different variables is uncorrelated.

To illustrate the effect of the applied noise level to the IAWPRC
model and to examplify the difficulties for the identification
algorithm, two of the corrupted variables are shown in Figure
5.14.
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Figure 5.14 The effect of the applied noise level on the influent
flow rate and measurements of the organic substrate
concentration in the anoxic reactor.

Noise creates a problem for the identification algorithm. The
residuals on which the Kalman filter determines how the
variables are to be updated are dramatically affected by noise
and may very well hide the basic underlying trend and thereby
cause the identification to fail. This difficulty is most apparent
when the process is stationary (small residuals) and the situation
is normally improved by exciting the system in a suitable
manner. Since the influent wastewater to a real WWT plant is
only to a small extent controllable, such perturbations may be
difficult to produce in reality.
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For this reason the identification is performed using noisy data
under steady state conditions and thereby giving the algorithm
every possibility to fail. Investigations were performed on all
three basic cases (depending on which quantities are assumed
measurable and the selected set of initial estimates) as were
illustrated in Figures 5.11, 5.12, and 5.13. For all cases the
behaviour of the estimates was approximately the same as in
those figures. The identification algorithm converge towards the
same values as when the data was free from noise, independent
of the chosen initial values. The estimates are naturally partly
corrupted by the noise and not constant though the Kalman filter
reduces the effect of the noise. The result would be significantly
improved if a time variable extended Kalman filter was used
since this would allow the gain matrix to be updated on-line and
thereby reduce the variations of the estimates further.

A few results are illustrated in Figure 5.15. The assumed
measurable variables and the initial estimates are here the same
as was used for one of the estimations shown in Figure 5.13. In
order to allow for a closer comparison with the previous results,
the estimates are filtered using a traditional low pass filter and
are shown together with the estimates produced when no noise
was present, for some key variables in Figure 5.16.

The last example of this section demonstrates the capability of
the reduced model to track and update its parameters on-line to
maintain a good fit to the measurable variables as conditions
change. In order to simulate this the maximum specific
hydrolysis rate (kh) of the IAWPRC model is increased by 50%
over a period of one day starting at t=1. The hydrolysis rate is
selected as a suitable parameter because of its significant
influence on the complete IAWPRC model behaviour. In reality
this change would reflect that the incoming slowly biodegradable
organic substrate was of a new character which was more easily
broken down into readily biodegradable substrate. A sudden
increase of the incoming flow rate (50%) lasting for one day and
starting at t=6 is also simulated to investigate the behaviour of
the reduced model to such a change. Note that no noise has been
added to the measurements in this case.
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Figure 5.15 On-line parameter estimation of a simplified ’model A’
based on noisy measurements of the organic substrate, ammonia,
nitrate, and organism concentrations from a stationary AS process.

147 The Extended Kalman Filter



r H
, a

er
ob

ic
Y

H
, a

er
ob

ic
r A

, a
er

ob
ic

Y
A
, a

er
ob

ic
O

U
R

time [day]

Figure 5.16 Lowpass filtered estimates (solid) from Figure 5.15
compared to the same estimates determined when no noise was
present (dashed) from Figure 5.13.  
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The effects on the behaviour of the IAWPRC model when the
hydrolysis rate is increased are mainly a considerable reduction
of the amount of slowly biodegradable substrate in both reactors
(in this case about 50% in steady state) and a lower concentration
of nitrate in both reactors since the extra produced readily
biodegradable substrate improves the denitrification. The
concentration of Heterotrophs is also slightly increased. The
effect on the ammonia concentration and the autotrophic biomass
is negligible.

All three cases earlier described (depending on the available
measurements) have been investigated. It is interesting to note
that the model parameters are qualitatively updated in the same
way whatever measurements are considered available, as seen in
Figure 5.17. Note that the convergence rate is not a problem for
any of the cases because the process is now partly in a transient
state due to the changes of the hydrolysis rate and the incoming
flow rate; consequently the rate of convergence is much higher.
Prior to the time shown in the graphs, the Kalman filter has been
applied to steady state data and the parameters of the reduced
model have converged in order to avoid initial transients.
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Figure 5.17 On-line parameter tracking based on different
available measurements – XCOD, SNH, SNO (dashed), plus OUR
(dotted), plus XB,H and XB,A (solid). The hydrolysis rate is increased
from t=1 to 2 and the influent flow rate is increased at t=6 (pulse). 
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Figure 5.18 illustrates some results of the on-line parameter
estimation when XCOD, SNH , SNO , XB,H , and XB,A are assumed
measurable. Predictions of the oxygen uptake rate is also shown
and compared to the result from the IAWPRC model (dotted). As
the hydrolysis rate of the IAWPRC model increases, the total
amount of biodegradable organic substrate (SS +XS) goes down
and consequently measurements of XCOD is reduced. As earlier
discussed, changes of the ratio of SS to XS has a significant
influence on the behaviour of the reduced model. As an effect rH

increases rapidly (in both reactors) but during the most transient
stage (from t=1 until 2) the heterotropic yield is also changed.
This is a way for the reduced model to maintain the same
concentration of Heterotrophs as more XCOD is consumed - rH and
YH are correlated. As the process settles at the higher hydrolysis
rate, rH reaches an optimum value and Y H returns to
approximately the original value which is realistic since the
concentration of active biomass has not changed in any
significant manner. Measurements of the OUR would reduce the
variations of YH. The rise of the OUR predicted by the reduced
model contrary to the IAWPRC model is namely caused by these
changes. The effects on the autotrophic parameters caused by the
varying hydrolysis rate are quite small as would be expected.

The influent flow rate disturbance is introduced at t=6. If the
reduced model was a perfect replica of the process (in this case
the IAWPRC model) this perturbance would not require any
model parameters to be updated since both model and process
would react in exactly the same way. This is almost true for the
heterotrophic parameters where only small adjustments (≈2-3%)
are required to maintain a good fit of the model. For the
autotrophic parameters larger adjustments are needed (≈10%).
The reaction rate factor rA is decreased mainly because the
autotrophic growth rate of the IAWPRC model is in its most
nonlinear region for the concentrations applied in this example.
The sudden increase of the ammoina concentration caused by the
increased flow rate leads to an overly large predicted growth rate
for the Autotrophs and consequently the value of rA is reduced.
YA is increased basicly for the same reason. Note that for the flow
rate disturbance, the prediction of the OUR is quite accurate
when compared to the IAWPRC model (dotted).
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Figure 5.18 On-line parameter estimation based on assumed
measurements of XCOD, SNH, SNO, XB,H, and XB,A during a change
of the maximum hydrolysis rate (starting at t=1) and a pulse
disturbance of the influent flow rate (starting at t=6). 
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Note that if the initial and final parameter values of Figure 5.18
are compared, only the heterotrophic reaction rate factor has
increased (for both reactors) with any real significance. All other
parameters are approximately the same. This is a realistic
consequence of the imposed variation of the process; a higher rate
of the hydrolysis mechanism produces more readily
biodegradable substrate and this substrate is consequently
consumed at a higher rate by the active heterotrophic biomass -
altogether an increased reaction rate for the Heterotrophs.

Summary discussion

The examples presented in this section illustrate the behaviour of
the reduced model during on-line state and parameter
identification using an extended Kalman filter. The model was
investigated for various assumed measurable quantities,
different sets of initial parameter sets, sensitivity to applied
noise, etc. At an early stage it was clear that all ten parameters
of ’model A’ could not be estimated simulataneously under the
applied conditions (caused divergence) and therefore a further
simplified model with constant decay rate factors was used. A
total of six parameters and a number of state variables was
updated on-line.

The estimates of the model converge for all tested cases even
when data from a stationary process is used. However, in order
for all parameters to converge in a global sense some kind of
knowledge of the microorganism concentration is required.
Otherwise, XB,A and YA can not be uniquely determined; instead
the ratio of the two variables converges globally. The rate of
convergence is also significantly higher when measurements of
the organism concentrations are considered available.

Even when a significant amount of noise is added to the
measurements and the simulated process, the identified
parameters converge in approximately the same way as without
noise for all cases. An on-line parameter tracking system applied
when the real process is exposed to changing conditions and
disturbances of the influent wastewater also show reasonable
and accurate results.
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Conclusions

The activated sludge process is a very complex system and there
is a wide range in the degree of complexity of the models which
can be used to describe it. Some of the more detailed models are
so complex that they are inappropriate for operational use,
especially for automatic control applications. However, in many
situations the activated sludge process can actually be described
satisfactorily by fairly simple models. In order to assure that the
model is as simple as possible, each new constant or element of
complexity added, should be shown to be essential and its
omission should result in failure to describe some important
feature of the process.

Unfortunately, determining a suitable model for the intended
purpose only solves part of the problem. Due to the biologically
adaptive nature of the AS process and the large variation of the
character of the influent wastewater over time, any reliable
model will have to update its parameters on a regular basis. This
imposes further restrictions on the structure of the applied
models concerning the concept of system and parameter
identifiability.

In this work the problem of over-parametrization in complex AS
models has been approached. Existing complex models of the
activated sludge system dynamics do not have a unique set of
parameters which can explain a certain behaviour. An attempt
has been made to derive a reduced order model with less number
of states and parameters which is capable of adequately
describing the major dynamical behaviour of both the
carbonaceous and nitrogeneous activities of the AS process. Still,
the basic physical interpretation of the modelled reactions has
been retained when possible. Furthermore, the lack of available
instrumentation emphasizes the need for a realistic complexity of
models for operational purposes.
A thorough investigation of the identifiability of the proposed
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reduced order models has been performed using both off-line
(simplex) and on-line (extended Kalman filter) algorithms.
Results have been presented for a large number of different cases
depending on which quantities were assumed measurable. Under
certain conditions the simplified models were shown to be
globally identifiable, even when the data was corrupted by a
significant amount of noise. Simulation comparisons between the
IAWPRC model and the reduced models have verified that the
main features of the dynamics have been retained. 

Correlations between different model parameters under various
conditions have been investigated. One such correlation exists
between the reaction rate factor and the decay rate factor. The
difficulty of estimating these parameters separately in a global
sense compared to the combined net reaction rate was shown.
Finally, a sensitivity analysis of the reduced model to parameter
changes has been performed. 

The reduced order model is primarily aimed as an on-line tool for
supervision and control as an integral part of a hierarchical
control structure. Since its parameters can be gradually updated
from on-line measurements, any deviation between the real plant
and the model predictions can be used as an early warning
system for process diagnosis purposes.  

Topics for future work

In the course of the work presented in this thesis, several types of
problems and questions have been encountered which deserve
more attention in the future. Some of these are summarized
below.

• How may the reduced models of this work be further
simplified? For identifiability reasons, the simplest model
should be based on net reaction rates and the explicit use of
active heterotrophic and autotrophic biomass as state
variables ought to be eliminated. Such a model would require
fewer measurements to calibrate and update. It would also be
easier to verify.

• Exactly what measurements, with what accuracy, how often,
and performed where, would be the minima required in order
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to guarantee global identifiability of the reduced order models?
Could easily available measurements like SS (suspended
solids), total COD content, etc., improve matters?

• How should the simplified models be applied for control in
practice? The possibility to develop control algorithms based on
feed forward and adaptive control principles should be
investigated once the simple, identifiable models are available.
Due to the long time constants of the AS process an optimal
control scheme should be based on measurements of the
influent wastewater and actions taken before the problems
actually occur (feed forward). On the other hand, adaptive
control is the proper way of controlling processes that change
their behaviour over time, such as the activated sludge system.

• How could the the model verification be performed at a full
scale WWT plant during normal operations? The possibilities
of temporarily changing flow rates and flow schemes, adding
reject water of high concentrations at specific points, use the
largest natural variations of the influent wastewater for step
feed, etc., in order to achieve more information from the
transient behaviour of the process should be investigated.
These perturbances should, however, not affect the total plant
performance.

• How should a hierarchical control structure be implemented?
The different low level control modules need to be syncronized
and the partly contradictory contol criteria of the overall
control strategy have to formulated to allow optimal
performance.

• How may an expertsystem for diagnosis and logical reasoning
improve plant performance and how should it be implemented?
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Appendix

A
______________________________________________________

List of Symbols

State variables

unspecified biodegradable single substrate S

soluble inert organic matter SI, Sus

readily biodegradable substrate SS, Sbs

adsorbed slowly biodegradable substrate Sads

enmeshed slowly biodegradable substrate Senm

particulate inert organic matter XI

particulate products arising from biomass decay XP

slowly biodegradable substrate XS

biodegradable substrate XCOD

inert mass ZI

endogenous mass ZE

active unspecified biomass (ub) X

active heterotrophic biomass (hb) XB,H, ZBH

active autotrophic biomass (ab) XB,A, ZBA

nitrate and nitrite nitrogen SNO, No3

ammonia nitrogen SNH, Na

soluble biodegradable organic nitrogen SND, Nobs

particulate biodegradable organic nitrogen XND, Nobp

oxygen SO, O

alkalinity SALK, Alk
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Parameters

maximum specific growth rate for ub µ
decay rate coefficient for ub b

yield factor for ub Y

reaction rate factor for ub r

growth saturation concentration for ub Ssat

maximum specific growth rate for hb µH

decay rate coefficient for hb bH

yield factor for hb YH

reaction rate factor for hb rH

maximum specific growth rate for ab µA

decay rate coefficient for ab bA

yield factor for ab YA

reaction rate factor for ab rA

organic substrate half-saturation coefficient KS

nitrate half-saturation coefficient KNO

ammonia half-saturation coefficient KNH

oxygen half-saturation coefficient KO,H

half-saturation coefficient for hydrolysis of slowly
biodegradable substrate KX

maximum specific hydrolysis rate kh

ammonification rate ka

correction factor for anoxic growth of hb ηg

correction factor for anoxic hydrolysis ηh

fraction of biomass yielding particulate products fP

mass N/mass COD in biomass iXB

mass N/mass COD in products from biomass iXP
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B
______________________________________________________

The IAWPRC Model

Figure B.1  Matrix formulation of the IAWPRC model [Henze et al., 1987a].
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D
______________________________________________________

The Simplex Optimization Algorithm

Many methods for optimization of algebraic functions are based
on rough ideas without much theoretical background (ad hoc
methods). One such possible method implies generating a
number of points at random within a certain region and selecting
the one which gives the best function value over a large number
of trials. Unfortunately, this type of methods suffer from the
’curse of dimensionality’ since the amount of effort required to
solve actual problems goes up rapidly (typically as 2n) as the
number of degrees of freedom increases.

The most successful of the methods which merely compare
function values is the simplex method, still widely used [Fletcher,
1987]. A regular simplex is a set of n+1 equidistant points in Rn,
such as the triangle for n=2 and tetrahedron for n=3. The current
information kept in the method is the coordinates of the n+1
points and their corresponding function values.

On the first iteration of the simplex method the vertex at which
the function value is largest is determined. The vertex is then
reflected in the centroid of the other n vertices, thus forming a
new simplex. The function value at this new vertex is evaluated
and the process repeated. On iterations after the first it might
appear that the newest vertex still has the largest function value
in the new simplex, and to reflect this vertex would cause
oscillation. Hence the largest function value other than that at
the newest vertex is subsequently used to decide which vertex to
reflect. Ultimately this iteration will fail to make further process,
so an additional rule has to be introduced. When a certain vertex
i has been in the current simplex for more than a fixed number
M iterations, then the simplex should be contracted by replacing
the other vertices by new ones half way along the edge to the
vertex i. The value of M is normally determined by the dimension
of the problem.

The typical progress of the iteration is illustrated in Figure D.1
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using a two dimensional example. Vertices 1, 2, and 3 form the
initial simplex and increasing numbers indicate the new vertices
added at each iteration. Note that vertex 7 has the largest
function value for the simplex (4,6,7) but is not reflected
immediately since it is the newest vertex in that simplex. When
simplex (6,9,10) is reached, vertex 6 has been in the current
simplex for four iterations and if M is assumed to equal 3.5, the
simplex is contracted at this stage to the new simplex (6,11,12)
and the iteration continues from this simplex.

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure D.1 The simplex method in two variables.

The Nelder-Mead algorithm applied in this work is a slightly
modified simplex method which allows irregular simplexes, and
distorsions of the simplex are performed automatically in an
attempt to take into account the local geometry of the function.

Due to the problems with the computational effort there is a
practical limit to the size of systems which the method can be
applied to. The convergence rate is slow but the algorithm is very
robust and quite insensitive to noise. Often the method can be
used in combination with more sophisticated ones. The simplex
method is then applied in an early stage of the optimization in
order to get the convergence going in the right direction and
thereby producing suitable initial values for methods which
converge faster. Such algorithms are usually less robust and
likely to diverge if the initial estimates are far from the true ones
(for example the Gauss-Newton algorithm in the example in
section 4.1).
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E
______________________________________________________

The Extended Kalman Filter

The technique of Kalman filters is a general filtering technique
which can be applied to such problems as optimal estimation,
prediction, noise filtering, and stochastic control. Adaptive gain
tuning capability is the characteristic of the Kalman filter. The
method can also be applied to both stationary and non-stationary
processes.

The following time discrete linear system is assumed:

x tk+1  = Φ x tk  + Γ u tk  + ν tk

y tk  = C x tk  + ε tk
E.1

where ν and ε are Gaussian white noise processes with zero mean
and the covariance matrices are given as:

E ν tk  νΤ tk  = R1

E ν tk  εΤ tk  = R12

E ε tk  εΤ tk  = R2

E.2

Let the estimator have the form:

x tk+1|tk  = Φ x tk|tk-1 +Γ u tk +K tk  y tk -C x tk|tk-1 E.3

The reconstruction error x = x – x is governed by:

x tk+1  = Φ x tk  + ν  tk  – K tk  y tk  – C x tk|tk-1

= Φ – K tk  C  x tk  + ν  tk  –  K tk  ε  tk

E.4

The property of the noise is taken into account and the criterion
is to minimize the variance of the estimation error, P(tk), by
determining the best gain matrix, K(tk). P(tk) is defined as:
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P tk  = E x tk  –  E x tk  x tk  –  E x tk
T   E.5

The mean value of x is obtained from (E.4) as:

E x tk+1  = Φ – K tk  C  E x tk E.6

If E[x(0)]=m0 then the mean value of the reconstruction error is
zero for times tk≥0 independent of K if E[x(0)]=m0. This is
assumed to be true and equation (E.4) gives:

P tk+1  = E x tk+1  xT tk+1  

= Φ–K tk  C  P tk  Φ – K tk  C
T
+ R1+K tk  R2 KT tk  –2 K tk  R12

E.7

The criterion is to minimize the scalar αT P(tk+1) α where α is an
arbitrary vector, by choosing the best possible K(tk). If the
criterion is developed using (E.7), two terms occur. The first term
is independent of K(tk) whereas the second term is determined by
K(tk). If K(tk) is chosen such that the second part is zero, a
minimum is obtained. The following two equations result:

K tk  = Φ P tk  CT  + R12  C P tk  CT  + R2
 –1

E.8

P tk+1  = Φ P tk  ΦT + R1  –   K tk  C P tk  CT+ R2  KT tk  E.9

The reconstruction defined by (E.3), (E.8), and (E.9) is called the
Kalman filter. The main difficulty is usually to determine the
proper covariance matrices of (E.2) and to initially select a
suitable variance matrix P(0). Note that P(tk) does not depend on
the observations. Thus, the gain can be precomputed in forward
time and stored in the computer.

Extended Kalman filters (EKF) are a logical generalization of
linear Kalman filters for the case where the system dynamics
vary with operating and control points in nonlinear systems. The
first step in the generalization is to exchange the linear process
model (E.1) for a nonlinear one:
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x tk+1  = f  x tk , u tk  + ν tk

y tk  = h x tk  + ε tk
E.10

where f and h represent general nonlinear vector functions.

The second step is to use a linearization of the plant dynamics in
order to minimize the effect of process and measurement noise.
This linearization is performed around the current state
estimates, x(tk), on-line. The main element of an extended
Kalman filter are thus a description of the process dynamics (and
a linearized version of it) and a noise model.

There are three principal types of extended Kalman filters;
discrete EKF, continuous EKF, and continuous-discrete EKF.
The continuous-discrete EKF uses a continuous time update of
the nonlinear observer while it employs a discrete measurement
update. Such a filter is often a well suited approach because the
model can be kept in the traditional continuous form while the
measurements are most conveniently digitized using a zero order
hold network. A continuous-discrete EKF was applied for this
work.

As was discussed in section 4.3, the calculations are often divided
in a prediction and a correction phase. If R12 for simplicity is
assumed to equal zero, the EKF can be described in a
straightforward way. The predictor phase includes the following
calculations:

x tk+1|tk  = f  x tk|tk , u tk E.11

P tk+1|tk  = F tk  P tk|tk  FT tk  + R1 E.12

and the corrector phase includes:

x tk+1|tk+1  = x tk+1|tk  + K tk+1  y tk+1  – h x tk+1|tk E.13

P tk+1|tk+1  = P tk+1|tk  –  K tk+1  H tk+1  P tk+1|tk E.14
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K tk+1  =

P tk+1|tk  HT tk+1  H tk+1  P tk+1|tk  HT tk+1  + R2 
 –1

E.15

where F(tk) and H(tk) correspond to the Jacobian matrices of f [.]
and h[.] respectively. The Jacobians are defined as:

F tk  = δ f x tk , u tk

δ x tk  x tk  = x tk

E.16

H tk  = δ h x tk

δ x tk  x tk  = x tk

E.17

The significant real time computational burden imposed by the
use of extended Kalman filters have motivated the search for
more simple estimators which can retain some of the robustness
characteristics of the full EKF. The constant gain EKF is one
such simplification. It is quite easily designed by setting P(tk+1)
and P(tk) equal and solving the resulting time independent
equation for the variance of the estimation error. By using the
resulting P to find K, a constant gain matrix is achieved for a
selected operating point x0 of the system. Such a filter maintains
its robust behaviour even when exposed to significantly varying
signals [Hendricks, 1992]. For practical reasons this approach
was applied for the on-line estimations performed in section 5.3.

The methods of this section not only hold for state estimation but
also for simultaneous state and parameter estimation. The
expressions are still valid although x becomes a generalized state
vector which includes both the unknown state variables and the
uncertain model parameters. The difficulty of determining the
proper covariance matrices (E.2) is, however, more emphasized.

A more detailed and theoretical derivation of the Kalman filter
and its variants is for example given in [Ogata, 1987 and Ljung,
1983].
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F
______________________________________________________

Simulation Environment

When working with modelling, identification and verification it is
important to have access to a good simulation environment - both
hardware and software. All the computations included in this
work have been performed on a Sun™ Sparcstation IPC using
the simulation programs Simnon™ and Simulink™.

Simnon is designed for solving ordinary differential and
difference equations and for simulating dynamical systems.
Numerical integration routines are used to simulate differential
equations and difference equations are solved by iteration. No
symbolic analysis of the systems are possible. The systems may
be described as an interconnection of subsystems (promoting a
hierarchical system description) which may be both in continuous
and discrete time. The user interacts with the program by typing
commands (a graphical interface is available as an add-on
product). Parameters, initial conditions, and system descriptions
can be modifyed interactively and the results are graphically or
numerically displayed on the screen. A built-in macro facility
allows the user to create his own set of commands. As an
example, the straightforward text file for simulating the simple
model (4.1) is illustrated in Figure F.1.

Simulink is an interactive system for simulating dynamical
systems. It is a graphical, mouse-driven program that allows the
user to model a system by drawing a block diagram on the screen
and manipulating it dynamically. It can handle linear, nonlinear,
continuous-time, discrete-time, multivariable, and multirate
systems. A large number of predefined building blocks is included
in the program and it is easy for the user to extend this library
with blocks of his own. Hierarchical models are recommended
since blocks may include other blocks and allows for graphical
’information zooming’. Results are numerically and graphically
available in numerous ways. The comprehensible block diagram
for describing the small model (4.1) is shown in Figure F.2. 
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CONTINUOUS SYSTEM  model4_1
”Model of the Monod growth equation in a single-
”substrate (S)/single-organism (X) batch reactor
”with no other growth limitations.

STATE  S X
DER    dS dX

TIME   t

”Values for the model parameters
mumax :  6         ”maximum specific growth rate 
Ks    :  10        ”half saturation coefficient
b     : 0.48       ”decay rate factor
Y     : 0.66       ”yield factor

”Initial values for the state variables
S : 100            ”substrate concentration
X :  2             ”organism concentration

”Dynamic equations
dS = -mu*X/Y
dX = (mu - b)*X
mu = mumax*S/(Ks + S)  ”Monod growth rate

END

Figure F.1 Simnon text file describing the simple model (4.1).

The major strongpoint of Simulink is the fact that it is an
integral part (toolbox) of the complete Matlab™ (mat rix
laboratory) computing environment. Matlab is an interactive
system whose basic data element is a matrix that does not
require dimensioning. It includes a huge library of predefined
functions and a simple way for the user to define functions of his
own expressed as they are written mathematically - without
traditional programming.

A whole family of application-specific toolboxes that extend the
Matlab environment in order to solve particular classes of
problems is also available. These toolboxes include signal
processing, control system design, system identification,
optimization, neural networks, etc. Altogether this means that
the Simulink user not only has the possibility to perform
simulations but an enormous capability to manipulate and
further investigate the results. All this power is available at the
user’s fingertips in one complete environment.
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Figure F.2 Simulink block diagram of the simple model (4.1).

The compatibility between Matlab and Simnon is also quite good.
It is easy so exchange data files since both systems accept simple
ASCII files in tabular form. Linear, time-invariant systems can
be directly transferred from Matlab to Simnon by a special
translation script. Therefore the user can combine the two
programs and take advantage of the respective strongpoints and
use both of them as a complete model building, simulation, data
analysis, and data manipulation software environment.
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