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ABSTRACT

Software sensors, or soft sensors, can be a feasible option to monitor parameters that are difficult (or impossible) to measure with hardware

sensors. At Henriksdal water resource recovery facility (WRRF), the operators have long experienced issues with a clogging sensor for the dry

solids (DS) content in thickened primary sludge. A soft sensor was developed, and in the process, two methods were compared: long short-

term memory (LSTM) network, and linear regression. The first is a recurrent neural network that can capture non-linear dynamics, whereas

the latter is a linear static model. The LSTM network was the best at predicting the DS content, with a mean squared error (MSE) of 0.341 with

respect to laboratory data. The linear regression model performed worse than estimating a long-time average of daily manual samples but

outperformed the online sensor. Replacing the existing sensor with the developed soft sensor can open possibilities to more efficient control

and operation of the thickener unit.
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HIGHLIGHTS

• Using a long short-term memory (LSTM) network and a linear regression model, we can predict dry solid (DS) content in thickened primary

sludge.

• The LSTM model was able to predict the DS content with reasonably high accuracy. It also captures minute variations and can be used as a

soft sensor for monitoring and controlling the process in the future.

• Linear regression performed worse than estimating a long-time average.

INTRODUCTION

Wastewater treatment inevitably results in excess sludge, or suspended solids, withdrawn, e.g., from settlers or filtering pro-
cesses such as membrane bioreactors or disc filters. Sludge contains a mixture of pathogens and chemical compounds,
ranging from heavy metals and micropollutants to organic carbon and nutrients including phosphorus and nitrogen

(Peirce et al. 1998). Wastewater sludge generally has a high water content. The amount of water and the dewaterability of
sludge can vary much between primary sludge and activated sludge. The water in primary sludge is mostly free or loosely
bound, whereas the presence of microbial extracellular polymers in activated sludge causes the water to be tightly bound

within the microbial flocs. Independent of the nature of the sludge, it is desirable to thicken or dewater the sludge before
stabilization (e.g. anaerobic digestion, composting, and hydrothermal carbonization) to reduce the total volume of the
sludge and increase the solid concentration (Houghton et al. 2001; Samanta et al. 2023). There is an important distinction

between sludge thickening and sludge dewatering, where thickened sludge will still have characteristics closer to liquid
than solids (water content 95–97%) and dewatered sludge will behave more like solids (water content 80–85%). Furthermore,
thickening, in general, refers to gravitational methods (Peirce et al. 1998; Samanta et al. 2023). How well the sludge thickens
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depends on the properties of the sludge as well as the design and operation of the thickener. Process parameters like sludge

age and retention time affect the amount of microbial extracellular polymer and, thus, the amount of free water in the sludge
(Houghton et al. 2001). Chemical conditioning (the addition of flocculants) of the sludge can improve dewaterability (Mowla
et al. 2013).

Both thickening and dewatering processes are difficult to model mechanistically, although efforts have been made (e.g.,
Severin & Grethlein 1996; Severin et al. 1999; Olivier et al. 2004). Severin & Grethlein (1996) developed a model based
on Darcy’s law to model the gravitational part of a belt press thickener. A belt press thickener uses gravity to drain the
sludge and incorporates presses to compress the sludge cake created in the gravity zone. The model, developed based on

data from laboratory tests, establishes a relationship between the kinetics of gravity drainage in belt press thickeners and oper-
ational parameters such as belt speed and solid loading (Severin & Grethlein 1996). The model inputs include information
about the permeability of the sludge cake and filter cloth, respectively. Both variables will vary throughout the life cycle of the

belt press (Severin & Grethlein 1996). Severin et al. (1999) later extended the model by adding a term to account for standing
water on the sludge cake. However, the model is still dependent on inputs that will change during operation. Olivier et al.
(2004) propose an empirical model for the dewatering of activated sludge. The model uses the initial dry solid (DS) content

and the sludge loading to predict the DS content in thickened activated sludge over time. More recently, Gutin et al. (2018)
developed a model to determine the solid capacity of the belt thickener depending on the belt speed. The model inputs
include the specific resistance of the sludge, the density of the sludge, and the viscosity of the filtrate. One attempt has pre-

viously been made to model the primary sludge belt thickener at Henriksdal water resource recovery facility (WRRF), which
is situated in Stockholm, Sweden. Uusitalo (n.d.) used a Bayesian approach to predict DS concentration in the incoming and
thickened primary sludge. Unpublished results suggest that polymer concentration, belt speed, pressure downstream of the
thickener, and the flow rate of the thickened sludge are important to determine the DS concentration in thickened sludge.

Furthermore, it is proposed that more data and data with higher quality are needed to fully describe the process (Uusitalo
n.d.). A recent study by Li et al. (2023) showed that artificial neural networks (ANNs) can be used to predict the dewaterabil-
ity of activated sludge from wastewater in a pressurized filter. They used process parameters, including alkalinity, particle size,

solid–liquid interface energy, and chemical dosage to predict the water content in dewatered sludge. They found that the oper-
ating conditions were more important in predicting the dewaterability than the sludge properties (Li et al. 2023).

Plant description

Henriksdal WRRF serves approximately 780,000 people. The primary treatment consists of screens, sand traps, and pre-
settling. The biological treatment process is an activated sludge process with pre- and post-denitrification. Iron sulphate
(Fe2þ) is dosed to the influent wastewater for chemical P-removal.

The primary sludge withdrawn from the pre-settlers is digested anaerobically, together with waste-activated sludge, to pro-
duce biogas. The primary sludge is thickened using a belt thickener. The DS content in the primary sludge varies between 3
and 5%, and, after thickening, the sludge has a DS content of 4–7%. The desired DS content in the thickened sludge is around

6%, according to the operators at Henriksdal WRRF. A low DS content involves an increased energy demand for pumping
and a lower hydraulic retention time in the anaerobic digestors. If it, on the other hand, is too high, the sludge is no longer
pumpable and can cause clogging in both pipes and pumps.

Polymer is added as a flocculant to enhance the thickening and to achieve the desired DS content (Figure 1). The dosing of
polymer is done proportionally to the DS content in the incoming primary sludge based on the empirical experience of the
operators. One reason for not using more advanced control strategies is that the sensor measuring the DS content in the

thickened primary sludge works very poorly. The DS content is measured using an in-line optical sensor that is prone to clog-
ging, causing the sensor to output erroneous signals. This makes it difficult to monitor the performance of the thickener,
which has caused the operators not to use it and instead to rely solely on rather scarce lab analyses. Tests carried out in-
house indicate that the sensor outputs erroneous signals just hours after cleaning and calibration.

Soft sensors

Soft sensors (or software sensors) are useful for predicting and monitoring variables that are otherwise difficult to measure,

either due to physical limitations or because of cumbersome or expensive analyses, by utilizing known relations and well-
monitored variables to estimate variables of interest (Haimi et al. 2013). The soft sensor can either be a mechanistic
model that makes use of known physical, chemical, or biological relations between monitored variables to estimate
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non-monitored variables, models developed using multivariate methods such as principal component analysis (Mali &
Laskar 2020), or ANNs (Pisa et al. 2019), and other machine learning (ML) techniques (del Olmo et al. 2019). In the last

decades, there has been a notable transition from mechanistic models to data-driven models with an immense addition of
soft sensors developed using ML or artificial intelligence in general (Haimi et al. 2013; Ching et al. 2021). ANNs are
widely used because of their ability to capture non-linear relationships (Ching et al. 2021). ANNs consist of a series of

hidden layers and neurons, which map the input to the output variables, usually in a highly non-linear manner. There is a
multitude of ANN architectures available depending on modelling objective and characteristics of the dataset. Long short-
term memory (LSTM) networks are recurrent ANNs that are suitable for datasets with time dependencies. They can learn

what information to remember and when to forget it by using its internal states (Hochreiter & Schmidhuber 1997). In waste-
water treatment, LSTM-based soft sensors have been used to, for example, monitor treatment results (Xu et al. 2023), predict
effluent violations (Pisa et al. 2019), and detect faults (Mandipoor et al. 2020).

Objective

The objective of this study is to develop a soft sensor to estimate the DS content of the thickened primary sludge at Henriksdal
WRRF to determine whether replacing the physical sensor with a soft sensor could improve the monitoring (and in extension,

control) of the process. A more reliable measure of the DS content will extend the opportunities for more efficient and robust
control. An advanced control strategy, or even just adding a feedback loop to the existing controller, makes it possible to con-
trol the polymer dosing to achieve the desired DS content. This will give a more stable and predictable flow and solids load to
the digestors. It will hopefully also minimize the occasions when dilution is needed, which is required occasionally since the

sludge is not pumpable if it is too thick. Efficient control can reduce the polymer consumption, as well as the need for sludge
transports, and the pumping energy demand. Lastly, dual measurements (soft sensorþ online sensor) can be utilized to detect
deviations or faults or identify maintenance needs (Darvishi et al. 2023; Nie et al. 2023).

METHODS

Data collection and pre-processing

Soft sensor output

The DS content in the thickened sludge (DSout) is measured using an in-line and online optical hardware sensor. An extensive
sampling campaign was therefore initiated to improve the data quality and quantity. At the start of the campaign, the DSout
sensor was cleaned properly and calibrated. Manual samples were collected and analysed following the European standard
EN 15934:2012, with a varying frequency of 3–5 times per week (often several samples during the day of measurement). The
sensor was calibrated accordingly after each sampling, with up to a few hours delay. The manual samples are shown in
Figure 2, both on a time axis (top) and as individual samples (bottom). The figure highlights how poorly the online sensor

works for most of the time, with large discrepancies between the online sensor and the manual samples.
The lab analyses provide a snapshot of the DS content, but since the content varies on an hourly and even minute basis,

higher frequency data were needed for the soft sensor to be able to capture the dynamics of the thickening process. Therefore,

it was assumed (based on empirical tests) that the online sensor provided accurate data for 24 h after calibration. Three days
when the in-line sensor was working properly were then identified and used for training the soft sensor. The resolution of the
dataset was 1 min, adding up to a total of 4,320 samples. Another dataset consisting of 1,440 samples corresponding to 1 day

Figure 1 | A schematic overview of the primary sludge thickener unit at Henriksdal WRRF.
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of 1-min-data was used to test the trained models. The distributions of the two datasets are shown in Figure 3. The models

were also tested against the manual samples, with a total of 95 samples. The datasets with online data were collected
while all sensors were fully functional, and the process was operating under normal conditions. Note that the manual
sampling and the enhanced maintenance on the online sensor guided the data collection. The training and testing datasets

do not overlap in time. The input variables were standardized using the Z-score (Kreyszig 2006) before being used for
model development.

Figure 2 | Manual samples and the corresponding online sensor values show how poorly the sensor works for the majority of the time (note:
non-equidistant samples in the lower figure).

Figure 3 | Distribution of DSout of the training dataset and the test dataset.
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Input variables

The first set of input variables (or features) was selected based on expert knowledge of the process and the treatment plant.
This narrowed the number of variables to 27. Further feature selection was done by analysing the features of Gini indices from

a random forest model (Menze et al. 2009). This eliminated an additional 10 variables, resulting in a total of 17 features
including pressures, flow rates, and polymer dosage (Table 1).

Figure 4 shows the relative location of the sensors used. The poorly functional online DS sensor is indicated in a darker
shade than the 17 input variables. Figure 5 displays a selection of the standardized inputs over 1 day (test dataset). Note

that P2 varies less than the other pressures; hence, it is presented on a secondary y-axis. The spikes in the data (e.g. Qout) orig-
inate from the addition of rinsing water (Qt), as the thickener is rinsed periodically for maintenance purposes.

Figure 4 | Schematic overview of the primary sludge thickener unit and the placement of sensors.

Table 1 | The selected input variables (features)

Description Unit

Qp Polymer flow rate L/h

Qin Incoming primary sludge flow rate m3/h

Qd Dilution water flow rate L/h

Qf Rinsing water flow rate to sludge funnel m3/h

Qt Rinsing water flow rate to thickener m3/h

Qout Outgoing primary sludge flow rate m3/h

SS Suspended solids in reject water mg/L

T Temperature in the thickened sludge °C

P1 Pressure, pressure side bar

GP1 Pump, primary sludge %

P2 Pressure, pressure side bar

C Actual polymer dosing kg/t DS

P4 Pressure, pressure side bar

P3 Pressure, suction side bar

GP2 Pump, thickened sludge %

Cc Calculated polymer dose kg/t DS

DSin DS content incoming sludge %
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Model development and evaluation

The models proposed by Severin & Grethlein (1996), Severin et al. (1999), Olivier et al. (2004), and Gutin et al. (2018) have
contributed to understanding and improving the design and operation of belt thickeners but are less suitable for real-time

simulation. The proposed models rely on laboratory data, making the models less suitable to use as soft sensors. Looking
at the difficulties with mechanical modelling of sludge thickening, in combination with the intended use area of the final
model (soft sensor), it was deemed that a data-driven approach would be more feasible in this case. Initially, a linear

regression model was developed. Linear regression models can be effective within confined intervals even if the process
dynamics are non-linear and can provide valuable information about the system. Furthermore, it is a sound approach to
start with simple models before going for complex solutions. The linear regression model was fitted using Matlab 2021b.

Upon evaluation (see Results), it was clear that the model could not capture all dynamics in the system and therefore more

sophisticated methods were evaluated. Bröndum (2022) developed and evaluated various ML architectures for learning the
soft sensor. The models were evaluated based on their mean squared error (MSE) with respect to the laboratory samples, a
total of 95 samples. Two architectures, multi-layered perceptron (MLP) and LSTM, performed well (Bröndum 2022). The

models did not show a significant difference in performance. However, the reported MSE of the LSTM network was slightly
lower than that of the MLP network, and thus, it was chosen for further investigation in this study. The MLP network will be
excluded henceforth in this paper.

The full description of the training of the LSTM network can be found in Bröndum (2022). A brief summary is given here.
Hyperparameter tuning of the LSTM network was done using grid search and linear searches with three-fold time-series
cross-validation on the training dataset (Mohammed et al. 2021). Time-series cross-validation is suitable for recurrent

neural networks, such as the LSTM network, to avoid distorting time dependencies in data. For each iteration, a subset of
the training data is used for training and validation. In the next iteration, the training data consists of the training and vali-
dation data from the previous iteration (Mohammed et al. 2021). An illustration is shown in Figure 6. The set of
hyperparameters with the best score was later evaluated using the test dataset. Dropout regularization and early stopping

regularization were applied to prevent overfitting (Srivastava et al. 2014). Details on the LSTM architecture can be found
in Hochreiter & Schmidhuber (1997). The model was developed using primarily the TensorFlow library in Python (Abadi
et al. 2015).

The performance of the trained LSTM network and the fitted linear regression model was evaluated based on the MSE with
respect to the laboratory samples and with respect to online data (test dataset) to determine whether the models could capture
the minute variations or not. A very simple model, namely estimating DSout as the average of the laboratory analyses from the

Figure 5 | A selection of standardized model inputs in the test dataset.
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measurement campaign (DSout¼ 5.84%), is included in the results for comparison since the long-term average represents the
monitoring currently in place.

Feature importance of trained models

The permutation feature importance was calculated for the developed models to understand what features are most important
in predicting DSout (Breiman 2001). Permutation feature importance is calculated by randomly shuffling each feature (one at
a time, the rest kept intact) in the training dataset and calculating the MSE for each iteration. This gives a measure of the

relative contribution of each feature to the output. The larger the increase in the MSE, the more important the feature (Brei-
man 2001). The procedure was repeated 10 times. Finally, the relative change in MSE, MSEirel, was calculated as follows:

MSEirel ¼
MSEi �MSE0

MSE0

where MSEi is the MSE obtained when permuting feature i, and MSE0 is the training MSE.

RESULTS

The hyperparameters of the LSTM network and the parameters of the linear regression model can be found in Appendix A.

Table 2 shows the performances of the models in terms of MSE with respect to the laboratory samples and the test dataset
(online sensor data). Table 2 also includes the MSE achieved during training to evaluate the models’ generalizability. The
training MSE is lower for the linear regression model (MSE¼ 0.0960) than for the LSTM network (MSE¼ 0.136). However,

the test MSE is significantly higher for the linear regression model (MSE¼ 0.590) than for the LSTM network (MSE¼ 0.181).
The difference between training and testing MSEs for the linear regression model indicates that it fails to generalize when
used on a new dataset. Furthermore, the linear regression model performs worse than using the long-term average of the lab-
oratory samples. The training MSE when using a long-term average of laboratory samples is 0.444, while the same is 0.590 for

the linear regression model.
The training and test MSEs are calculated with respect to data from the online sensor. It was assumed that the sensor was

fully functional during this period, but this cannot be fully confirmed due to the scarcity of the laboratory samples. Therefore,

the MSEs of the models’ outputs and the online sensor were calculated based on the laboratory samples. This evaluation

Figure 6 | Illustration of time-series cross-validation.

Table 2 | The MSEs with respect to the training dataset (training MSE), the laboratory samples (laboratory MSE) and the test dataset (test
MSE)

Training MSE Laboratory MSE Test MSE

LSTM 0.136 0.341 0.181

Linear regression 0.0960 1.74 0.590

Average laboratory samples – 0.651a 0.444

Online sensor – 8.98 –

aThis number reflects the variance in the laboratory samples.
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shows that the online sensor works poorly, which confirms the operators’ experiences. It also shows that the relatively low

MSE achieved when using the average of the laboratory samples indicates that modelling DSout as a long-term average could
be a ‘good-enough’ estimate. Note that the MSE with respect to the laboratory samples reflects the variance in the laboratory
samples.

Figure 7 shows the model outputs, the average of the manual samples, and the online sensor values from the test dataset.
Visually, the LSTM network gives accurate output throughout the whole time series. The linear regression model underesti-
mates the DS content in general, but especially when the DS content decreases.

The true vs. predicted plots in Figure 8 show the same tendencies. A model with zero prediction error would have all data

aligned along the black line. As seen in the figure, almost all data from the linear regression model lie below the black line,
which means that the model underestimates the DS content. The LSTM network performs better but slightly underestimates
DSout for DS contents above approximately 6.5%. This can be a result of somewhat different distributions in the training and

test datasets.

Figure 7 | Measured DS from the online sensor and estimated DS from the models based on the test dataset.

Figure 8 | True vs. predicted plots for the LSTM network and the linear regression model.

Water Science & Technology Vol 90 No 7, 1953

Downloaded from http://iwaponline.com/wst/article-pdf/90/7/1946/1495454/wst2024249.pdf
by Lund University user
on 28 October 2024



The results of the permuted feature importance are presented in Appendix A. The results indicate that the most important

features in predicting DSout for the LSTM network are the incoming DS content (DSin), the polymer concentration (CC), the
pump rate (GP2), and the pressure on the suction side of GP2 (P3). The linear regression model was most sensitive to changes
in P3 followed by GP2, and P2.

DISCUSSION

The two evaluated models, a LSTM network and a linear regression model, were used to predict the DS content in thickened

primary sludge. Both models predict the DS content with higher accuracy than the existing in-line optical sensor. The LSTM
network was superior to the linear regression model, most likely because it can capture the non-linear dynamics in the pro-
cess that the linear model cannot. It could also be due to time-lags in the system that were not accounted for in the

development of the linear regression model. Linear regression models are static, whereas LSTM networks are dynamic as
the model uses information from previous time-steps to make the next prediction. This can partly explain why the linear
regression model works poorly. However, since there is a discrepancy between the training and testing MSE of the linear

regression model, it is likely that the model is overfitted to the training data and therefore fails to generalize when exposed
to new data. Moreover, looking at the optimal hyperparameters of the LSTM network, something to highlight is the window
size (¼1). The interpretation of this is that the model only looks at the previous time step, meaning that time-steps earlier than

that have a low impact on the prediction at the current time. This could be an indication that an auto-regressive or dynamic
model should not be necessary and that a static model should be sufficient to describe the process. More efforts in model
development or feature importance could potentially increase the performance of the linear regression model. However,
since the thickening process likely has non-linear dynamics, it will probably not be able to fully describe the process in a sat-

isfactory way.
The LSTM network underestimates DS contents above 6.5% when using the test dataset. It is possible that the training and

test datasets are slightly different, and that the ML model fails to extrapolate outside the scope of the training data. Looking

solely at DSout (Figure 3), the datasets overlap but the test data is slightly shifted compared to the training data. The linear
regression model consistently underestimates the DS content when using the test dataset. This could indicate that the training
and testing datasets differ in their inputs and that the model is overfitted to the training data, or that the assumption that the

online sensor is fully functional does not hold. A natural next step to improve both models would be to expand the datasets to
cover more operational conditions.

The analysis of the feature importance showed that the pressure P3 is the most important feature of the linear regression
model. This pressure is measured downstream of the thickener and should physically not affect the sludge thickening. The

increased pressure is instead a result of the increased DS content (thicker sludge causes higher pressure). This means that
the model does not capture the dynamics of the sludge thickening process but still finds correlations in the data that can
be utilized to predict DSout. P3 is one of the most important features of the LSTM network as well, but the polymer addition

and the incoming DS content are the two most important features of the LSTM network. This is expected since the sludge
quality and conditioning are important for the sludge dewaterability (Mowla et al. 2013). This also highlights that the LSTM
network captures some of the intricate processes associated with sludge thickening in a way that the linear regression model

fails to do. Based on this, and the MSEs of the models, the LSTM network is more suitable for modelling the thickening pro-
cess. However, recalling the objective of this study, to determine whether a soft sensor could be a viable option to replace the
physical sensor, the study shows that the LSTM network, the linear regression model, and a long-term average based on lab-

oratory samples will give a better estimate of the DSout than the physical sensor and could fill the needs of the operators. To
rely on the soft sensor (i.e. the LSTM network or the linear regression model), the operators need to ensure the quality of the
input data, which, with 17 features, will be laboursome. With that in mind, continuous manual sampling and laboratory ana-
lyses could be an option, with the drawback that the minutely or hourly variations in DSout will not be captured and,

therefore, not optimal for real-time control. Exploring the trade-off between model performance and the number of features
should be considered if the goal is to use the soft sensor in real time at the facility.

An accurate sensor is essential to monitor the process performance. Replacing or complementing the online sensor with

the LSTM network as a soft sensor would make it possible to explore and evaluate control strategies that potentially
could lower the polymer consumption and optimize the DS content in the thickened primary sludge to improve biogas pro-
duction. The same could be achieved by more frequent maintenance of the existing sensor but at the cost of increased man-
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hours. Cleaning and calibration of the sensor are occasionally needed every 2–3 days. Dual measurements (online sensor and

soft sensor) can be utilized to detect deviations or faults or identify maintenance needs (Darvishi et al. 2023; Nie et al. 2023)
such as cleaning or flushing the pipes and cleaning or calibrating the sensor.

One could argue that the natural way to improve the monitoring of the thickener unit would be to replace the existing DS

sensor with another hardware sensor instead of developing a soft sensor. The issue at Henriksdal WRRF is that the pipes clog,
which affects the optical sensor. It is not the sensor itself that malfunctions. Installing a new sensor would therefore require
extensive reconstruction in terms of new piping and relocation of pumps. A soft sensor could be a cost-efficient option.

CONCLUSIONS

• The LSTM network and the linear regression model were able to predict the DS content in the thickened primary sludge

with higher accuracy than the existing in-line optical sensor.

• The linear regression model does not give better estimates of the DS content than using a long-term average of laboratory
analyses.

• The developed LSTM model captures minute variations to a reasonably good accuracy.

• Replacing the existing online sensor with a soft sensor can provide better opportunities to monitor the process and can, by
extension, possibly be used for feedback control of the polymer dosing or to identify maintenance needs for the existing

sensor.
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