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Abstract

Severe oscillations in the range of 1 to 100 Hz have been
encountered in inverter fed induction motor drive systems,
especially where there are no external damping loads, such as
fan drives. These oscillations may damage the drive system or
generate noise. It is found that the induction machine has two
resonance frequencies. The damping of the first resonance is
decreased with increased stator resistance, while the damping of
the second resonance is increased with increased stator
resistance. Simple mechanical models are presented which give
physical insight into the reason for the oscillations, as well as
suggestions of how to suppress them.
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1 Introduction

Oscillatory behaviour of electrical machines in certain
applications - also known as instability or hunting - is a well-
known topic. The conditions under which a DC motor exhibits an
oscillatory response to a sudden change of its supply voltage or
load is a common issue in any textbook on electrical machines
(Fitzgerald et al 1985). The oscillatory behaviour of synchronous
machines is also well known and understood (Wagner 1930).
Stepper motors are ill-famed for their poorly damped oscillating
response.

Oscillations in Induction Machines

The oscillatory behaviour of line-fed induction motors in constant
speed applications has also been noticed long time ago, however
less well understood. The reason is probably that the induction
motor is an intricate electro-magnetic-mechanical system,
difficult to analyze and describe in purely electrical terms. The
classical T-shaped per-phase equivalent diagram describes the
induction motor at steady state, giving no hint on the dynamic
behaviour.

Only recently, using the space vector method, a profound
analysis of the oscillations is found (Kov�cs 1984). Kov�cs has
analyzed overshoot after acceleration, response to a sudden load
change, forced oscillations excited by load fluctuations, and has
derived expressions for the natural frequency and damping of
oscillations. His expressions are not valid at all times however,
due to some limiting assumptions, for example that the stator
resistance is equal to zero.

Kov�cs' formulas exposed the fact that the typical resonance
frequencies were in the range of 1 to 100 Hz, i.e. within the
usual range of motor speeds in inverter-fed variable speed drives.
This is the reason why problems caused by instability has become
more accentuated in variable speed drives.

Observations of Oscillations

Excessive oscillations at certain motor speeds are actually
encountered in many applications, especially when the load itself
can not provide sufficient mechanical damping, as fan blowers,
or when the load torque contains a periodic component, as a
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piston compressor, which can excite the oscillations. The
oscillations may also be excited by fluctuations of the air gap
torque due to imperfections in the motor, as eccentricity and
slotting.

Induction Machines Connected to Inverters

It has been observed that large motors (> 10 kW) oscillate more
than small ones (<�2�kW), motors with low inertia more than
motors with a large-inertia load. The motor inductances have an
influence on the resonance frequency. The influence of winding
resistances on damping is puzzling; some engineers have
observed that the damping increased with a higher stator
resistance, others have found the contrary. In motors connected
to inverters, the DC link capacitor influences both the damping
and the resonance frequencies.

When testing different brands of motors and inverters in a
particular application it has been noticed that some inverter-
motor combinations are more prone to oscillations than others.

Most inverters with simple PWM open loop control have a
tendency to generate a torque fluctuation with a frequency six
times of that of the motor frequency, exciting oscillations.

Imperfections in the power stage such as differences between
individual switches, switching times and dead times will cause
torque fluctuations that can excite oscillations. This is accen-
tuated when high switching frequency is used.

Analysis of the Oscillations

Various attempts have been made to analyze and explain the
causes of these oscillations. A straightforward solution would
seem to be to describe the whole drive system consisting of the
inverter, the motor and the load by a set of ordinary differential
equations, to find the eigenvalues and to identify the modes of
oscillations, natural frequencies and damping. However, the
motor is a multivariable non-linear continuous system, and the
load itself may be a complex mechanical system. All this makes a
straightforward analysis and its interpretation difficult.

To make the system more transparent it has to be simplified. A
standard way is to linearize the system for a certain operating
point - a certain slip for example - to be able to apply the theory
of linear systems for its analysis. This method was attempted by
many researchers (Palit 1978; Alexandrovitz 1987).
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Unfortunately, it is an almost hopeless task to derive algebraic
expressions for the eigenvalues of a matrix of this size. A
numerical solution does not give any physical insight into the
oscillatory behaviour.

Another way to simplify the problem is to use an electro-
mechanical analogy to describe the induction machine.
Interpreting the mathematical model of the induction motor as
an equivalent mechanical system reveals that an induction itself
is a poorly damped oscillating system, whose two resonance
frequencies depend on the motor flux, the leakage and the
magnetizing inductance and rotor moment of inertia. The
damping is only due to the winding resistances.

When the motor is fed from an inverter the DC link capacitor
becomes part of the oscillating system and can also be included in
the mechanical model.

Damping of the Oscillations

Methods for suppressing the oscillations using electronics have
been presented (Mutoh et al 1990) but they are often more
complicated than necessary. However, with a good under-
standing of the physical reasons for the resonance, and some
additional feedback, the resonance problems can be solved in a
better way.

This thesis suggests an efficient yet simple way of damping
torque oscillations disrupting the function of induction motors
that are fed and controlled by inverters.

The new idea is to introduce an electronic damping by a fast
acting control of the angular frequency of the stator flux vector.
A control law based on feedback of the current in the DC link is
derived and its properties are verified by simulations.

Outline of the Thesis

In section 2 the fundamental dynamic equations of the induction
machine are described. Section 3 presents a mechanical analogy
to the dynamic equations. Sections 4 and 5 describe how to
determine the resonance frequencies experimentally. Section 6
and 7 examine the physical reasons for the oscillations. In section
8 the resonance is discussed in terms of eigenvalues of a
linearized system. Finally it is shown how feedback can damp the
oscillations.
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2 Dynamic Behaviour

The dynamic behaviour of an induction machine can be
described by three vector differential equations in a reference
frame attached to the stator (Kov�cs 1984):

d
Ð
Ys

dt  = 
Ð
us Ð 

Ð
i s Rs (2.1)

d
Ð
Yr

dt  = jw
Ð
Yr Ð 

Ð
i r Rr (2.2)

J  
dw
dt  = Im(

Ð
Ys*

Ð
i s) Ð Tm (2.3)

with the two algebraic conditions

Ð
Ys = 

Ð
i s(Lsl + Lm) + 

Ð
i rLm = 

Ð
i sLs + 

Ð
i rLm (2.4)

Ð
Yr = 

Ð
i sLm + 

Ð
i r(Lrl + Lm) = 

Ð
i sLm + 

Ð
i rLr (2.5)

The equations are in per unit (p.u.) notation. (The terminology
and the derivation of the p.u.-values are found in App. A). The
stator current vector and stator voltage vector are

Ð
i s = 

2
3 (ia + 

Ð
aib + 

Ð
a2ic) (2.6)

Ð
us = 

2
3 (ua + 

Ð
aub + 

Ð
a2uc) (2.7)

where

Ð
a = e j 2p/3 (2.8)

ua, ub and uc are instantaneous values of phase-to-neutral
voltages, ia, ib and ic are instantaneous values of line currents.

The system of equations is non-linear and it is difficult to see the
reasons for the oscillations in the equations. If the equations
were linear, the eigenvalues could be calculated, but they
wouldn't give any clue to why the oscillations occur.
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As was mentioned before, attempts have been made to gain
understanding of the oscillations by manipulating the vector
equations, but as the system of equations is a non-linear system
of the fifth order, this method has many disadvantages.

However, a mechanical equivalent of the mathematical model
can be used to gain a better intuitive understanding of the
induction machine. The approach in this thesis is to derive
apparent mechanical equivalent model representations that give
physical explanations for the oscillations, as well as ways of
computing numerical values of resonance frequencies and
damping.
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3 Mechanical Model

A mechanical model of equations (2.4-2.5) is shown in Fig. 3.1,
where inductances have become springs and currents are forces
pulling the springs (T�r�k et al 1985). The inductance is the
inverse of the stiffness of the spring. (App. E gives a complete
description of corresponding parameters in the electrical and
mechanical models.)

Ys Yr

Lm

Lsl Lrl

is ir

Figure 3.1 Mechanical model of equations (2.4-2.5)

The linked fluxes are vectors with a length and a direction
corresponding to the original fluxes. It is seen that the torque on
the springs developed by the current 

Ð
i s is

Im (
Ð
Ys*

Ð
i s) = T (3.1)

which is the driving torque in equation (2.3). The point in Fig. 3.1
where the force Ði r is attached to the spring Lrl follows the
restrictions of equation (2.2). The resistance Rr is represented as
a viscous damper which can be a drag-pad on an oily surface.
The velocity difference between the drag-pad and the surface is
proportional to the force applied to the drag-pad, and the velocity
and the force have the same direction. The time derivative of the
flux in the mechanical model is the velocity of the tip of the flux
vector.

If the oily surface is a rotating disc with the angular speed w
(Fig. 3.2) then the relative velocity difference between the drag-
pad and the disc is

Ð
vdiff = 

d
Ð
Yr

dt  Ð jw
Ð
Yr  (3.2)
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The force on the drag-pad is Ð
Ð
i r and then the velocity difference

between the disc and the drag-pad can be expressed as

Ð
vdiff = Ð 

Ð
i r Rr (3.3)

Yr

is

w

Rr

Ys

drag-pad

rotor disc

Figure 3.2 Mechanical model of equations (2.2-2.5)

Combining equations (3.2) and (3.3) gives equation (3.4),

d
Ð
Yr

dt  = jw
Ð
Yr Ð 

Ð
i r Rr (3.4)

The torque transferred from the drag-pad to the disc is given by
equation (3.1),

Im (
Ð
Ys*

Ð
i s) = T. (3.5)

If the rotating disc represents the rotor and has the actual rotor
moment of inertia, we have an exact mechanical analogy of
equations (2.2-2.5). To get a complete analogy of equations (2.1-
2.5), the stator resistance must be modelled.
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Mechanical Model of the Stator Resistance

Equation (2.1) can also be represented by a mechanical
equivalent. The term 

Ð
i s � Rs is represented as a drag-pad on a

viscous surface. The drag-pad is transferring the force Ði s to the
springs. The viscous surface is moving with the velocity Ðus
independently of the stator flux. All points of this surface are
moving in the same direction at the same speed. Contrary to the
rotor disc, this surface can  not rotate. The velocity of the tip of
the stator flux will be the difference between the stator voltage
and the resistive voltage-drop in the stator. Figure 3.3 shows the
mechanical model with the stator resistance included.

Yr

is

w

RrRs

us

Ys

rotor disc

stator pane

us us

shaft

stator pane

rotor disc

Rr
Rs

Figure 3.3 Mechanical model with the stator resistance included
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Mechanical Model with Fewer Parameters

It is possible to get an equivalent mechanical model of Fig. 3.2,
with fewer parameters than the original one. A few simple
transformations have to be done. The same transformations can
be done to the traditional T-shaped per-phase equivalent circuit
of the stationary motor, to get a model with fewer parameters
(Slemon et al 1980).

In a squirrel-cage induction motor it is impossible to separate the
stator leakage inductance from the rotor leakage inductance. One
of the parameters is redundant and models with one total
leakage inductance instead of two separate ones can be obtained.
Various models can be derived. In the model described below, the
values of the inductances correspond to the values that are
obtained from no-load and locked-rotor tests.

The original model is shown in Fig. 3.4 (a), with the stator and
rotor omitted. The two springs Lsl and Lm in Fig. 3.4 (b) can be
replaced by one spring, LT, and the flux Ys is transformed into
YT. This is shown in Fig. 3.4 (c) where

YT = 
Lm

Lm�+� Lsl
 Ys (3.6)

LT = 
Lm

Lm�+� Lsl
 Lsl (3.7)

Now let

Lm
Lm�+� Lsl

 = k (3.8)

This transformation is analogous to using Th�venin's theorem in
the electrical circuit of Fig. 3.4 (f). The resistors R1 and R2 can be
replaced by RT if the voltage U is replaced by UT, where

RT = 
R2

R1�+� R2
 R1 and UT = 

R2
R1�+� R2

 U

From Fig. 3.4 (d) it is seen that the rotor current vector is

Ð
i r = 

Ð�
Ð
YT �+�

Ð
Yr

LT �+� Lrl
 = 

Ð� k
Ð
Ys

k� Lsl�+� Lrl
 + 

Ð
Yr

k� Lsl�+� Lrl
(3.9)
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(a)

Ys Yr

Lsl Lrl

is ir

Rr

Lm

(b)

Ys

Lm

Lsl

ir

Ym

is

(c)

ir

YmYT

LT

(d)

Ym

YT

LT
Lrl

ir

Yr

(e)

is

LL

LM

RR

YR

iR

Ys

(f)

U
R1

R2

UT

RT

Figure 3.4 Transformations of the mechanical model.

The stator current 
Ð
i s in Fig. 3.4 (b) may be expressed as the sum

of two components, one due to the stator flux ÐYs, the other due to
the rotor current 

Ð
i r. If the current 

Ð
i r is set to zero, the first

component is

Ð
i s1 = 

Ð
Ys

Lm�+� Lsl
 = 

k �
Ð
Ys

Lm
(3.10)

When the stator flux is set to zero, the second component is
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Ð
i s2 = Ð 

Lm
Lm�+� Lsl

 
Ð
i r = Ð k 

Ð
i r (3.11)

Thus by superposition,

Ð
i s = 

Ð
i s1 + 

Ð
i s2 = 

k�
Ð
Ys

Lsl
 Ð k 

Ð
i r (3.12)

By substitution from equation (3.9),

Ð
i s = 

Ð
Ys

Lm/k + 
Ð
Ys

Lsl/k�+� Lrl/k2 Ð 
Ð
Yr/k

Lsl/k�+� Lrl/k2 =

= 
Ð
Ys
LM

 + 
Ð
Ys
LL

 Ð 
Ð
YR
LL

(3.13)

where

LM = 
Lm
k (3.14)

LL = 
Lsl
k  + 

Lrl
k2 (3.15)

Ð
YR = 

Ð
Yr
k (3.16)

Equation (3.13) describes the model in Fig. 3.4 (e). The rotor
resistance must also be transformed. Equation (2.2),

d
Ð
Yr

dt  = jw
Ð
Yr Ð 

Ð
i r Rr 

must be replaced by

d
Ð
YR
dt  = jw

Ð
YR Ð 

Ð
i R RR (3.17)

where

Ð
i R = Ð 

Ð
i s2 = k 

Ð
i r (3.18)

Equation (3.16) implies that
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d
Ð
YR
dt  = 

1
k 

d
Ð
Yr

dt  = 
1
k jw

Ð
Yr Ð 

1
k 

Ð
i r Rr  = jw

Ð
YR Ð 

1
k2 

Ð
i R Rr (3.19)

Now the last parameter is found to be

RR = 
Rr
k2 (3.20)

and the model in Fig. 3.4 (e) is an exact equivalent of the model
in Fig. 3.4 (a). The complete improved model with the rotor disc
included is shown in Fig. 3.5. Due to the resemblance to the
Greek letter G, this model is sometimes referred to as the G-model.

is

w

LL

LM

RR

YRYs

Rs

Figure 3.5. Mechanical G-model

The stator equation is equal to the that of the original model,
which leads to the final set of equations (compare equations (2.1-
2.5)):
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d
Ð
Ys

dt  = 
Ð
us Ð 

Ð
i s Rs (3.21)

d
Ð
YR
dt  = jw

Ð
YR Ð 

Ð
i R RR (3.22)

J  
dw
dt  = Im(

Ð
Ys*

Ð
i s) Ð Tm (3.23)

Ð
Ys = (

Ð
i s + 

Ð
i R) LM (3.24)

Ð
YR = 

Ð
Ys + 

Ð
i RLL (3.25)

The relations between the models are:

G-model original model

LM =
Lm
k (3.26)

LL =
Lsl
k  + 

Lrl
k2 (3.27)

Rs = Rs (3.28)

RR =
Rr
k2 (3.29)

Ð
Ys =

Ð
Ys (3.30)

Ð
YR =

Ð
Yr
k (3.31)

Ð
i s =

Ð
i s (3.32)

Ð
i R = k 

Ð
i r (3.33)

k = 
Lm

Lm�+� Lsl
(3.34)

Note that the vectors 
Ð
Yr and 

Ð
YR have the same arguments, only

the magnitudes are different. This is also true for 
Ð
i r and 

Ð
i R.
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4 Experimental Set-up

With a simple experimental set-up, the oscillatory behaviour of
the induction machine can be investigated. With this test, two
resonance frequencies can be distinguished. The test is performed
with a non-rotating rotor. However, the rotor is not locked, but
free to oscillate.

The machine is magnetized in one direction to rated flux by a
DC-current, flowing through two of the phases of the stator
winding. A voltage source with variable frequency is applied to
the third phase, exciting the machine in a direction
perpendicular to the DC-flux (Fig. 4.1). The voltage source may
be a function generator connected to an audio power amplifier.

ua

Idc

ia

ib

ic

Figure 4.1 DC-excited induction machine

With vector representation of the induction machine, the DC-
current and voltage become the components of the stator current
and voltage in the imaginary axis direction. The stator current
vector and stator voltage vector are

Ð
i s = 

2
3 (ia + 

Ð
aib + 

Ð
a2ic) (4.1)

Ð
us = 

2
3 (ua + 

Ð
aub + 

Ð
a2uc) (4.2)

where

Ð
a = e j 2p/3 (4.3)
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ua, ub and uc are instantaneous values of phase-to-neutral
voltages, ia, ib and ic are instantaneous values of line currents,
all in p.u.-notation.

If the line currents are ib = Ð Idc and ic = Idc then the imaginary
parts of the stator current and voltage vectors are

isy = Ð 
2

Ö̀3
 Idc (4.4)

usy = Rs isy (4.5)

The current needed for rated flux Y = 1 p.u. is

|isy| = 
Y

LM
(4.6)

The frequency of the voltage ua is varied and the the current ia
is measured. The rotor is free to move and will oscillate with the
same frequency as the voltage.

The voltage ua in vector representation becomes the voltage in
the real axis direction

usx = 
2
3 ua (4.7)

The current Idc needed for rated flux can be calculated in two
ways, either by combining equations (4.4) and (4.6) which gives

Idc = Ö̀
3

2  
Y

LM
(4.8)

or by using information on the rating plate of the machine. The
rated current consists of two parts, one magnetizing current and
one torque generating current. The torque generating current is
equal to the rated current multiplied by rated cosj and the
magnetizing current is the rated current multiplied by rated
sinj,

imagn= In sinj = |isy| (4.9)

where In is the peak-value of the rated current. Equation (4.4)
and (4.9) together with In,rms = In/Ö̀2 give

Idc = Ö̀3
2    In,rms sinj (4.10)
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At low frequencies, the induction machine will behave as an
inductive load i.e. the current ia lags the voltage ua. As the
frequency is increased, the phase angle is reduced, and the
machine will behave as a capacitive load i.e. the current leads the
voltage.  This is due to the moment of inertia of the rotor, acting
as a capacitance. When the frequency is further increased, the
motor will behave as an inductive load again.

The frequencies where the current changes from lagging to
leading, and from leading to lagging are the two resonance
frequencies. The current is low at the first frequency, as in the
case of parallel resonance. The current is high at the second
frequency as in series resonance.

In the following sections the two kinds of resonance will be
referred to as parallel resonance and series resonance.
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5 Measurements

The measurements described in section 4 have been performed
on a Y-connected 1.1 kW two-pole motor from Grundfos. The data
of the motor are found in App. B.

Table 5.1 shows the measured data, where f is the frequency of
the feeding voltage ua  and the line current ia shown in Fig. 4.1.
The values of ua and ia are peak values in natural units.
According to equation (4.7), usx = 2/3 ua, and the p.u.-value is
obtained if this is divided by the nominal voltage Un. Thus,

usx = 
2
3 

ua
Un

(5.1)

Similarly, isx can be calculated,

isx = 
2
3 

ia
In

(5.2)

The nominal values are Un = 310 V and In = 3.82 A. q is the
phase angle between ua and ia (q > 0 if ia leads ua). The last
column shows the gain from usx to isx.

The value of the magnetizing current was (equation (4.10))

Idc = Ö̀3
2 In,rms sin j = Ö̀3

2 á 2.7 á Ö̀``````�1�Ð�cos 2j� = 1.8 A

Plots of the gain, 20 á log(isx/usx), versus the frequency f in p.u.,
and the phase angle q versus the frequency are found in Fig. 5.1.
The two resonance frequencies can be clearly distinguished
where the phase curve crosses the zero line,  the first at about f =
0.2 p.u. (10 Hz) and the second at f = 0.7 p.u. (35 Hz). It is also
seen that the gain curve has a minimum at the parallel
resonance frequency, and a maximum at the series resonance
frequency.

In the following sections, models for the two kinds of resonance
will be developed, as well as expressions for calculation of the
resonance frequencies.
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f [p.u.]

f [p.u.]

q
 [

d
eg

]
i  

   
/ 

u 
   

  
 [

d
B
]

sx
sx

Figure 5.1 Measured gain and phase angle between voltage and current



Measurements 27

f [Hz] f [p.u.] ua [V] usx [p.u.] ia [A] isx [p.u.] q [deg] isx/usx
5 0.10 7.0 0.015 0.378 0.0660 Ð69 4.40
6 0.12 7.0 0.015 0.281 0.0490 Ð71 3.27
7 0.14 7.0 0.015 0.201 0.0350 Ð72 2.33
8 0.16 7.0 0.015 0.126 0.0220 Ð72 1.47
9 0.18 7.0 0.015 0.083 0.0145 Ð55 0.97

10 0.20 7.0 0.015 0.055 0.0096 Ð20 0.64
11 0.22 7.0 0.015 0.070 0.0122 24 0.81
12 0.24 7.0 0.015 0.105 0.0184 41 1.23
15 0.30 7.0 0.015 0.218 0.0380 48 2.53
20 0.40 7.0 0.015 0.372 0.0650 38 4.33
25 0.50 7.0 0.015 0.487 0.0850 28 5.67
30 0.60 7.0 0.015 0.562 0.0980 16 6.53
35 0.70 7.0 0.015 0.596 0.1040 3 6.93
40 0.80 7.0 0.015 0.596 0.1040 Ð8 6.93
45 0.90 7.0 0.015 0.590 0.1030 Ð15 6.87
50 1.00 7.0 0.015 0.567 0.0990 Ð20 6.60

Table 5.1 Measured data from the Grundfos motor.
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6 Series Resonance

A clear mechanical model can be obtained for the series
resonance. The leakage inductance of the machine plays an
essential role in this oscillation. The magnetizing inductance LM
does not effect this oscillation and can be considered infinite.

At the nominal flux the mechanical model is examined in the
tangential direction, and the stator voltage vector is assumed to
be perpendicular to the flux. This leads to a model with a series
connection between a spring, a mass, and two viscous dampers,
as in Fig. 6.1 (a).

J
Rs RRLL

us
w

J
R LL

us
w

(a) (b)

Figure 6.1 Mechanical representation of the series resonance

The spring represents the total leakage inductance LL, the mass
represents the rotor moment of inertia, and the dampers the
stator and rotor resistances. The two dampers can be replaced by
a single damper Rs + RR = R as in Fig. 6.1 (b). If the flux differs
from the nominal flux, the mass J can be replaced by a hoist
drum with variable radius Y and moment of inertia J (Fig. 6.2
(a)), or by a lever with the mass J attached to its end (Fig. 6.2
(b)).

R LL Y

us wY

w

i s

w

Y
1

J
us

i s R LL

(a) (b)

Figure 6.2 Alternative representations of the series resonance allowing
varying flux



Series Resonance 29

The dynamic equations for the system in Fig. 6.2 can be derived
either directly from the mechanical system or from the vector
equations. The force acting on the mechanical system is
represented by the stator current is. It is seen that

dis
dt  = 

us�Ð� Ris�Ð� wY
LL

(6.1)

dw
dt  = 

Y�i s
J (6.2)

Another way of deriving these relations is to start with the vector
equations in a coordinate system rotating with the angular
velocity wk = 1. The differential equations (3.21-3.25) have to be
changed according to App. D. The real and imaginary parts of
the equations become

dYsx
dt  = usx Ð isx Rs + Ysy (6.3)

dYsy
dt  = usy Ð isy Rs Ð Ysx (6.4)

dYRx
dt  = Ðw YRy Ð iRx RR + YRy (6.5)

dYRy
dt  = w YRx Ð iRy RR Ð YRx (6.6)

dw
dt  = 

Ysx� isy�Ð� Ysy� isx�
J (6.7)

If LM ® ¥ then is = Ð iR according to (3.24). At steady state, the
flux, voltage and current vectors might appear as in Fig. 6.3.

us
isi

YsYR

LL
R

Figure 6.3 Flux, current and voltage vectors at steady state

It is seen in the figure that
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isy = iRy = 0 (6.8)

iRx = Ð isx (6.9)

YRx = 0 (6.10)

Ysy = YRy (6.11)

isx = (Ysx Ð YRx)/LL (6.12)

If (6.5) is subtracted from (6.3) and relations (6.8-6.12) are
inserted, (6.13) is obtained,

LL 
disx
dt  = usx Ð isx (Rs + RR) + wYsy (6.13)

With the following denotation, equation (6.13) is identical to
equation (6.1),

is = isx (6.14)

R = Rs + RR (6.15)

Y = Ð Ysy (6.16)

us = usx (6.17)

Equation (6.7) becomes identical to (6.2) with isy = 0,

dw
dt  = 

Y�i s
J (6.18)

The system described by (6.1-6.2) can also be described by an
equation of the second order,

� ¬w + 
R
LL

 
.
w + 

Y� 2

J�L L
 w = 

us� Y
J�L L

(6.19)

If the characteristic equation

s2 + 
R
LL

 s + 
Y� 2

J�L L
  = 0 (6.20)

is compared to a standard oscillatory characteristic equation
(App. F),

s2 + 2Wz s + W 2 = 0 (6.21)

the natural frequency W of (6.19) is found to be
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W = 
Y

Ö̀`J̀ � LL
(6.22)

and the relative damping z

z = 
R

2Y Ö̀ J
LL

(6.23)

It is seen that the damping is decreased with decreasing stator
resistance. This is typically a problem for large motors with small
relative stator and rotor resistances. In large motors, there is
more space for the windings, resulting in a larger copper area,
reducing the resistances.

If the parameters of the Grundfos motor described in App. B are
inserted into equation (6.22), the natural frequency is

W = 
Y

Ö̀`J̀ � LL
   = 

1
Ö̀````````13.5�á�0.138

   = 0.733 p.u.

and the damping is from (6.23)

z = 
R

2Y Ö̀ J
LL

  = 
0.146

2  Ö̀`13.5
0.138 = 0.72

The frequency in Hz is equal to the frequency in p.u. multiplied
by 50 (rated electrical frequency) which gives f �=�37�Hz, very
close to the measured value of 35 Hz in the previous section.

To compare the system described by equation (6.19) with the
measured data for other frequencies than the resonance
frequency, a Bode plot can be used. As the measured variables
are ia and ua, a transfer function from voltage to current is
suitable for comparison. The Laplace transforms of equations
(6.18) and (6.19) are

s W = 
Y�I s

J (6.24)

s2 W + s 
R
LL

 W + 
Y� 2

J�L L
 W = 

Us� Y
J�L L

(6.25)

where W is the Laplace transform of w.

Combining these equations give the transfer function Hs from Us
to Is, for the series resonance model:
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Is  = Hs(s) Us= 
s/LL

s2�+� s�
R
LL

�+�
Y� 2

J�L L

 Us (6.26)

Amplitude and argument of Hs(jw) together with the measured
data is found in Fig. 6.4. It is seen that the measured curves
(dashed) lie close to the curves of the transfer function Hs (solid)
for frequencies greater than 0.4 p.u. (20 Hz).

Comparison to Earlier Expressions

Oscillations are also discussed in (Kov�cs 1984). The following
characteristic equation is presented:

s2 + sp s + 
2Tp
h  = 0 (6.27)

where sp denotes the pull-out slip, Tp the pull-out torque and h is
the moment of inertia in p.u. Note the following differences in the
notation used by Kov�cs and in this thesis:

Kov�cs Here
p.u. moment of inertia h J
p.u. inductance X L

The pull-out torque is defined as

Tp = 
us2� k2

2Xr'
(6.28)

and the pull-out slip

sp = 
Rr
Xr'

(6.29)

where

Xr' = Xrl + 
Xm � Xsl

Xm�+� Xsl
 = Xrl + k Xsl (6.30)
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Figure 6.4 Amplitude and argument of transfer function Hs
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Substituting h by J and X by L and using equations (3.25),
(6.28) and (6.30), the term 2Tp/h can be written

2Tp
J  = 

2us2� k2

J �2� Xr'  = 
us2

J   
k2

Lrl�+� k� Lsl
 = 

us2

J�L L
(6.31)

Using (3.29), the term sp can be written

Rr
Xr'

 = 
Rr�/� k2

Xr'�/� k2 = 
RR
LL

(6.32)

Inserting (6.31) and (6.32), the characteristic equation  becomes

s2 + 
RR
LL

 s + 
us2

J�L L
 = 0 (6.33)

which only shows two differences to the characteristic equation
(6.20).

In (6.33) the stator voltage us is found instead of the flux Y. This
is of no practical importance as the flux is proportional to the
stator voltage. Thus, at nominal voltage (us = 1),  the flux also
attains its nominal value (Y = 1), and if the voltage is increased
or decreased, the magnitude of the flux will follow that of the
voltage. Therefore, either the flux or the voltage can be used
with exactly the same result.

The other difference is of greatest importance. The sum of stator
and rotor resistance in found in (6.20) while only the rotor
resistance is found in (6.33). In (Kov�cs 1984) it is assumed that
the stator resistance is zero, and then (6.20) and (6.33) are
identical. However, as will be seen later, the influence of the
stator resistance can not be neglected. A large stator resistance
will reduce the damping of other resonance phenomena.

Series Resonance with DC Link Capacitor

If the induction motor is connected to an inverter the DC link
capacitor becomes part of the oscillating system. The inverter can,
as well as the induction machine, be represented by a mechanical
model.

The inverter can produce voltage vectors in six directions, and
the zero voltage vector, according to Fig. 6.5. The length of the
vectors are
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|u| = 
2
3 Ud (6.34)

If the switching frequency is high enough, a voltage vector in
any direction can be generated by taking a time average of
vectors in two directions and the zero voltage vector.

u1

u2u3

u4

u5 u6

u0

t 1 u 1

t 2 u 2

t 0 u 0

Tu

Figure 6.5 Output voltage vectors of an inverter

The zero voltage vector is used during time t0, then u1 is used
during t1 and finally u2 during time t2. If t0�+� t1�+� t2�=� T then the
average amplitude of the voltage vector during time T is

|u| = Ö̀`````````(t1�+� t2)2�Ð� t1� t2
T  

2
3 Ud (6.35)

and the average argument is

a = arccos 
t1�+�0.5� t2

Ö̀`````````(t1�+� t2)2�Ð� t1� t2
 ; 0 £ a £ 60° (6.36)

By choosing another pair of voltage vectors, an arbitrary
argument, and an arbitrary amplitude

|u| = K Ud £ Ö̀
3

2  
2
3 Ud = 

Ud

Ö̀3
(6.37)

can be obtained, where K is the amplitude factor (almost the
same as duty cycle),

K = Ö̀`````````(t1�+� t2)2�Ð� t1� t2
T  

2
3 £ 

1
Ö̀3

(6.38)

Let the average current from the inverter be denoted by Id. The
average power from the inverter during time T is

Pinverter = Ud Id (6.39)
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and the power to the motor is

Pmotor = 
3
2 (usx isx + usy isy) (6.40)

The power to the motor must equal the power from the inverter,
and it is assumed that usx �=� us �=� KUd, isx �=� is and isy =�0. This
leads to

Id = 
3
2 K is (6.41)

A mechanical model can now be obtained for the inverter and its
DC link capacitor. The capacitor is modelled by a mass, m = 2C/3.
This mass is attached to a lever as in Fig. 6.6 (a).

J

R LL

us

w

Y
11 i s

Ud

K

2
3 C

us

1 i s

Ud

K

2
3 C

(a) (b)

Figure 6.6 (a) Mechanical model of DC link capacitor (b) DC link capacitor
connected to induction machine

A model of the inverter connected to the motor model of Fig. 6.2
(b) is seen in Fig. 6.6 (b). The flux is proportional to the the stator
voltage us and the inverse of the stator frequency ws,

Y = 
us
ws = K 

Ud
ws (6.42)

If the flux is supposed to be constant, Yo,  the dynamic equations
of the system become
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dis
dt  = 

us�Ð� R � is�Ð� wYo
LL

 = 
KUd�Ð� R� is�Ð� wYo

LL
 (6.43)

dw
dt  = 

is� Yo
J (6.44)

dUd
dt  = Ð 

K� is

�
2

3� C�
(6.45)

The equations for this system are non-linear, but can be
linearized around an operating point (iso, wo, Udo), which results
in a system with the state variables

x1 = dis�=� is�Ð� iso (6.46)

x2 = dw �=� w�Ð� wo (6.47)

x3 = dUd�=� Ud�Ð� Udo (6.48)

and the input signal

u = dK = K Ð Ko (6.49)

At steady state the state, we have the following relations for the
stator current, angular velocity and flux,

iso = 0 (6.50)

wo = ws (6.51)

Yo = 
KoUdo

ws  = 
KoUdo

wo (6.52)

The system can now be described by

.
x = Ax + Bu (6.53)

where
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A = 

 ë
ê
ê
ê
ê
ê
êé

 û
ú
ú
ú
ú
ú
úù

Ð� R
LL

Ð� Yo
LL

Ko
LL

Yo
J 0 0

Ð� Ko
2
3� C

0 0

(6.54)

and

B = 

 ë
ê
ê
êé

 û
ú
ú
úù

Udo
LL

0

0

(6.55)

if the non-linear terms are neglected.

It is seen in (6.44) and (6.45) that

dUd
dt  = 

Ð�3� J�K
2� C � Yo

 
dw
dt (6.56)

and it can be supposed that

dUd = 
Ð�3� J�K
2� C � Yo

 dw (6.57)

The system can now be reduced to a second order system with x =
(dis dw)T

.
x = Ax + Bu =

= 

 ëê
ê
êé

 ûú
ú
úùÐ� R

LL
������

ÐYo
LL

�Ð�
3J�K o

2

2LL� C � Yo

Yo
J 0

x + 

 ëê
ê
ê
êé

 ûú
ú
ú
úùUdo

LL

0

u (6.58)

The characteristic polynomial of matrix A is

s2 + 
R
LL

 s + 
Yo

2

J�L L
 + 

Ko
2

2
3� C�L L

(6.59)
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Compare this to equation (6.20). In equation (6.59) a term
including the DC link capacitor is added.

The natural frequency and damping are

W = Ö̀````Yo
2

J�L L
�+�

Ko
2

2/3� C�L L
(6.60)

z = 
R

2� Ö̀̀ ```LL� Yo
2

J �+�
LL� Ko

2

2/3� C

(6.61)

If the DC link capacitor C ® ¥, the expressions for damping and
natural frequency become identical to (6.22) and (6.23).

The smallest value of C and J determines basically the resonance
frequency and damping. The damping can not be increased by
increasing C if J is small compared to C.

One way to increase the damping seems to be to increase the
stator resistance, but this is an unfavourable alternative due to
two reasons: the losses are increased with additional resistances,
and worse, other resonance phenomena might appear. These
phenomena are described in the following sections.

To solve the resonance problems some kind of feedback must be
used, which is described in a later section.
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7 Parallel Resonance

A clear mechanical model can be obtained also for the parallel
resonance. Computer simulations of the measuring setup show
that the amplitudes of the stator, rotor and leakage fluxes are
nearly constant at the parallel resonance frequency. To derive a
useful model which describes the oscillations, starting with the
mechanical model of Fig. 3.5, a few simplifying assumptions are
made, based on the results from simulations:

¥ The rotor resistance is zero in the tangential direction of the
rotor. This means that if the rotor flux is turned an angle j,
the rotor will rotate the same angle j  (the slip is zero).
However, the rotor drag-pad can move in the radial direction,
allowing the motor to be magnetized.

¥ The leakage inductance LL is zero.
¥ The amplitudes of the fluxes are constant
¥ usy is constant.

It follows from the assumption LL = 0 that

Ð
Ys = 

Ð
Yr = 

Ð
Y (7.1)

This can be described by a mechanical equivalent where the
stator and rotor drag-pads are stuck together as if they were one,
and this single drag-pad moves in a radial slot i.e. RR = 0 in the
tangential direction (Fig. 7.1).

The amplitudes of the fluxes are constant,

Y = Ys = Yr = 
Ðusy
Rs

 LM (7.2)

First we make an analysis of this model to determine the natural
frequency. Let j  denote the angle between the flux and
imaginary axis (Fig. 7.2). As the rotor resistance is assumed to be
zero, j is also equal to the displacement of the rotor. In this first
analysis it is assumed that

Y » Ð isy LM (7.3)

The torque is approximately
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T » isy Y sinj » Ð 
Y� 2

LM
 sinj » Ð 

Y� 2

LM
 j (7.4)

dw
dt  = � ¬j = 

T
J  = Ð 

Y� 2

JLM
 j (7.5)

The natural frequency is

W = 
Y

Ö̀```J � LM
(7.6)

rotor disc

is

LM

Y

im

Figure 7.1. Mechanical representation of the parallel resonance

The behaviour of this oscillation can be compared to the
behaviour of a pendulum according to Fig. 7.2.

isy

Y

LM

j j m

l

F = mg

(a) (b)

Figure 7.2 (a) Mechanical representation of parallel resonance (b)�Oscillating
pendulum
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Compare the frequency in equation (7.6) to that of equation
(6.22). The only difference between the frequencies is that the
leakage inductance in (6.22) is replaced by the magnetizing
inductance in (7.6). Physically, the difference is much more
significant. The magnetizing inductance LM influences the
resonance frequency, but it is not oscillating in the radial
direction, which means that the energy stored in LM is not
oscillating. In the case of the series resonance, the leakage
inductance does not only effect the resonance frequency but is
also part of the oscillating system, exchanging energy with the
rotor of the machine.

This is a system without damping. To find the damping
characteristics, the model must be more extensive. The stator
equation has to be included. The stator equation is the same as
for the complete model of the machine,

d
Ð
Y

dt  = 
d

Ð
Ys

dt  = 
Ð
us Ð 

Ð
i s Rs (7.7)

As the amplitude of 
Ð
Y is constant, the flux can only change in a

direction perpendicular to itself,

d
Ð
Y

� dt � = jw
Ð
Y (7.8)

(7.7) and (7.8) imply

Ð
us Ð 

Ð
i s Rs  = jw

Ð
Y = w (ÐYsy + jYsx) (7.9)

If (7.9) is split into real and imaginary parts, (7.10) and (7.11)
are obtained,

usx = Rs isx Ð w Ysy (7.10)

usy = Rs isy + wYsx (7.11)

Equations (7.2), (7.10) and (7.11) give

isx = 
w
Rs

 Ysy + 
usx
Rs

(7.12)

isy = Ð 
w
Rs

 Ysx Ð 
Y

LM
(7.13)
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The real and imaginary parts of 
Ð
Y become, according to Fig. 7.2,

Ysx = Y sinj (7.14)

Ysy = Ð Y cosj (7.15)

The torque can now be expressed as

T = Im (
Ð
Ys*

Ð
i s) = Ysx isy Ð Ysy isx =

= Y cosj 
usx
Rs

 ÐY 2cos2j 
w
Rs

 Ð Y 2sin2j 
w
Rs

 Ð 
Y� 2

LM
 sinj (7.16)

If j is small, then cosj » 1, cos2j  + sin2j = 1 and sinj » j, and
the torque is

T = Y 
usx
Rs

 ÐY 2 
w
Rs

 Ð 
Y� 2

LM
 j (7.17)

The dynamic equations for the system in Fig. 7.1 are

dw
dt  = 

T
J  = 

1
J 

 èç
ç
æ

 ø÷
÷
ö

� Y�
usx

Rs
�Ð Y� 2�

w
Rs

�Ð�
Y� 2

LM
� j� (7.18)

dj
dt  = w (7.19)

and can also be written as a second-order differential equation,

� ¬j + 
Y� 2

Rs� J 
.
j + 

Y� 2

J � LM
 j = Y 

usx
J� Rs

(7.20)

We have the same natural frequency as in (7.6)

W = 
Y

Ö̀```J � LM
(7.21)

and the relative damping

z = 
Y

2Rs
 Ö̀LM

J (7.22)

The parameters of the Grundfos motor (App. B) are inserted into
equation (7.21) and (7.22), which give the natural frequency
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W = 
Y

Ö̀```J � LM
 =   

1
Ö̀``````13.5�á�1.6

   = 0.215 p.u. = 10.8 Hz

and the relative damping

z = 
Y

2Rs
 Ö̀LM

J    = 
1

2�á�0.07  Ö̀`1.6
13.5   = 2.5

Note that a value of damping greater than 1 means that there
are no complex poles.

As with the series resonance model, a transfer function from
voltage to current can be used to compare the model with
measured data. If cosj » 1, then (7.12) and (7.15) give

isx = 
usx
Rs

 Ð 
wY
Rs

(7.23)

The Laplace transforms of (7.19), (7.20) and (7.23) are

sF = W (7.24)

s2 F + 
Y� 2

Rs� J sF + 
Y� 2

J � LM
 F = Y 

Usx
J� Rs

(7.25)

Isx = 
Usx
Rs

 Ð 
WY
Rs

(7.26)

and they give

Isx = Hp(s) Usx = 
1
Rs

 
s2�+�

Y� 2

J � LM

s2�+� s�
Y� 2

Rs� J�+�
Y� 2

J � LM

 Usx (7.27)

The amplitude and argument of the transfer function Hp for the
parallel resonance model is found in Fig. 7.3 (solid). The
accordance to the measured data (dashed) is good  for fre-
quencies up to the resonance frequency, 0.22 p.u. (10.8 Hz).
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Figure 7.3 Amplitude and argument of transfer function Hp
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It must be pointed out that since some simplifications are made,
the expressions for the resonance frequency do not give exact
values, but they describe how the different parameters influence
the resonance properties.

The two mechanical models for series resonance (Fig. 6.2) and
parallel resonance (Fig. 7.1) can be used to understand the
behaviour of the oscillations of the induction machine.

It is important to notice that an increasing stator resistance
reduces the damping of the parallel resonance but increases the
damping of the series resonance. If MOSFETs are used in the
inverter, with a relatively high on-state resistance, this
resistance will act as an increased stator resistance, reducing the
damping of the parallel resonance.

Another case with high stator resistance is if the motor is fed
from long wires. The resistances of the wires in series with the
stator windings have the same effect as stator windings with
higher resistance.

Trying to solve the series resonance problem by increasing the
stator resistance will not only increase the losses but also make
the parallel resonance problem worse.
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8 Linearization

Resonance frequencies of linear systems can be found by
computing the eigenvalues of the system matrix. The induction
machine is non-linear, and this method can not be used directly.
However, the equations describing the machine can be
linearized, and the eigenvalues of the linear system can be
computed.

This method is in many ways inferior to the methods described
earlier in this thesis, as it only results in numerical values but
gives no physical insight into the problem. As a comparison, the
results of linearization are presented.

To facilitate the linearization, the following time constants are
defined:

tls = LL/Rs (8.1)

tlr = LL/RR (8.2)

tms = 
��

LM� LL
LM�+�� LL

��

Rs
 = 

1
Rs�(1/ LM�+�1/ LL) (8.3)

tmech = J LL (8.4)

The dynamic equations are rewritten so that the deviation from
an operating point, Yso, YRo, wo, is investigated,

Ð
Ys = 

Ð
Yso + D

Ð
Ys (8.5)

Ð
YR = 

Ð
YRo + D

Ð
YR (8.6)

w = wo + Dw (8.7)

Ð
us = 

Ð
uo + D 

Ð
u (8.8)

At steady state, the stator and rotor fluxes are equal,

Ð
Yso = 

Ð
YRo = 

Ð
Yo (8.9)

The voltage needed at steady state for the flux Yo is
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Ð
uo = 

Rs
LM

 
Ð
Yo (8.10)

With the equations (8.1-10) inserted into the equations (3.21-
3.25), the following equations for the fluxes are obtained,

dD
Ð
Ys

dt  = D 
Ð
u Ð 

1
tms D

Ð
Ys + 

1
tls

 D
Ð
YR (8.11)

dD
Ð
YR

dt  = 
1
tlr

 D
Ð
Ys Ð 

1
tlr

 D
Ð
YR + jDw D

Ð
YR + jDw

Ð
Yo (8.12)

The value of Yo and wo in the tests of section 5 is

Yox = 0 and Yoy = Ð1 (8.13)

wo = 0 (8.14)

The flux equations, split into real (x) and imaginary (y) parts
become

dDYsx
dt  = Dux Ð 

1
tms DYsx + 

1
tls

 DYRx (8.15)

dDYsy
dt  = Duy Ð 

1
tms DYsy + 

1
tls

 DYRy (8.16)

dDYRx
dt  = 

1
tlr

 DYsx Ð 
1
tlr

 DYRx Ð Dw � DYRy + Dw (8.17)

dDYRy
dt  = 

1
tlr

 DYsy Ð 
1
tlr

 DYRy + Dw � DYRx (8.18)

and the mechanical equation (3.23) can be written

dDw
dt  =

DYsx�Ð� DYsx� DYry�Ð� DYrx�+�DYrx� DYsy�Ð� Tm
J�L L

 (8.19)

If the non-linear terms, underlined above, are neglected,
equations (8.15-8.19) can be replaced by the matrix equation

.
x = Ax + Bu
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or
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(8.20)

where

x = 

 ëê
ê
ê
êé

 ûú
ú
ú
úù

DYsx
DYsy
DYRx
DYRy
Dw

(8.21)

and

u = 
 ë
ê
ê
ê
ê
é

 û
ú
ú
ú
ú
ùusx

usy
Tm

(8.22)

The Grundfos motor described in App. B has the following time
constants:

tls = LL/Rs = 0.138/0.07 = 1.97

tlr = LL/RR = 0.138/0.076 = 1.82

tms = 
1

Rs�(1/ LM�+�1/ LL) = 
1

0.07�(1/1.66�+�1/0.138)  = 1.82

tmech = J LL = 13.5 á 0.138 = 1.86

which give the matrix A of equation (8.20),
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A = 

 ëê
ê
ê
ê
ê
ê
êé

 ûú
ú
ú
ú
ú
ú
úùÐ0.55 0 0.51 0 0

0 Ð0.55 0 0.51 0

0.55 0 Ð0.55 0 1

0 0.55 0 Ð0.55 0

0.54 0 Ð0.54 0 0

The eigenvalues of this matrix are shown in Fig. 8.1 (a). In (b)
are shown the poles of the transfer function Hs from equation
(6.26) and in (c) the poles of Hp from equation (7.27),

Hs = 
s/LL

s2�+� s�
R
LL

�+�
Y� 2

J�L L

 = 
7.25� s

s2�+�1.06� s�+�0.54

Hp = 
1
Rs

 
s2�+�

Y� 2

J � LM

s2�+� s�
Y� 2

Rs� J�+�
Y� 2

J � LM

 = 
14.3� s2�+�0.64

s2�+�1.06� s�+�0.045

It is seen in the figure that the two poles of Hs lie very close to
two of the eigenvalues of A, and the two poles of Hp lie close to
two other eigenvalues of A. This justifies that Hs and Hp give a
good description of the oscillatory behaviour of the induction
machine.
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(a)

(b)

(c)

p1,2  = Ð0.53 ± 0.48j

p3 = Ð1.08

p4 = Ð0.044

p5 = Ð0.022

p1,2 = Ð0.53 ± 0.51j

p1 = Ð1.01

p2 = Ð0.044

Figure 8.1 (a) Eigenvalues of matrix A (b)�Poles of Hs (c)�Poles of Hp
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9 Feedback

Damping of the series resonance described in section 6 can be
obtained by feedback. One way is to measure the DC link current
Id and let it control the voltage and stator frequency.

The feasibility of feedback as a way of damping the oscillations is
illustrated by a standard proportional controller with gain G. The
damping of the system described by equation (6.58) can now be
chosen arbitrarily. With the feedback law

dK = ÐG á dis (9.1)

the damping of the closed-loop system becomes

z = 
R�+� G� Udo

2� Ö̀̀ ```LL� Yo
2

J �+�
LL� Ko

2

2/3� C

(9.2)

The gain can now be calculated,

G = 
2� z � Ö̀̀```LL� Yo

2

J �+�
LL� Ko

2

2/3� C��Ð� R

Udo
(9.3)

If for example the damping z = 1 is desired for the Grundfos
motor at nominal flux with Ko = 0.58 and Udo = 1.73, the gain
will be

G = 0.0325

It is important that the stator frequency ws is adjusted in
accordance with the voltage amplitude factor K , to get the
voltage to frequency ratio constant,

ws = wso 
K
Ko

(9.4)

A simulation of this (App. G) is shown in Fig. 9.1, where (a)
shows a start of the motor without feedback, and (b) shows a
start with G �=�0.0325. Note that the oscillation is damped, but
that the start is slower with feedback.



Feedback 53

time [p.u.]

time [p.u.]

w
 [

p
.u

.]

w ws

w
 [

p
.u

.]

(a)

(b)

Figure 9.1 Start of induction machine (a) without and (b) with feedback
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10 Conclusions

The induction machine itself is an oscillating system with
different oscillating modes. If the induction machine is connected
to an inverter, a torque ripple is introduced that can excite the
oscillations. The DC link capacitor of the inverter will also become
a part of the oscillating system.

In this thesis, mechanical models are presented which give an
intuitive understanding of the different oscillating modes. This
understanding is necessary for the design of regulators that can
suppress the oscillations. One such regulator is presented which
measures only current from the DC link.
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Appendix

A Per Unit Notation

The basic quantities are:

- rated phase voltage Un (peak value)
- rated phase current In (peak value)
- rated electrical angular velocity w1
- rated mechanical angular velocity wn = w1/zp

where zp is the number of pole pairs
- rated phase flux Yn = Un/w1
- rated apparent power Pn = 3/2 Un In
- rated torque Tn = Pn/wn
- base impedance Zn = Un/In
- rated start time H = J wn2/Pn

The p.u. values of parameters and variables can now be
calculated (voltage in p.u. is equal to the voltage in natural units
divided by the rated voltage Un etc):

voltage u/Un
current i/In
resistance R/Zn
inductance w1 L/Zn
capacitance w1 C Zn
flux Y /Yn
moment of inertia w1 H
torque T/Tn
time w1 t
electrical angular velocity wel /w1
mechanical angular velocity wmech /wn
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B Motor Data

The measurements described in section 4 and 5 have been
performed on a Y-connected Grundfos MG 80 B with the
following characteristics:

rated phase voltage, Un (peak value) 310 V
rated phase current, In (peak value) 3.82 A
rated electrical angular velocity, w1 314 rad/s
number of pole pairs, zp 1
rated power, P 1.1 kW
rated power factor, cos j 0.84
base impedance, Zn 81.2 W

stator resistance, Rs 6 W
rotor resistance, Rr 6 W
stator leakage inductance, Lsl 0.0173 H
rotor leakage inductance, Lrl 0.0173 H
main inductance, Lm 0.414 H
moment of inertia, J 0.00077 kg m2

in p.u. notation:

Rs 0.07
Rr 0.07
Lsl 0.065
Lrl 0.065
Lm 1.6
J 13.5

k 0.96
LM 1.66
LL 0.138
RR 0.076
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C Vector Equations

For simulation and other purposes, the vector equations (3.21-
3.25) can be split up. One way is to separate the real and ima-
ginary parts, another is to separate amplitude and argument of
the flux vectors (Fig. C.1).

The following system of five differential equations is obtained if
(3.21-3.23) are split into real (x) and imaginary (y) parts :

dYsx
dt  = usx Ð isx Rs

dYsy
dt  = usy Ð isy Rs

dYRx
dt  = Ðw YRy Ð iRx RR

dYRy
dt  = w YRx Ð iRy RR

dw
dt  = 

Ysx� isy�Ð� Ysy� isx�
J

Note that these equations are written in the stator reference
frame.

Ys
Ysy

Ysx

istan

israd

is

s

Im

Re

YR YRy

YRx

iRtan

iRrad

iR

Im

Re

r

(a) (b)

Figure C.1 Flux and current vectors and their components
(a) Stator (b)�Rotor

The stator and rotor flux vectors can be expressed with
amplitudes and arguments,
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Ð
Ys = Ys e js

Ð
YR = YR e jr

Let the index rad represent components pointing in the radial
direction, parallel to the flux, and the index tan represent
components in the tangential direction, perpendicular to the flux.
This means for example that israd is the x-component of the
stator current expressed in a reference frame attached to the
stator flux, and istan is the corresponding y-component. The
equations (3.21-3.25) can be written as five differential equations
and some algebraic relations,

dYs
dt  = usrad Ð Rs israd

ds
dt  = (ustan Ð Rs istan)/Ys

dYR
dt  = Ð iRrad RR

dr
dt  = (YR w Ð iRtan)/YR

dw
dt  = Ys istan / J

israd = Ys/LM Ð Ys/LL Ð YR cosd/LL

istan = YR sind/LL

iRrad = YR/LL Ð Ys cosd/LL

iRtan = ÐYs sind/LL

d = s Ð r

The following two relations transform the stator voltage from
coordinates in the stator reference frame to the stator flux
reference frame,

usrad = usx coss + usy sins

ustan = Ðusx sins + usy coss



60 Appendix

D Coordinate Transformations

The vector equations can be transformed to a coordinate system
rotating with the angular velocity wk. The quantities in the
rotating system are denoted by a superscript-k. The angle
between the rotating system, and the coordinate system fixed to
the stator is denoted by j. It follows that

dj
dt  = wk

Ð
Ys = 

Ð
Ysk e jj, 

Ð
i s = 

Ð
i sk e jj etc.

d
Ð
Ys

dt  = 
d

Ð
Ysk

dt  e jj + j 
dj
dt  

Ð
Ysk e jj

d
Ð
Yr

dt  = 
d

Ð
Yrk

dt  e jj + j 
dj
dt  

Ð
Yrk e jj

If these relations are inserted into the vector equations in stator
coordinates, the following equations are obtained,

d
Ð
Ysk

dt  = 
Ð
usk Ð 

Ð
i sk Rs Ð j wk 

Ð
Ysk

d
Ð
Yrk

dt  = jw
Ð
Yrk Ð 

Ð
i rk Rr Ð j wk 

Ð
Yrk

The torque equation is invariant against coordinate transfor-
mations.
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E Mechanical Analogy

An electric motor is both an electrical and a mechanical system.
The interaction between the electrical and mechanical parts are
often complicated to analyze. By representing the electrical part
of the system by its mechanical analogy, the complete system
becomes mechanical and more easy to analyze.

If the product of two quantities in the electrical system yields
power, then the product of the corresponding mechanical
quantities must be power. In the electrical system, the product of
current and voltage is power. If current is represented for
example by force the voltage should be represented by speed as
the product of force and speed is power. This gives a very useful
mechanical analogy. The table below shows some other
corresponding electrical and mechanical quantities, as well as
mechanical components corresponding to the electrical ones.

Electrical system Mechanical equivalent
power P [W] power P [W]
current i [A] force F [N]
voltage u [V] speed v [m/s]
linked flux Y [Vs] distance x [m]
resistance R [W] inverse of damping 1/d [m/Ns]
inductance L [H] inverse of spring stiffness 1/k  [m/N]
capacitance C [F] mass m [kg]

i = u/R

resistance

F = v d

viscous damper

i = Y/L

inductance

F = k x

spring

i = C 
du
dt

capacitance

F = m 
dv
dt

m v mass
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F Roots, Natural Frequency and Damping

The equation

s2 + 2Wz s + W 2 = 0

has the roots

z<1: s = ÐWz ± jÖ̀````1�Ð� z � 2

z>1: s = ÐWz ± Ö̀````z � 2�Ð�1

In the case of complex roots, they can be demonstrated by Fig.
F.1. W is the natural frequency and z is the damping.

W

j

cosj = z

Figure F.1 Relation between location of roots, natural frequency and damping

Figure F.2 shows the time variation of the state variable x of the
system

� ¬x + 2Wz 
.
x + W x= 0

with the initial value xo = 1. The natural frequency W = 1, the
damping  z = 0.1 for the solid line, and z = 1 for the dashed line.
The dotted line shows

eÐzWt;    z = 0.1, W= 1

The frequency of oscillation for z = 0.1 is

w = W Ö̀````1�Ð� z � 2 = 0.995 rad/s
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time

x

Figure F.2 Simulation of � ¬x + 2Wz 
.
x + W x= 0

eÐzWt

z = 0.1

z = 1
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G Simulation File

The simulations have been performed with the program
Simnonª. The following file is used to simulate the start of an
induction motor with and without feedback.

continuous system feedback
"gamma model of induction machine in p.u. notation
"stator coordinates
"DC link current feedback

"stator flux, rotor flux, angular velocity, rotor angle,
"arg of stator voltage
state psisx  psisy  psirx  psiry  w  theta  argu
der   dpsisx dpsisy dpsirx dpsiry dw dtheta dargu

time t

"Grundfos parameters in p.u.
LM:1.6
LL:0.138
Rs:0.07
Rr:0.076
J:13.5
Tload:0
zero:0
psin:1 "nominal flux

Ud:1.73
K0:0.58
ws0:1 "stator frequency

"feedback
deltaK=-gain*deltaId*2/3/K0
K=K0+deltaK
u=K*Ud
ws=ws0*K/K0
Id0:0.0273
Id=is*cos(argis-argu)
deltaId=Id-Id0
gain:0.0325

"feeding voltage
dargu=ws
usx=u*cos(argu)
usy=u*sin(argu)

us=sqrt(sqr(usx)+sqr(usy))
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"dynamic equations
dpsisx=usx-Rs*isx
dpsisy=usy-Rs*isy
dpsirx=-w*psiry-Rr*irx
dpsiry= w*psirx-Rr*iry
dw=(Torque-Tload)/J
dtheta=w

imx=psisx/Lm
imy=psisy/Lm
im=sqrt(imx*imx+imy*imy)
argim=atan2(imy,imx)
irx=(psirx-psisx)/LL
iry=(psiry-psisy)/LL
argir=atan2(iry,irx)
ir=sqrt(irx*irx+iry*iry)
isx=imx-irx
isy=imy-iry
is=sqrt(isx*isx+isy*isy)
argis=atan2(isy,isx)
Torque=(psisx*isy-psisy*isx)

P2=w*Torque
P1=(3/2)*(usx*isx+usy*isy)

"rotating reference frame
fi0:-0.17
fi=ws*t-fi0
cfi=cos(fi)
sfi=sin(fi)
psisxr= psisx*cfi+psisy*sfi
psisyr=-psisx*sfi+psisy*cfi
psirxr= psirx*cfi+psiry*sfi
psiryr=-psirx*sfi+psiry*cfi

end
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H List of Symbols

amplitude factor K
angular velocity w
capacitance C
current i

rotor current ir, iR
stator current is
line current ia, ib, ic

frequency f
stator frequency fs, ws

inductance L
mutual inductance Lm, LM
rotor leakage inductance Lrl
stator leakage inductance Lsl

Laplace operator s
linked flux Y

rotor flux Yr, YR
stator flux Ys

moment of inertia J
natural frequency W
power factor cosj
relative damping z
resistance R

rotor resistance Rr, RR
stator resistance Rs

slip s
pull-out slip sp

time constant t
time t
torque T

load torque Tm
pull-out torque Tp

voltage u
stator voltage us
phase-to-neutral voltage ua, ub, uc





CODEN: LUTEDX/(TEIE-1001)/1-67/(1991)



Efter sista sidan


