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Sensor bias impact on efficient aeration control during
diurnal load variations

Oscar Samuelsson WA, Gustaf Olsson A, Erik Lindblom IMA,
Anders Bjork and Bengt Carlsson WA

ABSTRACT

This study highlights the need to increase our understanding of the interplay between sensor drift and
the performance of the automatic control system. The impact from biased sensors on the automatic
control systems is rarely considered when different control strategies are assessed in water resource
recovery facilities. Still, the harsh measurement environment with negative effects on sensor data
quality is widely acknowledged. Simulations were used to show how sensor bias in an ammonium
cascade feedback controller impacts aeration energy efficiency and total nitrogen removal in an
activated sludge process. Response surface methodology was used to reduce the required number of
simulations, and to consider the combined effect of two simultaneously biased sensors. The effects
from flow variations, and negatively biased ammonium (-1 mg/L) and suspended solids sensors
(—500 mg/L) reduced the nitrification aeration energy efficiency by between 7 and 25%. Less impact
was seen on total nitrogen removal. There were no added non-linear effects from the two
simultaneously biased sensors, apart from an interaction between a biased ammonium sensor and
dissolved oxygen sensor located in the last aerated zone. Negative effects from sensor bias can partly
be limited if the expected bias direction is considered when the controller setpoint-limits are defined.
Key words | ammonium-based aeration control, ammonium sensor, Box-Behnken, data quality, DO
sensor, sensor drift

HIGHLIGHTS

@ Sensor bias needs to be included in control system benchmark studies to shift focus
from idealized studies, to realistic assumptions.

@ Sensor drift direction and magnitude need to be further studied.

® Response surface methodology can be used to facilitate assessment of several
simultanously biased sensors.

INTRODUCTION

W) Check for updates
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Automatic control has developed to be an essential tool for
balancing consistent treatment and energy efficiency
(Olsson 2012). Substantial efforts have been devoted to
develop different aeration control strategies (Amand et al.
2013). Most control system studies, however, assume an
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ideal situation with accurate sensor measurements (Santin
et al. 2016). In practice, on-line measurements are far
from ideal. The water resource recovery facility (WRRF) con-
stitutes a harsh measurement environment. This is generally
recognized, and the commonly accepted standpoint is that
biased measurements are widespread and have a negative
impact on the desired control target. To our knowledge, this
assumption has not been verified in studies although tools
have been developed for that purpose (Rosen et al. 2008).
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We consider accurate measurements and adequate auto-
matic control to be increasingly important for four reasons.
First, stricter effluent permits reduce the time when control
can be out of specifications without violating the regulations.
Second, retrofitted advanced treatment processes that need
to operate together with existing processes makes control
more elaborate and sensitive for consequential errors.
Third, control is essential for a resource-efficient treatment
process. Last, automatic control can attenuate negative
effects from increasing influent variations that are expected
due to global warming. Therefore, we need to identify the
most critical sensors and prioritize sensor maintenance to
minimize bias impact as the number of sensors steadily
increases. Ultimately, these aspects in combination can aggra-
vate the operation and make it important to understand the
impact from biased sensors on control.

Different methodologies can be used for studying the
impact of biased sensors. Both full-scale and simulation exper-
iments have been applied to assess the impact of biased
dissolved oxygen (DO) sensors (Carlsson & Zambrano
2016). Full-scale studies are, however, time-consuming and
impractical for assessing the effects of the combination of
many biased sensors. It is also difficult (commonly impossible)
to control the influent load, which would be needed to repeat-
edly assess whether the impact of biased sensors depends on
different load conditions. Thus, simulation studies are pre-
ferred. Simulations also enable a precise interpretation (as
interpreted within the model’s predictive accuracy), without
noise that can mask small effects on a full-scale plant. The
widely used benchmark simulation model platform (Jeppsson
et al. 2006) is well suited for sensor bias evaluation.

Even a suitable model simulation will be time-consum-
ing and difficult to evaluate when a vast number of
simulation results are to be compared. As an example, the
total number of combinations for 10 biased sensors with
three bias magnitudes (consider, for example, bias of —1,
0, +1) is 3% =59,049. Thus, it is clearly a challenge to
assess interaction effects between several biased sensors at
different load scenarios also in simulation studies.

In this study, we adopt the response surface method-
ology (Myers et al. 2004), which limits the required
number of simulations, but still enables identification of
the key effects. The method is reliant on a representative
set of simulations (Box & Behnken 1960) that are inter-
preted via linear regression coefficients.

The goal of this study is to assess the impact of sensor bias
on ammonium cascade feedback control at different influent
variations. The energy efficiency of applying this type of control-
ler has been demonstrated in practice (Ingildsen et al. 2002;
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Amand 2014; Rieger et al. 2014), but it is possible that biased sen-
sors can reduce its advantage. Here, we study how different
degrees of diurnal variations in the influent (flow and concen-
tration variations) combined with sensor bias impact aeration
energy efficiency and total nitrogen removal. Bias in DO,
ammonium (NH) and suspended solids (SS) sensors are studied.
The results show that the bias direction is critical and can be
both beneficial and detrimental depending on the control target.

MATERIALS AND METHODS

This section describes the methodology (section ‘Method-
ology’) and how the simulated system with related influent
scenarios and sensors bias were defined (section ‘System
description’). The applied response surface methodology is
described in section ‘Response surface methodology’.

Methodology

A dynamic process model was simulated with different
sensor bias magnitudes and evaluated with respect to their
impact on two process performance indicators, the energy
efficiency of nitrification (NIT,), and total nitrogen removal
(Nyer). Bias in five sensors (three DO, one NH and one SS
sensor) and variations in influent flow rate and concen-
trations were studied at three different magnitudes. The
combinatorial complexity, and likewise the required
number of simulations, were reduced by applying a reduced
factorial design (Box & Behnken 1960) and evaluated using
response surface methodology (RSM) (Bezerra et al. 2008).
The findings indicated by regression coefficients produced
by RSM were further analysed for causal explanations by
evaluating the simulation results in detail.

System description

The studied system was a dynamic model of a continuous
activated sludge process (CAS) representing parts of the Hen-
riksdal WRRF in Stockholm, Sweden (750,000 p.e.
(population equivalent)). The CAS consists of pre-denitrifica-
tion followed by three aerated zones for nitrification and a
final deaeration zone (Figure 1). The model is further
described in Lindblom ef al. (2019).

Controller configuration
The CAS air supply was controlled by an ammonium cascade

feedback controller with DO PI-controllers (PI: proportional-
integral) operating as slave controllers under the master
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Figure 1 | Process configuration for the simulated Henriksdal WRRF model with
ammonium cascade feedback and suspended solids controllers.

ammonium PI-controller (Figure 1). Each aerated zone had a
separate slave DO-controller with equal setpoints provided by
the master ammonium controller. This setting was developed
by Amand (2014) and is currently in use at Henriksdal
WRRE. In practice, there is also an airflow rate slave controller
for each DO-controller, which was excluded in this study.
The solids retention time (SRT) was controlled by adjusting
the wastage of active sludge with a PI-controller to obtain an
average SS concentration of 2,500 mg/L. In practice, and in
the studied model, this resulted in a variable SRT of 16 + 3
days. The large SRT variability was due to the studied influence
of the bias in the SS-sensor, which is described in section ‘Sensor
bias magnitudes’. The SRT was sufficient to achieve near com-
plete nitrification for the studied ammonium load and
temperature of 14 °C for the whole range of studied scenarios.
All Pl-controllers were tuned with the Lambda method
(Astrom & Higglund 1995). A relatively fast disturbance rejec-
tion rate was chosen to ensure that the NH-controller reacted
on diurnal variations. The controller parameters obtained
from the tuning are given in Table 1 with DO setpoint-limits.

Process performance indicators

The two process indicators NIT.; and N, were defined as

NIT; = ’?LHred 1)
> kra(?)
z=4
mNred

Nrem = mNtot, in @

where the prefix m refers to the mass of removed total nitro-
gen (Nred), total nitrogen in the influent (Ntot, in), and
nitrified ammonium nitrogen (NHred); and kpa(z) is the
total kra (used as proxy for the mass of oxygen transferred
from air to water) in zone z. In practice, the k a depends on
the current airflow rate and « factor where the o factor is
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Table 1 | Controller parameter settings used in the study; K is the controller gain and Ti
the integral time

K (-) Ti (h) Setpoint (mg/L)
DO4-DO6 1,000 0.12 1.0/3.8 (min/max)
NH -4 2.4 1.0
SS 0.67 360 2,500

the ratio between kya at process and clean water conditions.
Both these factors are site-specific and difficult to assess in
practice. The results should therefore be interpreted in
terms of an efficient aeration system (constant kya per airflow
rate, regardless of load situation, and new diffusers) and an
influent free from surfactants that may reduce k.a and a.

Sensor bias magnitudes

The studied sensor bias magnitudes are given in Table 2,
which are suggested to represent a reasonable bias due to,
for example, a fouled sensor or inaccurate calibration. To
clarify the notation: a negative bias means that the sensor
value is lower than the true concentration, and vice versa.
Drift in pH and DO sensors have been studied in
Samuelsson et al. (2018) and Ohmura et al. (2019), but to
our knowledge, bias in SS and NH sensors has not yet
been estimated. It is important to assume bias magnitudes
that may appear in practice. At the same time, it should be
recognized that sensor bias also varies with site-specific con-
ditions and sensor maintenance.

The assumed accuracy in an SS sensor is reflected by the
accuracy for laboratory samples that are used during cali-
bration. Here, the laboratory samples had a +20% analytical
uncertainty at a 95% confidence interval. This would corre-
spond to a bias of +500 mg/L at 2,500 mg/L concentration.

NH measurements can be conducted with ion-selective
probes and gas-sensitive and spectrophotometric analysers.
The latter two are expected to have a higher accuracy than
the former. The expected bias should be small in absolute
terms if following the same reasoning about analytical
uncertainty during calibration, as for the SS sensor. This is

Table 2 | The three sensor bias magnitudes (levels) considered in the study

sensor Bias (mg/L)
NH -1/0/+1
DO4-DO6 -1/0/+1
SS —500/0/4-500
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because the effluent NH concentration is expected to be low
(0-3 mg/L) in nitrifying WRRFs. Our experience is, how-
ever, that ion-selective sensors can show substantial drift
(Samuelsson et al. 2017), although the NH sensor drift was
not explicitly assessed in that study.

In the end, we limited the NH bias magnitude to —1 mg/L.
This is the largest possible bias before the sensor would
measure a negative concentration. Similarly, the positive
NH bias was limited to +1 mg/L to use the same magnitude
in absolute terms, which facilitates interpretation of the
results described in section ‘Response surface methodology’.

A DO sensor bias of +1 mg/L was assumed. An approxi-
mate 1 mg/L negative bias was obtained after about 1 month
of biofilm growth without manual cleaning on an electro-
chemical sensor. By contrast, an optical DO sensor
showed a correspondingly large positive bias after 14 days
of biofilm growth without manual cleaning and only auto-
matic air cleaning (Samuelsson ef al. 2018).

Influent variations

Three levels of variations were defined for both influent flow
and concentrations: constant, normal and high influent vari-
ations (Figure 2). The purpose was to assess if bias in sensors
is more critical at large variations.
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Figure 2 | Influent patterns for flow (a) and ammonium (b). Different line types indicate
variation levels: normal (solid), high (dashed) and constant (dotted).
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The ‘normal diurnal influent’ and reference scenario
was produced by combining measurements from the influ-
ent monitoring programme with diurnal influent flow and
load patterns to Henriksdal WRRF. The model by Gernaey
et al. (201) was used to estimate chemical oxygen demand
(COD) fractions required in the simulation model. Both
influent concentration variations (nitrogen and carbon)
and influent flow show similar diurnal patterns (Figure 2).

The constant variation scenarios were produced by either
setting the influent flow or the influent concentration to be
constant. The diurnal mass influents of both NH and COD
were kept identical to the normal scenario by adjusting the
influent concentration or flow mean value correspondingly.

The high variation scenarios were produced by stretch-
ing the normal variation by multiplying the dynamic
diurnal profile by two, but still compensating its mean
value so that an identical mass influent as the reference
scenario was obtained (Figure 2).

Variations in flow and concentrations were treated as
separate factors to assess if either of them would give a
larger impact in combination with biased sensors.

The study was purposefully limited to consider only diur-
nal influent variations, neglecting other variations such as
temperature. The reason was to learn about the sensor bias
impact during the most common disturbances. For the Hen-
riksdal WRRE, the diurnal variations represent the typical
disturbance pattern for about 80% of the time. It is expected
that impact from weekly and seasonal variations are similar
to diurnal load variations, but with a changed mass load.
Here, we assess interactions between variations in flow/con-
centration and sensor bias at a fixed diurnal mass load, to
allow a fair comparison. This would be slightly different if
seasonal and weekly variations were to be included.

The impact from rain and drainage water can be substan-
tial, both in terms of flow and impact on the wastewater
temperature. How such stormwater events impact the
WRRF will, however, be very site-specific, and therefore be
difficult to generalize. We also expect a large (possibly the lar-
gest) negative effect on the settler operation. These
conditions are difficult to model and would introduce uncer-
tainty to the result interpretation. The results here assume a
biological treatment process with good settling properties.
For these reasons, we limit this study to daily normal vari-
ations that still represent the main time of operation.

Response surface methodology

RSM originally gained interest as a tool for industrial
product and process optimization, and is iterative in its
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nature (Myers et al. 2004). The RSM applied here follows
four steps,

1. Design experiment
(a) Define factors, their levels and output variables
(b) Define which combination of factors and levels to
evaluate
2. Execute experiment
(a) Execute simulations as specified in 1(b)

3. Construct a valid regression model
(a) Assess model quality
(b) Remove insignificant model terms
(c) Iterate (a)-(b until the model only contains significant
factors
4. Interpret the results
(a) Interpret significant
coefficients)
(b) Analyse causal reasons for the results indicated in 4(a).

model terms (regression

Especially steps 3 and 4 are commonly iterated to obtain
a final model. Conclusions obtained in step 4 often induce
additional experiments, reinitiating the four-step procedure
all over again.

The experimental design and evaluation were conducted
in MODDE 12.1 (Sartorius), a software package for exper-
imental design. The model simulations and evaluations
were conducted in MATLAB/SIMULINK version R2020a
(MathWorks).

Step 1. Design of experiment

Three levels were considered for the seven quantitative fac-
tors: sensor bias (factor 1-5, Table 2) and influent variations
(factor 6-7, constant/normal/high flow and concentration
variations). Three levels are required to identify any quadratic
effects, which would here require 37 = 2,187 combinations for
a full factorial design. The reduced design suggested in Box &
Behnken (1960) was used, which required only 57 combi-
nations. The Box-Behnken design was preferred over the
more common central composite design since extreme
points are excluded (Bezerra et al. 2008). Extreme points
refer to combinations where all factors are at their minimum
or maximum levels. Here, these extreme points would corre-
spond to a situation when all sensors have, for example, a
positive bias simultaneously as the influent flow and concen-
tration variations are high. This is not expected to be common
in practice, and the exclusion of those combinations was
therefore not expected to influence the applicability of the
results. The dependent variables (responses) NIT; and Ny,
are defined in Equations (1) and (2).
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Step 2. Simulation procedure

The model was simulated with the different combinations of
factor settings described in Step 1. For each factor setting,
the model was first simulated to reach steady state with a
constant load for 60 days. Next, the same factor settings
were simulated for an additional 120 days with the dynamic
influent, which allowed the SS to reach steady state. The last
7 days were then used for evaluation.

Step 3. Construct a valid model

An initial linear regression model was defined to contain all
linear, quadratic, and two-factor interaction terms. Nonsignifi-
cant model terms measured by the corresponding confidence
intervals were removed. This procedure was repeated until
the final model with only significant model terms remained.
The final model was assessed by verifying a large (>0.8)
Q?, which measures the regression model’s predictive ability,
in contrast to the common R?, which only measures the
explained variation in the output. Both measures are used
to assess the model validity. Golub ef al. (1979) defined Q as

where x,, are the inputs that consist of seven factors (sensor
bias and influent variation) and y,, are the observed outputs
NIT. and Ny, for the n dynamic model simulations. X is
an n-by-7 matrix that contains the factor settings for the n
dynamic model simulations. y is the mean of all observed out-
puts (dynamic model simulations) and y,, is the regression
model’s predicted output for the corresponding simulation
n. In total, N dynamic model simulations were performed
with the bias and influent settings obtained from the Box-
Behnken design. The regression was conducted by regressing
the observed values (dynamic model simulations) on the Y-
axis for the predicted values on the X-axis (regression
model predictions) as suggested by Pifieiro ef al. (2008).

Step 4. Interpret the results

The regression coefficients from the final model were ana-
lysed with causal analysis from the dynamic simulation
results.
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RESULTS

First, an overview of the results is given, expressed as the
obtained regression models where the validity of the
regression models is also analysed. Then, the impact of
biased sensor measurements on the process indicators are
interpreted. Last, the effects from changes in influent vari-
ations and interactions are analysed.

The obtained regression model and its interpretation

The simulation results resulted in two different regression
models with six and ten significant model terms for NIT,;
and N, see Figure 3(a) and 3(b) respectively. Changes in
the influent flow (F) were significant in contrast to influent
concentration variations that did not have a significant
effect on any of the process indicators. In general, the

impact on NIT,; was larger than the impact on Ny,
(Figure 3, note the different scales). The largest effects
were seen from biased NH and SS sensors that included
both significant linear and quadratic model terms. Inter-
action effects with other factors were seen for the
ammonium sensor and are further analysed in the next
section.

The regression models were obtained by removing non-
significant model terms as described in section ‘Response sur-
face methodology’. Both models showed a good predictive fit
(Q¥rmetr = 0.82; Q%yrem = 0.94) and were assumed valid for
further analysis. The agreement between predicted and simu-
lated values is shown in Figure 4. It is worth noting that the
reference scenario showed a larger value for NIT.4 than the
model prediction (blue square Figure 4). This will not violate
the conclusions made from the regression model. However, it
highlights the fact that certain combinations of levels and
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factors will produce results that deviate from the general con-
clusions, which ought to influence the interpretation of the
results. We therefore complement the regression model
analysis with a causal model evaluation of the mass flows
and time series in the underlying simulation results where
non-obvious explanations can be made.

To avoid confusion about how to interpret the bias
direction (positive or negative) and the signs and magni-
tudes of the regression coefficients we here exemplify how
to read Figure 3.

A positive regression coefficient in Figure 3 indicates an
increase in the performance indicator when the corresponding
model term has a positive value. For example, a positive bias in
DO5 will result in an increased NIT.; and N, since the
regression coefficients for DO5 are positive (yet small) in
Figure 3. Note that a positive bias in DO5 will result in a
lower DO concentration than the desired setpoint. Similarly,
negative coefficients for a biased NH sensor indicate the oppo-
site relationship. That is, a negative bias in the ammonium
sensor (and likewise an increased effluent ammonium) will
increase NIT,; and N, as indicated in Figure 3.

The magnitude of a regression coefficient for a main effect
should be interpreted as the impact on the process indicator
for a unit change in the factor related to the coefficient,
while keeping remaining factors constant. Here, a unit
change is defined as a 1 mg/L bias for DO and ammonium
sensors, and 500 mg/L bias in the SS sensor (section ‘System
description’). As an example, the regression coefficient for
the NH sensor main linear effect was —0.17. This indicates
that a 1 mg/L ammonium sensor bias is expected to reduce
NIT,; with about 17% on average from the linear effect.

Ammonium sensor bias

A bias in the ammonium sensor had the largest influence on
both NIT.; and N,.,, as remarked in section ‘The obtained
regression model and its interpretation’. When both quadratic
and linear effects are added (as a straightforward summation),
a bias in the NH sensor showed the largest impact on NIT, of
all factors. The reduction in NIT,z; was about 25% for a 1 mg/L
bias as predicted by the regression model (Figure 3). A large
effect from bias in the NH sensor was expected, since it is
the key information used in the NH-controller. This reduction
in energy efficiency is larger than what is expected to be gained
from the ammonium cascade feedback controller in the first
place (compared to DO-controllers with fixed setpoints), see
Amand (2014). This emphasizes the importance of unbiased
measurements to achieve the desired benefits from automatic
control.
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The reason for the reduced NIT,; was that a positive NH
sensor bias will result in a lowered effluent NH concen-
tration that requires more aeration energy per mass
nitrified nitrogen. In effect, the ‘true’ NH-setpoint is
0 mg/L at 1 mg/L bias and 1 mg/L NH-setpoint. To reach
such low NH effluents, extensive aeration is required. The
NH-controller solved this by assigning high DO-setpoints
close to, or at, the maximum setpointlimit during peak
loads, with a poor NIT.s as consequence. The opposite
reasoning can be applied to a negative NH bias.

A positive bias in the NH sensor had a negative effect not
only on NIT,, but also on N, (Figure 3(b)). Again, high DO-
setpoints were the reason for the reduced nitrogen removal.
High DO-setpoints cause a higher DO concentration in the
last unaerated zone and the oxygen is recirculated to the
pre-denitrification (Figure 2) resulting in a decreased pre-deni-
trification rate and N,,,. The same effect on N,,,,, was seen for
a negative bias in DO6 (higher DO than desired). The effect
was even more pronounced when NH and DO6 simul-
taneously had a negative bias, which was amplified through
their interaction effect (Figure 5).

A negative bias in the NH sensor (lowered DO-setpoints)
also led to a decrease in N,,,,. The reason for this was that
less nitrification also lowered the total nitrogen removal rate
as less nitrate became available for denitrification. Note that
both NH bias directions had a negative effect on the total nitro-
gen removal. This raises the question whether the NH-setpoint
was optimal with respect to the N, requirement. The possi-
bility of an optimum is further supported by the presence of
the quadratic NH model term (Figure 3(b)). The consequences
of a biased NH sensor for NIT,; and Ny, are demonstrated in
Figure 6. In Figure 6(b), the modelled main effect (linear and
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Figure 5 | Effect of interaction between NH and DO6 on N,,. When DO6 has a negative
bias (—1 mg/L) simultaneously as NH sensor has positive bias (NH (high)) there
is an additional decrease in Nygp,.
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quadratic) for NH is shown for different bias magnitudes,
which indeed shows an optimum at —0.5 mg/L NH bias. The
explanation for the optimum is that for this specific WRRF con-
figuration and load, a certain amount of nitrification is needed
to obtain a low (<0.5 mg/L) DO in the recirculation stream.
This occurs at an NH effluent concentration of 1.5 mg/L, i.e.
the optimum in Figure 6(b). If the NH effluent is larger than
1.5mg/L, the minimum DO-setpoint at 1mg/L instead
increases the recirculated DO concentration.

DO sensor bias in the ammonium loop

Bias in the DO sensor in cascade with the ammonium con-
troller cannot be neglected. As noted in section ‘Ammonium
sensor bias’, increased DO concentrations reduced both
NIT,s and Ny,. Similarly, a negative bias in any DO
sensor (higher DO than measured) also resulted in reduced
NIT,4 and Ny, (Figure 3). It was initially expected that the
NH master controller would compensate for any bias inside
the DO slave controller. After all, a positively biased DO
sensor causing an increase in NH effluent should be possible
to compensate for with an increased DO-setpoint. The mis-
take in the previous reasoning is that the setpoint-limits of
the slave controllers were not considered. An increase in
both the minimum and maximum setpoint-limits due to
negative bias in DO4 will be unfavourable as shown in
Figure 7. For example, during low loads at night, the mini-
mum true DO concentration is 2 mg/L instead of the
desired 1 mg/L minimum setpoint.

It should be noted that the location of the biased DO
sensor matters, since the impact direction was different for
NIT,; compared to N, (Figure 3). Bias in the DO4
sensor had the largest effect on NIT,;, which contrasts
N, and the results obtained with a biased DO6. This is
in agreement with previous studies of the optimal DO-
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Figure 7 | The effect from a negative bias in DO4. Ammonia effluent (green solid and
dashed lines) and DO setpoints (black, grey, and dashed purple lines) during a
diurnal cycle. Dotted grey lines indicate DO setpoint-limits at 1 mg/L and
3.8 mg/L respectively. Please refer to the online version of this paper to see
this figure in colour: http:/dx.doi.org/10.2166/wst.2021.031.

profile, where a lower DO in first zone was shown to be
the most energy efficient (Amand & Carlsson 2013).

Suspended solids sensor bias

A negative 500 mg/L bias in the SS sensor resulted in a
moderate increase in NIT,; (about 6%) and N, (about
2%), see Figure 3. This indicates that there would only be
positive effects from an increased SS concentration. This
is logical as the biomass is the limiting factor for reducing
ammonium peaks (Rieger ef al. 2014). We acknowledge that
the key limitation for reaching a high SS is the sedimen-
tation capacity, which is not fully described in the
applied model. Especially operating issues related to
the bacterial sludge composition are not considered. Still,
the results highlight the importance of striving for the maxi-
mum practically feasible SS concentration. We further
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expect the impact from a biased SS sensor, on N, to
increase if the activated sludge process is operating close
to its maximum capacity where occasional ammonium
break-through is expected. This would be especially critical
during cold wastewater temperatures where a higher SRT is
needed to maintain nitrification. Here, the NH load was
within the modelled plant nitrification capacity even for
the reduced SS concentration.

Interactions between sensors and influent flow
variations

As expected, a decrease in influent flow variations also led to
an increase in NIT,y. It was less expected that the effluent
NH concentration decreased with increasing influent vari-
ations. At a first glance, this is non-intuitive but is
reasonable since the opposite applied for aeration energy -
the aeration energy increased with increased influent vari-
ations. The reason is that the NH-controller increases the
DO-setpoint during peak loads, resulting in an increased
nitrification at the cost of increased energy consumption.
The effluent ammonium concentration was below the set-
point of 1mg/L, apart from simulations with a constant
influent mass flow. This was not a consequence of poor
tuning of the controller but caused by the DO-setpoint-
limits. During low loads at night, the ammonium effluent con-
centration approaches zero, which should produce a zero
setpoint value to the DO-controller. However, as there was
a minimum DO-setpoint value of 1 mg/L, the ammonium
concentration remains below the setpoint value until the
load increases and justifies a DO-setpoint of 1 mg/L.

Note that in contrast to the effect from influent flow vari-
ations, there were no significant effects from influent
concentration variations (Figure 3). A possible reason is that
concentration changes are within the NH-control authority
and that the nitrification rate can temporarily be increased
with increased aeration. Such action, however, is not enough
to compensate for short hydraulic retention times due to flow
variations. This needs to be verified by further studies.

There were no significant interaction terms between
influent variations and sensor bias (apart from a minor inter-
action term between NH and F, Figure 3(b)). This indicates
that avoiding a biased sensor does not become more impor-
tant when influent variations increase, compared to when
the influent flow is constant. The results, however, may be
different during storm water conditions, or when a sudden
load increase temporarily exceeds the plant treatment
capacity.
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Apart from the interaction between bias in NH and
DO6 mentioned in section ‘Ammonium sensor bias’, there
were no large interactions between a pair of two biased sen-
sors. Thus, we should expect that the combination of several
biased sensors will not be more problematic, compared to
the problems caused by bias in the individual sensors, one
at a time. The lack of non-linear interaction effects opposes
the common assumption of the non-linear nature of waste-
water treatment models. Instead, the result indicated fairly
linear changes for the studied scenarios, which can simplify
and reduce the needed scope for future studies.

DISCUSSION

The consequences of sensor bias are discussed in wider con-
text, including relation to costs in section ‘Sensor bias
impact on costs’. The impact from bias direction and the
interplay with controller setpoint-limits are discussed in sec-
tion ‘Sensor bias direction matters’ and ‘The interplay
between controller setpoints and sensor bias’, respectively.
The impact on effluent permits is analysed in section
‘Sensor bias impact on effluent permits’. The applicability
of the RMS method is evaluated in section ‘Benefits and
risks with response surface methodology’. Lastly, possible
mitigating actions are considered in section ‘Preventive
actions to mitigate negative effects from biased sensors’.

Sensor bias impact on costs

A negative bias in the NH sensor will cause an increase in
electricity costs due to the reduced NIT,y. For the studied
750,000 p.e. WRRF, a 1 mg/L NH sensor bias (consistently
during a full year) would correspond to a substantial annual
cost increase, equivalent to employing eight full-time instru-
ment technicians!. Similarly, the added energy cost for a
biased DO sensor would correspond to one additional
instrument technician, despite the small change as
measured in percentages. The motivation for sensor main-
tenance and purchasing the best available NH sensor is
obvious.

In practice we should only expect biased sensors for part
of the time. The probability of having a biased sensor is not
easy to estimate as it would require a redundant and accu-
rate reference sensor. A cost-benefit analysis of condition-
based sensor maintenance, in contrast to the current time-
based sensor maintenance, would motivate further studies
about the probability of biased sensors in practice.
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The results have demonstrated that cost and energy
reduction enabled by advanced automatic control can be
easily lost using inaccurate on-line sensor measurements.
This is rarely considered during benchmarking of new con-
trol strategies. Therefore, we suggest a critical review of
aeration control strategies, with respect to their sensitivity
towards biased sensor measurements.

Sensor bias direction matters

Only a negative bias in DO sensors and positive bias in the
NH and SS sensors had a negative impact on NIT,; and
Nyem. It is problematic to have an undesirable negative
DO-bias since the common problem with biofilm formation
on electrochemical membrane-based DO sensors has been
shown to cause such negative drift (Samuelsson et al
2018). In Samuelsson et al. (2017), there were indications of
a negative drift in an ion-selective NH sensor, although
the drift direction was not studied in detail. In general,
research about sensor drift direction in practice has been
limited to a few studies (Samuelsson ef al. 2018; Ohmura
et al. 2019; Thiirlimann et al. 2019). For that reason, we
also lack knowledge about whether different sensor technol-
ogies result in different drift direction, for example caused by
fouling. The findings here emphasize that knowledge about
sensor drift direction is essential. Further studies are needed,
especially for NH and SS sensors.

Apart from the bias direction, it was remarked in section
‘DO sensor bias in the ammonium loop’, that the location of
a biased DO sensor had an impact on NIT,y and Ny,,. This
knowledge should be considered when sensor maintenance
routines are developed to prioritize the sensor maintenance
order. During such prioritization, large interactions between
two biased sensors should also be considered, which would
here apply to NH and DO6.

As mentioned, it is still not fully understood whether
drift direction can differ between different sensor technol-
ogies, and even between different sensor makes. If it could
the expected drift direction should be considered during
the sensor procurement. The expected drift direction
would be essential product information.

The interplay between controller setpoints and sensor
bias

Ammonium cascade feedback control is reliant on DO set-
point-limits to avoid undesirable DO concentrations. The
influence from how these setpointlimits are assigned
increases when sensor bias is considered. The common
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strategy is to assign tight setpoint-limits, e.g. limit DO
between 1 and 2mg/L. This will avoid unfavourable
excess aeration during peak loads at the cost of reduced dis-
turbance rejection rate. Tight limits will also reduce the
impact from biased sensors as a negative 1 mg/L DO bias
in practice instead would lead to setpoint-limits between 2
and 3 mg/L. Using only a fixed DO-setpoint of, for example,
2 mg/L would minimize the influence from a DO bias to
+/— its magnitude. A better approach would be to tighten
only the setpoint-limit that will be affected by the expected
drift direction. For example, an expected negative drift direc-
tion for the DO sensor would lead to too high DO
concentrations. A slightly lower maximum DO setpoint of,
for example, 1.5 mg/L could counteract unnecessary aera-
tion in the presence of bias, at the cost of reduced
disturbance rejection capability.

In this study a proper anti-windup has been applied. Pro-
blems related to absence of anti-windup are expected to
increase with biased sensors. The reason is that the NH-con-
troller would operate at its setpoint-limits during longer
periods due to the sensor bias.

Sensor bias impact on effluent permits

Sensor bias will have an impact on achieving effluent per-
mits. Many WRRFs have permits for the maximum
effluent ammonium concentration. The timescale for this
maximum differs between countries and WRRFs. In
Sweden, yearly or monthly maximum mean values are
prevalent, but other countries require compliance for
shorter timescales. This will influence which amplitude
and time period can be accepted with sensor bias, while
still satisfying effluent requirement. Thus, the importance
of sensor bias is clearly both WRRF- and regulatory-specific
and the methodology applied here could readily be extended
to include such aspects.

Seasonal variations, such as cold wastewater tempera-
ture during wintertime in Sweden, could impact the
nitrification efficiency substantially. When approaching the
minimum SRT, the consequence of a biased SS-sensor
would be of increasing importance. Similarly, an (undesired)
reduced aeration due to bias in either a DO or an NH-sensor
could then become more critical than was observed here. A
relevant future study would therefore identify controller set-
points that lie in the borderline for critical SRT, minimum
temperature and maximum influent flow. We expect that
the optimization tools in RSM would be feasible for this pur-
pose and could be an extension of the methodology applied
here.
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Benefits and risks with response surface methodology

The main benefit with using RSM compared to evaluating
scenario by scenario is that a good overview of the key influ-
ential sensor bias can be obtained with less effort. This can
guide new rules-of-thumb that can be used in practice, for
example, ‘avoid negatively biased NH and SS sensors both
for cost and nitrogen removal reasons’.

One drawback of the RSM is that the obtained regression
coefficients only indicate the average effect, and that there
may exist combinations of biased sensors that produce results
deviating from what the regression model predicts. This risk
increases when a full factorial experiment is reduced by, for
example, Box-Behnken design, which was applied here.

The regression coefficients cannot be interpreted separ-
ately but require a causal interpretation from the
simulations. Otherwise, the possibility to transfer the
insights to similar systems will be limited.

The RSM methodology resembles a sensitivity analysis. A
sensitivity analysis for optimizing controller setpoint values
could also have been used to analyse sensor bias impact.
Thus, the dual goal of process optimization and critical sensor
analyses can be achieved simultaneously and would probably
increase the motivation for executing similar studies in practice.

Preventive actions to mitigate negative effects from
biased sensors

Based on the results from this simulation study some practi-
cal advice can be given.

1. The most common drift direction and expected magni-
tude should be assessed for the current plant conditions
and seasonal variations, and sensor makes. This will
make it easier to identify critical problems in practice.
If simulations are to be conducted, this will also reduce
the need to simulate and interpret non-existing sensor
bias combinations.

2. The impact from the DO-controller’s setpoint-limits
should be studied and assigned while considering the
expected sensor drift direction.

3. A multi-criteria analysis should be conducted to identify
which of the expected harmful effects from biased sen-
sors are the most important. A trade-off between
treatment costs, treatment efficiency, and achieving efflu-
ent permits ought to be identified. From such analysis,
the most critical sensor(s) with respect to bias can be
identified. Consequently, the maintenance of these sen-
sors should be prioritized.
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4. It could also be possible to facilitate detection of biased sen-
sors by transferring knowledge about fault symptoms
indicated in the simulations to the operator or fault manage-
ment system. For example, if a positive drift in the NH
sensor is expected to produce a higher DO-setpoint than
desired, then the operator should monitor the duration of
maximum DO-setpoints during peak loads, as they will be
affected by such bias.

CONCLUSIONS

There is an obvious need to assess the reliability of on-line
sensor data used for automatic control. This aspect is not
commonly included in control system benchmarking but is
critical to ensure that the real system is optimized at realistic
conditions.

It is concluded that:

® biased sensors and influent variations considered as sep-
arate factors have a large impact on nitrification energy
efficiency and less impact on total nitrogen removal.
The impact from biased sensors do not, however,
increase as influent diurnal flow and concentration vari-
ations increase.

e to implement preventive measures, it is important to
know the expected sensor bias direction. Positive bias
in NH and SS sensors and negative bias in DO sensors
should be avoided to maintain a high total nitrogen
removal and energy efficient nitrification.
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