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1 Introduction

The motivation for this report is the following. It has been noted that for distribution ca-
bles, the loss angle for the zero sequence impedance increase with length. The zero se-
guence resistance is important for the earth fault protection in Petersén earthed system. A
key issue is to explain the physics behind this effect. In simulations it has been noted that
the resistive losses increase. Can this be explained by analysis, or is it simply caused by
limitations in the simulation models?

2 Transmission line theory
Suitable references for transmission line theory are [1] and [2].

Assume that the line, or cable, has constant parameters with notations, c is capacitance in
F/km, I is inductance in H/km and r is resistance in ohm/km. Constant parameters means
that we ignore frequency dependence in resistance and inductance. Skinn-effect cause the
resistance to change with frequency. The return path of the zero sequence current is influ-
enced by frequency, so that zeros sequence resistance and inductance are influenced. At
higher frequencies the zero sequence return current goes closer to ground surface that
significantly increase resistance but slightly decrease zero sequence inductance.

If needed, it is straightforward to include frequency dependent r and I in the analysis.

Another aspect that might be needed fro higher frequencies, say over 100 kHz, is to in-
clude the damping effect of the cables semi-conducting layers that is located between
conductor and insulation. Publication [3] shows that these layers significantly influence
the damping of higher frequencies.

2.1 Wave equations

Consider a general model of a transmission line, were the physical component could be
either an over-head line, or a cable with the following parameters for series impedance
and shunt admittance. The parameters can be for either positive sequence, or zero se-

quence.
Z=r+ jol
y=joc

Two equations describe voltage, U (x), and current 1(X) at a given position x along the

line
du(x) _
- z1(x)
di(x)

i =yu(x)

2.1.1 Wave propagation constant

Introduce the following definitions. The wave propagation constant is

y=+zy



2.1.2 Characteristic impedance
The characteristic impedance is

2.1.3 Wave velocity

2.1.4 Wave length
The wave length for a specific frequency f is

/1:Tv:1
f

2.2 ABCD parameters of distributed line

The relation between voltage and current at the sending end, index s, and the receiving
end, index r, is

e ol

I C D)\ I,

with

A=D=cosh(yd) perunit
B=2Z.sinh(yd) ohm

1 . 1
C =—sinh(yd) —
Z. (rd) ohm

where d is the distance between sending and receiving end.

2.3 Line with load at receiving end

Consider the case with a load impedance Z, connected at the receiving end. Using the
ABCD-parameters

Us) (A B)(Ug

I, )] (C D)lI,
and that U, = Z I gives
Us =(AZ;+B) I,

I, =(CZ,+D)I,

We are interested of the impedance seen from the sending end, thus



7 _Us _ (AZ, +B)

* 1y (CZ,+D)
- open A
Open line end means that Z, — o, then Zg" —)E.

Short circuited line end means that Z, =0, then Z& = %

2.4 Minimal impedance magnitude for line with receiving end open
For a line with open remote end,

cosh(yd) 7 exp(yd)+exp(-yd)
sinh(yd) "~ exp(yd)—exp(-yd)

The task is to find the distance d that minimize |Z|.
Since Z. is independent of the length d, it is equivalent to study the impedance

L _exp(yd)+exp(—yd)
'~ exp(yd) —exp(—7d)

The wave propagator y =./zZ'y is rewritten as a complex number as y =a+ jb, then

_ cos(bd)[exp(ad) +exp(—ad)]+ jsin(bd)[exp(ad) —exp(-ad)]
' cos(bd)[exp(ad) —exp(-ad)]+ jsin(bd)[exp(ad) +exp(-ad)]

We rewrite in hyperbolic functions
7 _ cos(bd)cosh(ad) + jsin(bd)sinh(ad)
' cos(bd)sinh(ad) + jsin(bd)cosh(ad)

Use the notation M for the square magnitude, thatis M = |Zl|2 gives

_ 1+ cosh(2ad) - 2sin®(bd)
1+ cosh(2ad) — 2cos®(bd)

The task is to find the distance d that gives the minimal value of |Zl| is equivalent to find
the d that gives the minimal value of M. Rewrite

M = cosh(2ad) +1—2sin’(bd)
cosh(2ad) —1+ 2sin®(bd)

Calculating the derivative with respect to the distance d gives




d_M_i(i)_ fg-of
dd dd g’ g2
f =cosh(2ad) +1—2sin*(bd)

f' = 2asinh(2ad) — 4bsin(bd) cos(bd)

g = cosh(2ad) —1+ 2sin®(bd)
g’ = 2asinh(2ad) + 4bsin(bd) cos(bd)

M .
We want C:j—d =0 for extreme points, thus we focuson f§ —g'f =0

fg-gf =
[2asinh(2ad) — 4bsin(bd ) cos(bd ) |[cosh(2ad) —1+ 2sin? (bd)]

[2asinh(2ad) + 4bsin(bd) cos(bd ) ][cosh(2ad) + 1 2sin? (bd)]
Simplifying
fg—gf = 4asinh(2ad)[—l+ 25in2(bd)]—8bsin(bd)cos(bd)cosh(2ad)
iz, _
dd
Direct calculation leads to
asinh(2ad)cos(2bd) + bcosh(2ad)sin(2bd) =0
Rewrite as
Asin(2bd +8) =0
with

0=

a sinh(2ad)

6 = arctan—————~
b cosh(2ad)

= arctan(Z—-tanh(Zad)j
To find the solution we need to solve 2bd + & = 7, that is, solve the equation
arctan {E— . tanh(2ad)j =z —2hd

At this moment, it is an open question how to solve this equation analytically. A practical
approach is to use a simple numerical iteration schemes. One iteration scheme to find the

distance d that gives minimal |Z;| is:

T
d =—
Lob

6, = arctan(Z— . tanh(2ad)}



z—6

2b
Example
a=Re(y)=0.0063

b=Im(y) =0.0124,

dk+1 =

d, == =126.5km
20

6, = arctan(g— . tanh(2ad1)] =0.4365rad

d =Z=% _108.9km
2b

0, = arctan(z— : tanh(2ad2)j ~0.4191 rad

d, =7 =% _109.6 km

2b
The iteration scheme converges quickly. A plot confirms that the distance 109.6 km gives
minimal |Z].

2.5 Minimal impedance for lossless line

To check that the result above is reasonable, we assume a lossless line, that is a =0,
then

dizy|
dd

We exclude the trivial case when d=0, then

2bd=nz for n=123..

So

=0« sin(2bd) =0

d:nl for n=123...
2b

The constant b is the imaginary part of the wave propagator, without losses
b=Im(A) =Im(/zy) = wvlc

This gives

=N il =N L —nV
20vflc  4fNlc  4f,

with



oL
Jic

For our line we have

¢, =0.3317-10° F/km

l, =3.5-10° H/km

This gives

vV~ 29.35-10° km/s

We calculate d for f,=50Hz and n=1, thus

~29.35-10°
' 4.50

d,=k-147km fork=1,2,3..

~147 km
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