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Abstract

Digital twins have been gaining an immense interest in various fields over the last

decade. Bringing conventional process simulation models into (near) real time

are thought to provide valuable insights for operators, decision makers, and stake-

holders in many industries. The objective of this paper is to describe two methods

for implementing digital twins at water resource recovery facilities and highlight

and discuss their differences and preferable use situations, with focus on the auto-

mated data transfer from the real process. Case 1 uses a tailor-made infrastructure

for automated data transfer between the facility and the digital twin. Case 2 uses

edge computing for rapid automated data transfer. The data transfer lag from pro-

cess to digital twin is low compared to the simulation frequency in both systems.

The presented digital twin objectives can be achieved using either of the pre-

sented methods. The method of Case 1 is better suited for automatic recalibration

of model parameters, although workarounds exist for the method in Case 2. The

method of Case 2 is well suited for objectives such as soft sensors due to its inte-

gration with the SCADA system and low latency. The objective of the digital twin,

and the required latency of the system, should guide the choice of method.

Practitioner Points

• Various methods can be used for automated data transfer between the phys-

ical system and a digital twin.

• Delays in the data transfer differ depending on implementation method.

• The digital twin objective determines the required simulation frequency.

• Implementation method should be chosen based on the required simulation

frequency.
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INTRODUCTION

Digitalization is a global mega trend impacting all of soci-
ety. Digital applications emerge and benefit at all levels
of societies and businesses, that is, from component level
to cross-sectoral systems (SWAN Forum, n.d.). However,
making larger impact and realizing the larger vision of
digitalization requires integrating solutions on systemic
level (Arnell et al., 2023). One such example is digital
twins. Digital twins have been gaining an immense inter-
est in various fields over the last decade. Bringing con-
ventional process simulation models into (near) real time
will provide valuable insights for operators, decision
makers, and stakeholders in many industries and parts of
the society, from health sciences to manufacturing to city
planning (Fuller et al., 2020). The great variation in appli-
cation areas has, however, caused variations in the defini-
tion of a digital twin. In this work, we define a digital
twin in line with Torfs et al. (2022) as

… a virtual copy of a physical object or sys-
tem, with an automated live data connection
to the physical entity. The digital twin should
have measures to dynamically update and
adjust the models based on relevant data to
maintain an accurate description of the phys-
ical entity.

Inter-disciplinary comparisons are somewhat difficult
due to the difference in the digital twin definition, but
general application areas include monitoring, simula-
tion, optimization and control, and verification of differ-
ent activities in the real entity/process (Martinez
et al., 2018). Advanced control and operational support
are the most common applications in the wastewater
context so far (Johnson, 2021; Sparks et al., 2023;
Stentoft et al., 2020; Torfs et al., 2022), while other
industries have come further, especially the manufactur-
ing industry where several cases are documented in liter-
ature. Applications range from production planning and
control, maintenance, and layout planning to product
design and smart manufacturing (Kritzinger et al., 2018).
The manufacturing industries are fundamentally differ-
ent from the process industries in that the manufactur-
ing industries in general are best described as discrete
event systems, whereas the process industries operate
continuously. This is also reflected in the advances in
digital twin applications and implementation. The pro-
cess industries see possible benefits in asset monitoring
and maintenance, risk assessment, decision making,
automation, and forecasts, as well as maximizing profit
and production planning (Makarov et al., 2019;
Wanasinghe et al., 2020). The wastewater sector is still

lagging behind other process industries, but the activity
is growing. The scientific literature is thus scarce with
examples of digital twins in operation at water resource
recovery facilities (WRRFs). Nonetheless, documented
cases can be found in, for example, Johnson (2021)
where a full-scale digital twin for water reuse and recov-
ery was developed in Singapore to evaluate operational
scenarios and for operational support and in Daneshgar,
Polesel, et al. (2024) where a full-scale digital twin of
Eindhoven WRRF for real-time prediction of plant oper-
ations is described. The focus in the wastewater sector
has so far been on operational support and control with
digital twins as an enabler for advanced control such as
model predictive controllers (MPCs). Examples can be
found in, for example, Stentoft et al. (2020) and Sparks
et al. (2023).

An automated and continuous data connection
requires soft digital infrastructure, such as standards,
data models, policies, and so forth, and technical digital
infrastructure such as standardized information and
communication protocols, networks and services, stor-
age, and sufficient bandwidth (Arnell et al., 2023;
Barricelli et al., 2019; Schleich et al., 2017). There are
several ways of automating the data transfer between
the physical system and the virtual copy in a digital twin
system. They can be divided into, at least, three main
classes: (1) cloud computing on one end of the spectra;
(2) a local set up on the other end; (3) and edge comput-
ing somewhere in between (Knebel et al., 2023; Rasheed
et al., 2020). Cloud computing, either by using commer-
cial cloud services or a cloud service developed in-house,
is not presented in detail in this paper but is an alterna-
tive for realization of digital twins. Commercial cloud
services make it possible to allocate data storage and
computational power, with the drawback that data must
be shared outside the organization. An in-house cloud
service would diminish the need to share data outside
the organization but can come with higher costs
(Balasubramanian & Aramudhan, 2012; Knebel
et al., 2023).

The data transfer itself can be constructed in several
ways, depending on the type of industry and applications.
O'Donovan et al. (2015) described data transfer for a
manufacturing industry big data solution, where they
used a process where data are collected in a distributed
way from appliances at the plant. First, background
applications running on local servers were scheduled to
collect data and send to the cloud. In a next step, a tem-
porary storage is used between the data collection and
processing stage, to allow asynchronous operation and a
more robust process. Another process is used to notify
the relevant downstream process when new data is avail-
able for processing. Cakir et al. (2022) also describe
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solutions for real time big data management in a
manufacturing industry. Data collection is distributed,
depending on the device used. Sensor data are, for exam-
ple, collected through OPC-UA (Open Platform Commu-
nications Unified Architecture; Leitner & Mahnke, 2006).
OPC-UA is a standard communication protocol used to
securely exchange data between assets (Leitner &
Mahnke, 2006). Data from energy analyzers are collected
from the respective PLC and collected on an OPC server.
From there, data are further distributed for processing.
Daneshgar, Polesel, et al. (2024) presents an automated
data pipeline for their digital twin. Data are collected
from a database and automatically pre-processed using
the Python package wwdata (De Mulder et al., 2018). The
pre-processed data are published on a cloud server
(Microsoft Azure) every 2 h from where it is accessible
for simulations. The data transfer is automated using the
Python package wwtwin, which pipelines the data trans-
fer from raw data to simulation (Daneshgar, Borzooei,
et al., 2024).

The objective of this paper is to describe two methods
for implementing digital twins and highlight and discuss
their differences and preferable use situations, with focus
on the automated data transfer from the real process. We
present two case studies on digital twins in Sweden—one
that uses a custom-built local system for automated data
transfer and one based on edge computing. In the next
section, we describe the objective(s) of the digital twin
and the method for automated data transfer for each
case, respectively. The results and subsequent discussion
focus on simulation frequency and run time, data trans-
fer frequency, and a brief discussion on the time frame of
the of the ‘real-time’ or ‘live’ concept, that is, how close
to real-time is needed and what is achievable depending
on infrastructure.

METHODOLOGY

In this section, we present the two case studies under
development by the authors, focusing on the automated
data transfer between the physical and virtual entities.
Case 1 displays a tailor-made architecture for Öresunds-
verket WRRF in Sweden. Case 2 showcases an edge com-
puting system using a commercial software platform
developed for real-time simulation. For this paper, we
consider “real-time” simulation to be with high fre-
quency, for example, seconds, essentially as soon as data
are recorded in the system a new simulation is run.
Table 1 summarizes the differences between the two
cases in terms of digital twin objectives, simulation fre-
quency, and data transfer frequency, as well as data
amount, types, and resolution.

Case 1—Öresundsverket WRRF

Plant description

The Öresundsverket WRRF is located in Helsingborg,
Sweden. The plant receives a load of 164,000 population
equivalent (mean over 2021–2022). It operates with an
enhanced biological phosphorus removal (EBPR) acti-
vated sludge configuration with an activated primary
clarifier setup for primary sludge hydrolysis and fermen-
tation. The primary and secondary sludge are thickened
in gravity thickeners and anaerobically digested. Ferric
chloride is added to the primary sludge to bind ortho-
phosphate and minimize problems with H2S in the
digesters. The plant suffers from periodic upsets in
the EBPR process, which results in additional dosing of
ferric chloride in the water line (mainly to the biological

TABLE 1 Summary of differences between the two cases.

Definition Case 1 Case 2

Digital twin
objective

What is the digital twin used for? Forecasting, advanced control, and
process optimization

Decision support, fault detection,
predictive maintenance

Simulation
frequency

How often are simulations run? Every hour Every second

Data transfer
frequency

How often are data transferred? Every hour Every second

Data resolution What resolution does the data
come in?

Minute Second

Amount of data How much data is transferred at
a time?

146 tags
4 columns per tag
60 rows per transfer

1 data point per input and time step

Data types What type of data is used in the
digital twin?

Online data (currently) Online data from sensors and
equipment

WATER ENVIRONMENT RESEARCH 3 of 10
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reactors) to reach the effluent permits for total phospho-
rus of 0.5 mg P/L as annual average.

Models and objectives of the digital twin

The goal of the digital twin is to evaluate how and if it
can be used to improve the process stability and mini-
mize the use of chemicals and energy at the facility
through optimization algorithms. The core of the digital
twin is a plantwide mechanistic process model, developed
in the commercial simulation software Sumo (Sumo 22.0,
Dynamita, France). The model was initially manually cal-
ibrated and validated with in total 3 years of dynamic
(hourly) data for the years 2020–2022. The digital twin is
controlled through the Python (3.9.13) programming
interface from the Sumo Digital Twin Toolkit. This
means that data handling and corrections, writing
dynamic influent files and process settings, running the
model, and evaluating and visualizing results must be
handled through Python scripts and requires program-
ming skills to develop and make changes to. Rather than
connecting the twin directly to outputs from sensors
(although this is also possible with Sumo), the method
uses a scheduling approach where simulations are sched-
uled and executed with a certain (regular or irregular)
interval.

Optimization methods based on the Nelder–Mead
algorithm have been developed and used with a simpli-
fied model to estimate dynamic influent data (Wärff
et al., 2024). Further optimization methods are under
development, with expectations to use the same algo-
rithm, in the digital twin to improve plant operations.
These include minimizing aeration energy while achiev-
ing target effluent ammonium concentrations by manipu-
lating dissolved oxygen setpoints forward in time,
minimizing total emissions of total phosphorus (TP) to
the receiving water during high flows by manipulating
the threshold for bypassing the biological reactors, and
minimizing dosing of ferric chloride to achieve effluent
TP complying with the permit. These types of optimiza-
tions are expected to run on an hourly basis.

Methods for automated data transfer

Data from online sensors are collected in the Supervisory
Control and Data Acquisition (SCADA) system at the
plant (Cactus Eye, Cactus Utilities, Sweden). Due to
cyber security concerns, the operating utility (Nordvästra
Skånes Vatten och Avlopp, NSVA) does not allow cloud
connections to the SCADA system, and all non-essential
software that is currently connected to the SCADA

system are being disconnected. This sets the boundary
limits for how data transfer and computations can be per-
formed for digital twin purposes, as it is not possible to
read data directly from the SCADA database. Instead, a
data warehouse is used to store data from online sensors
by transferring from the SCADA database, while labora-
tory data are directly saved to the data warehouse. The
online data are transferred from the SCADA database to
the data warehouse with a fixed sampling frequency,
which currently is 1 h. This limitation in sampling fre-
quency is due to the current data warehouse service sub-
scription utilized by the utility, which limits it to 10 min.
With another subscription, higher frequency would also
be possible but is not deemed necessary for the purpose
of this digital twin application. The plant is currently
experiencing problems with delays in data transfer
between the SCADA system and data warehouse, and in
parallel, a new data lakehouse solution (Cinter, Sweden)
is being developed that will directly stream new data
without delay.

The data analytics software aCurve (Gemit Solutions,
Sweden) is used to read specific data, relevant to the digi-
tal twin operation, from the data warehouse and write it
to a secure FTP server (SFTP). For this operation, data
for every data tag (e.g., sensor signals, laboratory mea-
surement values, and process setpoints) are written to a
unique file with comma separated values (i.e., a .csv file).
Although there exist more efficient formats for storing
and transferring large amounts of data (such as,
e.g., Apache Parquet), .csv files were chosen since the
data are easy to access and interpret. The system with
one file per SCADA tag was also chosen to simplify acces-
sibility to the files. Each .csv file is given a name corre-
sponding to the name given in the Python script where
the data is handled. All tag name handling (i.e., if a tag
name is changed) is left out from the digital twin scripts
and must be handled in the aCurve software. Due to the
current experienced delay in data transfer, and that no
delay between SCADA and database is expected shortly,
the digital twin automation is developed with data col-
lected with 24-h delay. In other words, data collected dur-
ing 14.00–15.00 is transferred to the SFTP server at 15.00
the next day.

The content on the SFTP server can be synchronized
to a folder on the PC running the digital twin model. This
way, data can be accessed and read directly through
Python scripts. Data validation, wastewater characteriza-
tion, and influent generation can then be managed
through Python scripts and transferred to the correct for-
mat through the Digital Twin Toolkit. Finally, Sumo can
be run at fixed intervals with different objectives. In the
current format, it is not possible to write results back to
the SCADA system, but that can be done with minor
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effort once the system is set up locally without Internet
access by setting up an application programming inter-
face (API) for communication between Python and the
SCADA system. This remains to be implemented.

For this paper, an example is displayed where the dig-
ital twin is run to keep up to date with the latest data
(i.e., no optimization runs or forecasting). This means
that every hour when new data are available from online
sensors on the past hour of operation, the digital twin is
run with this set of data from the last update point 1 h
earlier up until the endpoint of current available data.
This simulation is the first step before any forecasting or
optimization utilizing forecasted data, to provide initial
conditions for such simulations. The full data pipeline for
this is shown in Figure 1. The example was used to quan-
tify lag in data transfer by (1) checking how long after a
value was logged until it was available at the PC for pro-
cessing and (2) how long the simulation time was for
running the full plantwide model with the last hour of
data (with a data time step of 1 h). Plant optimization
and setpoint suggestions are not yet implemented, but
when results are available, this will at first require man-
ual input in the SCADA system from the user. At a later
stage, setpoint implementation in the SCADA can be
automated.

Case 2—henriksdals WRRF

Plant description

Henriksdals WRRF is located in Stockholm, Sweden, and
operated by Stockholm Vatten och Avfall (SVOA). The
plant serves approximately 780,000 people in
the Stockholm metropolitan area. The process is an acti-
vated sludge process with pre- and post-denitrification. It
is currently undergoing a substantial reconstruction to a
membrane bioreactor (MBR) process where aerated
membranes will replace the settlers. At the moment, one

out of eight treatment trains has been rebuilt. The
primary and secondary sludge is thickened in belt thick-
eners and centrifuges, respectively, and then anaerobi-
cally digested.

SVOA are partners and co-funders of a research pro-
ject with the objective to develop and evaluate applica-
tions of digital twins at WRRFs, including soft sensors,
methods for fault detection, and advanced control to
improve operation of various subprocesses. To evaluate
the methods in real-time, a digital twin pilot has been
launched. The pilot is done in collaboration with Siemens
(Siemens, Sweden) but similar software from other com-
panies also exists (ABB, 2023).

Models and objectives of the digital twin

The main objective of the digital twins is broad: to
improve operations. Specific prioritized applications in
the project include detection of process and sensor faults,
robust control under faults, and methods to identify
maintenance needs. The application areas so far deployed
on the digital twin pilot are soft sensors and models for
fault detection and isolation. One soft sensor was devel-
oped to monitor the dry solids content in thickened pri-
mary sludge using a recurrent neural network with
17 inputs (Molin et al., 2023). Once results have been ver-
ified online, the purpose is to use the soft sensor in a con-
trol loop for polymer dosing. The feedforward controller
currently in place is thought to be inefficient since it fails
to maintain the desired dry solids content and a more
robust control strategy can potentially lower the polymer
consumption and improve the overall process perfor-
mance. The soft sensor has potential to be used to detect
faults and to identify maintenance needs related to the
process unit. The second soft sensor was developed to
monitor the return activated sludge (RAS) flow rate since
physical constraints at the treatment plant make it unfea-
sible to use conventional techniques for flow

FIGURE 1 Data pipeline for the Öresundsverket

WRRF digital twin in Helsingborg, Sweden. Dashed

lines indicate that the data connection is not automated

yet but can and will be in the future. Solid lines indicate

that the data transfer is automated.
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measurement at this location. Several methods were used
for estimating the flow rate, including using a mass bal-
ance, a flow balance, and a pump model (Molin
et al., 2022). The soft sensor was used to detect and iso-
late sensor faults using a statistical control chart in com-
bination with a random forest classification model. The
soft sensor can give more insight on the operational con-
ditions and can be valuable to improve the control of the
RAS pumps. The development and validation of all
models were done offline in a conventional manner using
historic data and the modeling software Matlab/Simulink
R2021b and Python 3.10.

Although the processes involved are rather slow, the
physical sensors that the soft sensors are to replace pro-
vide data with 1-s resolution. It is therefore desirable that
the soft sensors provide data with the same resolution
and as close to real time as possible.

Methods for automated data transfer

Siemens Industrial Edge offers various applications in
edge computing. LiveTwin (version 2.1.16) is one of the
applications, specifically developed for real-time simula-
tions with high frequency data (Siemens, 2023). In edge
computing, the simulations and computations are done
close to the source which enables keeping information
within the local network, decrease latency, and improve
response times (Chen et al., 2020; Knebel et al., 2023).
Cloud computing can achieve even faster response times
than an edge computing system (e.g., Ren et al., 2023)
but would require sharing data outside the organization
or building an in-house cloud service, which is undesir-
able for SVOA. Furthermore, shorter response time is
currently not required for the planned applications.

LiveTwin has full compatibility with Matlab/Simu-
link. Models developed in other software must be com-
piled as Functional Mock-up Units (FMUs) following the
Functional Mock-up Interface (FMI) standard. The FMI
standard is used for co-simulation of dynamic simulation
models by compiling dynamic models as containers and

an interface using a combination of XML files, binaries,
and C code, distributed as a ZIP file (Blochwitz
et al., 2012; FMI, 2023). The Industrial Edge system is
thus independent of the modeling software as long as the
model can be compiled as an FMU. Python models can
be compiled as FMUs using, for example, the
PythonFMU package (Hatledal et al., 2020). However,
most commercial wastewater modeling software do not
currently follow this standard (FMI, 2024).

The compiled models are transferred to a manage-
ment system manually, from where it can be deployed on
an edge device (i.e., industrial PC). The simulations are
initialized through the management system, where the
user can change simulation frequency and parameter
values, among other simulation instance settings. The
default setting is to run simulations every 10 ms, but in
practice, this will be limited by the frequency of the data
source. It is possible to do simulations similar to those in
Case 1, for example, scheduling an optimization algo-
rithm once per hour, but that would require another Sie-
mens application (Flow Creator, included in the
Industrial Edge suite).

The edge device is in direct communication with the
control system from where it reads data (Figure 2).
The system can either read data from programmable
logic controllers (PLCs) or via an OPC-UA server. The
latter is used in the presented case. Data are accessible on
the edge device as soon as it is presented on the OPC-UA
server. The lag in data transfer, that is, how long time
after a value is logged with a certain timestamp it is avail-
able on the edge device for simulation, was determined
by comparing timestamps in the LiveTwin application
and the SCADA system.

There are options on how to use the model output.
Either the data can be visualized in the management sys-
tem, or it can be written back automatically to the control
system and used for monitoring or control. The latter
option is currently not in use. Figure 2 shows a schematic
overview of the architecture with dashed lines indicating
that the data connection is not fully automated unless
stated so by the user, and the dotted lines indicates that

FIGURE 2 Schematic overview of the digital pilot

at Henriksdals WRRF. Dashed lines indicate that the

data connection is not fully automated unless stated so

by the user. Dotted lines indicate that action is always

required by the user. Solid lines indicate that the data

transfer is always automated.
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action is always required by the user. One example of this
is the installation and updates of the Industrial Edge soft-
ware or applications that require Internet access. On
these occasions, standard security protocols are used. The
transfer of process data to the edge device is always
automated.

Combining simulation models is often an important
feature of a digital twin. In the digital pilot at Henriksdals
WRRF, this can be done in two ways: (1) by bundling
models outside of LiveTwin or (2) by creating multiple
FMUs and create data pathways between them within
the Industrial Edge suite. The first option can potentially
result in a complex model with issues when combining
models from different software, while the second option
makes it possible to run simulations on one or several of
the FMUs simultaneously or consecutively giving more
degrees of freedom to the user.

RESULTS AND DISCUSSION

In both case studies presented in this paper, the data
latency and simulation time for one time step forward
are low compared to the simulation frequency, causing
no practical problems in running the simulations
(Table 2). The architecture used in Case 1 is currently not
able to feed the model with real-time data due to limita-
tions in the data transfer rate from the database. If the
database update frequency is increased to allow higher
simulation frequency (e.g., 1 min), there would still be a
constant lag of 2–3 min before the results could be uti-
lized. The data lag for Case 1 will likely decrease once the
digital twin is installed onsite and the data transfer to
and from the SFTP-server are no longer necessary. How-
ever, the latency is still expected to be higher than in
Case 2 as long as the utility does not allow direct connec-
tions to the SCADA system. For Case 2, data are accessi-
ble to the edge device and, thus for simulations, as soon
as it is published on the OPC-UA server. This ensures
rapid data transfer, in the range of milliseconds, which is
a prerequisite for real-time simulations as is often needed
for soft sensors. The sampling time is 1 s, and any delays
shorter than that is not measurable, hence the reported
latency of <1 s (Table 2). Since the data transfer is only
for one time step at a time in the default case, the amount
of data transferred at every instance is small compared to
the data transferred in Case 1. The use of .csv files with

one file per tag in Case 1 is not optimal from a data trans-
fer standpoint and could likely be optimized, but for this
application, it does not have an impact.

Several of the methods described in the literature for
manufacturing industries (e.g., Cakir et al., 2022;
O'Donovan et al., 2015) use a distributed data collection
and transfer system. This can be a viable option when
data is not collected in a centralized location or to reduce
complexity or latency by not requiring a connection to
the full SCADA system or database when only a few data
sources are used. For a full plant wide digital twin for a
WRRF, a distributed system might, however, introduce
more complexity than a centralized system due to the
large number of inputs required for such digital twins.
The so far published case studies about digital twins at
WRRFs use centralized systems similar to Case 1 pre-
sented here (Daneshgar, Polesel, et al., 2024;
Johnson, 2021).

It is important to note that the simulated models in
Cases 1 and 2 are not identical but differ substantially
in complexity. The values on simulation run time pre-
sented in Table 2 are therefore not directly comparable
between the two methods and should be analyzed in
view of the different objectives of the digital twins. In
Case 1, as well as in Johnson (2021) and Daneshgar,
Polesel, et al. (2024), a scheduling approach is used for
simulations, meaning that simulations are scheduled
with a fixed time interval (e.g., every hour). This can be
useful both to update the model with the latest data and
make forecasts and execute optimization scripts. Simula-
tion near real time (i.e., every second) is not required
for forecasting and optimization as the optimization
horizon normally would be hours into the future. For
comparison, Daneshgar, Polesel, et al. (2024) uses a 2-h
interval to ensure adequate data pre-processing and thus
data quality. The applications in Case 2 have so far been
soft sensors which require real-time data to fully replace
the physical sensors. If the goal is to continuously
update the model and use the output for, for example,
fault detection, the edge computing system in Case
2 could be more convenient as it assures rapid, continu-
ous data transfer. It should be noted that none of the
cases presented here are in practice limited to one or
the other (scheduled or continuous simulation) but have
been developed with different primary areas of use in
mind and are thus better suited for different
applications.

TABLE 2 Comparison of latency

and simulation runtime between the

two cases.

Definition Case 1 Case 2

Latency Are there lags in the data transfer? 2 min <1 s

Simulation run time How long does a simulation take? 12 s 0.2–0.6 ms
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Data transfer between a digital twin and the real pro-
cess can be one-directional or bi-directional, with the
recurring discussion point of whether bi-directional com-
munication with the real system is required for the defi-
nition of a digital twin (e.g., Fuller et al., 2020). Torfs
et al. (2022) argues that the virtual-to-real entity connec-
tion can be automated or manually performed. In prac-
tice, the need of a bi-directional connection is
determined by the digital twin objective. A bi-directional
automated connection is possible to establish in both pre-
sented case studies (Case 1 and Case 2) but is yet to be
implemented. Until it has been implemented and
launched, the simulation outputs (e.g., controller set-
points, suggested actions, or sensor values) are accessible
to the operators for decision making in both cases
(i.e., using humans in the loop).

Besides the data transfer from the physical plant to
the digital twin, and from the digital twin to the physical
plant, data transfer or information transfer between
models can be a crucial part of the digital twin system as
it may consist of several models. Simulations in parallel
or series (i.e., co-simulation or model exchange) is a
requested future functionality in both presented case
studies and can be done in both systems. The difference
between the cases does not lie in functionality but in the
way it is handled. The overarching Python script used to
initialize simulations in Case 1 allows simulation of mul-
tiple models in parallel or series. In Case 2 in can be done
either by creating data flows between models within the
Industrial Edge suite, or by combining models before
deployment on the edge device.

CONCLUSION

The developments that have followed the ongoing digita-
lization have increased the options for implementation of
digital twins. There are tools that can be used to locally
setup an architecture tailored to the specific plant, as
described in Case 1, and there are commercial edge or
cloud computing services available, as exemplified in
Case 2. The two case studies presented are different
in terms of objectives of the digital twins, and thus sets
different requirements on the automated data transfer.
The system requirements depend on the objective of the
digital twin and thus the required simulation frequency.
For digital twins where the signals are used directly, such
as for continuous model simulation or fault detection,
the approach of Case 2 is likely necessary. For digital
twins where plant optimization and forecasting are used,
the scheduling approach of Case 1 is likely more efficient.
Both approaches could be used for essentially the same
applications, though. A combination of systems or a

layered approach could be considered to fully utilize the
strengths in both systems.
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