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Abstract 

Co-digestion of sludge with external substrates at wastewater treatment plants is a 
common means to use residual wastes, utilise available capacity in the digester and 
boost biogas production. The Benchmark Simulation Model No. 2 (BSM2) is a plat-
form for comparing plant-wide control strategies and includes among other things a 
model of the activated sludge process and the digester at a treatment plant. This re-
port reviews the state of knowledge on possibilities and challenges to include co-
digestion in the BSM2 model. The report also includes a survey of the hydrolysis coef-
ficient for commonly used substrates at treatment plants in Sweden by using non-
linear parameter estimation fitting models to Biomethane Potential (BMP) test data.  

Since the ADM1-model is COD based the substrates have to be divided into state var-
iables in terms of COD. All the methods available in literature involve some sort of 
COD analysis on the substrate, and the way to proceed would be different depending 
on the solids concentration of the substrate. It is recommended that each substrate is 
characterised individually and that the hydrolysis step is kept virtually separate for 
each of the substrates in the BSM2 model. 

The study has found that the present hydrolysis coefficient in BSM2 (10 d-1) needs to 
be updated and a more reasonable value is around 0.2 d-1 for mixed sludge.  The coef-
ficient for food waste is similar to that of mixed sludge. 
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Introduction 
The objective for wastewater treatment plants (WWTPs) has traditionally been effluent water quality un-
der the constraints of technical feasibility and cost. During recent years the scope has widened in a num-
ber of ways; the greenhouse gas emissions should be mitigated, the energy efficiency increased and re-
sources recovered out of the wastewater. All of this puts focus on energy recovery with anaerobic diges-
tion at WWTPs. 

The international research community has developed several benchmark models describing wastewater 
treatment processes with the purpose to compare the performance of different control strategies in a uni-
fied framework. The Benchmark Simulation Model No. 2 (BSM2), described below, is a plant-wide model 
including digestion of sludge with the Anaerobic Digestion Model no. 1 (ADM1). In the light of the in-
creased focus on digestion, it is important that this process is well described and allows common applica-
tions. One application that nowadays is common at WWTPs is anaerobic co-digestion (AcoD) of different 
organic wastes together with sewage sludge. This allows the WWTPs to use residual capacity in the digest-
er to increase their biogas production and thereby increase the energy production in terms of power, heat 
or vehicle fuel. The current implementation of digestion in BSM2 has inadequacies and does not allow for 
addition of external substrates, i.e. AcoD. 

The scope of this work is to investigate modelling of AcoD in a plant-wide context at WWTPs. The pro-
ject aims to answer the following questions: 

• what are the weak points of the digestion model in BSM2 and what alternatives are there to ad-
dress those? 

• what models are available for AcoD and which is preferable to use with BSM2? 

• which methods are available for characterising substrates for modelling with ADM1 and which is 
most applicable for available data? 

• which data is available to model different kinds of substrates? 

Background 

Description of BSM2 
BSM2 is a model-based platform for developing, evaluating and analysing plant-wide control strategies for 
wastewater treatment plants (WWTPs). BSM2 is today the most accepted and widespread tool within the 
academic community for this purpose. It is developed within an IWA (International Water Association) 
task group on Benchmarking of Control Strategies for WWTPs, established in 2005 (see 
www.benchmarkwwtp.org), (Jeppsson et al., 2007; Nopens et al., 2010). 

The BSM2 platform consists of six parts. 

1. A standardised layout for the WWTP in question, see Figure 1. The activated sludge unit is a 
modified Ludzack-Ettinger configuration consisting of 5 tanks in series. Tanks 1 and 2 are anoxic, 
while tanks 3, 4 and 5 are aerobic. Tank 5 and tank 1 are linked by means of an internal recycle. 
The BSM2 plant further contains a primary and a secondary clarifier, a sludge thickener, an an-
aerobic digester (AD), a storage tank and a dewatering unit. 

2. A complete setup of process models tracking organic matter (i.e. Chemical Oxygen Demand, 
COD) and nitrogen components through the different units of the plant. The activated sludge 
process is modelled with the Activated Sludge Model no. 1 (ASM1) model by Henze et al. (2000) 
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describing COD removal, nitrification, and denitrification by heterotrophic and autotrophic bac-
teria. The secondary clarifier is a one dimensional, 10-layer model proposed by Takács et al. 
(1991). The AD is modelled by the ADM1 model (Batstone et al., 2002). The models for the re-
maining support processes of the plant can be found in Nopens et al. (2010). 

3. A standardised dynamic influent for the full 609 days of simulation. The influent captures the 
characteristics of a real municipal wastewater with diurnal and weekly variations, rain and storm 
events and seasonal effects like temperature variation and holiday periods.   

4. A set of actuators for control and sensors for monitoring the process. All actuators except the 
aeration system are considered ideal. A number of sensor classes have been defined from which a 
benchmark user selects the ones most appropriate. Noise level, time response, delay time, signal 
saturation levels and sampling time are sensor characteristics defined by the various classes. 

5. A standardised simulation procedure. The plant is simulated for 609 days out of which the last 
364 days are used for evaluation. 

6. A set of evaluation measures of which the Effluent Quality Index and the Operational Cost Index 
are the two most important ones. 

 

 

Figure 1 Principle plant layout for the WWTP in BSM2. 
 

Digestion modelling in BSM2 
The digester in BSM2 is a traditional CSTR with a volume of 3 700 m3 (3 400 m3 liquid volume). For the 
default operational strategy that gives a hydraulic retention time at about 23 days. Temperature compensa-
tion of model parameters are fully implemented according to Batstone et al. (2002) which means that the 
digester model could be operated from 0-60 °C without recalculation of parameter values. As default the 
AD operates at mesophilic temperature of 35 °C. 

In the original ADM1 particulate substrate is fed to the digester model as particulate composite material 
(Xc). This acts as a pool for all composite organic material including dead biomass. The first process of 
ADM1 is the disintegration step, describing the breakdown of Xc into carbohydrates (Xch), proteins (Xpr), 
lipids (Xli) and inerts (XI). This step was included to model the extracellular, non-biological processes like 
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lysis and decomposition of complex materials. The disintegration is modelled with first order kinetics 
dividing Xc into Xch (30 %), Xpr (30 %), Xli (30 %) and XI (10 %). The second process of ADM1 is hy-
drolysis of Xch, Xpr and Xli into small soluble compounds, i.e. monosaccarides (Ssu), amino acids (Saa) and 
long chain fatty acids (LFCA, Sfa). This is also modelled with first order kinetics with individual rate pa-
rameters. This model formulation has a few implications; one is that all material pooled into Xc will get the 
same stoichiometric composition with regards to Xch, Xpr, Xli and XI, dead biomass included, another one 
is that placing two reactions with first order kinetics next to each other means that the slower reaction will 
become rate limiting. 

The implementation of ADM1 in BSM2 is consistent with the original ADM1 model description to a 
great extent. One significant exception is the degradation of particulate substrates in the AD. As described 
below an interface is needed to convert the ASM1 state variables into the corresponding ADM1 ditto. In 
the interface, all COD in the feed are converted directly into Xch, Xpr, Xli and XI rather than Xc. This al-
lows for adapted composition depending on substrate and separates feed from dead biomass. The disinte-
gration step is kept for dead biomass. However, since the disintegration step is rate limiting with the de-
fault ADM1 parameters the hydrolysis rates needs to be adjusted accordingly to get a realistic degradation 
rate. This adjustment is not done in the standard BSM2 parameterisation, leading to a too effective diges-
tion process which overestimates capacity and gas production in the digester. 

Literature study 

Methods for characterisation of substrates for modelling with ADM1 
One of the most important aspects for a successful modelling project is characterisation and fractionation 
of the substrate feed. Characterisation means both to map the physiochemical properties of the substrates 
to the about 20 state variables of the ADM1 model; and to identify the substrate-related biological param-
eters of the model. Since the ADM1 was first published in 2002 a number of approaches have been pre-
sented on characterisation. 

Physiochemical  
Several schemes have been presented on how to characterise the substrate with standard physical and 
chemical (phys-chem) analysis methods (Souza et al., 2013; Angelidaki et al., 2009; Galí et al., 2009; Lübken 
et al., 2007). Common analyses include, total solids (TS), volatile solids (VS), total Kjeldahl nitrogen 
(TKN), total ammonia nitrogen (TAN), volatile fatty acids (VFAs), total alkalinity (ALK), pH and total 
and soluble chemical oxygen demand (COD). In some publications (Jimenez et al., 2013; Girault et al., 
2012; Galí et al., 2009; Lübken et al., 2007) these parameters are complemented with one or more analyses 
for carbohydrates, proteins and lipids. To address the issue of biodegradability it is also common to do 
biomethane potential (BMP) tests, which also gives information on hydrolysis rates, see below. 

Anaerobic respirometry 
In order to assess the biological availability of the substrate, BMP tests are widely used (Souza et al., 2013; 
Angelidaki et al., 2009; Galí et al., 2009). These are also used to characterise substrates for modelling with 
ADM1. Girault et al. (2012) presented a method called Anaerobic Respirometry. They perform a BMP test 
but plot methane production rate against time and deduce fractions with different availability for biologi-
cal degradation from the curve. In combination with some phys-chem analyses they characterise both the 
applicable state variables and the substrate dependent model parameters. The phys-chem analyses are TS, 
VS, TKN, TAN, VFA and COD. They also analysed lipid content with Soxhlet extraction.  



Anaerobic co-digestion in plant-wide wastewater treatment models 4 

 

Elemental analysis 
The phys-chem analyses can be complemented with information about the elemental composition of sub-
stances, e.g. for C, H, O, N and P (Kleemebezem and Van Loosdrecht, 2006). An elemental analysis also 
ads valuable information (Batstone, 2013). 

Model interfacing 
In the special case where two models are coupled as in BSM2 with the digester feed coming from the 
ASM1 model, the feed is characterised in detail in the form of state variables of another model. In this 
case only conversion / interfacing to ADM1 is needed, see section on interfacing below. For other, exter-
nal, substrates a combination of phys-chem methods and interfacing has been published by Zaher et al. 
(2009). In their  method they characterise the substrate with the following 11 analyses: particulate COD, 
soluble COD without VFA, VFA, total organic carbon, total inorganic carbon, total organic nitrogen, 
TAN, organic phosphorous, ortho-phosphorous, ALK and fixed solids. These results acts as input to a 
transformer model based on the continuity based interfacing method (CBIM) described below. 

Interfacing ADM1 with ASM-type models and external substrates 
Being a plant-wide model the BSM2 comprises a number of different sub models. Connecting different 
models raises a number of issues, where the most critical one is to connect models with different sets of 
state variables. That is the case between several of the models in BSM2 but the most significant differ-
ences are between ASM1 and ADM1, see Table 1 for a list of the state variables of ASM1 and ADM1. 
There are two different approaches to address this problem; i) the supermodel approach, putting up one 
large model for both (or all) subsystems with a uniform set of state variables, or ii) the interfacing ap-
proach, defining the conversion from the state variables of one model into the states of another. The latter 
allows the usage of established and well-known models and is used in BSM2. The interfaces ASM1 to 
ADM1 and back to ASM1 are described by Nopens et al. (2009). 

In literature, two different principles for setting up a model interface are found, continuity-based interface 
methodology (CBIM) (Volcke et al., 2006) and what we call knowledge based interfaces (Nopens et al., 
2009). Both preserve continuity but have a different way to define the explicit mapping of the states. 

Knowledge based interfaces 
In this approach available information and expert knowledge about the incoming substrate are used to 
characterise the substrate in terms of ADM1 state variables. The method will be explained and exempli-
fied with the Modified Copp interface by Nopens et al. (2009).  

The Modified Copp interface was developed for interfacing the sludges arising in the waterline of the 
BSM2 WWTP with the ADM1 digester model. In the waterline, basically all models are based on the state 
variables of ASM1. As can be seen in Table 1 there are, apart from the difference in count, a number of 
principal differences in how the states are defined, 

• In ASM1 nitrogen is modelled as separate states, whereas in ADM1 the nitrogen is associated 
with the COD. 

• The COD in ASM1 is categorised as particulate or non-particulate and biodegradable and non-
biodegradable. In ADM1 it is separated in a number of defined compounds, like carbohydrates, 
lipids, proteins, etc. all having different characteristics.  

• pH is not modelled in ASM1 while it is in ADM1. 

• Following the different handling of pH, the charge balance has major differences between the 
models. 
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Table 1 State variables or ASM1 and ADM1 respectively. 
ADM1 ASM1 

Variable Description Variable Description 
Xc Composite SI Soluble inerts 
Xch Carbohydrates SS Readly biodegradables 
Xpr Proteins XI Particulate inerts 
Xli Lipids XS Slowly biodegradables 
XI Particulate inerts XB,H Heterotrophic biomass 
SI Soluble inerts XB,A Autotrophic biomass 
Ssu Monosacharides XP Particulate by-products from biomass decay 
Saa Amino acids SO Oxygen 
Sfa Total LCFA SNO Nitrate and nitrite nitrogen 
Sva Total valerate SNH Ammonium and ammonia nitrogen 
Sbu Total butyrate SND Soluble biodegradable organic nitrogen 
Spro Total propionate XND Particulate biodegradable organic nitrogen 
Sac Total acetate SALK Alkalinity 
Sh2 Hydrogen T Temperature 
Sch4 Methane   
SIC Inorganic carbon   
SIN Inorganic nitrogen   
Xsu-h2 Biomass (7 pcs.)   
Scat Cations   
San Anions   
pH pH   
T Temperature   
Pgas,i Partial pressure of gas   
Pgas Total gas pressure    

 

 

Figure 2 Approach for the interface between ASM1 and ADM1 in BSM2. The scheme shows how ASM1 states 
are mapped into their ADM 1 counterpart and back. Figure from Nopens et al. (2010). 
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In the case with ASM1 to ADM1, the ASM1 states provide a detailed characterisation of the digester feed. 
This gives a possibility to put up a rule-based method to convert them to the appropriate ADM1 counter-
part. The principle scheme for the interface is shown in Figure 2.  

Continuity-based interfaces 
The continuity-based interfacing method (Volcke et al., 2006) gives a more mechanistic approach to inter-
facing models with different sets of state variables. The method is based on fractioning substances in their 
elements, i.e. C, H, O, N, P, charge and COD and defining the conversion with composition and Petersen 
matrices, which are familiar to modellers. 

Four steps can describe the CBIM. 

1. Formulation of elemental mass fractions and charge density. 
Elemental mass fractions for all state variables are formulated assuming a molecular formula of C, 
H, O, N and P adding up to 1. Also charge density and COD content are identified for each state 
variable. 

2. Set-up of composition matrices. 
The composition matrix summarises the composition of all state variables for all the models in 
the interface. The elemental mass fractions from step 1 are multiplied by the specific mass of the 
component in order to get mass units in the matrix. 

3. Definition of transformation matrices. 
The transformation matrix comprises the transformation processes of the state variables of the 
origin model into the ones of the target model. The user defines separate stoichiometric conver-
sion factors and puts them up in a Petersen matrix. The matrix is based on COD-mass, and con-
tinuity for all substances and elements must be preserved. 

4. Transformation equations. 
In the last step the stoichiometric coefficients in the Petersen matrix are complemented with rate 
coefficients for each transformation. This preserves continuity in each time-step and assures con-
version in the right direction, i.e. that the flux is really from the origin to the target model. 

Modelling substrate addition and degradation of particulate material 
The characterisation of substrates results in individual composition and degradation kinetics for each sub-
strate. From a modelling point of view it has to be considered how to keep this separated though the dis-
integration and/or hydrolysis steps of ADM1. In the original model there is only one set of Xc, Xch, Xpr, 
Xli and XI with corresponding disintegration and hydrolysis rates. If the substrates were to be combined in 
the model prior to the feed the composition could be kept correct but it would be impossible to apply 
different degradation rates. In literature there are a few examples on how to address this using the ADM1 
with modifications. 

The simplest approach is to do the characterisation of substrate on the actual feed mix. Derbal et al. (2009) 
uses the standard procedure from Batstone et al. (2002) to get the stoichiometric composition of Xc, i.e. 
fractions of Xc for Xch, Xpr, Xli and XI. Then the disintegration rate parameter is calibrated using BMP 
tests and modelling. This is successful in terms of model prediction but leads to a very inflexible model 
since the substrate mix cannot be varied without repeating the characterisation process. 

Esposito et al. (2008) models AcoD of sewage sludge and organic fraction of municipal solid waste 
(OFMSW). For the purpose they use the ADM1 but propose a number of modifications. For the degrada-
tion of particulate organic matter they use the standard formulation of ADM1 with disintegration and 
hydrolysis for all substrates and dead biomass. In order to separate the different streams they use multiple 
pools of composite material i.e. Xc1 , Xc2, etc. see Figure 3. Moreover, they use different disintegration 
kinetics for the different Xcs. In the paper, a lot of focus is put on describing a more complex, surface-
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based, disintegration kinetics for more complex substrates like OFMSW. The hydrolysis is then kept to be 
the same, and not rate limiting, as in ADM1. Galí et al. (2009) uses a similar approach as Esposito et al. 
(2008), but uses first order kinetics for all tested substrates, pig manure, apple, orange, pear, sunflower, 
glycerol and rape. The digester feed will then be mixed to one stream that consists of several Xcs and the 
parameter set up of stoichiometric compositions of Xc. 

 

 

Figure 3 Schematic representation of the model of Esposito et al. (2008). 
 

 

Figure 4 The model GISCOD in Matlab/Simulink. Figure from Zaher et al. (2009). 
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The most general and flexible method, known to the authors, for applying AcoD with ADM1 is presented 
by Zaher et al. (2009) in the GISCOD model. Unlike the above examples the GISCOD uses the formula-
tion of BSM2 with feeding particulate substrate as Xch, Xpr, Xli and XI, and using Xc only for biomass de-
cay. To keep the hydrolysis for different substrates apart the GISCOD model separates the hydrolysis 
model from the remaining processes of ADM1, see Figure 4. This makes the model easy to expand for 
arbitrary number of substrates. 

Suggested implementation in BSM2 
As described in the literature review, when implementing AcoD in a plant-wide fashion some issues needs 
to be addressed: i) can sewage sludge be handled the same way as without AcoD? ii) which method is pre-
ferred to characterise the substrate? iii) how to interface the additional substrates? and iv) how to separate 
the different substrates in terms of degradation (disintegration and/or hydrolysis) in the digestion model? 

For the specific case of AcoD in the BSM2 platform these issues are discussed below. 

Treatment of sewage sludge 

The current strategy with one knowledge-based interface handling both primary and secondary sludge and 
making use of the detailed information about those in form of ASM1 states is very good. However, it is a 
fact that the AD in BSM2 is too effective due to the discarded disintegration step and still the high hydrol-
ysis rate of 10 d-1. This needs to be addressed and the most reasonable solution is to update the hydrolysis 
rate to the overall degradation rate determined from BMP tests. 

Characterising and fractionating substrates  

The reviewed methods have different approaches to characterise and fractionate substrates but some 
common elements exist. Since the ADM1 model is COD-based the substrate has to be fractionated into 
the different state variables in units of COD. Different phys-chem or biological approaches exist to find 
the fractions, but all make use of at least the total COD and often also the soluble COD for this purpose. 
This is problematic since it is well known that it is hard to make a representative and correct COD analysis 
of particularly solid substrates as e.g. OFMSW, fat, oil and grease (FOG) or industrial solid waste. None 
of the reviewed methods can fully exclude the COD analysis; and therefor the authors cannot give any 
conclusive recommendation on choice of method valid for all kind of substrates. However, some guidance 
depending on substrate can be provided: 

• For liquid and fairly easily degradable substrates that are well mixed where a total and soluble 
COD analysis is possible the method by Zaher et al. (2009) is easy to apply. With a number of 
phys-chem analyses a completely automated method is provided where the analysis result is fed to 
a spreadsheet from which an automated fractionation is made based on the CBIM. 

• For solid substrates where extensive phys-chem analyses are not applicable different versions of 
BMP tests provide a useful alternative. The method by Girault et al. (2012) uses degradation tests 
to assess the COD fractions with different degradations rates in a substrate. This saves a lot of 
measurements but still for example VFA and lipid content analyses are needed. Moreover, the to-
tal COD value is used to fractionate particulate and soluble parts between Xch, Xpr and Xli respec-
tively Ssu, Saa and Sfa. In all methods the total COD is also needed to account for the inert parts of 
COD, XI and SI.  

Interfacing substrates 

If the applied characterisation method provides a full description of the substrate in ADM1 state variables 
no interface is needed for the external substrate. Then, the ASM1 to ADM1 interface is used only for 
sludge feed and the additional substrate is fed separately to the AD model. 
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Implementation and separating hydrolysis 

To keep the flexibility in the model, it is suggested that each substrate is characterised independently and 
that the substrates are kept separate through the hydrolysis step in ADM1. Since the current BSM2 im-
plementation for good reasons has excluded the disintegration step for the feed, it is advised to keep this 
formulation when adding AcoD. Altogether, that means that the model has to be extended with individual 
states (Xch, Xpr and Xli) and hydrolysis reactions for each substrate. This separation could be achieved 
similar to Derbal et al. (2009) or Esposito et al. (2008) with adding these additional reactions etc. directly 
into the model. However, this is rather inflexible since the user has to reprogram the model each time the 
number of substrates is changed. The method by Zaher et al. (2009), Figure 4, where the hydrolysis is sep-
arated virtually from the remaining ADM1 processes provides a more general and flexible solution to this. 

Modelling study 
When modelling several substrates with the GISCOD model the separate hydrolysis coefficients for each 
substrate are required inputs to the model. Also, as mentioned above, the present BSM2 model is not 
updated with a realistic degradation rate leading to an over estimation of capacity. 

In order to improve the knowledge about substrates commonly used in digesters at treatment plants in 
Sweden, this part of the study involves non-linear parameter estimation to estimate the first-order hydrolysis 
coefficient (khyd, d-1) and the ultimate methane yield (Pf, mlCH4/gVS) from BMP data provided by treatment 
plants and universities in Sweden. 

Non-linear parameter estimation 
In a static model the model output (y) at a given time (t) is a function of model parameters ( ) in the fol-
lowing way: 

! ! !!!! !! 

To estimate the model parameters of the model given access to measurement data a classical Frequentist’s 
approach to model estimation can be used. In this approach the true values of  are treated as fixed val-

ues, while the estimators (!) are treated as belonging to a distribution.  

Measurements are uncertain, which will cause the estimators to be uncertain. The error of the parameter 
estimation will propagate to the model output. Parameters can be estimated through minimising a cost 
function S(t, ): 

! ! !"#$%&!! !! ! ! 

If the model is linear in the parameters, linear least squares can be used. Linear least squares can be solved 
by performing a fixed number of operations and no initial values are needed.  If the model is non-linear in 
the parameters, non-linear parameter estimation should be used. In non-linear parameter estimation the 
solution is found in an iterative manner, and an initial guess is required. To obtain the solution to the non-
linear optimisation problem, a minimisation algorithm is needed, such as the interior-point or the simplex 
methods, and the problem is solved numerically. 

The quality of the estimate can be calculated from the covariance matrix of the estimators, given by: 

!"# ! ! !! !! ! ! !!!!!!!!"#$#%!!!!!! ! !"
!" 

where s2 is the unbiased estimate of the standard deviation ( 2) of the estimators and J is the Jacobian of 
the model outputs with respect to the model parameters. From the theory of linear regression, the expres-
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sion for the approximate confidence interval of the estimation of the parameters when the number of 
measurements is large becomes: 

!!!! ! ! ! !!!!! ! !"#$!!"# ! ! 

where !!!!! !  is the percentile of the Student’s t-distribution, n is the number of measurements and p is the 
number of parameters. If the number of measurements is small – as in some of the data sets in this study 
– the estimate of the standard deviation of the estimators will be less good. The covariance matrix of the 
model predications, COV(y), can be calculated from the covariance matrix of the estimators, assuming 
linear error propagation: 

!"# ! ! !! ! !"# ! ! !! 

The confidence interval of the model output is given by: 

!!!! ! ! ! !!!!! ! !"#$!!"# ! ! 

For more reading on the theory behind non-linear regression see e.g. Seber and Wild (1989). 

Cost functions 
There are different alternatives of cost functions in linear and non-linear parameter estimation. The cost 
function will be a measure of the discrepancy between the model output and the measurement data. The 
most commonly used cost function in parameter estimation is the sum of squared error (SSE). Another alter-
native is to minimise the sum of absolute errors (SAE), see Table 2.  

The least squares estimate is equivalent to using SSE as a cost function. Using the least squares approach in 
the cost function will be equivalent to the Maximum Likelihood Estimate if the errors are normally dis-
tributed. Using SAE as the cost function is referred to as least absolute deviation. This method will be equiva-
lent to the Maximum Likelihood Estimate if the errors belong to a Laplace distribution.  

The benefit from using least absolute deviation is that the results are more robust towards outliers in the 
data. But compared to using least squares, least absolute deviation can result in several minima and the 
solution can be unstable.  

Table 2. Cost functions used for non-linear parameter estimation. n is the number  
of data points, y is the model output and yd is the measurement data. 

Name Abbreviation Equation 

Sum of squared error SSE ! ! !" !

!
 

Sum of absolute error SAE ! ! !"
!

 

 

Method 

Measurement data 
To obtain an estimate of the values of khyd and Pf for different substrates, 26 datasets were collected from 
universities and wastewater treatment plants in Sweden. The datasets are described in Table 3. Mixed 
sludge is a combination of primary and secondary sludge. Data was provided from Lund University, the 
course exercise on parameter estimation, Uppsala Vatten, Stockholm Vatten, Käppalaförbundet, Växjö 
kommun, Tekniska Verken and Linnéuniversitetet. The average result of triplicates was used. 
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Models for parameter estimation 
The models used to estimate khyd and Pf are presented in Table 4. 

Method for non-linear parameter estimation 
The modelling in the project has been made in MATLAB® (version R2012b, MathWorks). BMP test data 
was read into MATLAB and the data was used to fit Models 1 and 2 to the data. The fitting was based on 
non-linear optimisation, where the objective function was a function of the residuals between model out-
put and measurement data. Least squares and least absolute deviation were used (Table 2). The uncertainty 
analysis was made based on source code provided by Technical University of Denmark (DTU) (Sin, 
Gernaey, & Lantz, 2009). An example of the shape of Model 1 and Model 2 for Pf = 400 mlCH4/gVS and 
khyd= 0.35 d-1 is found in Figure 5. 

 

 

Table 3. Datasets with BMP data used in the modelling study. 
No. Name Description Data points Days 

1 Inoculum 1 Inoculum 470 20 
2 Biosludge 1 Secondary sludge 9 41 
3 Biosludge 2 Secondary sludge 9 28 
4 Biosludge 3 Secondary sludge, with enzyme addition 9 28 
5 Mixed sludge 1 Mixed sludge 9 28 
6 Mixed sludge 2 Mixed sludge, with enzyme addition 9 28 
7 Mixed sludge 3 Mixed sludge 10 35 
8 Mixed sludge 4 Mixed sludge 9 40 
9 Mixed sludge 5 Mixed sludge 14 26 

10 Mixed sludge 6 Mixed sludge 16599 35 
11 Mixed sludge 8 Mixed sludge 67 66 
12 Mixed sludge 9 Mixed sludge and KemiCond® sludge 35 34 
13 Mixed sludge 10 Mixed sludge and KemiCond® sludge 35 34 
14 Mixed sludge 11 Mixed sludge and KemiCond® sludge 55 54 
15 Mixed sludge 12 Mixed sludge and KemiCond® sludge 49 48 
16 Mixed sludge 13 Mixed sludge 7 28 
17 Mixed sludge 14 Mixed sludge and food waste 7 28 
18 Mixed sludge 15 Mixed sludge and food waste 7 28 
19 Mixed sludge 16 Mixed sludge 7 45 
20 Mixed sludge 17 Mixed sludge 10 56 
21 Food waste 1 Food waste 12 35 
22 Food waste 2 Food waste (paper bag household) 11 49 
23 Food waste 3 Food waste (kitchen grinder) 7 34 
24 FOG 1 Fat in liquid form (from households) 11 49 
25 FOG 2 Fat in solid form (from households) 11 49 
26 Vegetable waste 1 Waste from vegetable market 10 35 

 
 

 

Table 4. Models used for non-linear parameter estimation. 
Name Reference Equation Comment 

Model 1 
Monod-type 
model 

Koch et al. (2009) ! ! !"!!!"!
! ! !!!"!

 

Assuming reactor is fully mixed, the 
volume is constant and the hydrolysis is 
the rate-limiting step and of first-order. In 
Koch et al. (2009), Pf is referred to as 
F0G 

Model 2 First-
order model 

Angelidaki et al. (2009) 
Donoso-Bravo et al. (2010) 
Jensen et al. (2011) 
 

! ! !" ! ! !!!!!"!!  
 

The model is derived from the first-order 
differential equation for growth: !"

!" !
!!!!"!. khyd is the inverse of the time 
constant of the model 

V is the specific methane production (mlCH4/gVS) and t is time (d).  
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Figure 5 The dynamics of Model 1 (Monod-type model) and Model 2 (first-order model). 
 

MATLAB has several functions for mathematical optimisation. In this study the optimization problems 
are non-linear. To solve these types of problems there are several solvers available. The solvers make use 
of different algorithms to minimise the cost function given constraints on the variables to minimise. In 
this study, the optimisation problem is unconstrained. fminsearch with the Nelder-Mead simplex direct 
search was used (MATLAB Documentation). 

The starting guess of khyd is 0.2 d-1 and on Pf the maximum measured gas production. 

Results and discussion 
The results from estimating the parameters khyd and Pf from BMP data with Model 2 are found in Table 6 
and Table 5 presents a summary of the results based on each type of substrate. An example of model out-
put with confidence intervals with a good and with a poor fit is shown in Figure 6. The full results of the 
model output are found in appendix A. 

Model 1 results in an estimate of khyd which is higher than the Model 2 estimate in all but six occasions 
for SSE and four occasions for SAE. The estimate of Pf is always higher for Model 1 compared to Model 
2. SAE results in larger confidence intervals on the parameters than SSE. 

Model 2 has a better fit to the parameters (measured as either SSE or SSA) for a majority of the BMP 
tests. When the fit is better the confidence intervals on the parameters are smaller. There are several ex-
amples where the confidence interval for khyd is twice as large for Model 1 than for Model 2. In seven 
occasions Model 1 leads to a better fit than Model 2. Tests number 11-15 are included in this group. The-
se five tests were performed in the same lab and with a continuous measurement of the methane concen-
tration. 

The tests with a lag in gas production (test 3-6, test 24-25) are not possible to fit well to either of the mod-
els since the models do not handle time lags. 

There is not a large difference between the size of the confidence intervals resulting from using SSE or 
SAE as a cost function in the parameter estimation. The confidence intervals are most of the time smaller 
for the case of SSE. The most important factor which decides the size of the confidence interval is the 
sample size. For large sample sizes the t-distribution percentile will be smaller than for small sample sizes. 
This is why the confidence intervals for the automatic BMP tests with many samples (i.e. test 1, test 10-15) 
are smaller than from the manual tests. Another reason for the better fit with the automatic measurements 
is that the samples are smoother with fewer outliers. Still, the results from the manual sampling is believed 
to be qualified enough to be used with a good result in ADM1. 
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The parameter estimation is relatively non-sensitive to the starting guess of the parameters. A change in 
starting guess of khyd of +100 % or a change in starting guess of Pf of ± 20 % do not impact the results. 

 

Figure 6 Example of a good model fit (left, SSE/n= 4.7) and a less good  
model fit (right, SSE/n= 1689). Limits showing the calculated confidence intervals 

 

The correlation coefficient between khyd and Pf is given in Table 6. The correlation takes an average value 
of -0.9 for Model 1 and -0.7 for Model 2. Since the value of the coefficient is high the parameters are cor-
related with each other and it is therefore important to estimate both parameters together. The lower cor-
relation between the parameters in Model 2 explains the smaller confidence intervals for this model. 

Using the Frequentist’s approach to uncertainty estimation is known to underestimate the uncertainty of 
the model predictions (Omlin & Reichert, 1999). An alternative method is to use the Bayesian approach 
for uncertainty estimation which is better at estimating the uncertainty in over parametrised models. For 
the purpose of this project the Frequentist’s method was judged to be sufficient to use. 

There is an assumption of uncorrelated random errors in the measurement data. If there are many 
measurements the errors will probably be autocorrelated which in the method used here will result in an 
underestimate of the confidence interval in the model output, see test 10. A possible improvement could 
be to re-sample the datsets where the errors are autocorrelated. Re-sampling is made through using a 
sample technique to reduce the number of samples from the test data, thereby reducing the number of 
samples and also the cross-correlation of the error signal with itself. 

 

Table 5. Summary of parameter estimation for the different categories of substrates (Model 2, SSE). 

 
Khyd (d-1) Pf (mlCH4/gVS) 

  Min Max Median Min Max Median 
Secondary sludge 0.04 0.11 0.08 315 378 327 
Mixed sludge 0.09 0.55 0.20 45 407 324 
Food waste 0.15 0.18 0.17 348 598 422 
Fat, oil and grease 0.06 0.10 - 676 1010 - 
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Table 6 Parameter estimation from Model 2, using SSE as a cost function.  

The 95 % confidence interval of the parameters is included. 
  Model 2, cost function: SSE 

No. Name Khyd (d-1) Pf (mlCH4/gVS) Covariance SSE/n 

1 Inoculum 1 0.26 ± 0.006 66.1 ± 0.4 -0.76 6.1 
2 Secondary sludge 1 0.11 ± 0.017 314.8 ± 16.6 -0.80 65 
3 Secondary sludge 2 0.04 ± 0.024 378.2 ± 155 -0.98 114 
4 Secondary sludge 3 0.08 ± 0.022 326.6 ± 45.1 -0.91 91 
5 Mixed sludge 1 0.11 ± 0.042 330.7 ± 60.9 -0.87 314 
6 Mixed sludge 2 0.14 ± 0.05 406.9 ± 65.2 -0.83 554 
7 Mixed sludge 3 0.21 ± 0.036 371.6 ± 16.1 -0.64 154 
8 Mixed sludge 4 0.17 ± 0.034 358.6 ± 19.3 -0.70 147 
9 Mixed sludge 5 0.55 ± 0.069 321.5 ± 11.7 -0.61 130 

10 Mixed sludge 6 0.42 ± 0.002 304.5 ± 0.4 -0.71 222 
11 Mixed sludge 8 0.09 ± 0.005 47 ± 0.6 -0.68 2.6 
12 Mixed sludge 9 0.28 ± 0.02 45.4 ± 0.6 -0.53 1.6 
13 Mixed sludge 10 0.2 ± 0.014 51 ± 0.8 -0.64 2.2 
14 Mixed sludge 11 0.19 ± 0.014 80.4 ± 1 -0.51 9.0 
15 Mixed sludge 12 0.2 ± 0.016 71.4 ± 1 -0.52 6.5 
16 Mixed sludge 13 0.35 ± 0.142 264.6 ± 19.8 -0.62 139 
17 Mixed sludge 14 0.31 ± 0.064 344.5 ± 14.7 -0.65 70 
18 Mixed sludge 15 0.34 ± 0.087 340.1 ± 16.5 -0.63 95 
19 Mixed sludge 16 0.2 ± 0.092 357.3 ± 40.1 -0.60 508 
20 Mixed sludge 17 0.18 ± 0.1 325.7 ± 46.8 -0.64 1266 
21 Food waste 1 0.18 ± 0.037 597.9 ± 32.9 -0.73 644 
22 Food waste 2 0.17 ± 0.026 348.4 ± 13.1 -0.60 129 
23 Food waste 3 0.15 ± 0.039 422 ± 30.2 -0.70 218 
24 FOG 1 0.06 ± 0.03 1009.8 ± 195 -0.88 6398 
25 FOG 2 0.1 ± 0.037 676.3 ± 82.5 -0.75 2795 
26 Vegetable waste 1 0.38 ± 0.099 353.8 ± 16 -0.50 215 
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Conclusions 
This report has investigated the different aspects of AcoD in a plant-wide WWTP model. The three main 
issues to address are characterisation of the substrate for fractionation of COD, estimation of substrate 
related biological parameters (i.e. khyd and Pf) and implementation of multiple substrates in ADM1. 

Characterisation and fractionation of COD 

No generally applicable method for characterising the substrates exists. For substrates where 
representative sampling and common phys-chem analyses are possible the CBIM based method in the 
GISCOD model is flexible and easy to apply. For solid and inhomogenous substrates where reliable 
measurements cannot be expected for some analyses (e.g. COD) methods such as anaerobic respirometry 
based on traditional degradation tests provide a better alternative. 

Estimating the hydrolysis coefficient of substrates 

Non-linear parameter estimation has been used to estimate the first-order hydrolysis coefficient khyd and 
the ultimate methane yield Pf from BMP test data. The study can conclude that: 

• The recommended method to estimate the hydrolysis coefficient from BMP tests is to use a first-
order model (Model 2) and use the sum of squared error (SSE) in the optimisation algorithm; 

• The Monod-type model (Model 1) proved to fit better to data from continuous measurements of 
methane; 

• The smoother the BMP curve and the more samples in the test, the smaller the confidence 
interval of the estimated gas production; 

• The value of khyd for mixed sludge from treatment plants is on average 0.2 d-1. 

Anaerobic co-digestion in ADM1 and BSM2 

To provide maximum flexibility and favour easy implementation it is concluded that: 

• Each substrate should be charactericed separately and mixed into the feed; 

• The disintegration step for the feed substrate of ADM1 should be excluded and one hydrolysis 
expression is fitted to describe the overall degradation of particulate material; 

• The hydrolysis process should be virtually separated from the remaining steps of ADM1 for easy 
adjustment of the number of substrates. 
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Appendix A. Results from modelling study 
Table A-1 Parameter estimation from Models 1 and 2, using SSE as a cost function. The 95 % confidence interval of the parameters is included. 
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Table A-2. Parameter estimation from Models 1 and 2, using SAE as a cost function. The 95 % confidence interval of the parameters is included. 
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Figure A1 Results of model fitting with Model 1 and cost function SSE. 
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Figure A-2 Results of model fitting with Model 2 and cost function SSE.  
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Figure A-3 Results of model fitting with Model 1 and cost function SAE. 
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Figure A-4 Results of model fitting with Model 2 and cost function SAE. 


