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Abstract

Severe oscillations in the range of 1 to 100 Hz have been
encountered in inverter fed induction motor drive systems,
especially where there are no external damping loads, such as
fan drives. These oscillations may damage the drive system or
generate noise. It is found that the induction machine has two
resonance frequencies. The damping of the first resonance is
decreased with increased stator resistance, while the damping of
the second resonance is increased with increased stator
resistance. Simple mechanical models are presented which give
physical insight into the reason for the oscillations, as well as
suggestions of how to suppress them.
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1 Introduction

Oscillatory behaviour of electrical machines in certain
applications - also known as instability or hunting - is a well-
known topic. The conditions under which a DC motor exhibits an
oscillatory response to a sudden change of its supply voltage or
load is a common issue in any textbook on electrical machines
(Fitzgerald et al 1985). The oscillatory behaviour of synchronous
machines is also well known and understood (Wagner 1930).
Stepper motors are ill-famed for their poorly damped oscillating
response.

Oscillations in Induction Machines

The oscillatory behaviour of line-fed induction motors in constant
speed applications has also been noticed long time ago, however
less well understood. The reason is probably that the induction
motor is an intricate electro-magnetic-mechanical system,
difficult to analyze and describe in purely electrical terms. The
classical T-shaped per-phase equivalent diagram describes the
induction motor at steady state, giving no hint on the dynamic
behaviour.

Only recently, using the space vector method, a profound
analysis of the oscillations is found (Kovacs 1984). Kovacs has
analyzed overshoot after acceleration, response to a sudden load
change, forced oscillations excited by load fluctuations, and has
derived expressions for the natural frequency and damping of
oscillations. His expressions are not valid at all times however,
due to some limiting assumptions, for example that the stator
resistance is equal to zero.

Kovacs' formulas exposed the fact that the typical resonance
frequencies were in the range of 1 to 100 Hz, i.e. within the
usual range of motor speeds in inverter-fed variable speed drives.
This is the reason why problems caused by instability has become
more accentuated in variable speed drives.

Observations of Oscillations

Excessive oscillations at certain motor speeds are actually
encountered in many applications, especially when the load itself
can not provide sufficient mechanical damping, as fan blowers,
or when the load torque contains a periodic component, as a
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piston compressor, which can excite the oscillations. The
oscillations may also be excited by fluctuations of the air gap
torque due to imperfections in the motor, as eccentricity and
slotting.

Induction Machines Connected to Inverters

It has been observed that large motors (> 10 kW) oscillate more
than small ones (<EEW), motors with low inertia more than
motors with a large-inertia load. The motor inductances have an
influence on the resonance frequency. The influence of winding
resistances on damping is puzzling; some engineers have
observed that the damping increased with a higher stator
resistance, others have found the contrary. In motors connected
to inverters, the DC link capacitor influences both the damping
and the resonance frequencies.

When testing different brands of motors and inverters in a
particular application it has been noticed that some inverter-
motor combinations are more prone to oscillations than others.

Most inverters with simple PWM open loop control have a
tendency to generate a torque fluctuation with a frequency six
times of that of the motor frequency, exciting oscillations.

Imperfections in the power stage such as differences between
individual switches, switching times and dead times will cause
torque fluctuations that can excite oscillations. This is accen-
tuated when high switching frequency is used.

Analysis of the Oscillations

Various attempts have been made to analyze and explain the
causes of these oscillations. A straightforward solution would
seem to be to describe the whole drive system consisting of the
inverter, the motor and the load by a set of ordinary differential
equations, to find the eigenvalues and to identify the modes of
oscillations, natural frequencies and damping. However, the
motor is a multivariable non-linear continuous system, and the
load itself may be a complex mechanical system. All this makes a
straightforward analysis and its interpretation difficult.

To make the system more transparent it has to be simplified. A
standard way is to linearize the system for a certain operating
point - a certain slip for example - to be able to apply the theory
of linear systems for its analysis. This method was attempted by
many researchers (Palit 1978; Alexandrovitz 1987).
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Unfortunately, it is an almost hopeless task to derive algebraic
expressions for the eigenvalues of a matrix of this size. A
numerical solution does not give any physical insight into the
oscillatory behaviour.

Another way to simplify the problem is to use an electro-
mechanical analogy to describe the induction machine.
Interpreting the mathematical model of the induction motor as
an equivalent mechanical system reveals that an induction itself
is a poorly damped oscillating system, whose two resonance
frequencies depend on the motor flux, the leakage and the
magnetizing inductance and rotor moment of inertia. The
damping is only due to the winding resistances.

When the motor is fed from an inverter the DC link capacitor
becomes part of the oscillating system and can also be included in
the mechanical model.

Damping of the Oscillations

Methods for suppressing the oscillations using electronics have
been presented (Mutoh et al 1990) but they are often more
complicated than necessary. However, with a good under-
standing of the physical reasons for the resonance, and some
additional feedback, the resonance problems can be solved in a
better way.

This thesis suggests an efficient yet simple way of damping
torque oscillations disrupting the function of induction motors
that are fed and controlled by inverters.

The new idea is to introduce an electronic damping by a fast
acting control of the angular frequency of the stator flux vector.
A control law based on feedback of the current in the DC link is
derived and its properties are verified by simulations.

Outline of the Thesis

In section 2 the fundamental dynamic equations of the induction
machine are described. Section 3 presents a mechanical analogy
to the dynamic equations. Sections 4 and 5 describe how to
determine the resonance frequencies experimentally. Section 6
and 7 examine the physical reasons for the oscillations. In section
8 the resonance is discussed in terms of eigenvalues of a
linearized system. Finally it is shown how feedback can damp the
oscillations.
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2 Dynamic Behaviour

The dynamic behaviour of an induction machine can be
described by three vector differential equations in a reference
frame attached to the stator (Kovacs 1984):

d¥, — —
d—;:uS—lsRs (21)
d¥, | — -
dtr =J(Uqlr—err (22)
d _
J p = Im(WET) — Ty (2.3)

with the two algebraic conditions
ﬁ]s = l_s(le + Lm) + l_er = lTsLs + l_er (24)

ﬁfr = l_sLm + l_r(Lrl + Lm) = l_sLm + lTrLr (25)

The equations are in per unit (p.u.) notation. (The terminology
and the derivation of the p.u.-values are found in App. A). The
stator current vector and stator voltage vector are

%=§aa+&b+$@) (2.6)
= 20 = o
Us = g (ug + aup + a“ue) (2.7)
where
q = e/ 23 (2.8)

ug, up and u, are instantaneous values of phase-to-neutral
voltages, ig, ip and ic are instantaneous values of line currents.

The system of equations is non-linear and it is difficult to see the
reasons for the oscillations in the equations. If the equations
were linear, the eigenvalues could be calculated, but they
wouldn't give any clue to why the oscillations occur.
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As was mentioned before, attempts have been made to gain
understanding of the oscillations by manipulating the vector
equations, but as the system of equations is a non-linear system
of the fifth order, this method has many disadvantages.

However, a mechanical equivalent of the mathematical model
can be used to gain a better intuitive understanding of the
induction machine. The approach in this thesis is to derive
apparent mechanical equivalent model representations that give
physical explanations for the oscillations, as well as ways of
computing numerical values of resonance frequencies and
damping.
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3 Mechanical Model

A mechanical model of equations (2.4-2.5) is shown in Fig. 3.1,
where inductances have become springs and currents are forces
pulling the springs (Torok et al 1985). The inductance is the
inverse of the stiffness of the spring. (App. E gives a complete
description of corresponding parameters in the electrical and
mechanical models.)

Figure 3.1 Mechanical model of equations (2.4-2.5)

The linked fluxes are vectors with a length and a direction
corresponding to the original fluxes. It is seen that the torque on
the springs developed by the current i g is

Im (Wiig) =T (3.1

which is the driving torque in equation (2.3). The point in Fig. 3.1
where the force i, is attached to the spring L,; follows the
restrictions of equation (2.2). The resistance R, is represented as
a viscous damper which can be a drag-pad on an oily surface.
The velocity difference between the drag-pad and the surface is
proportional to the force applied to the drag-pad, and the velocity
and the force have the same direction. The time derivative of the
flux in the mechanical model is the velocity of the tip of the flux
vector.

If the oily surface is a rotating disc with the angular speed w
(Fig. 3.2) then the relative velocity difference between the drag-
pad and the disc is

_ d¥, . —
Udiff = dtr—Jw'Ifr (3.2)
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The force on the drag-pad is —i » and then the velocity difference
between the disc and the drag-pad can be expressed as

vdiff=—1ir Ry (3.3)

rotor disc

Figure 3.2 Mechanical model of equations (2.2-2.5)

Combining equations (3.2) and (3.3) gives equation (3.4),

d ¥
dt

=J'(U§[r—l?r R, (3.4)

The torque transferred from the drag-pad to the disc is given by
equation (3.1),

Im (Wiig)=T. (3.5)

If the rotating disc represents the rotor and has the actual rotor
moment of inertia, we have an exact mechanical analogy of
equations (2.2-2.5). To get a complete analogy of equations (2.1-
2.5), the stator resistance must be modelled.
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Mechanical Model of the Stator Resistance

Equation (2.1) can also be represented by a mechanical

equivalent. The term iR is represented as a drag-pad on a
viscous surface. The drag-pad is transferring the force ig to the

springs. The viscous surface is moving with the velocity us

independently of the stator flux. All points of this surface are

moving in the same direction at the same speed. Contrary to the

rotor disc, this surface can not rotate. The velocity of the tip of

the stator flux will be the difference between the stator voltage

and the resistive voltage-drop in the stator. Figure 3.3 shows the

mechanical model with the stator resistance included.

Ug stator pane¢

rotor disc

Ug

stator pane¢

Rs AN R,

rotor disc

shaft

Figure 3.3 Mechanical model with the stator resistance included
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Mechanical Model with Fewer Parameters

It is possible to get an equivalent mechanical model of Fig. 3.2,
with fewer parameters than the original one. A few simple
transformations have to be done. The same transformations can
be done to the traditional T-shaped per-phase equivalent circuit
of the stationary motor, to get a model with fewer parameters
(Slemon et al 1980).

In a squirrel-cage induction motor it is impossible to separate the
stator leakage inductance from the rotor leakage inductance. One
of the parameters is redundant and models with one total
leakage inductance instead of two separate ones can be obtained.
Various models can be derived. In the model described below, the
values of the inductances correspond to the values that are
obtained from no-load and locked-rotor tests.

The original model is shown in Fig. 3.4 (a), with the stator and
rotor omitted. The two springs Lg; and L;, in Fig. 3.4 (b) can be
replaced by one spring, L7, and the flux ¥; is transformed into
Yr. This is shown in Fig. 3.4 (c) where

Ly,
Yr=1 w0 L (3.6)
Ly,
Lr=7 o 1kt 3.7
Now let
Ly,

This transformation is analogous to using Thévenin's theorem in
the electrical circuit of Fig. 3.4 (f). The resistors R; and R2 can be
replaced by R7 if the voltage U is replaced by Ur, where

Rz R2

From Fig. 3.4 (d) it is seen that the rotor current vector is

‘r="r4 L,] kOLgEO LROLGEO Ly :
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(b)

(c) (d)

(e) 63)

Figure 3.4 Transformations of the mechanical model.

The stator current i s in Fig. 3.4 (b) may be expressed as the sum
of two components, one due to the stator flux ¥, the other due to
the rotor current i,. If the current i, is set to zero, the first
component is

v kOO

ZSl —L B le Lm (310)

When the stator flux is set to zero, the second component is
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L -
l32— L Elné Lsf__k lr (311)
Thus by superposition,
N LA
ls—l31+l32— les k lr (3.12)

By substitution from equation (3.9),

lS—Lm/k Lgy/RED  Ly/R2Lgy/RE Lrl/k_2

W W R
=Lu LL L, (3.13)
where

L

Ly = 7’" (3.14)
L L

Ly = ]:l + kZl (3.15)

_ g,
Wy = ?’4 (3.16)

Equation (3.13) describes the model in Fig. 3.4 (e). The rotor
resistance must also be transformed. Equation (2.2),

d - -
tr:Ja)lI’r—err

must be replaced by

d¥,
dtR =joWr — ir Rp (3.17)

where

iR=—isa=kir (3.18)
Equation (3.16) implies that
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dﬁlR 1 dﬁlr 1 .

dt “k dt “kJ?

—__ 1T . e 1 ry
'Pr—]; i Ry =]a)'IfR—]§ tr Ry (3.19)

Now the last parameter is found to be

R
Rg = kf;“ (3.20)

and the model in Fig. 3.4 (e) is an exact equivalent of the model
in Fig. 3.4 (a). The complete improved model with the rotor disc
included is shown in Fig. 3.5. Due to the resemblance to the
Greek letter I', this model is sometimes referred to as the I'-model.

Figure 3.5. Mechanical I'-model

The stator equation is equal to the that of the original model,
which leads to the final set of equations (compare equations (2.1-
2.5)):
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dt =Es—lTsRs

7=JW‘PR—7RRR
dw -

J E=Im(q’s*ls)—Tm
@s:(?s"‘lTR) Ly
&’R=§’S+LTRLL

The relations between the models are:

I'-model original model

Ly, = I;:l + l];gl

R = R;
- B

[ = [

W . e

is = is

iR = kir

o Lm
L,EN Lg

21

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Note that the vectors ¥, and Wg have the same arguments, only

the magnitudes are different. This is also true for i » and i g.
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4 Experimental Set-up

With a simple experimental set-up, the oscillatory behaviour of
the induction machine can be investigated. With this test, two
resonance frequencies can be distinguished. The test is performed
with a non-rotating rotor. However, the rotor is not locked, but
free to oscillate.

The machine is magnetized in one direction to rated flux by a
DC-current, flowing through two of the phases of the stator
winding. A voltage source with variable frequency is applied to
the third phase, exciting the machine in a direction
perpendicular to the DC-flux (Fig. 4.1). The voltage source may
be a function generator connected to an audio power amplifier.

)

a

Figure 4.1 DC-excited induction machine

With vector representation of the induction machine, the DC-
current and voltage become the components of the stator current
and voltage in the imaginary axis direction. The stator current
vector and stator voltage vector are

ig= g (iq + aip + a%ic) (4.1)
= 20 = o
Us = g (ug + aup + a“ue) (4.2)

where

a = el 213 (4.3)
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ug, up and u, are instantaneous values of phase-to-neutral
voltages, iy, ip and i; are instantaneous values of line currents,
all in p.u.-notation.

If the line currents are ip = — I4c and i¢ = Igc then the imaginary
parts of the stator current and voltage vectors are

. 2
lsy = — ﬁ Idc (44)
uSy = Rs lsy (45)
The current needed for rated flux ¥ =1 p.u. is
) U4

The frequency of the voltage uy is varied and the the current i,
is measured. The rotor is free to move and will oscillate with the
same frequency as the voltage.

The voltage uq in vector representation becomes the voltage in
the real axis direction

2
Ugsx = § Uqg (47)

The current I;. needed for rated flux can be calculated in two
ways, either by combining equations (4.4) and (4.6) which gives

V3 ¥
Idc= 9 LM (4-8)

or by using information on the rating plate of the machine. The
rated current consists of two parts, one magnetizing current and
one torque generating current. The torque generating current is
equal to the rated current multiplied by rated cosg and the
magnetizing current is the rated current multiplied by rated
sing,

imagn= In Sln(p = | lsy I (49)

where I is the peak-value of the rated current. Equation (4.4)
and (4.9) together with I, rms = In/V2 give

IdC = \/ § In’rms Sln(p (410)
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At low frequencies, the induction machine will behave as an
inductive load i.e. the current iy lags the voltage uqy. As the
frequency is increased, the phase angle is reduced, and the
machine will behave as a capacitive load i.e. the current leads the
voltage. This is due to the moment of inertia of the rotor, acting
as a capacitance. When the frequency is further increased, the
motor will behave as an inductive load again.

The frequencies where the current changes from lagging to
leading, and from leading to lagging are the two resonance
frequencies. The current is low at the first frequency, as in the
case of parallel resonance. The current is high at the second
frequency as in series resonance.

In the following sections the two kinds of resonance will be
referred to as parallel resonance and series resonance.
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5 Measurements

The measurements described in section 4 have been performed
on a Y-connected 1.1 kW two-pole motor from Grundfos. The data
of the motor are found in App. B.

Table 5.1 shows the measured data, where f is the frequency of
the feeding voltage uy and the line current iy shown in Fig. 4.1.
The values of uy and iy are peak values in natural units.
According to equation (4.7), ugy = 2/3 ug, and the p.u.-value is
obtained if this is divided by the nominal voltage U;,. Thus,

2u
Usx = § ﬁi (5.1)
Similarly, isx can be calculated,
) 21
lsx = 3 I% (5.2)

The nominal values are U, = 310 V and I, = 3.82 A. 0 is the
phase angle between uy and iy (6 > 0 if iy leads uy). The last
column shows the gain from ugy to igy.

The value of the magnetizing current was (equation (4.10))

Idc= \’ §In’rm351n(p= \/5'2.7'VHIES 2([E 1.8A

Plots of the gain, 20 - log(isx/usx), versus the frequency f in p.u.,
and the phase angle 0 versus the frequency are found in Fig. 5.1.
The two resonance frequencies can be clearly distinguished
where the phase curve crosses the zero line, the first at about f =
0.2 p.u. (10 Hz) and the second at f = 0.7 p.u. (35 Hz). It is also
seen that the gain curve has a minimum at the parallel
resonance frequency, and a maximum at the series resonance
frequency.

In the following sections, models for the two kinds of resonance
will be developed, as well as expressions for calculation of the
resonance frequencies.
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[dB]

lsx 7 Uy

o [deg]

f [p.u.

Figure 5.1 Measured gain and phase angle between voltage and current
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fIHz]l | flpul | ug V] | uselpud | ig[A]l | igy [pu.] | oldeg]l | igx/usy
5 0.10 7.0 0.015 0.378 0.0660 | —69 4.40
6 0.12 7.0 0.015 0.281 0.0490 @ -71 3.27
7 0.14 7.0 0.015 0.201 0.0350 | -72 2.33
8 0.16 7.0 0.015 0.126 0.0220 | -72 1.47
9 0.18 7.0 0.015 0.083 0.0145 | —55 0.97
10 0.20 7.0 0.015 0.055 0.0096 | —20 0.64
11 0.22 7.0 0.015 0.070 0.0122 24 0.81
12 0.24 7.0 0.015 0.105 0.0184 41 1.23
15 0.30 7.0 0.015 0.218 0.0380 48 2.53
20 0.40 7.0 0.015 0.372 0.0650 38 4.33
25 0.50 7.0 0.015 0.487 0.0850 28 5.67
30 0.60 7.0 0.015 0.562 0.0980 16 6.53
35 0.70 7.0 0.015 0.596 0.1040 3 6.93
40 0.80 7.0 0.015 0.596 0.1040 -8 6.93
45 0.90 7.0 0.015 0.590 0.1030 | —-15 6.87
50 1.00 7.0 0.015 0.567 0.0990 | —-20 6.60

Table 5.1 Measured data from the Grundfos motor.
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6 Series Resonance

A clear mechanical model can be obtained for the series
resonance. The leakage inductance of the machine plays an
essential role in this oscillation. The magnetizing inductance Ly,
does not effect this oscillation and can be considered infinite.

At the nominal flux the mechanical model is examined in the
tangential direction, and the stator voltage vector is assumed to
be perpendicular to the flux. This leads to a model with a series
connection between a spring, a mass, and two viscous dampers,
as in Fig. 6.1 (a).

[ E—

o VW
Rs L, Rr R L.

Us ‘-(1)7 Us ‘-(1)7
J J

(a) (b)

Figure 6.1 Mechanical representation of the series resonance

The spring represents the total leakage inductance Lz, the mass
represents the rotor moment of inertia, and the dampers the
stator and rotor resistances. The two dampers can be replaced by
a single damper Rs + Rr = R as in Fig. 6.1 (b). If the flux differs
from the nominal flux, the mass  can be replaced by a hoist
drum with variable radius ¥ and moment of inertia J (Fig. 6.2
(a)), or by a lever with the mass J attached to its end (Fig. 6.2
(b)).

w
J
s ¥ Us
Tt el >
R L s R L 1
'4
-

(a) (b)

Figure 6.2 Alternative representations of the series resonance allowing
varying flux
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The dynamic equations for the system in Fig. 6.2 can be derived
either directly from the mechanical system or from the vector
equations. The force acting on the mechanical system is
represented by the stator current is. It is seen that

dis _ uSED RlsElj oW

dt ~— L (6.1)
do _ i,
dt = J (6.2)

Another way of deriving these relations is to start with the vector
equations in a coordinate system rotating with the angular
velocity wr = 1. The differential equations (3.21-3.25) have to be
changed according to App. D. The real and imaginary parts of
the equations become

d ¥ .
dtsx = Ugy — lsx Fs + qjsy (6.3)
d ¥ :
7;'2 = Ugy — lgy Rg — Wy (6.4)
d¥, )
WRx =—w YRy — IRx Rr + YRy (6.5)
d'PRx .
di = © Wrx —iry Rr — Wk (6.6)

dw _ lI’sxDls/yED WS’)/DZSXD

If Ly; — « then ig = — ip according to (3.24). At steady state, the
flux, voltage and current vectors might appear as in Fig. 6.3.

Figure 6.3 Flux, current and voltage vectors at steady state

It is seen in the figure that
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isy = imy = 0 (6.8)

IRx = — Lsx (6.9)

Yry =0 (6.10)

Wy, = Way (6.11)

Lsx = (Wsx — Wrx)/LL (6.12)

If (6.5) is subtracted from (6.3) and relations (6.8-6.12) are
inserted, (6.13) is obtained,

di :
LL T;x = Ugx — lsx (Rs + RR) + (I)WSy (6.13)

With the following denotation, equation (6.13) is identical to
equation (6.1),

ls = lgx (6.14)

R =Rs + Rp (6.15)
W= W, (6.16)
Us = Ugy (6.17)

Equation (6.7) becomes identical to (6.2) with igy = 0,

do _ ¥

The system described by (6.1-6.2) can also be described by an
equation of the second order,

. R . Y@ usY
If the characteristic equation
Y2

is compared to a standard oscillatory characteristic equation

$24+2QCs+R%=0 (6.21)

the natural frequency € of (6.19) is found to be
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Q=—— (6.22)
VJOLL

and the relative damping &

R
=gy L. (6.23)
It is seen that the damping is decreased with decreasing stator
resistance. This is typically a problem for large motors with small
relative stator and rotor resistances. In large motors, there is
more space for the windings, resulting in a larger copper area,
reducing the resistances.

If the parameters of the Grundfos motor described in App. B are
inserted into equation (6.22), the natural frequency is

Q = =0.733 P.u.

4
~JOL; VI3.500138

and the damping is from (6.23)

R /T 0146 /T35 _
c=oyViL,= 2 Voi3s=072

The frequency in Hz is equal to the frequency in p.u. multiplied
by 50 (rated electrical frequency) which gives fEBVHz, very
close to the measured value of 35 Hz in the previous section.

To compare the system described by equation (6.19) with the
measured data for other frequencies than the resonance
frequency, a Bode plot can be used. As the measured variables
are ig and uqy, a transfer function from voltage to current is
suitable for comparison. The Laplace transforms of equations
(6.18) and (6.19) are

78

sW = QJ'D (6.24)
R I/ mP U0y

2 == —

sWasp Wrgm W=, (6.25)

where W is the Laplace transform of w.

Combining these equations give the transfer function Hs from Ug
to I, for the series resonance model:
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/L
3§ LU (6.26)

Ly~ p,

Is = Hy(s) Us=
s2E0

Amplitude and argument of Hs(jw) together with the measured
data is found in Fig. 6.4. It is seen that the measured curves
(dashed) lie close to the curves of the transfer function Hg (solid)
for frequencies greater than 0.4 p.u. (20 Hz).

Comparison to Earlier Expressions

Oscillations are also discussed in (Kovacs 1984). The following
characteristic equation is presented:

2T
s2+sps+ =0 (6.27)

where s, denotes the pull-out slip, T, the pull-out torque and 4 is
the moment of inertia in p.u. Note the following differences in the
notation used by Kovacs and in this thesis:

Kovacs Here
p.u. moment of inertia h J
p.u. inductance X L
The pull-out torque is defined as
u20k2
Tp = oX" (6.28)
and the pull-out slip
R
Sp = )?; (6.29)

where

Xy OIX
Xp=Xpt + "o ks Xl + Xl (6.30)
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x
=4
~
K
L
f [p.u.
-
o
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S,
S
L _
f [p.u.

H, Measured data

Figure 6.4 Amplitude and argument of transfer function H
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Substituting A by J and X by L and using equations (3.25),
(6.28) and (6.30), the term 2Tp,/h can be written

2Ty  2uZ0R? u? k2 ug
J =Jm 'X.J Ly kOLJO 1 (6.31)
Using (3.29), the term sp can be written
R, RJII k2R
= . (6.32)

X, ~Xm R2LL
Inserting (6.31) and (6.32), the characteristic equation becomes

, PR u? 0

(6.33)

which only shows two differences to the characteristic equation
(6.20).

In (6.33) the stator voltage ug is found instead of the flux ¥. This
is of no practical importance as the flux is proportional to the
stator voltage. Thus, at nominal voltage (us = 1), the flux also
attains its nominal value (¥ = 1), and if the voltage is increased
or decreased, the magnitude of the flux will follow that of the
voltage. Therefore, either the flux or the voltage can be used
with exactly the same result.

The other difference is of greatest importance. The sum of stator
and rotor resistance in found in (6.20) while only the rotor
resistance is found in (6.33). In (Kovacs 1984) it is assumed that
the stator resistance is zero, and then (6.20) and (6.33) are
identical. However, as will be seen later, the influence of the
stator resistance can not be neglected. A large stator resistance
will reduce the damping of other resonance phenomena.

Series Resonance with DC Link Capacitor

If the induction motor is connected to an inverter the DC link
capacitor becomes part of the oscillating system. The inverter can,
as well as the induction machine, be represented by a mechanical
model.

The inverter can produce voltage vectors in six directions, and
the zero voltage vector, according to Fig. 6.5. The length of the
vectors are
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lul = g Ud (6.34)

If the switching frequency is high enough, a voltage vector in
any direction can be generated by taking a time average of
vectors in two directions and the zero voltage vector.

us Uz

Tu
Uy 0 : ;tguZ

-y -
u1 tao twug
us Ueg

Figure 6.5 Output voltage vectors of an inverter

The zero voltage vector is used during time ¢¢, then u; is used
during ¢; and finally ug during time ¢o. If £EL] #;EI] ¢9EI1 T then the
average amplitude of the voltage vector during time T is

B0 to)2H0 ¢
) < VOED 2E0 24 (6.35)
T 3
and the average argument is
a1 1151 I
O = arccos 1 2. 0=<a=60° (6.36)

VEO 280 0t

By choosing another pair of voltage vectors, an arbitrary
argument, and an arbitrary amplitude

V32, _Ud
ul =KUis'y gUd= - (6.37)

can be obtained, where K is the amplitude factor (almost the
same as duty cycle),

VHEO te)280 21I:It1
T 3%3

Let the average current from the inverter be denoted by I4. The
average power from the inverter during time 7 is

Pinverter = Ud Iq (6.39)

K= (6.38)
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and the power to the motor is

3 : .
Pmotor = 9 (Usx Lsx + Usy Lsy) (6.40)

The power to the motor must equal the power from the inverter,
and it is assumed that ug,EI1 usELl KUgq, isxEL] is and isy =0 This
leads to

Iq = gKis (6.41)

A mechanical model can now be obtained for the inverter and its
DC link capacitor. The capacitor is modelled by a mass, m = 2C/3.
This mass is attached to a lever as in Fig. 6.6 (a).

el el o
2 2
1/3C 13C o
Us Us
> - N I | >
i I — i
1 I's 1 s R L, 1
K K b4

(a) (b)

Figure 6.6 (a) Mechanical model of DC link capacitor (b) DC link capacitor
connected to induction machine

A model of the inverter connected to the motor model of Fig. 6.2
(b) is seen in Fig. 6.6 (b). The flux is proportional to the the stator
voltage us and the inverse of the stator frequency ws,

Us Ud

’P=@:K(JTS (6.42)

If the flux is supposed to be constant, ¥,, the dynamic equations
of the system become
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dis usH ROHD &¥jgHO ROHD oY

dt ~ Ly, Ly, (6.43)
df(U 1Y,
K

dcgd =- ifcsm (6.45)

The equations for this system are non-linear, but can be
linearized around an operating point (igo, wo, Udo), which results
in a system with the state variables

x1 = 0iE] i HO g (6.46)
x9 = owED oEO w, (6.47)
x3=0U4ELD] UgEO Uy, (6.48)
and the input signal
u=0K=K-K, (6.49)

At steady state the state, we have the following relations for the
stator current, angular velocity and flux,

iso = O (6.50)

W = Wg (651)
KoUdo KoUdo

IIIO = Wg = Wo (6.52)

The system can now be described by

x =Ax + Bu (6.53)

where
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[ —ORr -O%K, |
L; L;p Lr
w,
A= g 0 0 (6.54)
0K,
5 0 0
| sHC ]
and
U]
Ly,
B = 0 (6.55)
L 0

if the non-linear terms are neglected.
It is seen in (6.44) and (6.45) that

dUg -B0O0 JEw
dt = oO0COIuge (6.56)

and it can be supposed that

—BI
oUq = m,,?;w (6.57)

The system can now be reduced to a second order system with x =
(0is ow)T

x=Ax + Bu =
[ OR 3E % | [Udo
L, U ., ,.0c00 | Lo
= X + u (658)
w,
| J 0 1 Lo

The characteristic polynomial of matrix A is

vg K8
32+58+JD° o (6.59)
L L s0am
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Compare this to equation (6.20). In equation (6.59) a term
including the DC link capacitor is added.

The natural frequency and damping are

Q= '\/JD EEI‘Z/3EIC1EI . (6.60)

£= - (6.61)
O¥,  L;BK,
20V ﬁ'%/suc
If the DC link capacitor C — «, the expressions for damping and
natural frequency become identical to (6.22) and (6.23).

The smallest value of C and J determines basically the resonance
frequency and damping. The damping can not be increased by
increasing C if J is small compared to C.

One way to increase the damping seems to be to increase the
stator resistance, but this is an unfavourable alternative due to
two reasons: the losses are increased with additional resistances,
and worse, other resonance phenomena might appear. These
phenomena are described in the following sections.

To solve the resonance problems some kind of feedback must be
used, which is described in a later section.



40 Parallel Resonance

7 Parallel Resonance

A clear mechanical model can be obtained also for the parallel
resonance. Computer simulations of the measuring setup show
that the amplitudes of the stator, rotor and leakage fluxes are
nearly constant at the parallel resonance frequency. To derive a
useful model which describes the oscillations, starting with the
mechanical model of Fig. 3.5, a few simplifying assumptions are
made, based on the results from simulations:

¢ The rotor resistance is zero in the tangential direction of the
rotor. This means that if the rotor flux is turned an angle ¢,
the rotor will rotate the same angle ¢ (the slip is zero).
However, the rotor drag-pad can move in the radial direction,
allowing the motor to be magnetized.
The leakage inductance Ly, is zero.
The amplitudes of the fluxes are constant
usy is constant.

It follows from the assumption L7, = 0 that

Y =Y. =y (7.1)

This can be described by a mechanical equivalent where the
stator and rotor drag-pads are stuck together as if they were one,
and this single drag-pad moves in a radial slot i.e. Rr = 0 in the
tangential direction (Fig. 7.1).

The amplitudes of the fluxes are constant,

W= W= W= 5" Ly (7.2)
S

First we make an analysis of this model to determine the natural
frequency. Let @ denote the angle between the flux and
imaginary axis (Fig. 7.2). As the rotor resistance is assumed to be
zero, @ is also equal to the displacement of the rotor. In this first
analysis it is assumed that

The torque is approximately
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, , ' m 2y Zm
T =isy lPsmqo~—LM sing~—p ¢ (7.4)
do . T ZmB
dt =P = g0y 7 (75)
The natural frequency is
4
Q="—""— (7.6)

rotor disc

Figure 7.1. Mechanical representation of the parallel resonance

The behaviour of this oscillation can be compared to the
behaviour of a pendulum according to Fig. 7.2.

@ (P@

isy F=mg ¢
(a) (b)

Figure 7.2 (a) Mechanical representation of parallel resonance (b)scillating
pendulum
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Compare the frequency in equation (7.6) to that of equation
(6.22). The only difference between the frequencies is that the
leakage inductance in (6.22) is replaced by the magnetizing
inductance in (7.6). Physically, the difference is much more
significant. The magnetizing inductance Lj; influences the
resonance frequency, but it is not oscillating in the radial
direction, which means that the energy stored in Ljs is not
oscillating. In the case of the series resonance, the leakage
inductance does not only effect the resonance frequency but is
also part of the oscillating system, exchanging energy with the
rotor of the machine.

This is a system without damping. To find the damping
characteristics, the model must be more extensive. The stator
equation has to be included. The stator equation is the same as
for the complete model of the machine,

d¥v d¥% - -
%: dtS:uS—lsRs (77)

As the amplitude of ¥ is constant, the flux can only change in a
direction perpendicular to itself,

dv . -
mta]a)'lf (7.8)
(7.7) and (7.8) imply
as — lTS Rs =j(,0ﬁl= w (—qlsy +qusx) (79)

If (7.9) is split into real and imaginary parts, (7.10) and (7.11)
are obtained,

Ugxy = Rs isx — W qlsy (710)
Ugy = Rs isy + Cl)q[sx (711)
Equations (7.2), (7.10) and (7.11) give

. w u
ise=p Wyt R (7.12)
w y

lsy =~ R, 'Psx—LiM (7.13)
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The real and imaginary parts of ¥ become, according to Fig. 7.2,
s = Using (7.14)
Ysy = — Wcosgp (7.15)

The torque can now be expressed as

T = Im (@gkl_s) = lpsx lsy - lI]Sy iS.’)C =
Y2
= 'Pcoscp ¥ _y2eog2 ©op —Wikin2pp —7 sing (7.16)
R R R Ly

If @ is small, then cosg = 1, cos?p + sin?p = 1 and sing =~ ¢, and
the torque is

— ot 2~ @ =
T = lIfRS —y Re Ly ¢ (7.17)

The dynamic equations for the system in Fig. 7.1 are

d‘” T 1(D¢g@yﬂ§ﬂ:ﬂﬁ'ﬁj (7.18)

dt =w (7.19)

and can also be written as a second-order differential equation,

'ID2 'Pl:lz Ugx
@+ g.Of* gor,f = ¥ JOR, (7.20)
We have the same natural frequency as in (7.6)
U4
Q= (7.21)

VJOLy

l /ZM
= ZRS (7.22)

The parameters of the Grundfos motor (App. B) are inserted into
equation (7.21) and (7.22), which give the natural frequency

and the relative damping
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4
__1____ =0.215 p.u. = 10.8 Hz

and the relative damping

4 M 1 5
¢=9r.V J =omo7 Vi35 =29

Note that a value of damping greater than 1 means that there
are no complex poles.

As with the series resonance model, a transfer function from
voltage to current can be used to compare the model with
measured data. If cosp = 1, then (7.12) and (7.15) give

Usx @ 4

lgx = Rs ~ Rs (7.23)

The Laplace transforms of (7.19), (7.20) and (7.23) are

so=W (7.24)
Y2 Y12 Usy
2 = =y
S @+R8chl5+ JI:ILM@_ lPJEle (7.25)
U. Wy
Loy = R—Ss’“ - R, (7.26)
and they give
Y12

1 SHor,

st = Hp(s) st = l?s D) Y2 st (7.27)
2
sl BBy

The amplitude and argument of the transfer function H, for the
parallel resonance model is found in Fig. 7.3 (solid). The
accordance to the measured data (dashed) is good for fre-
quencies up to the resonance frequency, 0.22 p.u. (10.8 Hz).
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Figure 7.3 Amplitude and argument of transfer function H,,



46 Parallel Resonance

It must be pointed out that since some simplifications are made,
the expressions for the resonance frequency do not give exact
values, but they describe how the different parameters influence
the resonance properties.

The two mechanical models for series resonance (Fig. 6.2) and
parallel resonance (Fig. 7.1) can be used to understand the
behaviour of the oscillations of the induction machine.

It is important to notice that an increasing stator resistance
reduces the damping of the parallel resonance but increases the
damping of the series resonance. If MOSFETSs are used in the
inverter, with a relatively high on-state resistance, this
resistance will act as an increased stator resistance, reducing the
damping of the parallel resonance.

Another case with high stator resistance is if the motor is fed
from long wires. The resistances of the wires in series with the
stator windings have the same effect as stator windings with
higher resistance.

Trying to solve the series resonance problem by increasing the
stator resistance will not only increase the losses but also make
the parallel resonance problem worse.
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8 Linearization

Resonance frequencies of linear systems can be found by
computing the eigenvalues of the system matrix. The induction
machine is non-linear, and this method can not be used directly.
However, the equations describing the machine can be
linearized, and the eigenvalues of the linear system can be
computed.

This method is in many ways inferior to the methods described
earlier in this thesis, as it only results in numerical values but
gives no physical insight into the problem. As a comparison, the
results of linearization are presented.

To facilitate the linearization, the following time constants are
defined:

7y, = L1/Rs (8.1)
7, = L1/Rp (8.2)
LyOLy,
B tME':| %_L 1 (8.3)
ms= Ry TR/ LyED L) -
Tmech =dJ L, (8.4)

The dynamic equations are rewritten so that the deviation from
an operating point, ¥, Pro, wp, is investigated,

Wy = Wy + AW (8.5)
_qu = @Ro + A_'PR (8.6)
w=wy+ Aw (8.7)
as = EO + A a (88)

At steady state, the stator and rotor fluxes are equal,

@so = TPRO = @0 (8-9)

The voltage needed at steady state for the flux ¥, is
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— Rs —
Upg = E; 'Ifo (810)

With the equations (8.1-10) inserted into the equations (3.21-
3.25), the following equations for the fluxes are obtained,

dAa% - 1 - 1 -
Tdr =AU g AW+ AR (8.11)
dA_'IfR_l

_ 1 - - =
di =1, AW~ AWR +jAw APk +jA0W, (8.12)

The value of ¥, and w, in the tests of section 5 is
q’ox = O and 'Iloy =-1 (8.13)
wo =0 (8.14)

The flux equations, split into real (x) and imaginary (y) parts
become

DT = B = o MW+ AW (8.15)
d%jsi= Auy—rlmsA'I’sy +%SA'PRy (8.16)
dAdeifo _ Tllr AW, ‘ler AWy — AwOAWRy+ Ao (8.17)

and the mechanical equation (3.23) can be written

dAw_
dt ~

A qlsxng q’sxDA q]rﬁn A q’rxm’rxDA qls:Flj Tm
- m, (8.19)

If the non-linear terms, underlined above, are neglected,
equations (8.15-8.19) can be replaced by the matrix equation

x =Ax + Bu
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or
_ 1 1 -
~Tms 0 T 0 0 "1 0 0
1 1
0 —Tms 0 @ 0 0 1 0
1 1 0 0 0
X = 7, 0 ~7, 0O 1 |x+ o . u
1 1
O Tlr O _Tlr O -1
0 O
1 1 B Tmech
L Tmech 0 " Tmech 0 0 A
(8.20)
where
AWy
Alpsy
x=| AWRx (8.21)
Aw
and
Usx
u = usy (822)
Tm

The Grundfos motor described in App. B has the following time
constants:

75 = Li/Rs = 0.138/0.07 = 1.97
7, = Li/Rg = 0.138/0.076 = 1.82

1 1
tms = R/ Ly  L;0.0700/1.66HM0.138)

Tmech =<J Lr, =13.5-0.138 = 1.86

=1.82

which give the matrix A of equation (8.20),
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[ —0.55
0
0.55
0

Linearization

0
—-0.55
0
0.55
0

0.51
0
—-0.55
0
—0.54

0
0.51
0
—-0.55
0

0]
0
1
0

| 0.54 0 |
The eigenvalues of this matrix are shown in Fig. 8.1 (a). In (b)
are shown the poles of the transfer function Hg from equation
(6.26) and in (c) the poles of Hp from equation (7.27),

I s/Ly, 7.2500s
s = 2= o2
2B g Y~ s2Eoed sS4
Ly~ p,
'IEI2

14.300s2EM164

H, JI:ILM
Rs 2T Lg% T s2E0060  sEIN045

It is seen in the figure that the two poles of Hg lie very close to
two of the eigenvalues of A, and the two poles of Hj lie close to
two other eigenvalues of A. This justifies that Hs and Hp give a
good description of the oscillatory behaviour of the induction
machine.
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-

p1,2 =-0.53 = 0.4¢

p3 = -1.08
P4 = -0.044
ps = -0.02:Z

(a)

p1,2=-0.53 =+ 0.5

(b)

p1= -1.01
pz2 =-0.044

(c)
Figure 8.1 (a) Eigenvalues of matrix A (b)Ebles of H, (c)Ebles of H),

51
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9 Feedback

Damping of the series resonance described in section 6 can be
obtained by feedback. One way is to measure the DC link current
I4 and let it control the voltage and stator frequency.

The feasibility of feedback as a way of damping the oscillations is
illustrated by a standard proportional controller with gain G. The
damping of the system described by equation (6.58) can now be
chosen arbitrarily. With the feedback law

oK = -G - dig (9.1)
the damping of the closed-loop system becomes

- REIN GOUq, 9.2)

O, LiBEK,
20V Eyshe

The gain can now be calculated,
OF, L.
20g é g sndd
G = Udo

If for example the damping £ = 1 is desired for the Grundfos
motor at nominal flux with K, = 0.58 and Uy, = 1.73, the gain
will be

(9.3)

G =0.0325

It is important that the stator frequency ws is adjusted in
accordance with the voltage amplitude factor K, to get the
voltage to frequency ratio constant,

K
Ws = Wso E (94)

A simulation of this (App. G) is shown in Fig. 9.1, where (a)
shows a start of the motor without feedback, and (b) shows a
start with GEII0325. Note that the oscillation is damped, but
that the start is slower with feedback.
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w [pu]

(a)
time [p.u.

w [pu]

(b)

[

0 e ,

Figure 9.1 Start of induction machine (a) without and (b) with feedback
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10 Conclusions

The induction machine itself is an oscillating system with
different oscillating modes. If the induction machine is connected
to an inverter, a torque ripple is introduced that can excite the
oscillations. The DC link capacitor of the inverter will also become
a part of the oscillating system.

In this thesis, mechanical models are presented which give an
intuitive understanding of the different oscillating modes. This
understanding is necessary for the design of regulators that can
suppress the oscillations. One such regulator is presented which
measures only current from the DC link.
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Appendix

A Per Unit Notation

The basic quantities are:

- rated phase voltage Uj (peak value)

- rated phase current I, (peak value)

- rated electrical angular velocity w;

- rated mechanical angular velocity w, = w/zp
where zj is the number of pole pairs

- rated phase flux ¥, = Up/w;

- rated apparent power P, = 3/2 Uy I,

- rated torque T}, = Pr/wp,

- base impedance Z, = U,/I,

- rated start time H = J w, 7P,

The p.u. values of parameters and variables can now be
calculated (voltage in p.u. is equal to the voltage in natural units
divided by the rated voltage U, etc):

voltage u/Uy,
current i/l
resistance R/Z,
inductance wy LiZy,
capacitance w; CZy
flux ¥ /%¥n
moment of inertia oy H
torque /Ty,
time wyt
electrical angular velocity we] /y

mechanical angular velocity  wmech /on
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B Motor Data

The measurements described in section 4 and 5 have been
performed on a Y-connected Grundfos MG 80 B with the
following characteristics:

rated phase voltage, U;, (peak value) 310V
rated phase current, I, (peak value) 3.82 A

rated electrical angular velocity, w; 314 rad/s
number of pole pairs, zp 1

rated power, P 1.1 kW
rated power factor, cos ¢ 0.84
base impedance, Z;, 81.2 Q
stator resistance, R 6 Q

rotor resistance, R, 6 Q
stator leakage inductance, Lg;] 0.0173 H
rotor leakage inductance, L;; 0.0173 H
main inductance, L, 0414 H
moment of inertia, 0.00077 kg m?

in p.u. notation:

Rs 0.07
Ry 0.07
Lg 0.065
Ly 0.065
L 1.6
J 13.5
k 0.96
Ly 1.66
Ly, 0.138

Rr 0.076
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C Vector Equations

For simulation and other purposes, the vector equations (3.21-
3.25) can be split up. One way is to separate the real and ima-
ginary parts, another is to separate amplitude and argument of
the flux vectors (Fig. C.1).

The following system of five differential equations is obtained if
(3.21-3.23) are split into real (x) and imaginary (y) parts :

d¥. .
d;x = Usx — lsx Rs

d¥. )
7;.2 = Ugy — lgy Rs

d%g )
dtx = —w WRry — irx RBR

dWgr )
WX= o Wgryx —igy RR

dw _ lI’sxDls/yED WS’)/DZSXD
dt ~ J

Note that these equations are written in the stator reference
frame.

Im A i \istan Im A
>
- —— :{S)i ———_} israd
\ iR #\IRtan
\
YRy b
‘ 777777777 -
Yy \ sy | IRrad
\
YR YR
\ o 1 > p \ y >
Re Re

(a) (b)
Figure C.1 Flux and current vectors and their components

(a) Stator (b)Bbtor

The stator and rotor flux vectors can be expressed with
amplitudes and arguments,
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ﬁIs=q’sej(j

Let the index rad represent components pointing in the radial
direction, parallel to the flux, and the index fan represent
components in the tangential direction, perpendicular to the flux.
This means for example that isrqq is the x-component of the
stator current expressed in a reference frame attached to the
stator flux, and isz;qn is the corresponding y-component. The
equations (3.21-3.25) can be written as five differential equations
and some algebraic relations,

d¥s )
di = Usrad — Rs tsrad

do

dt = (ustan — Rs istan)/ s

dWr .
“Jdi = lRrad Rr

d i
d? = (YR @ — irtan)/ ¥R

dw .
E = Ysistan / J

tsrad = Ws/Lyr — Ws/Li, — Wg cosd/Ly,
istan = Wr sind/Ly,
LRrad = Wr/L1, — Ws cosd/Ly,
iRtan = —Ws sind/Ly,
0=0-p

The following two relations transform the stator voltage from
coordinates in the stator reference frame to the stator flux
reference frame,

Usrad = Usx COSO + Ugy SINOC

Ustan = —Usgx sino + u,gy COSO
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D Coordinate Transformations

The vector equations can be transformed to a coordinate system
rotating with the angular velocity wz. The quantities in the
rotating system are denoted by a superscript-k. The angle
between the rotating system, and the coordinate system fixed to
the stator is denoted by ¢. It follows that

If these relations are inserted into the vector equations in stator
coordinates, the following equations are obtained,

dvtk _, _ o
gy =uf—TERs—j op WE
d W
dt

=joP¥ —iF Rr—j o, UF

The torque equation is invariant against coordinate transfor-
mations.
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E Mechanical Analogy

An electric motor is both an electrical and a mechanical system.
The interaction between the electrical and mechanical parts are
often complicated to analyze. By representing the electrical part
of the system by its mechanical analogy, the complete system
becomes mechanical and more easy to analyze.

If the product of two quantities in the electrical system yields
power, then the product of the corresponding mechanical
quantities must be power. In the electrical system, the product of
current and voltage is power. If current is represented for
example by force the voltage should be represented by speed as
the product of force and speed is power. This gives a very useful
mechanical analogy. The table below shows some other
corresponding electrical and mechanical quantities, as well as
mechanical components corresponding to the electrical ones.

Electrical system

Mechanical equivalent

power P [W]
current i [A]
voltage u [V]
linked flux ¥[Vs]
resistance R [Q]
inductance L [H]
capacitance C [F]

power P [W]
force F' [N]
speed v [m/s]
distance x [m]

inverse of damping 1/d [m/Ns]
inverse of spring stiffness 1/ [m/N]

mass m [kg]

i =u/R
resistance
*|=WL
inductance
. _~du
|—Cdt

7 capacitance

J-F=vd

viscous damper

F =k x
spring
dv.
%F_mdt
m WV
mass




62 Appendix

F Roots, Natural Frequency and Damping
The equation
s2+2QCs+Q2%2=0

has the roots

&<1: s=-QC+j\/1HO {32
&1 s =—Q¢ ++/ 3200

In the case of complex roots, they can be demonstrated by Fig.
F.1. Qis the natural frequency and € is the damping.

cosg = &

X

Figure F.1 Relation between location of roots, natural frequency and damping

Figure F.2 shows the time variation of the state variable x of the
system

B4 2QCx + Qx=0

with the initial value x, = 1. The natural frequency Q = 1, the
damping £ = 0.1 for the solid line, and £ = 1 for the dashed line.
The dotted line shows

e‘CQt; £=0.1,02=1

The frequency of oscillation for = 0.1 is

w=Q+v1HO 32 =0.995 rad/s
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time

Figure F.2 Simulation of EI+ 2QCx + Qx=0
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G Simulation File

The simulations have been performed with the program
Simnon™. The following file is used to simulate the start of an
induction motor with and without feedback.

conti nuous system f eedback

"gamma nodel of induction nmachine in p.u. notation
"stator coordinates

"DC link current feedback

"stator flux, rotor flux, angular velocity, rotor angle,
"arg of stator voltage

state psisx psisy psirx psiry w theta argu

der dpsi sx dpsisy dpsirx dpsiry dw dtheta dargu

time t

"Grundfos paraneters in p.u.
LM 1.6

LL: 0.138

Rs: 0. 07

Rr:0.076

J:13.5

Tl oad: O

zero: 0

psin:1 "nom nal fl ux

Ud: 1. 73
KO: 0. 58
ws0:1 "stator frequency

"f eedback

del t aK=-gai n*del t al d*2/ 3/ KO
K=KO+del t aK

u=K* Ud

ws=ws 0* K/ KO

| dO: 0. 0273

| d=i s*cos(argis-argu)

del tald=1d-1d0

gai n: 0. 0325

"feedi ng vol tage
dar gu=ws
usx=u*cos(argu)
usy=u*si n(argu)

us=sqrt(sqgr(usx)+sqr(usy))
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"dynam c equations
dpsi sx=usx- Rs*i sx

dpsi sy=usy- Rs*i sy

dpsi rx=-wpsiry-Rr*irx
dpsiry= wpsirx-Rr*iry
dw=( Tor que- Tl oad) / J

dt het a=w

i mx=psi sx/ Lm

i my=psi sy/Lm

i mesqrt (i mxK*i mx+ my*i ny)
ar gi mrat an2(i ny, i nx)

i rx=(psirx-psisx)/LL
iry=(psiry-psisy)/LL
argir=atan2(iry,irx)
ir=sqrt(irx*irx+iry*iry)
I SX=i mX-irx

isy=iny-iry

i s=sqrt(isx*isx+isy*isy)
argi s=atan2(i sy, i sx)

Tor que=( psi SX*i sy- psi Sy*i sx)

P2=w*Tor que
P1=(3/2)*(usx*i sx+usy*i sy)

"rotating reference frame

fi0:-0.17

fi=ws*t-fiO
cfi=cos(fi)
sfi=sin(fi)

psi sxr= psi sx*cfi +psi sy*sfi
psi syr =- psi sx*sfi +psi sy*cfi
psirxr= psirx*cfi+psiry*sfi
psiryr=-psirx*sfi+psiry*cfi

end
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H List of Symbols

amplitude factor K
angular velocity )
capacitance C
current l
rotor current lr, IR
stator current lg
line current la, Ib, le
frequency f
stator frequency fs, wg
inductance L
mutual inductance Ly, Ly
rotor leakage inductance Ly
stator leakage inductance Lg;
Laplace operator S
linked flux 4
rotor flux v, Ygn
stator flux 128
moment of inertia J
natural frequency Q
power factor cosQ
relative damping g
resistance R
rotor resistance R,, Rp
stator resistance R
slip S
pull-out slip Sp
time constant T
time t
torque T
load torque Tm
pull-out torque Ty
voltage u
stator voltage Ug

phase-to-neutral voltage Ug, Ub, Uc
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