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Preface 
Digital twins for water resource recovery facilities/wastewater treatment plants are an 
emerging technology with large potential benefits to plant operations. This report is 
written as part of the project Digital twin for sustainable and resource efficient 
operation of wastewater treatment plants (Formas 2020-00222), with the aim to 
summarize the rationale for using digital twins, describe the different components that 
will be important for implementation of a digital twin, and describe available case 
studies. The report is written as part of the authors PhD studies at the department of 
Industrial Electrical Engineering and Automation (IEA), Lund University, Sweden. 
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Summary 
Digital twins (DT) for water resource recovery facilities (WRRF) are different from 
regular process models. They require 1) a physical plant twin; 2) automatic data 
exchange with the real plant; 3) possibility to dynamically update models when or if 
required. Their use has the potential to improve understanding of plant behaviour and 
unmeasured variables; move towards proactive decision making at the plants when 
including influent forecasts; improve data quality control when comparing simulation 
results to measured values; and be used for predictive maintenance.  

The model used in a DT can be mechanistic (i.e., describing underlying 
mechanisms/physics), data driven (empirical, based on observed relationships between 
variables) or a combination of both (hybrid model). Most of the commercially available 
(mechanistic) wastewater process simulators include the option to use them in (near) 
real time as digital twins. 

Fault detection is important for DTs to avoid use of faulty input data. Methods range 
from dimensional reduction techniques to process models and statistical control charts. 
Automated methods for gap filling and corrections of sensor values based on laboratory 
measurements can be used to correct faulty data. 

Forecasts of influent flow rate and concentration of pollutants can be useful for 
optimization and “what if”-scenarios. Forecast models can be data driven (e.g., many 
examples with time series models and artificial neural networks available in the 
literature) or detailed mechanistic models. Common for most examples is that weather 
forecasts (temperature and precipitation) are used, and the model accuracy of course 
depend on the quality of the forecast. 

Automatic calibration can be used for both data driven/hybrid models (i.e., re-training) 
and mechanistic models. For mechanistic models, examples in the literature include 
simple changing of measured influent fractions or settler solids separation efficiency to 
global optimization of multiple variables over a plant-wide model. Automatic 
calibration can be done at fixed intervals or based on performance evaluation. 

Model predictive control (MPC) has been widely studied in simulated settings, with few 
real examples for WRRFs. For digital twins, the possibility to combine a mechanistic 
model with influent forecasts and numerical optimisation for, e.g., setpoints over a 
future time interval to achieve a certain goal is promising. The faster control 
applications can then be handled using regular PID-controllers. 

Few examples of implemented digital twins for WRRFs have so far been published in 
the literature. Here, one example of a digital twin is presented. It includes automatic 
data transfer, automatic calibration, and forecasts, but is (at the time of writing based 
on the available literature) only used as an advisory tool and not for direct control. 

Digital twins of water resource recovery facilities are complex with many different parts 
and models that work together. They can be used for fault detection, predictions, and 
optimization/control. This report summarizes some of the components that can be 
used to build digital twins, which ones to include of course depends on the scope and 
goals of the specific project. In all cases, the flow of data from collection to use must be 
well designed to avoid unnecessary interruptions in operation.    

https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cchristoffer.warff%40ri.se%7C9b93a2a4f8eb4e44eca708dbd1301863%7C5a9809cf0bcb413a838a09ecc40cc9e8%7C0%7C0%7C638333776712244496%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SXfFqdCtH39zFfxriL0S6R30FzInRr6j%2F%2FYigbhwG4Y%3D&reserved=0
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1 Introduction 
This document is intended to provide an overview of operational digital twins of water 
resource recovery facilities (WRRF), including a description of the different 
components that can comprise a digital twin, methods that can be used and examples 
of how these have been implemented in the literature. 

1.1 What is a digital twin? 
The term “digital twin” is not universally defined and can mean different things in 
different sectors, with the broad definition being a digital representation of a real object 
(Trauer et al., 2020). This has caused confusion about the term when used in the 
context of WRRFs and other parts of the water sector where it is sometimes used for 
conventional process models which have been used for several decades. Torfs et al. 
(2022) mention the risks associated with re-branding of established terms and defines 
the following conditions for the definition of digital twin of a WRRF: 

1. There must be a physical counterpart. 
2. There is an automated data feed from the physical to the digital twin. 
3. The twin is updated dynamically as new information is available. 

This means that there must exist a real plant from which data is automatically fed to 
the digital twin. This distinguishes it from a process model, which is usually not 
connected to automated data feeds, and which can be used to evaluate operations and 
designs before a real plant is built. For the context of WRRFs in this report, the focus is 
on digital twins used as an operational tool for proactive decision making, i.e., 
operational digital twins (Valverde-Pérez et al., 2021). A schematic representation of 
such a digital twin is shown in Figure 1. 

 

Figure 1. Components and structure of an operational digital twin of a water resource recovery 
facility. 

 

https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cchristoffer.warff%40ri.se%7C9b93a2a4f8eb4e44eca708dbd1301863%7C5a9809cf0bcb413a838a09ecc40cc9e8%7C0%7C0%7C638333776712244496%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SXfFqdCtH39zFfxriL0S6R30FzInRr6j%2F%2FYigbhwG4Y%3D&reserved=0
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For this type of digital twin, the physical system consists of a WRRF with its different 
process units, sensors and valves/actuators, all connected to a Supervisory Control And 
Data Acquisition (SCADA) system. A data management interface is used to collect data 
from the SCADA system historian (and potentially other data sources) and transfer it to 
the digital twin in the right format and at the right time. The digital twin consists of a 
collection of models:  

• a data validation model for making sure the data used for analyses is feasible;  
• a forecast model to predict the future influent (flow and pollutant loads) to the 

WRRF;  
• a model of the real control system;  
• a WRRF process model for prediction of plant performance; 
• an evaluation model for scenario analyses and optimization. 

The digital twin can produce WRRF operational performance prognoses, optimized set 
points (which can be used as suggestions or implemented as automatic control) and 
soft sensor values which is fed back to the data interface. From there, the data and 
predictions are visualized for the operators in dashboards with information such as Key 
Process Indicators (KPI), operational prognoses, uncertainty, etc., depending on the 
needs at the plant. The operators can interact with the digital twin through the interface 
and perform scenario analyses. In all applications, the flow of data from collection to 
use must be well designed to avoid unnecessary interruptions in operation (Therrien et 
al., 2020).   

 

1.2 Potential benefits 
Some of the potential benefits of using digital twins include: 

• Increased insight and process understanding: components that are 
difficult/impossible/expensive to measure in reality can be approximated by the 
digital twin (so called soft sensors). For example: NH4-N might be measured at 
the end of a treatment train while the digital twin gives information about the 
concentration in every zone; the concentration of nitrifiers in sludge is (nearly) 
impossible to measure accurately in reality but the digital twin provides this 
information. The potential use of this type if data for process understanding, 
control and fault detection is intriguing. 

• Operational forecasts for proactive decision making: the combination 
of influent forecasting tools and digital twins of the WRRF can provide 
operational forecasts for the plant, such as the effluent quality for the coming 
days. This can in turn be used for predictive control or manual decisions by 
operators to achieve an optimal outcome based on, e.g., chemicals dosing, 
effluent quality, operational costs, or greenhouse gas emissions. 

• Automated data quality control: data quality control is something that is 
both required before raw data is used in the digital twin as well as something 
the digital twin can be used for. Data driven/statistical methods can be used for 
raw data checks while comparison of prediction values from the digital twin 
with sensor data can help detect abnormalities. 

https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cchristoffer.warff%40ri.se%7C9b93a2a4f8eb4e44eca708dbd1301863%7C5a9809cf0bcb413a838a09ecc40cc9e8%7C0%7C0%7C638333776712244496%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SXfFqdCtH39zFfxriL0S6R30FzInRr6j%2F%2FYigbhwG4Y%3D&reserved=0
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• Predictive maintenance: models of equipment can be included in the digital 
twin such that predictions of deterioration of data quality (e.g., fouling) can be 
used for smarter maintenance planning. This will not be further discussed in 
this report. 

1.3 Components of digital twins at water 

resource recovery facilities 
The type of components that are included in a digital twin depends on the objective of 
the twin and is therefore case specific. This report will focus on:  

• The type of process models that are suitable for digital twins.  
• Methods for data analysis, fault/event detection and data correction.  
• Model predictive control. 
• Data transfer. 
• Automatic calibration. 
• Forecasting tools. 
• Case studies. 
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2 Process models for use in digital 

twins 
When deciding on the model to use in a project, good practice is to use the simplest one 
that achieves the objectives. This gives many options to use more or less detailed 
models to describe the required process(es). Mainly three types of mathematical 
models can be distinguished: 

• Mechanistic models describe the underlying phenomena which affects 
observable behaviour. Sometimes also referred to as first principles models or 
white box models. For example: nitrification is described by modelling the 
growth of nitrifiers who consumes NH4-N in the growth process (we can observe 
the depletion of NH4-N). 

• Data driven/empirical models describes behaviour based on observable 
relationships with other variables. Sometimes also referred to as black box 
models. For example: can range from a simple linear regression model to more 
complex machine learning methods such as artificial neural networks. 

• Hybrid data driven/mechanistic models are a combination of mechanistic 
and data driven components. Sometimes also referred to as grey box models. 

The different types of models have their advantages and disadvantages, but all three 
model types above can be suitable for use in digital twins of WRRFs. The model types 
are described below. 

 

2.1 Mechanistic models 
The well renown activated sludge models (ASM): ASM1, ASM2, ASM2d and ASM3 
(Henze et al., 2000), have been widely used since the publication of ASM1 in the mid-
eighties. Many extensions to the models have been developed to include new processes 
and variables, many of which are available in commercial simulators. The Benchmark 
Simulation Model No 1 and 2 (Gernaey et al., 2014), based on the ASM models, were 
developed for benchmarking of control strategies at WRRFs and have been widely used 
to test control and fault detection strategies at WRRFs. In commercial simulators the 
ASM models or further developments based on the ASM models are often available. 
Mechanistic models are usually calibrated when used for real plants, meaning that 
some model parameters are adjusted until a good match between model predictions 
and measured data is achieved. However, usually only a few parameters are required to 
be adjusted for calibration due to well validated default parameter values (based on 
long experience of using the models). This means that the models can be used to 
extrapolate outside of the operating conditions that the model has been calibrated on 
for each case study (although care is of course recommended with use in such cases). 
Some parameters though, might require re-calibration between different time periods. 
The mechanistic models are well suited to interpret results as the model structure and 
equations are (often) available for the user. 

https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cchristoffer.warff%40ri.se%7C9b93a2a4f8eb4e44eca708dbd1301863%7C5a9809cf0bcb413a838a09ecc40cc9e8%7C0%7C0%7C638333776712244496%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SXfFqdCtH39zFfxriL0S6R30FzInRr6j%2F%2FYigbhwG4Y%3D&reserved=0
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These types of models have the potential to also be used in digital twin applications, 
although one of the largest bottlenecks could be the computational demand (Johnson et 
al., 2021) depending on how it is used. Another benefit of using mechanistic models is 
that they generally require less data compared to data driven models as much 
knowledge is included in the equations from the beginning.  

  

2.2 Data driven models 
Data driven models have the benefit of (in general) lower computational demand than 
mechanistic models while drawbacks are their need of large amounts of data and bad 
extrapolation capabilities. When developing data driven models, the fitting of the 
model to data is usually called “training” the model. The model usually becomes 
sensitive to the training data used, meaning that bad data and extrapolation of 
conditions beyond the training data set can cause large errors in predictions. If the 
conditions that the model was trained on changes, the model must thus be recalibrated. 
Another drawback of data driven models are that for advanced models the internal 
calculations are difficult to access, severely limiting interpretability of the results. 

Depending on the objective, data driven models with a wide range of complexity can be 
used for digital twin applications. Often some kind of Artificial Neural Network (ANN) 
is used. For example, Han et al. (2012) used a radial basis function neural network 
model to predict dissolved oxygen concentration in a plant for predictive control 
purposes. Su et al. (1992) used a recurrent neural network to predict concentration 
values of ammonia, nitrate and phosphate in different locations at a wastewater 
treatment plant with good results.   

Due to the lower computational demand, data driven models are promising for use in 
model predictive control (Bernardelli et al., 2020; Stentoft et al., 2021) (see Section 6) 
and forecasting (Kim et al., 2006; Vezzaro et al., 2020) (see Section 4.1) applications.  

 

2.3 Hybrid models 
Hybrid mechanistic/data driven models have been especially mentioned in recent 
research as a promising way to achieve models with high predictive power for use in 
digital twins due to: 1) their lower computational demand than mechanistic models, 
while preserving some of the knowledge base of those models; and 2) lower data 
requirements than data driven models while having the ability to capture dynamics not 
included in the mechanistic model (Schneider et al., 2022).  

Schneider et al. (2022) define three types of architectures for hybrid models: serial; 
parallel; and surrogate (Figure 2). In the serial case, a mechanistic model and data 
driven model are used in series: the output of one model is transferred to the next. In 
the parallel case, the mechanistic and data driven model are run in parallel, fed with the 
same input. The data driven part can then be used to predict the error of the 
mechanistic model and correct for this in the output. In the surrogate case a data driven 
model is trained on the output from a mechanistic model, e.g., to allow for faster 

https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cchristoffer.warff%40ri.se%7C9b93a2a4f8eb4e44eca708dbd1301863%7C5a9809cf0bcb413a838a09ecc40cc9e8%7C0%7C0%7C638333776712244496%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SXfFqdCtH39zFfxriL0S6R30FzInRr6j%2F%2FYigbhwG4Y%3D&reserved=0
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simulations. Another method is embedded hybrid models, where the differential 
equations include a data driven component, such as neural differential equations (Chen 
et al., 2018). 

 

Figure 2. Different hybrid model structures. Adapted from Schneider et al. (2022). 

 

Construction of hybrid models can be done in various ways. Lee et al. (2002) compared 
a pure neural network model with a serial hybrid model, where a neural network was 
used to estimate kinetics of the mechanistic (modified ASM1) model, and a parallel 
hybrid model where a neural network was used to correct the difference between 
mechanistic model output and measured data. They evaluated the models with data 
from an industrial wastewater treatment plant and found that the parallel hybrid model 
performed best, also during process upsets such as toxic shocks. Lee et al. (2005) 
compared different data driven components for parallel hybrid modelling and found 
that a neural network partial least squares model performed best when considering 
predictive power, model construction and interpretability. Hvala & Kocijan (2020) 
combined a Gaussian process (GP) model with ASM2d in a parallel configuration to 
predict the residuals from the mechanistic model predictions. According to the authors, 
GP models are as predictive as neural networks while they are probabilistic and thus 

https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cchristoffer.warff%40ri.se%7C9b93a2a4f8eb4e44eca708dbd1301863%7C5a9809cf0bcb413a838a09ecc40cc9e8%7C0%7C0%7C638333776712244496%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SXfFqdCtH39zFfxriL0S6R30FzInRr6j%2F%2FYigbhwG4Y%3D&reserved=0
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includes information about uncertainty in the predictions. Quaghebeur et al. (2022) 
modified a mechanistic model (BSM1, Alex et al. (2008)) with neural differential 
equations, i.e. the Ordinary Differential Equations (ODE) of the model was extended 
with a neural network term. They tested the predictive power and extrapolation 
capabilities under realistic conditions of incomplete knowledge in the model structure 
(simplified hydraulic model). The model was compared to the mechanistic model and a 
pure neural network model for conditions with input data unseen during model 
training (wet weather flow). The hybrid model outperformed both the other models for 
this test. The authors highlight the benefit of this type of hybrid model structure as 
compared to other serial/parallel structures as the model learns the missing 
information of the mechanistic model (e.g. kinetic rates) rather than just correcting the 
errors.  De Jaegher et al. (2021) also used a neural ODE structure to predict fouling in 
ion exchange membranes combined with a mechanistic model for prediction of flux. 
Nielsen et al. (2020) used a neural network model to compute kinetic rates in particle 
processes based on data from image analysis. The computed kinetic rates were fed to a 
mechanistic model and performed as well as established models, even with limited 
data. 

2.4 Real time use process models 
The real time component of a digital twin can be organized in different ways, and most 
of the major wastewater simulation software providers include an option for use with 
digital twins. Depending on the purpose of the digital twin, the data connection can be 
in essentially real time (as soon as a sensor value is updated, it is transferred to the 
twin). Another other option is to use a scheduled approach, where simulations are run 
in fixed intervals (i.e., every 10 minutes, every hour, or once per day). The first 
approach can be useful if the twin is mostly used for monitoring (e.g., fault detection of 
sensors) or direct feedback control based on modelled (soft sensor) variables. The 
second approach is more useful for model-based optimization control and forecasts. 
Both approaches can of course be combined as well.   

In any case, the digital infrastructure at the plant must be organized to allow for 
transfer of data from the plant to use in a digital twin. The requirements and rules at 
each plant decides on how this must be set up. An example is if cloud services are 
allowed or if everything must be installed on dedicated servers on the premises. This 
can be both challenging and time consuming and must be taken into consideration for 
any digital twin project. For the case presented by Johnson et al. (2021), a database is 
updated with data from both the SCADA system as well as laboratory data. Python 
scripts are used for all automation of the data cleaning, calculations and simulations. 
All simulations are run on dedicated on premises servers as no cloud computations 
were allowed by the utility.  

Brentan et al. (2017) also demonstrate the requirement to update the offline model 
structure for online applications, such as using a hybrid model. Although they used a 
data driven model (support vector machine) for the base (offline) model, an extension 
based on adaptive Fourier series was required to correctly predict the short-term 
dynamics.   

https://eur05.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby%2F4.0%2F&data=05%7C01%7Cchristoffer.warff%40ri.se%7C9b93a2a4f8eb4e44eca708dbd1301863%7C5a9809cf0bcb413a838a09ecc40cc9e8%7C0%7C0%7C638333776712244496%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=SXfFqdCtH39zFfxriL0S6R30FzInRr6j%2F%2FYigbhwG4Y%3D&reserved=0


11 

This work is licensed under CC BY 4.0  https://creativecommons.org/licenses/by/4.0/  

3 Data management and analysis 
Access to data of sufficient quality is essential in all types of modelling projects. In the 
context of digital twins, which are automatically fed with data from several sources, the 
data analysis and validation must also be performed in an automated fashion. In 
essence, three targets must be fulfilled for digital twins:  

• Data faults and errors must be detected and identified. 
• Faulty or missing data must be replaced with correct data (or a best estimate) to 

avoid data gaps. Filtering of data can be required to remove noise or outliers. 
• Data must be efficiently transferred between storage locations and the digital 

twin. 

Details about these targets will be presented below. 

 

3.1 Fault and event detection 
Fault detection usually rely on different types of machine learning models. The 
literature review is here organized under sub-topics with groups of machine learning 
models. Some of the most widely cited methods are presented here and more 
information can be found in Newhart et al. (2019). 

 

3.1.1 Dimensional reduction techniques  

Since many monitored variables at WRRFs often are highly correlated, dimensional 
reduction techniques can be useful for creating new variables which can be more easily 
monitored to detect unusual process conditions. This makes them popular for fault 
detection. Examples include principle component analysis (PCA) and partial least 
squares (PLS). In PCA, new variables (called principal components or latent variables) 
are created from the chosen variables with the aim that the new variables explain as 
much as possible of the variance of the desired process variable (Rosen & Olsson, 
1998). In PLS on the other hand, the latent variables are constructed to maximize the 
correlation between input and output variables (Rosen & Olsson, 1998). PLS can also 
be made non-linear for non-linear processes. Another technique used is independent 
component analysis (ICA). In ICA, the extracted latent variables are independent from 
one another (as compared to PCA where the variables are uncorrelated, meaning only 
linearly independent) (Lee et al., 2004c). 

Rosen & Olsson (1998) provide an example of the use of PCA for process monitoring at 
a WRRF, where influent temperature, conductivity, ammonia, pH and flow rate are 
used to create two principal components which explain 75 % of the variance of these 
variables. They show how an abnormal change in flow rate is the primary cause that 
affects the process, something that would be more difficult to show in normal time 
series plots. Yoo et al. (2002) and Lee et al. (2004a) used a dynamic PCA to better 
monitor non-stationary behaviour as a static PCA proved inadequate for dynamic 
WRRF monitoring. Many authors also use adaptive PCA, where the PCA is updated to 
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reflect long term trends in the process (Aguado & Rosen, 2008; Baggiani & Marsili-
Libelli, 2009; Haimi et al., 2016; Lee et al., 2005; Lee & Vanrolleghem, 2004; Lennox & 
Rosen, 2002). Lee et al. (2004b) used kernel PCA to capture nonlinearities in data and 
found the method superior to linear PCA. Liu et al. (2014) used variational Bayesian 
PCA to detect disturbances in the BSM1 and a real plant process and found the method 
more effective than PCA when dealing with missing data. 

PLS has also been used at WRRFs by several authors. Ferrer et al. (2008) used PLS for 
soft sensor construction and process diagnosis and highlights the method’s benefits of 
low risk of overfitting, efficient handling of missing data and outlier detection. Choi & 
Lee (2005) used multiblock PLS for fault detection, monitoring and modelling of a 
chemical process. Rosen & Olsson (1998) expanded on the previous example used with 
PCA also for PLS and related the influent variables to the effluent turbidity. With the 
model they were able to detect disturbances in the effluent turbidity 10 minutes before 
it was observed in the turbidity sensor. 

Lee et al. (2004c) used ICA for process monitoring on the BSM1 plant and highlights 
that the method is more sophisticated than PCA while effectively identifying and 
isolating disturbances. Lee & Qin (2006) used a modified ICA, also on BSM1, and found 
it more efficient than PCA in detecting faults. An improvement of ICA, so called kernel 
ICA, was developed by Wang & Shi (2010) and evaluated on BSM1.  

 

3.1.2 Process models 

A process model can be used to predict the states of measured variables at different 
parts of a plant. Therefore, if the model is correct, it can be used to detect discrepancies 
between predicted and measured variables, i.e. for fault/event detection. Both 
mechanistic and data driven process models can be used for this purpose. 

Time series models are mainly used to predict future variable values based on previous 
values of the same and/or other variables. They can therefore be used for forecasting or 
as process models. Due to their predictive capabilities, they have also been used to 
detect faults. For example, Sánchez-Fernández et al. (2018) used time series models to 
model a plant and used statistical techniques on model/observation residuals to detect 
faults. 

Artificial neural network is a data driven method that can be used both as time series 
models or for classification purposes, e.g. for fault detection. Zumoffen et al. (2008) 
used PCA and adaptive PCA for fault detection, then used an ANN to determine the 
magnitude of the fault. Caccevale et al. (2010) used ANN to predict future NH4-N and 
NO3-N concentration values, then combined it with a time series model to detect faults.  
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3.1.3 Statistical control charts 

Statistical control charts are often used for fault detection, with several methods 
available in the literature. They work by comparing values over time to lower and upper 
limits, where a fault is considered detected if the value crosses the limits.  

One of the early examples of control charts are the Shewhart control charts (Shewhart, 
1938). Shewhart control charts were developed for quality control in manufacturing 
and works by dividing samples into small groups. The mean for each group is plotted 
over time, with limits calculated from, e.g., the mean standard deviation of the groups. 
Any plotted point below or above the limits are considered deviating.  

A later development resulted in Cumulative sum (CUSUM) charts (Page, 1954), which 
(compared to Shewhart charts) are better at detecting small changes in mean values 
over time since the cumulative sum of residual between measurement and mean is 
plotted. 

Later, Roberts (1958) developed a chart based on the exponentially weighted moving 
average (EWMA) of the process variable, designed to also detect small changes which 
may not be detected with the Shewhart chart.  

Marais et al. (2022) compared the performance of Stewhart, CUSUM and EWMA 
charts on a wastewater treatment plant NOx-N sensor in the BSM1 model, testing for 
detection of both drift and bias faults in an offline and online setting. Discrepancies in 
the performance between offline and online settings were found due to compensation 
of sensor failure by the feedback controllers used. For the online setting, the CUSUM 
and EWMA both performed well for bias faults, while the EWMA performed better for 
drift faults. The Stewhart chart did not perform well in the online setting. The 
sensitivity of the methods for the parameters used was also pointed out, where careful 
calibration of the charts is required to correctly detect faults.  

 

3.2 Data corrections 
For digital twin predictions to be robust, data gaps must be avoided. At WRRFs 
however, data gaps will inevitably occur at times due to for example signal loss or faulty 
or uncalibrated sensors. After the first step (to detect the fault, as described in Section 
3.1) the next step is to replace faulty data with correct (reconciled) data or a best 
estimate.  
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3.2.1 Data reconciliation 

Historical datasets are usually used for model calibration or training in WRRF 
modelling. Measured data always contains errors due to measurement uncertainty, 
noise and sometimes gross errors. This means that calculations of mass balances over 
process units never close (i.e. mass flow in = mass flow out). Mass balance-based data 
reconciliation techniques have been developed to correct data so that relevant mass 
balances can be closed (Rieger et al., 2010). Although these techniques usually are used 
for low frequency steady state data (Le et al., 2018), examples exist from industrial 
applications where dynamic data reconciliation is used for high frequency data, for 
example to remove measurement noise to improve controller performance (Hu et al., 
2021; Zhu et al., 2021). 

3.2.2 Automatic gap filling 

De Mulder et al. (2018) developed a software to systematically and semi-automatically 
fill high frequency data gaps in (influent) time series data for WRRFs. The algorithm 
detects values tagged as not-a-number (NaN), constant signals, unrealistically fast 
changes (noise) and outliers and filters them by either interpolation (short gaps), 
correlation with other variables, daily average profile values, values from the day before 
or from an influent generator model. They tested the reliability of the methods by 
introducing artificial gaps in data and computing the deviation of the filled data from 
the original and found that the influent generator model provided the lowest deviation 
(6 % for influent NH4-N). 

3.2.3 Sensor corrections based on laboratory 

measurements 

High frequency (online) influent data is beneficial for use in digital twins for improved 
predictions, but this type of measurements (e.g., chemical oxygen demand (COD), NH4-
N, PO4-P) are rarely found at WRRFs in Sweden (Andersson et al., 2019). One likely 
reason could be that the information historically has not been providing enough value 
to motivate the investment and increased maintenance in sensors, but another issue is 
that it is difficult to measure accurately in the influent. Automatic analysers for, e.g., 
NH4-N require the samples to be filtered, and due to the large amounts of suspended 
solids, fats and grease in the influent these are prone to clogging quickly. Another 
option is ion sensitive electrodes (ISE), but these have the downside of drifting and can 
easily be wrongly calibrated, making them mainly useful for observing trends and less 
for obtaining accurate values. The benefit of ISEs is that they are much lower 
investment costs compared to automatic analysers.   

Nivert et al. (2009) used automatic corrections of optical and ISE sensors based on 
grab samples at the Rya wastewater treatment plant in Sweden. They used so-called 
break point curves to adjust the raw signal to better conform to the measured grab 
samples, which was implemented in an automated fashion. A follow up study (Lumley 
et al., 2013) showed results from both the Rya plant as well as the Viikinmäki plant in 
Finland where similar methods are used. The authors report savings of 10-40 hours per 
sensor and year in maintenance since the automatic adjustments were installed. 
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Pedersen et al. (2020) installed an ISE NH4-N sensor at the influent to a WRRF and 
evaluated its performance. They concluded that despite maintenance protocols faulty 
data such as drift and corrupt calibration occurred. They developed an automatic data 
correction algorithm which considers the daily composite sample values for influent 
NH4-N and dynamic flow measurements and corrects the ISE data to fulfil the daily 
average NH4-N values. This algorithm corrects both slow signal drift and sudden large 
changes from sensor calibration and improved data for 87 % of the days in the data set 
where composite samples were available. 
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4 Influent forecasting tools 
A substantial potential benefit of digital twins is to use them for proactive decision 
making, as opposed to the reactive decision making often practiced in plants today with 
feedback control. To achieve this, the future conditions of the plant must be taken into 
account to either analyse effects of decisions or to optimize the plant performance. 
Therefore, influent forecasting tools are essential to estimate future influx of water 
flows and pollutant loads to the plant. 

4.1 Data driven forecasting models 
Stentoft et al. (2019) used an adaptive stochastic model to predict influent NH4-N 
concentration and load to a plant. The benefit of a stochastic model structure is that 
uncertainty of the predictions is included in the output, which can then be further used 
to assess the uncertainty propagation to downstream models. The forecasted load was 
used as input to a model predictive controller for optimization of the plant and 
compared to a situation without a forecast. The system showed improved performance 
with the forecast. 

Vezzaro et al. (2020) used a simple approach where the daily ammonium load is 
described by a Fourier series approach. The parameters for describing the load 
variation for the next day is based on the measured load parameters for n previous dry 
weather days. A benefit from this approach is that the variations in load in the previous 
days are used to describe the uncertainty of the forecast. 

Different types of time series models can be used for forecasting influent loads and flow 
rates. Kim et al. (2006) used an autoregressive integrated moving average (ARIMA) 
model to predict future daily values of NH4-N, PO4-P, temperature, and flow with good 
results for one day ahead forecasts. Li & Vanrolleghem (2022a) used an ANN with 
multivariate regression to model influent flow rate and pollutant concentrations based 
on time dependent patterns (obtained from a Fourier transformation) and weather data 
(temperature and precipitation). In a subsequent paper, Li & Vanrolleghem (2022b) 
used a long short-term memory (LSMT) model to predict influent water flow and 
temperature at a treatment plant while also including data on snowmelt. The LSMT 
prediction was compared to a phenomenological model and was shown to produce 
better results. The models by Li & Vanrolleghem were not used specifically as forecast 
models in the papers, but similar forecast models could be build by including the 
relevant weather forecasts. 

Sokolova et al. (2022) compared several data driven models (exponential smoothing; 
ARIMA; naïve baseline; least absolute shrinkage and selection operator (LASSO) 
regression; random forest; vector autoregression; and a tree-based model) for 
predicting E. coli concentration in a river at a drinking water production plant intake. 
They used past values of lab samples of E. coli concentrations, water temperature, 
turbidity, precipitation and water flow for future predictions. Multivariate predictions 
models were shown to work better than univariate ones.  
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4.2 Mechanistic forecasting models  
The project Future City Flow (see e.g., Valverde-Pérez et al. (2021)) in Sweden 
developed a mechanistic model for flow predictions in the sewer system. The model 
uses weather forecasts in combination with data from sensors in the sewers (e.g., level 
and flow sensors) to produce forecasts of the influent flow rate to the treatment plant. 
The models are used in real time to optimize the system to minimize combined sewer 
overflows and reduce flow variations to the plant.  

Since the predictions of influent flow rate are dependent on the weather forecasts, the 
accuracy of those forecasts will determine the accuracy of the influent flow predictions 
when the hydraulic model has been sufficiently calibrated. This poses difficulties since 
the weather forecasts can sometimes change substantially in a short period of time, 
meaning that the influent forecast for a given day and time can change quickly if there 
is unstable weather. This is shown by Valverde-Pérez et al. (2021) where the forecasts 
made 30 minutes before the given time have considerably lower peaks than the forecast 
made for the same time interval 4.5 hours earlier.  
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5 Automatic calibration 
The ability to automatically adjust/update model parameters is one of the aspects 
defining a digital twin according to Torfs et al. (2022), which is relevant regardless of 
the type of model that is used (mechanistic, data driven or hybrid).  

 

5.1 Data driven models 
For data driven/hybrid models, the automatic calibration can mean that the model is 
retrained in regular intervals (e.g., in a rolling time window fashion) or when deemed 
necessary (e.g. after a certain deviation between measured and simulated values occur). 
New/changed dynamics are then automatically incorporated in the model structure. 
Besides changes in for example environmental conditions at the plant (such as rainfall 
patterns or changing influent load), other factors such as changing data patterns at the 
facility due to for example new hardware or changing user patterns can also affect 
model accuracy over time (Kidane et al., 2022). While retraining is required to retain 
accuracy over time by always including the latest data in training, it also means that 
computer intensive tasks such as communication with databases and the model 
training itself must be done at regular intervals (Schule et al., 2021). This must be taken 
into account for digital twin applications to make sure the relevant computer power is 
available.  

Choosing the right sample size for retraining is important to achieve optimal 
performance. Brentan et al. (2017) solved this problem for retraining of a water 
demand model by calculating a training efficiency, considering the sample size, time for 
training and resulting root mean square error (RMSE) of the model predictions. When 
plotting the efficiency for a range of sample sizes the optimum sample size could be 
determined.  

Deciding when to retrain the model is also of importance to avoid unnecessary 
computational demand. Wei et al. (2022) included this in a real time model application 
by analysing the input data. If new input data was deemed to contain new information 
relative to the data previously used for training, the model was retrained using the new 
data.  
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5.2 Mechanistic models 
For mechanistic models, the automatic calibration can be done as a simple approach to 
update e.g. TSS removal efficiencies in primary clarifiers or update influent fractions, 
based on new laboratory measurements (Johnson et al., 2021). In more advanced 
examples, a number of model parameters (e.g. biological parameters, influent fractions, 
settling parameters) can be adjusted simultaneously in a global optimization. The latter 
approach was used by Gómez et al. (2023), where 29 parameters for the BSM2 model 
was automatically calibrated using an ANN with the neuroevolution of augmenting 
topologies (NEAT) algorithm. Three calibration scenarios were tested: 1) the 
probability density function (PDF) of each calibration parameter is known a priori; 2) 
the correct parameter value is the mean of the PDF; 3) both 1) and 2) simultaneously. It 
was found that with expert knowledge of the system (i.e. known PDFs of all calibration 
parameters), adequate calibration (close to the real values) could be achieved 
efficiently.  
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6 Model predictive control 
Model predictive control (MPC) uses a model that can predict the value of a controlled 
variable over a prediction horizon and optimize manipulated variables to achieve a 
desired setpoint. Historically, few examples of MPC utilized for control at a real WRRF 
are available in the literature. This is possibly due to the large computational demand 
associated with this type of control in combination with the strongly non-linear 
biological processes normally occurring at WRRFs. Many studies instead focused on 
theoretical, simulated cases (Han et al., 2012; Shen et al., 2008, 2009). With integrated 
(sewer and WRRF) MPC, system wide optimizations could be very beneficial as it will 
take the total loads to receiving water bodies into consideration (Rauch & Harremoës, 
1999). More recently, simplified, data driven model structures have been proposed 
(Stentoft et al., 2021) to allow MPC at intermittently aerated WRRFs allowing taking 
e.g. electricity cost and greenhouse gas emissions into consideration as additional 
constraints beside effluent quality.  

Using digital twins for control would likely result in a different structure than 
conventional MPC. Some examples have been presented (but are still not scientifically 
published, e.g., Sparks et al. (2023)) where simplified plant models are combined with 
influent forecasts (see Section 4) and optimization algorithms to produce process 
setpoints. The regular PID controllers at the plant can then be used to achieve these 
setpoints. This can be a good approach for processes such as aeration, where it can be 
challenging to use a full mechanistic model for fast control actions. This type of digital 
twin-based optimization control is shown in Figure 3. 

 

 

Figure 3. Scheme for digital twin-based optimization. 
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7 Case studies 
Very few examples exist in the literature of implemented digital twins at water resource 
recovery facilities, although many more are known to be implemented and currently 
under development within Europe and North America. Some cases also exist with 
digital twins of sewer networks (i.e., Future City Flow, which was mentioned earlier in 
this report).  

The first (according to the author’s knowledge) implemented WRRF digital twin was 
developed for Changi Water Reclamation Plant in Singapore, and has been presented 
by e.g., Valverde-Peréz et al. (2021) and Johnson et al. (2021). The DT is constructed 
from a mechanistic process model, built in the simulator Sumo (Dynamita, France). 
The twin also features a separate more detailed model for the hydraulics and controls of 
the plant. Forecasts include five days into the future performance of the plant, with 
uncertainty included by Monte Carlo analysis for feasible variations in influent 
characteristics. The influent characteristics are derived from measurements of the 
primary effluent ammonia concentration. A model of the plant upstream the 
measurement point is used to find the required influent ammonia concentrations to 
produce the observed primary effluent concentrations. The remaining variables are 
calculated through observed relationships such as NH4-N/TKN (total Kjeldahl 
nitrogen) and TKN/COD ratios. Automatic calibration of the model is performed 
weekly by adjusting the soluble COD/total COD ratio in the influent as well as solids 
removal in the primary clarifier, based on laboratory measurements. Several machine 
learning methods are used for data treatment and gap filling, including: isolation 
forests; interquartile range; K means clustering; sequential least squares programming; 
and ARIMA. The model is (currently) only used as an advisory tool, not for direct 
control purposes. 
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8 Conclusions 
Digital twins of water resource recovery facilities are complex with many different parts 
and models that work together. They can be used for fault detection, predictions, and 
optimization/control. This report summarizes some of the components that can be 
used to build digital twins, which ones to include of course depends on the scope and 
goals of the specific project. In all cases, the flow of data from collection to use must be 
well designed to avoid unnecessary interruptions in operation.   

Much work is ongoing on the topic of digital twins around the world. Likely, many 
articles and other publications will be published in the next few years highlighting 
methods and case studies, and above all the value of using digital twins in the daily 
operations of plants. This will lead to more use cases and application areas and will 
hopefully lead to the more proactive plant decision making that it has the potential to.  
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