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Introduction 
Let us start with two definitions – digitalization and digitization. Digitalization is defined as “the 
adoption or increase in use of digital or computer technology by an organization, industry, 
country, etc.” (OED, 2022a), whereas digitization is defined as “the action or process of 
digitizing; the conversion of analogue data (esp. in later use images, video, and text) into 
digital form” (OED, 2022b). Both digitalization and digitization have been given a lot of 
attention in the last decades. Digitalization is one of the world’s megatrends and the 
development and use of digital tools can be seen in all parts of society. It is regarded as a key 
enabling factor for achieving the United Nations’ (UNs) sustainable development goals (SDGs; 
Mondejar et al., 2021). Good examples have been shown in: 

• Food production and agriculture  
Digitalization in agriculture include smart sensing and monitoring, analyses and planning of 
lands and crops to maximize yields, track livestock, and much more (Wolfert et al., 2017). 
Sensors can be used to detect diseases in crops, or to plan irrigation and fertilization (Yang, 
2020; Johnson et al. 2020). Precision irrigation can reduce the water footprint and optimize 
the water use (Abioye et al., 2022).    

• Energy and electricity production  
Digitalization can increase sustainability in energy production. Distributed electricity 
production and the use of scalable renewable energy sources like wind and solar can be 
improved (Mondejar et al., 2021). It is expected to provide smart technologies to control 
and optimize electricity production as well as distribution (Kangas et al., 2021). However, 
while the energy efficiency tends to increase from digitalization, the energy consumption 
tends to also increase which counteracts the effects from improved efficiency (Lange et al., 
2020). 

• Industries  
Digital tools have been used extensively in the past and is still a key feature in many 
process and manufacturing industries. Common applications are production planning, 
control, predictive maintenance, and layout planning for a smarter and more efficient 
production (Kritzinger et al., 2018). Monitoring, forecasting, decision support, and control 
and automation are traditional applications but are expected accelerate using digital twins 
(Pantelides & Renfro, 2013; Martinez et al. 2018). 

• Education and health  
Remote working and education have become viable options that increase accessibility 
which is important from a social sustainability perspective but also poses a threat to 
mental health. Digitalization, particularly the use of artificial intelligence (AI), in medicine is 
expected to facilitate disease detection and diagnostics (Apostolopoulos & Mpesiana, 
2020; Bradshaw et al., 2022; Corridon et al., 2022).  

• Water and Wastewater 
The water and wastewater sector has for a long time been dependent on communication 
technologies and digital tools for control (Creutzig et al., 2022). Process modelling for 
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optimization has also been an important tool historically (see e.g. Jeppsson, 1999; Gernaey 
et al., 2004). The current digital transformation in the water and wastewater sector is from 
offline process simulation to real-time digital twins for control and operational support 
(Torfs et al., 2022; Zekri et al., 2022). Applications include advanced control strategies such 
as model predictive control, fault diagnostics, predictive maintenance, and much more 
(Avialiotis et al., 2019; Newhart et al., 2019; Stentoft et al., 2019; Mamandipoor et al., 
2020).  

Digitalization brings promises of solutions that might revolutionize all sectors in society. On the 
other hand, the increased demand on digital products will have negative impact on water, 
energy, greenhouse gas (GHG) emissions, and pollution (Bordage, 2019). Mining of rare 
minerals and metals needed for digital products affect water quality and energy consumption 
locally. Production and transportation of the digital products as well. Data centres and servers 
require massive amounts of electricity and water for cooling. Looking solely at the internet, it 
accounts for up to 7% of the global electricity consumption and 3.8% of the GHG emissions 
(Andrae, 2020; Bordage, 2019). 

In 2020, 60% of the world’s population had access to internet (Ritchie and Roser, 2017a). The 
UN Environment Programme (UNEP) recently published a Foresight Brief with the title The 
growing footprint of digitalisation, where the UNEP raises their concerns regarding the 
environmental footprint of the internet. Digitalization has shown to increase the 
environmental impact and can have negative impact on social sustainability by increasing 
inequality (Creutzig et al., 2022). Concerned voices are raised in all sectors (see e.g., Lange et 
al., 2020; UNEP, 2021; Sacco et al., 2021; Creutzig et al., 2022).  

The objective of this study is to shine light on how much the collection, transfer, and storage of 
data is worth in terms of Wh of power, litres of water (water footprint), and the overall carbon 
footprint, mainly in a water and wastewater context (Figure 1). The issue will be discussed 
based on existing literature and examples from a Swedish water resource recovery facility 
(WRRF). 

 

Figure 1. Schematic overview of the data flows in a wastewater treatment context. 

  

Data collection 

Data transfer 

Data storage 
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Data collection 
Data is collected on-line from a multitude of sensors, actuators, and mechanical equipment in 
WRRFs. PLCs, Industrial PCs, local servers, and other electronic devices are also needed in 
treatment plants (Figure 2). Bordage et al. (2019) reports that most of the primary energy 
consumption, GHG emissions, water use, and electricity use for information and 
communication technology (ICT) is related to the manufacturing and use of devices. One 
should note that this is explained by the vast number of devices in the world. In Sweden, the 
number of Internet of Things (IoT) devices online is 21.9 per 100 inhabitants (OECD, 2017). 
Estimates indicates that the number of internet users, connected devices, and M2M (Machine-
To-Machine) connections all increase and will continue to do so (Cisco, 2020). The M2M 
connections will make up half of the connected devices and connections by 2023, out of which 
48% will be applications for smart homes (lighting, appliances, home automation etc.; Cisco, 
2020). A direct translation from the society in general to a water and wastewater context may 
be an over-simplification. It is, however, fair to assume that (1) the demand for more 
technically advanced sensors and equipment in WRRFs will increase in line with the digital 
transformation, and (2) the environmental impact of the electronic devices and mechanical 
equipment is non-negligible. ICT devices has an environmental footprint across their whole 
lifecycle: from mining of minerals and materials, to processing, production, transportation, and 
usage. This chapter will provide a qualitative review on the topic.  

 

Figure 2. Schematic overview of the types of electronical and mechanical devices in a WRRF. 

Sensors in WRRFs include, but is not limited to, electromagnetic flow meters, ultrasound level 
sensors, and optical suspended solids and dissolved oxygen sensors. They all contain plastics, 
metals, and sensor specific technology. Many sensors support Bluetooth and have built-in 
processors. Common metals are aluminium, titanium, tantalum, and platinum. Stainless steel 
is also a common material (e.g. ABB, 2022; Cerlic, 2022; Siemens, 2022). Mining and refining 
are, in general, energy intensive, and thus, depending on the energy mix, a large contributor to 
the GHG emission (Nunez & Jones, 2015). Mining can lead to the depletion of water bodies 
due to acidification and eutrophication, tailings, and a high water consumption. Human health 
effects, ecotoxicity effects on land and in water are other serious issues (Kossoff et al., 2014; 
Farjana et al., 2018). Mines leads to the loss of vegetation cover, loss of biodiversity, and land-

Sensors & Equipment 

SCADA system Server 

Computers 
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use changes, as well as social and health impacts such as conflicts, food insecurity, and air 
pollution (Hilson, 2002; Worlanyo & Jiangfeng, 2021).  

The plastics in sensors are commonly used for coating. They are made durable to withstand 
chemical exposure, and therefore fossil-based plastic like polypropylene (PP) and 
polytetrafluoroethylene (PFTE, also known as Teflon), and synthetic rubber (e.g. ethylene 
propylene diene (EDPM)) are common (e.g. ABB, 2022; Cerlic, 2022; Siemens, 2022). The 
environmental impact in a lifecycle perspective from fossil-based plastics is similar to the ones 
from mining: high energy consumption with GHG emissions as an additional effect, depletion 
of water bodies through eutrophication and acidification, terrestrial acidification, and 
ecotoxicological effects, as well as release of microplastics. Plastics, both fossil and bio plastics, 
are carbon-based which of course lead to carbon emissions (Walker & Rothman, 2020).  

 

Data transmission and storage 
It is estimated that 97ZB (zettabyte, zetta = 10007) of data will be created, captured, copied, 
and consumed globally in 2022. This number is expected to grow to 181ZB by 2025 (Statista, 
2022). This is data that must be transmitted and stored, locally or remotely, in servers and data 
centres. This chapter gives an overview and, where applicable, a quantitative estimate of the 
environmental impact of data transmission and storage.  

 

ICT accounts for approximately 4.2% of the primary energy consumption, 5.5% of the global 
electricity use, and 3.8% of the global GHG emissions (Bordage, 2019). The user equipment, 
such as PCs and monitors, is the biggest contributor to these high numbers. Servers and data 
centres account for about 15-23% of the estimated carbon dioxide (CO2) emissions and 17% of 
the primary energy demand in ICT (Bordage, 2019; Rong et al., 2016). The electricity use for 
data centres (crypto mining excluded) was 220-320TWh in 2021, and data transmission 
networks used 250-340TWh the same year. Studies have indicated that the energy and carbon 
footprints of the ICT sector are decreasing due to more energy efficient devices (Malmodin & 
Lundén, 2016), while other studies expect the footprints to increase globally as the access to 
internet increase (Creutzig et al., 2022). Efforts to increase the efficiency in data centres has 
resulted in a lower energy demand per computation, but the total energy demand is still 
increasing (Masanet et al., 2020). 

 

  

Data generation  

Henriksdal WWTP in Stockholm, Sweden, is the largest WWTP in Sweden treating water from more 
than 1.5 million people. In their supervisory system, they currently have more than 8 000 signals in 
form of sensor signals, control signals, and equipment data, all measured online at resolution of 
down to 1s. This adds up to approx. 47 kB each second, or 4 GB per day and 1,460GB per year. 

Primary energy  

The internet traffic was 3.4ZB in 2021 (IEA, 2022). On an average, that means that the transmission 
and data centre energy use is approximately 817Wh/GB. The electricity need is 140-220Wh/GB. On 
a yearly basis, that sums up to a primary energy demand of almost 1200kWh and an electricity 
demand of 201-283kWh at Henriksdal WRRF.  
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The environmental impact from primary energy and electricity use is strongly correlated to the 
type of energy and electricity. GHG emissions originates from the manufacturing of the ICT 
devices, and the energy and electricity needed to operate them (Bordage, 2019). The CO2 
emissions from primary energy production can range from 0.03kgCO2/kWh to 0.6kg CO2/kWh 
(Ritchie et al., 2020). The carbon footprint from ICT is thus strongly dependent on the energy 
mix used (Malmodin & Lundén, 2016). The world average energy mix emits 0.22kgCO2/kWh, 
while a Swedish energy mix emits 0.06kgCO2/kWh since most of the electric power in Sweden 
is generate from hydro, nuclear, and wind power. For the total energy demand of ICT, that 
makes a difference of approximately 1 billion tonnes CO2 (Ritchie et al., 2020).  

 

A change in energy mix can reduce the GHG emissions but may have other negative impacts on 
the total environmental or water footprints. Renewable energy like solar power often requires 
metals and rare earth minerals (UNEP, 2021). Hydropower can affect the land-use and of 
course the water use. Nuclear power requires uranium (which require mining) and has a high 
water demand. In conclusion – there are many aspects to consider, as highlighted in Olsson 
(2022).  

Just like the GHG emissions, the water footprint of the ICT sector is highly dependent on the 
primary energy and electricity production. The most water intense energy source, from a 
water withdrawal perspective, is hydropower. Looking at non-renewable energy sources, coal 
power and nuclear power (that both require water for mainly cooling) has the highest water 
withdrawal. From a water consumption perspective, fossil fuels and biofuels are the most 
intense (Mekonnen et al., 2015; Olsson, 2022). The water footprints varies from 720m3/TWh 
for wind power to 3 billion m3/TWh for hydropower (Mekonnen et al., 2015). Lowering the 
carbon footprint may cause an increase in the water footprint (Mekonnen et al., 2016). 

The water consumption for users, networks, and data centres accounts for 0.2% of the global 
water consumption, which may sound low but is approximately the same as the total water 
consumption of the United Kingdom in 2017 (Ritchie and Roser, 2017b). Most of the water 
footprint, 73%, originates from manufacturing of the user equipment. 12% is needed for 
operation of data centres and data transmission networks (Bordage, 2019). These figures do 
not include the water needed for electricity production, which is also a substantial part that 
should be accounted for (Mytton, 2021). 40% of the energy consumption in data centres is 
needed to run the servers and 40% is needed for cooling (Rong et al., 2016). In data centres, 
the water is needed for cooling and to power the servers. The energy demand is strongly 
connected to cooling. Relocating servers to colder areas can reduce the water footprint locally 
(Mytton, 2021).  

 

GHG emissions  

The GHG emissions from 1GB of data is 0.21kg. Applied on the annual data generation at Henriksdal 
WRRF (1,460GB), the emissions sum up to 300kg GHG which is equivalent to emissions of 
approximately 1kg of nitrous oxide. 

Water footprint (energy production excluded) 

The freshwater footprint for ICT is 8,000,000,000m3 annually (Bordage, 2019; Ritchie and Roser, 
2017b). 16% of that is needed for data centres and data transmission, which, averaged over the 
annual data traffic of 3.4ZB, means that 1GB of data require 0.38 litres of freshwater. Including the 
manufacturing and usage of user equipment, the freshwater demand is 2.4 litres/GB (excluding the 
water demand for primary energy production).  
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Outlook and conclusion 
Digital tools can help improve operations in manufacturing and process industries. It can be 
used to optimize food production and agriculture. Digitalization is regarded as a key enabling 
factor for sustainable development and to reduce negative environmental impact. While this 
may be true in many cases, it is not a universal truth. 1GB of data traffic demands 0.21kg GHG 
emissions, 0.38liters for freshwater, 817Wh primary energy, and 140-200Wh of electricity 
(Figure 3). This may seem small from a single business’ perspective. There is no obvious 
incentive to reduce the environmental impact from digitalization, especially since the positive 
effects often may exceed the negative on small scale. On a global level, however, the impact is 
quite big. The annual data creation, usage, and consumption is 97ZB and is expected to grow, 
which is why these things need to be addressed.  

 

Figure 3. Infographic on the estimated footprints of creation, transmission, and storage of 1GB data. 

Make use of the generated data 

The first question one must ask is – is all data we create needed? Only a small portion (ca. 6%) 
of the data created globally is used (Ingham, 2020). This goes for the thousands of signals in 
WRRFs too. The sensors, actuators, pumps, and mechanical equipment are essential for 
operation of the treatment plant, but they generate data that just goes to waste. Going 
forward, it should be considered to reduce the number of signals by choosing what data to 
create and store, what sensors to install, and how to make the best use of the data we have. 
With the use of AI or other data-driven modelling tools, one can find relations in data that 
could be used to monitor or optimize the operation of WRRFs. Creating soft sensors to monitor 
parameters can reduce the need for new sensors (Newhart et al., 2019). Algorithms for 
predictive maintenance can extend the lifetime of equipment (Barthelmey et al., 2019). The 
European Union’s waste hierarchy (Directive 2008/98/EC) of prevention, reuse, and recycling 
should function as a standard approach also in the ICT sector.  

Improve energy efficiency in ICT services 

Major data centre and ICT providers have already taken steps towards a more sustainable 
future. The tech giants like Google and Microsoft are of course contributing to the global 
environmental impact but have reduced their footprints by relocating data centres to colder 
areas, using cloud services, increase efficiency (more computations per Wh), and procuring 
renewable energy (Masanet et al., 2020; Mytton et al., 2021). Using cloud services instead of 
physical infrastructure can reduce the environmental impact (Mytton et al., 2021). Reusing the 
generated heat at data centres could be considered. Creating energy efficient software is 
something that can be done on a business scale.  

Be aware and make demands  

When putting numbers on the environmental impact (albeit a simplified analysis in this study) 
of creation, transmission, and storage of 1GB of data, it may not look alarming. But the total 
effect on a global level is. There are aspects that must be considered both on a global scale and 

1 GB = 817Wh 
primary energy 

140-200Wh 
electricity 

0.38liters  
of freshwater 

0.21kg 
GHG emissions 
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for individual businesses and organizations. To be aware of the negative environmental 
impacts in terms of resources, production, transportation, and usage is a first step. To set 
requirements on environmental and social sustainability on products and systems in public 
procurement can reduce the negative impacts (UNEP, 2021). 

 

A final note 
Digitalization should be regarded as a tool in a toolbox, not a universal solution. Ask first what 
the problem is, then evaluate if digitalization is the right tool or if other solutions exist. It is not 
certain that the digitalization efforts will lead to sustainability on all levels.  
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