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Editorial: Modelling and integrated assessment of urban water systems
The 10th IWA Symposium on Modelling and Integrated tandem and the same was visible in the conference presen-

Assessment (Watermatex 2019) was held on 1–4 September
2019 in Copenhagen, Denmark. The conference was
jointly organized by the Technical University of Denmark

(Denmark) and Lund University (Sweden), and attracted
more than 200 delegates from almost all continents of
the world. This symposium series is part of the activities of

the IWA Specialist Group onModelling and Integrated Assess-
ment. This special issue of Water Science and Technology
highlights some of the presentations from the conference

that have been selected and peer reviewed, together with a
few submissions that pertain to the same themes as the confer-
ence but were submitted separately. In total, 91 oral and 47

poster presentations were given at Watermatex 2019 as well
as seven thematic workshops.

Ever since its beginning in London, UK (1987), the
Watermatex symposium series has always highlighted the

application of a wide range of mathematical tools for
problem solving in the water sector. From being initially an
area of academic research interest, modelling tools in the

water sector evolved into useful practical tools for industry
and academia to address the present and future challenges
in a holistic manner. This is clearly visible in the conference

presentations that cover a wide range of applications from
water resource recovery facilities to sewer systems and drink-
ing water distribution networks. Not only is the spatial
horizon getting wider and more integrated, the systems and

tools used are also evolving. A hybrid modelling approach
combining mechanistic and data-driven models is also clearly
developing as the state-of-the-art. The application of big data

and machine learning tools is increasing exponentially, at
least from an academic perspective, and is expected to soon
evolve into handy tools for practitioners. Application of com-

putational fluid dynamics (CFD) is increasingly becoming
an attractive and useful method to address and improve
the design and operation of water infrastructure. The devel-

opments in process modelling have taken new directions
with more focus on understanding the physical processes
such as in grit chambers and sedimentation basins. Finally,
process modelling and control have always been studied in
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tations. With the advent of machine learning approaches
and the focus on digitalization, researchers in the areas
of monitoring, fault detection and automatic control have

all attempted to combine the traditional modelling
approaches with these new tools.

The special issue is broadly divided into four sections

that also nicely summarize the major themes of the confer-
ence. A total of 25 papers are selected for the special
issue. The key themes are:

• Systems Analysis, Big Data and Machine Learning

• Computational Fluid Dynamics (CFD)

• Process Modelling

• Instrumentation, Control and Automation (ICA)
SYSTEMS ANALYSIS, BIG DATA AND MACHINE
LEARNING

One of the major aspects of the Watermatex 2019 confer-
ence is a great interest in systems analysis, big data and

machine learning approaches. A combination of traditional
mechanistic models and machine learning approaches is
evolving as the new state-of-the-art. Such approaches are

used for process optimization (Bertanza et al. ;
Borzooei et al. ; Nam et al. ) and process under-
standing (Alejo et al. ). The importance and application

of uncertainty analysis for models, especially with a large
number of parameters and various forms of uncertainty is
reiterated (Lindblom et al. ; Reichert ). Applications
of system analysis in different areas of urban water systems

are presented (Andersson et al. ; Hosseini et al. ;
Nyirenda & Tanyimboh ; Wärff et al. ).
CFD

The first presentation on CFD was a plenary presentation at
the conference, which addresses the importance of model

validation not only to improve the CFD models but also to
increase the level of trust by practitioners (Nopens et al.
). Application of CFD tools to study anaerobic digesters

(Dapelo & Bridgeman ; Tobo et al. ) and water dis-
tribution systems (Satpathy et al. ) are presented.
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PROCESS MODELLING

Process modelling is no longer confined mainly to biological

processes. Plant-wide modelling approaches for biological
nutrient removal are presented (Seco et al. ). A renewed
interest in modelling physical processes (grit chambers, sedi-
mentation and dissolved air floatation) is noticed (Bürger

et al. a, b; Plana et al. ).
ICA

While ICA is an entire conference theme by itself, it has

strong interconnections with the Watermatex conference.
A growing interest in the holistic control of urban waste-
water systems is evident through several studies

(Ledergerber et al. ; Stentoft et al. ). Moreover, pro-
cess control case studies for drinking water treatment are
presented (Godo-Pla et al. ; Ndiweni et al. ). New

control strategies for biofilm-based processes (Schraa et al.
), monitoring solutions for moving-bed biological reac-
tors (Nair et al. ) and water treatment plants (Kazemi

et al. ) are discussed.
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