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1. Introduction 
Models to describe the processes occurring in water resource recovery facilities (WRRFs) 
have been developed and used over the last decades (Jeppsson, 1999; Gernaey et al., 2004). 
In many applications the process models are used for design and optimization but are usually 
run separate from the plant itself. The increased knowledge and understanding of the value 
of process modelling in recent years, together with development in IT and data access are 
driving forces that pushes development towards extending process models. One extension is 
to have the process model run simultaneously with the plant, and to feed it with real-time 
data from the plant – i.e. to create a ‘digital twin’.  

The purpose of this study is to describe how digital twins have been implemented previously, 
both in WRRFs and in other relevant industries, and to identify key enabling factors and 
technologies. Literature reviews on digital twins have been made by many authors before 
(see e.g. Negri et al., 2017; Barricelli et al., 2019; Kritzinger et al., 2018). Although this study 
is more of a literature review than anything else, it is in no way complete. It is rather a first 
scan of the field to provide insight for further research. Instead of conducting yet another 
extensive review the aim has been to find case-studies on the topic, and the focus has been 
on the implementation and application of Digital Twins. Related topics within water and 
wastewater resource management, such as sewer flow models and soft sensors, are also 
discussed.  

2. The definition of a digital twin 
Although the term digital twin has been given a lot of attention both in research and in media 
in recent years, an unambiguous definition of the concept is yet to be found. The United 
States National Aeronautics and Space Administration (NASA) presented an early definition 
(Glaesson & Stargel, 2012):  

“A digital twin is an integrated multiphysics, multiscale, probabilistic 
simulation of an as-built vehicle or system that uses the best available physical 
models, sensor updates, fleet history, etc., to mirror the life of its corresponding 
flying twin.” 

This definition is quite specific to the aerospace sector but is often referred to in literature. 
Many authors have since made their contributions in the field and have presented broader 
definitions (see for example Negri et al., 2017; Eyre et al., 2018; Zhao et al., 2020). To 
summarize, a digital twin is a virtual representation of the real entity that interact with a 
virtual space through a communication network. The digital twin includes both static and 
dynamic information and can have ‘intelligence’ (Schröder et al., 2016). Digital twins are a 
real-time reflection of a physical asset, achieved through continuous communication and 
synchronization between the real entity and the digital twin states so that they can interact 
with current and historical data of the real asset. This makes it possible for the digital twin to 
continuously improve performance and directly compare and analyze predicted and 
measured values of the physical asset (Martinez et al., 2018).  
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In this work, a digital twin for smart operation of WRRFs is defined as a combination of 
different models that are used in real-time for collection, control, validation, simulation and 
visualization of data to aid operators in decision making. The model parameters are 
continuously updated and the models are automatically calibrated.  

3. Components in the digital twin system 
Simplified, the digital twin system consists of three main parts: 1) physical entities in the 
physical or real space, 2) virtual entities in virtual space, and 3) the communication between 
the two where data and information can be seamlessly shared between the physical entity and 
its virtual counterpart (Grieves, 2015). Outside of this system is also the user space, which in 
some applications is regarded to belong to the digital twin system (Bevilacqua et al., 2020).  

The physical entity can be a product, a process, or a system. Within manufacturing, the 
physical entity often is a product but might as well be the production plant or the complete 
supply chain (Grieves, 2015; Söderberg et al., 2017; Alcáer & Cruz-Machado, 2019). For 
applications in WRRFs, the physical entity is the plant itself with biological, chemical and 
physical processes, as well as equipment such as pumps etc., and the SCADA (Supervisory 
Control And Data Acquisition) system. The data from the physical entity is collected using 
sensors, laboratory data or data from actuators (Wanasinghe et al., 2020).  

The virtual entity are models of the physical entity. Within manufacturing it is often 3D 
models that can be used for geometry assurance, but applications where the production plant 
or supply chain is modelled are also common. The models can be physical-based (such as 3D 
models) or data-driven where historical data are used for forecasting, often made possible by 
the use of machine learning or artificial intelligence algorithms (Kritzinger et al., 2018). For 
WRRFs the models include process models, hydraulic models, control system models 
amongst others. 

3.1. Communication and computation 
Connected to the three main building blocks (physical space, virtual space, and 
communication between them) of the digital twin system, there are mainly three types of data 
that must be coordinated: data from the physical entity (measurements), data from the virtual 
entity (models, descriptions of the system’s configuration and construction), and data from 
simulations and analyses of the system (Cameron et al., 2018). The communication system 
between the physical and virtual entity is thereby essential to have a functional digital twin. 
Companies like ABB and Siemens nowadays offer software and hardware for 
implementation of digital twins with communication protocols that seamlessly integrate the 
physical and virtual entities (ABB, 2021; Siemens, 2021). Standardized communication 
platforms and protocols such as FMI (Functional Mock-up Interface) or OPC UA (Open 
Platform Communications Unified Architecture) are thought to be key enablers for 
digitalization of the industry. FMI is a standard that is used to exchange dynamic models into 
a single file which speed up communication and facilitates communication between different 
software or protocols (Blochwitz, 2012). OPC UA is a secure communication protocol for 
machine-to-machine communication. It is platform-independent which means it can operate 
on several hardware platforms and operating systems. This feature makes it suitable for 
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communication between different machines as well as with operators (OPC Foundation, 
2021; Övern, 2018).   

Edge, cloud, and fog computing are also thought to be enablers for digitalization. In cloud 
computing, the data is processed and stored on multiple servers and can be accessed online 
from any device which offers benefits compared to traditional storage on local hard drives. 
Fog computing is a mix of cloud computing and more traditional data storage systems, where 
computing is made locally on decentralized servers. Edge computing is performed on so 
called edge devices away from centralized storage which keeps the information on local parts 
of the network. The data does not have to be sent to the centralized cloud but is rather 
processed directly on the edge device. These three technologies have different areas of use, 
but all facilitate data storage and processing. Fog and edge computing decrease latency and 
offers greater security compared to cloud computing which can enable the use of process 
models in real time – one of the core concepts of the digital process twin.  

4. Applications of digital twins  
The digital twin can be designed and used for monitoring, simulations, optimization, and 
verification of different activities in the real-life entity/process (Martinez et al., 2018). Most 
implementations are presently found in the manufacturing industries. Modelling and 
simulation tools have been used for many years in process industries (such as chemical, 
mineral processing, pulp and paper industries etc.) but even though the models are run close 
to real-time, the term digital twin is rarely mentioned within this field. Case studies from the 
two different fields are presented in the following chapters, separated since the manufacturing 
and production industries in general are simulated based on discrete events, whereas the 
process industries operate continuously. In that sense, WRRF:s are more alike process 
industries, but knowledge and experience from the manufacturing and production industries 
might still be valuable.  

4.1. Manufacturing and production 
The digital twins within manufacturing are still in its infancy, but benefits and applications 
of digital twins within this field are thought to be many, and an enabler of the ongoing 
industrial revolution Industry 4.0 (Zheng et al., 2019; Uhlemann et al., 2017). With 
applications such as production planning and control, maintenance, and layout planning, a 
smarter and more efficient production can be achieved by using digital twins (Kritzinger et 
al., 2018). Digital twins can be used for product design, smart manufacturing, and for usage 
monitoring to simulate the product’s life cycle. A digital twin of a product enables an iterative 
and optimized product design. Product functions, behaviour, structures, and 
manufacturability can be verified in the virtual space before going into production. If coupled 
to a digital factory twin, the resources and capacities can be allocated to set up an optimal 
production plan on beforehand, which facilitates the manufacturing of the product (Qi & Tao, 
2018). Digital twins give opportunities to support operators in the day to day operation, but 
also to plan services and maintenance, and make forecasts by using the digital twin for 
simulations (Rosen et al., 2015).  

Vachálek et al. (2017) created a digital twin system consisting of the physical production line 
and a digital copy, with an interface through which the data was exchanged. The digital model 
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was created in a simulation tool (Plant Simulation developed by Siemens). The data was 
transferred via an OPC data server. The simulation set up created by Vachálek et al. (2017) 
can be used for multiple purposes, including analyzing effects of changed parameters, or to 
discover errors/malfunctions in the production.  

Zheng et al. (2019) built a digital twin system of a welding production line including a 
welding machine for weld assembly, a transporter for delivery, and a multi-layered 
warehouse for storage. The digital twin consisted of 3D geometric models to describe the 
shapes and sizes of devices, physical models to define the mechanical and thermodynamic 
states of devices, and kinematic models that receives kinematic data used to update all 
components positions in the devices in the real plant. An OPC UA server was used for 
communication. The digital twin system is said to be able to ensure operation efficiency of 
equipment in the production line and provide data to enhance welding quality.   

Söderberg et al. (2017) used a digital twin for geometry assurance. The digital twin was used 
in the design phase where it was fed with variation data for parts and fixtures, and later used 
as a real-time controller for the assembly system in the production phase. The produced parts 
are scanned, and the data is stored as deviations from a predetermined nominal (defined 
during the design phase). The parts are sorted accordingly. In this particular case, the 
produced parts are adjusted and matched pairwise for further assembly in order to minimize 
deviation after welding. The digital twin technology used creates new possibilities to adjust 
the manufacturing process to compensate for geometrical deviations.  

Bottani et al. (2017) created a digital twin of an automated guided vehicle (AGV) used in a 
production system. The production system consisted of four processing stations between 
which the AGV could move along a predefined circuit, while the digital twin AGV made 
decisions based on orders. Decisions were based on a self-adaptive algorithm that used data 
from each processing station. A number of optimization problems were tested, such as 
minimizing the logistic time, and the processing time. The study showed that it is possible to 
connect cyber physical systems, digital twins and Big Data to achieve decision-making 
autonomy and self-adaption of machines.  

4.2. Process industries 
Modelling and simulation tools have been used for many years in process industries, mainly 
to optimize the process to make it more efficient and thereby profitable. These tools can also 
be used to learn how to tackle and to minimize the occurrence of shutdowns/breakdowns. 
Simulation-based applications, of which some might be regarded as a sort of digital twin, are 
already in use in many process industries. The applications include plant monitoring, plant 
forecasting, open-loop decision support, and closed-loop control and automation (Martinez 
et al. 2018; Pantelides & Renfro, 2013).  

Digital twins can be used to reduce fluctuations in industrial processes, as shown by He et al. 
(2019). They implemented a data-driven digital twin system by integrating process 
monitoring, diagnosis, and optimized control and managed to reduce severe fluctuations in a 
chemical process plant. The study included sensor faults, actuator faults, and process 
disturbances and developed a method used to accommodate different faults. The digital twin 
system was developed to shorten the downtime of a factory by extending the operation time 
of any faulty process plant with an acceptable performance. This is achieved by timely 
monitoring, diagnosis, and tolerance control.  
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The most anticipated applications areas for digital twins in the oil and gas industry is asset 
monitoring, asset maintenance, project planning, and lifecycle management. Other important 
applications are collaboration and virtual learning and training (Wanasinghe et al., 2020). 
Maximizing profit and plan production are also important applications. Makarov et al. (2019) 
created a simulation model to optimize the profit of an oil production enterprise. Artificial 
neural networks where used to estimate input characteristics to predict the average daily 
production rate. This method made it possible to update the simulation model in real time 
based on the physical characteristics of the oil field.  

The Swedish companies Calejo Industrial Intelligence and SCA recently implemented a 
digital process twin at a pulp and paper plant in Obbola, Sweden. It was integrated with a 3D 
model of the plant itself, creating a versatile tool that mainly will be used to reduce the need 
for fossil fuel. Turbines used in the production process are run on steam or oil and by 
forecasting the need for steam in a 50h horizon it is possible to plan operations and reduce 
the need for oil which has both environmental and economic benefits (CIO Sweden, 2020).  

Vattenfall developed a digital twin of parts of its nuclear power plant Ringhals. The digital 
twin is used for monitoring and fault detection. Models of the turbines predict a theoretical 
power production and compares it with the measured production. The turbines are cooled 
with sea water, causing a risk for biological growth on the condenser which reduces its 
capacity. As the difference between the modelled and measured data increases, an indication 
that cleaning is required is sent to the operators (Ny Teknik, 2018). 

Sun et al. (2020) have proposed a multilayer cyber-physical system (CPS) based supervision 
management framework for real-time control of an urban water cycle. The multilayer CPS-
based supervision management framework consists of four layers: (1) Supervision and 
control layer, (2) Scheduling layer, (3) Digital twin layer, and (4) Water users, and 
Environment layer. Each layer is interconnected with the physical world.  The supervision 
and control layer is connected to the real control system. Advanced control algorithms and 
conceptual models of the urban water cycle are used to solve control problems with goals 
defined in the fourth layer. The scheduling layer is used to compute the supervisory control 
into set-points for actuators and to send sensor data to the Supervision and control layer. The 
digital twin layer consists of high-fidelity digital models that replicate the assets in the urban 
water cycle (treatment plants, sewer network etc.). The digital twin can be designed and used 
for various purposes, e.g. soft sensors. Finally, in the Water users and Environment layer, the 
impact of the control actions in the cyber physical system are evaluated.  

5. Related work 
A related topic to digital twin systems is using soft sensors for monitoring of treatment plants. 
Äijälä and Lumley (2006) integrated a soft sensor model for flow control at the Swedish 
WRRF Ryaverket in Gothenburg. The concept was quite simple. They used a few measured 
flows to estimate flows at various points in the WRRF where flow measurements were hard 
to accomplish. Instead of using a traditional hydrodynamic model, that could be beneficial 
but difficult to implement and maintain, they created flow balance models based on available 
on-line instrumentation. The control model was found to be effective in monitoring flows in 
the WRRF. It also functions as a fault detector for physical flow meters as it can detect when 
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the modelled value and the measured value differs from each other (Äijälä and Lumley, 
2006).  

In the city of Copenhagen, a couple of digitalization projects within water management are 
currently being implemented. Using machine-learning algorithms they created a tool for 
forecasting flow in the sewer network and inflow to the WRRF. It uses real-time data (water 
level and flow) from the sewer system and combines it with rain gauge data and weather 
radar observations, nowcasts and forecasts. The toolbox is currently deployed in Copenhagen 
covering a catchment of ca 55 km2. The toolbox is to be complemented with a decision tool 
for operation of the integrated sewer network and WRRF. The aim is to create a tool that can 
be used to optimize treatment capacities, pumping strategies and in-sewer flow allocation by 
combining level and flow sensors in the sewer network, WRRF operation data and the sewer 
flow forecast toolbox (Digital water city, n.d.). A similar project, Furture City Flow, is 
currently conducted in Sweden and Norway. The goal is to develop a decision support system 
to facilitate the information flow between different stakeholders within urban water 
management.  Pilot trials are undertaken in Helsingborg, Gothenburg, Trollhättan, 
Malmö/Lund (Sweden) and Oslo (Norway) (Sweden Water Research, 2020).  

6. Implementation of digital twins in WRRFs 
Digitalization in the water and wastewater sector is ongoing. Implementing digital 
technologies in WRRFs, digital twins among others, are expected to offer many benefits, not 
only from an operational point of view. Applications of digital twins within WRRFs include, 
but are not limited to, optimization of the treatment process, predictive maintenance and fault 
detection, model predictive control, soft sensor implementation, forecasting and planning, 
and operators’ training. In a broader perspective, this may lead to lower environmental impact 
(both with regard to energy usage and effluent discharge) and thereby better regulatory 
compliance. Financial benefits include reduced operational and maintenance costs and 
increased revenue (Sarni et al., 2019). Challenges to full-scale implementation of digital 
twins at WRRFs, key enabling factors and technologies to mitigate the challenges, and an 
outlook for applications of digital twins in WRRFs are discussed in the following sections.   

6.1. Challenges for full-scale implementation of digital twins 
A general challenge for full-scale implementation of digital twins is the lack of a clear 
definition and standardization of the concept (Kritzinger et al., 2018; Fuller et al., 2020). 
Efforts have been made to create frameworks for development and implementation of digital 
twins, although none have yet gained public acceptance (see e.g. Schleich et al., 2018; Shao 
& Kibira, 2019; Autiosalo et al., 2020; Eyre et al., 2020). Furthermore, the systems are often 
heterogenous which can make them difficult to model and monitor, but it also impedes the 
use of standardized solutions (Fuller et al., 2020).  

The challenges affiliated to implementation of digital twins can be divided into three 
categories: (1) data management (2), technical, and (3) operational challenges. The 
challenges related to data management ranges from the acquisition to storage and ownership. 
Data is acquired from sensors, equipment and laboratory test. Sensors must have high 
accuracy and reliability and are in need of regular maintenance and calibration (Eerikäinen 
et al., 2020). The amount of data is extensive and comes with noise and missing data. 
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Therefore, data must often be preprocessed. Algorithms that clean raw data, detect outliers, 
fill missing data and present it in an ordered, simplified form is essential (Lu et al., 2020; 
Rasheed et al., 2020).  

Data quality is key if the digital twin is to produce interpretable and reliable results. Models 
require tuning which is normally done by minimizing the difference between the acquired 
data from the process and the modelled data. Although, the differences between the two may 
stem from faulty sensors, uncertainty in data, missing components in the model or 
malfunction at the plant which give rise to the need of algorithms for data validation and fault 
detection (Rasheed et al., 2020; Wanasinghe et al., 2020). Maintaining the models is also 
needed to prevent the model from drifting.  

Large amount of data will be transmitted between sensors, actuators and other equipment in 
the physical entity, and the digital twin, and vice versa. The digital twin should be able to 
interact with both historical and real-time data and thus data storage is key (Lu et al., 2020; 
Wanasinghe et al., 2020). Access to data is complicated with different stakeholders in place. 
The ownership and sharing principles must be established (Rasheed et al., 2020; Wanasinghe 
et al., 2020).  

On the technical side of it, the main challenge is to implement the digital twin in such a way 
that the communication between the digital twin and the physical asset can run near real-
time. There are three main communication pathways that have to be established: (1) between 
the digital twin and the real system, (2) between the digital twin and possible other digital 
twins in the system, and (3) between the digital twin and the operators. This requires good 
computational capacity, sufficient bandwidth, and a standardized information and 
communication platform or system (Schleich et al., 2017; Barricelli et al., 2019). 

High fidelity and accurate models of the WRRF is needed to produce reliable information. 
The models can either be physical-based, mechanistical models, like WRRFs have 
traditionally been modelled, or data-driven. Data-driven models are easy to develop but as 
they are based on historical data obtained at the WRRF the model will not be able to forecast 
events or operational states outside of the dataset used to develop the model. Another 
drawback is that the output may be hard to interpret since it is based solely on data and not 
any physical, known relations between process parameters (Martinez et al., 2018). The use 
of hybrid models can make use of the benefits of both methods (Gernaey et al., 2004). The 
models are to be run at, or close to, real-time which put high demands on both the 
computational and communication capacities.  

Introducing digital twins in an existing company might require a change in both the business 
model and the current work practice. The user acceptance for new tools is generally low and 
the operators tend to stick to familiar work practice (Eerikäinen et al., 2020). It is important 
that the digital twin is useable, functional and easy to maintain in order to have the operators 
use the digital twin. The twin must be trusted, i.e. the results must be accurate, and updated 
as the process or WRRF is changed (Fuller et al., 2020; Wanasinghe et al., 2020). Transparent 
and interpretable digital twins is important and should be considered when choosing models 
(Rasheed et al., 2020; Martinez et al., 2018). Understanding the operators and their 
requirements are essential to achieve this (Wanashinghe et al., 2020). It is also important to 
clearly state the scope and focus of the digital twin, define applications, and thereby set 
reasonable expectations on what the digital twin can achieve (Cameron et al., 2018; Fuller et 
al., 2020). 
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Other issues to attend include economical costs, such as the cost of development of the digital 
twin, investments in new equipment (sensors, IT systems etc.) and maintenance costs 
(Barricelli et al., 2019). From the operator or plant owner’s perspective, the benefits of 
introducing new digital tools are not clear enough to overcome the costs for development and 
implementation (Eerkäinen et al., 2020). Whereas the economic benefits are easy to evaluate 
and visualize in industries, WRRFs have less incentives to optimize the treatment plant, and 
thus the economic benefits are less obvious (Eerikäinen et al., 2020). Another aspect is that 
WRRFs in general are in a quite early stage of digitalization. A general hinder for full-scale 
implementation of digital twins is that in-house implementation of digital techniques is 
insufficient (Uhlemann et al., 2017).  

To have functional digital twins, there are many different digital systems that must be 
connected or developed. In each stage, cyber security must be addressed. The systems must 
be robust and secure from hacking and viruses (Baricelli et al., 2019; Wanasinghe et al., 
2020; Fuller et al., 2020).  

6.2. Key enabling factors and technologies 
The core of developing and using digital twins is data. However, data alone will not be 
sufficient. One must go from data, to information, to knowledge to ‘intelligence’. While data 
is retrieved by quantitative or qualitative measurements from sensors or equipment in the 
WRRF, information is what can be obtained from the data through data analysis. Piecing 
together different information and insight to the mechanisms and processes in the WRRF 
gives knowledge. When the knowledge is used to develop new ideas and perspectives, it is 
commonly said to be ‘intelligent’, albeit that the term intelligent can be somewhat misleading 
(Therrien et al., 2020).  

Data is collected from sensors, actuators and other process equipment, as well as from 
laboratory tests. As the data sources may have different interfaces and supported protocols, 
means to gather the data is needed to increase the connectivity (Tao et al., 2018). Internet of 
Things (IoT), or rather Industrial IoT (IIoT), are important technologies to achieve this. IIoT 
is regarded as a key enabler for digitalization within the industry as it enables the connectivity 
between devices and thereby facilitating data collection, exchange and analysis (Malakuti & 
Gruener, 2018).  

The gathered data is typically noisy and must be pre-processed to detract outliers or detect 
anomalies in the data set before using it (Wanasinghe et al., 2020). The collected data require 
storage and the data (both historical and real-time data) must be well organized and easily 
accessible to ensure fast communication. IT systems, servers and communication protocols 
are needed. The large amount of real-time communication data gives rise to a need of data 
compression, data fusion, data encapsulation, data mapping technologies and communication 
technologies (Rasheed et al., 2020; Tao et al., 2018, Wanasinghe et al., 2020). Simple and 
open communication protocols and formats facilitate implementation in existing systems 
(Barthelemey et al., 2019).  

Data must be stored in a secure way, protected from cyber-attacks. Unauthorized data access 
and modifications must be prevented (Wanasinghe et al., 2020). Edge, cloud, or fog 
computing might facilitate communication and storage. With cloud computing, files and data 
can be performed on the Internet instead of on physical servers. Edge computing might be 
more ideal when it comes to pre-processing the collected data as the computation would be 
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made where the data is gathered and thereby lowering latency and required bandwidth (Al-
Ali et al., 2020). 

The data is used to monitor the WRRF, detect faults or anomalies in the WRRF, as well as 
to develop models and keep them up to date. Models can be physical-based, data-driven or 
hybrid models. Besides the process and plant models, models for fault detection, predictive 
maintenance, evaluation and validation is needed within the digital twin depending on pre-
defined applications. Different techniques and research fields are needed depending on what 
sort of models are to be implemented. Simplified models of lower order or data-driven 
models may reduce the computational demands but with the drawback of not being as easy 
to interpret as traditional physical-based models (Martniez et al., 2018). Having a digital twin 
capable of predicting the future and realize the current state of the plant demands high-fidelity 
models and simulators with accurate input data (Rasheed et al., 2020). High-performance and 
large-scale computation is needed. The computational infrastructure must be considered. The 
use of cloud, fog and edge computing might be feasible in some cases (Tao et al., 2018; 
Rasheed et al., 2020).  

Model development and continuous updating (or recalibration) can be facilitated by the use 
of computer and data science technologies, specifically Artificial Intelligence (AI) and its 
subsets like Machine learning, Reinforcement learning and Neural networks (Shao & Kibira, 
2019; Rasheed et al., 2020). Some may argue that the use of AI, IoT and IIoT technologies 
are key enablers for digital twins (Fuller et al., 2020). Creating an autonomous digital twin 
that can make decisions on its own, continuously monitor and analyze the condition of the 
physical entity, predict maintenance, and detect faults requires AI (Autiosalo et al., 2020). 
While the use of AI may facilitate modelling and computation, it is important that the output 
is interpretable by the operators (Rasheed et al., 2020). Model development and interpretation 
of the digital twin and its performance require good understanding of the processes, and 
knowledge in control and automation engineering.  

To have a functional and interpretable digital twin, which is easy to use and of value to the 
operators, the human machine interface (HMI) and good ways of visualizing results from the 
digital twin is needed (Autiosalo et al., 2020). Digital platforms for data management, privacy 
and security, and quality is important as well (Rasheed et al., 2020).  

Key enablers 

• Communication platforms and protocols 
• IT infrastructure 
• Cyber security 
• IoT, IIoT 
• Big data technologies 
• Storage capacity 
• Cloud, edge or fog computing 
• Modelling and simulation tools/platforms 
• Data science 
• Computer science 
• Artificial intelligence (Machine learning, Deep learning) 
• Visualization and graphical user interface 
• Transparency and interpretability   
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6.3. Possible applications, value and usability of digital twins in 
WRRFs 

There are probably endless possibilities to what can be achieved with digital twins. A digital 
twin can monitor, control and optimize processes and functions in the physical object and 
continuously predict future scenarios (Barricelli et al., 2019). Applications such as real-time 
monitoring, asset management, predictive maintenance, fault detection, state monitoring, and 
virtual testing, as well as traditional WRRF process model applications like optimization, 
control, planning, evaluation, and automation are all thought to be achievable by the use of 
digital twins, all of which contribute to a robust, resource effective and optimized operation 
of WRRFs (Liu et al., 2020; He et al., 2019). However, to create a comprehensive and usable 
digital twin, easy to maintain and that produces reliable and interpretable results, the scope 
and focus of the digital twin must be well-defined. The digital twin should be made as simple 
as possible without compromising on quality (Cameron et al., 2018).  

6.3.1. Fault detection  
Sensor faults, actuator faults, and process disturbances commonly occurs at WRRFs. As 
faults or unexpected events can cause process irregularities in WRRFs and thereby 
influencing the treatment process or equipment it is important to incorporate fault detection 
to achieve effective operation and to shorten downtime (Newhart et al., 2019; Samuelsson et 
al., 2017). Methods for fault detection include traditional statistical methods, such as 
principal component analysis (PCA) and partial least squares, as well as more complex 
machine learning algorithms such as deep learning or reinforcement learning (Zhang et al., 
2018; Newhart et al., 2019; Mamandipoor et al., 2020). 

6.3.2. Predictive maintenance 
The digital twin makes it possible to retrieve accurate and up to date estimations of the status 
of the process and the equipment. This opens up possibilities to use the digital twin for 
predictive maintenance (Avialiotis et al., 2019). Predictive maintenance ranges from 
detecting anomalies (fault detection) to prognosis of the lifetime of the plant and its 
equipment (Barthelemey et al., 2019). The use of artificial intelligence (AI) algorithms is a 
facilitator for this application but requires lots of labelled data. While faults or anomalies are 
possible to detect from the data with data analysis, more sophisticated methods are required 
to determine the cause and effect of the anomaly (Barthelemey et al., 2019).   

6.3.3. Soft sensors  
Parameters are not always easy to measure in a reliable way either due to physical constraints 
of the WRRF or the lack of reliable sensor data. By the use of data and data science 
algorithms, such as machine learning or deep learning algorithms, it is possible to create soft 
sensors that facilitate monitoring of parameters that are hard or impossible to measure (Haimi 
et al., 2013; Wu et al., 2019, Yan et al., 2017). 

6.3.4. Prediction, forecasting and planning  
The digital twin can be used to predict performance to either improve the operation of the 
treatment plant or to inform the operator about expected poor performance (Gardner et al., 
2020). Making the digital twin self-adapting, using AI algorithms or Real-Time 
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Optimization, so that it learns from the data and the process over time, it can adapt to 
unforeseen events and make decisions (Autiosalo et al., 2020; Gardner et al., 2020; Matias 
& Jäschke, 2020). The digital twin can either make decisions on its own or, send alarms, stop 
operation, and provide insight for the operators to aid them in decision making (Autiosalo et 
al., 2020). It is possible to couple the plant digital twin to prediction models of the sewer 
network to predict incoming flows and thereby give early warnings to the operators so that 
either the digital twin or the operator actively can control the plant based on predicted events 
(Zhang et al., 2019). It is also possible to use the digital twin in a traditional process modelling 
way to simulate and analyze future scenarios.  

6.3.5. Control and Optimization  
Optimization, control, and automation are traditional applications of and areas where WRRF 
process model are used. Model predictive control (MPC) have been used since the 1980s and 
is still an important use of process models (Stentoft et al., 2019). Inclusion of a control system 
model in the digital twin makes it possible to develop and evaluate control strategies on 
online data before implementation in the real system (Wanasinghe et al., 2020). In a recent 
study by Lindblom and Samuelsson (2020) a digital twin was used to conduct a virtual 
acceptance test of new control system code for the process under construction at Henriksdal 
WRRF in Stockholm. The results are promising, and the digital twin was also judged to be 
feasible for training of operational staff.  

6.3.6. Operator’s training 
The digital twin can increase the operators’ knowledge of the treatment process and be used 
by operators to train or test future scenarios. Possible applications also include risk 
assessments and emergency response training (Bevilaqua et al., 2020; Wanasinghe et al., 
2020).  

7. Conclusions 
This work was done to describe how digital twins have been implemented previously, both 
in WRRFs and in other relevant industries, and to identify challenges as well as key enabling 
factors and technologies for full-scale implementation of digital twins. The concept ‘digital 
twin’ lacks an unambiguous definition which is limiting for the research area. A unifying 
definition seems hard to reach which is why the following definition, specifically for digital 
twins of WRRFs, was used: 

A digital twin for smart operation of WRRFs is defined as a combination of 
different models that are used in real-time for collection, control, validation, 
simulation and visualization of data to aid operators in decision making. The 
model parameters are continuously updated and the models are automatically 
calibrated.  

The use of digital twins has great potential and may well be the future of process plants, 
including WRRFs. Applications like real-time monitoring, predictive maintenance, fault 
detection, and virtual testing amongst others offers benefits for the operators. As an end 
result, the use of digital twins is expected to increase efficiency, reduce cost and energy 
consumption, and lower the overall environmental impact, as well as help operators in their 
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day to day work. Challenges for full-scale implementation of digital twins should be 
addressed early to mitigate them. Set aside technical challenges such as IT infrastructure, 
cyber security, data storage etc., a main concern is to develop a digital twin that is 
comprehensive and usable. To make the digital twin the powerful tool it has the potential to 
be, and a tool that adds value for the operators, the scope of it and the applications to develop 
it for should be determined together or in close collaboration with the end user.  
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