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Highlights

Mobility data from mobile phones can provide dynamic population estimates
Seasonal and weekly population variations were easy to quantify

Mobility data enable dynamic load time series for model applications

Person loads with lowered variance reduced the uncertainty in model-based design
Nitrogen and phosphorous loads showed stronger correlation with population than
BOD
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Abstract

Model-based design is an emerging tool for dealing with the uncertain dynamic loads entering
wastewater treatment plants (WWTPs). But our understanding about the load-driving
population-dynamics is limited. Therefore, we studied if mobility data (mobile
telecommunications data) could be used to reduce uncertainties during design. Mobility data
from Uppsala, Sweden between 2019-2022 clearly quantified population movement patterns
that were useful for simulating load scenarios such as seasonal load-shifts, without data gaps
from irregular influent sampling. Further, they showed fair correlations with the daily influent
nitrogen load (R? = 0.49), which resulted in a more precise person load estimate than
assuming a static population (23 % reduced variance). Unfortunately, BOD load variations

showed little correlation with the population variations (R? = 0.21). Nevertheless, model-
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based reactor sizing based on mobility data successfully reduced the de-/nitrification volume

safety factor with 5 %, which demonstrates their practical usefulness for WWTP design.

1 Introduction
Rapid urbanization pushes many wastewater treatment plants to retrofit and upsize their
capacity. A key challenge is then to safeguard the treatment efficiency, despite the uncertainty

in future influent load variations.
The typical engineering practice is to set the future design load by the following actions:

1) Identify the current load per person by normalizing the total load from the population,
with the population size.

2) Predict the future population at the design year.

3) Multiply the person load from 1) with the anticipated population in 2).

4) Add anticipated industry load and other non-population related sources to 3).
These steps can be described in mathematical terms (Section 4.2) with a statistical data model.

A challenge in the design load computation is to obtain a good person load estimate in 1),
since day-to-day population variations are unknown. Commonly, a constant population
indicated by yearly population records is used as a proxy, which only accounts for resident
persons that are registered within the sewer network area. This simplification may bias the

person load, and effectively transfer any bias to the total design load in 3).

A second challenge is to separate non-population related loads from being lumped with the
total load in'step 1). Unless industry and other non-population related loads (henceforth
referred to as base load), are subtracted from total load, the person load will be overestimated

and bias the design load.

Today, state-of-the-art design leans on dynamic modelling and simulation for making
informed decisions (Belia et al., 2021; Yang et al., 2022). But models are data hungry, calling
for dynamic influent load time series of BOD, COD, phosphorous, and nitrogen components.
Although on-line sensors exist for these parameters, they are seldom used in the influent due
to the harsh conditions that require extensive sensor maintenance. For design purposes,

historic load data are therefore mostly limited to 24-h composite samples. This leads to a
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dynamic-data gap where load variations are assessed with irregular sampling, with, at the

best, daily averages a few days a week.

This data gap has triggered the development of so-called influent generators, which can
produce any imagined influent load and flow — with complete data, see e.g. (Gernaey et al.,
2011; Li and Vanrolleghem, 2022; Talebizadeh et al., 2016). But the current influent
generators have been developed with different purposes in mind. Benchmarking control
strategies where the early focus in (Gernaey et al., 2011), where seasonal and industry
variations were possible to manually tweak to test different load scenarios. Data-driven
approaches have also been used (Li and VVanrolleghem, 2022) where historic data can be
regenerated with varying load. Concentration dilution can be simulated by focusing on the
flow rate variations (Talebizadeh et al., 2016). More recently, model-based influent estimation
methods have been proposed (Alex, J., 2024; Wérff et. al., 2025), as a solution to the real-

time data needs for digital twins.

However, during design, the future load is predicted from a population prognosis. To our
knowledge, influent generators so far does not consider population as an underlying driver for
the influent load, although this could reduce the uncertainties during extrapolation and
estimation of the future design load. Both on a short timescale (minutes to hours, e.g., for
aeration system design), and for predicting seasonal variability such as weekend-to-weekday
shifts in tourist attractive areas. Altogether, model-based design might benefit from an
improved understanding of population variations, and how they are reflected in the influent

load.

One opportunity Is to use data from the communication between mobile phones and base
stations to estimate and analyse dynamic population variations. Such data, henceforth referred
to as mobility data, have been used to normalize micropollutants and pathogens in the water
based epidemiology domain (Baz-Lomba et al., 2019; Gudra et al., 2022; Sim et al., 2023).
However, they have not yet been considered in a WWTP design context. The objective of this
paper is therefore to explore how mobility data can support model-based design.
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2 Results and Discussion

2.1 Mapping mobility data with the sewer catchment area

The common approach for estimating the population in step 1) is to identify the houses and
properties within the sewer’s geographic area, which, in practice is defined by a specified area
in the geographic information system (GIS). Then, the registered residents within this area
(typically on a yearly basis) indicate the population, henceforth referred to as static population

estimates.

The alternative data source explored in this study are mobility data. These are produced from
the network communication between mobile phones and antennas in a well-defined area
(Section 4.1.2). In short, mobility data provides a high frequency estimate (down to 20 min)
of mobile active persons within squared GIS-areas.

However, these squares don’t align with the irregularly shaped sewer catchment area, which
makes it difficult to match mobility data with the sewer area. Therefore, a normalization
factor was developed to exclude the population, which was registered within the mobility data
squares, but is outside the sewer area (Figure 5 in Section Materials and Methods). This
normalization was obtained as the ratio between the static population within the sewer area,
and within the larger mobility data squares (Section 4.1). The static population was used since
it is available for any area shape. The normalization factor obtained for 2019 was 96 %, which
indicates that 96 % of the static population within the mobility data squares, also were
residents within the sewer catchment area . This normalizing method was found to be more
representative than using the actual land area as normalizer, since the rural land outside the

sewer area was unpopulated (Figure 5).

2.2 Mobility data reflect population habit dynamics

The difference between the static population estimates and the population indicated by
mobility data is evident (Figure 1a), where mobility data shows seasonal dynamics that are
related to big holidays and the vacation period in June—August. Part of the drop in population
between June and September is caused by the university summer break with 26 000 full-time
students (Uppsala universitet, 2023), as compared to the static population estimate of about
185 000 people (Statistics Sweden, 2020). Note the pronounced dip in mid-June, indicated as
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“midsummer”, which is a Swedish holiday that is traditionally celebrated on the countryside,

hence outside the city.

The clear seasonal variations suggest several interesting load-shifts to simulate and handle in
the design phase. For example, the return from school break in mid-February could represent
(a likely) extreme scenario, with the “extreme” being a cold wet-weather event coinciding
with the instant increase in load from 150 000 to 180 000 persons. Similarly, the substantial
population variations during Easter and Christmas quantify likely load-shifts that could be
planned for in the operational strategy during design, much like a long-term feed-forward

controller.

From a design perspective, the week-to-week variation is also important. In particular, the
maximum average weekly load is specified in the permit for Swedish WRRFs and should be
compared with the average weekly design load. Figure 1(c) shows the non-Gaussian shape of
the weekly mean population where standard working weeks with about 180 000 people

clearly stand out as the mode, which may be useful for simulating permit compliance.
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Figure 1. (a) Difference between mobility data (grey solid line) and static population estimates (green dashed line)

within Uppsala sewer catchment area 2019. (b) Population variation during weeks, when normalized to the weekly
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average population. The small peaks every night are anomalies caused by the anonymization step described in Section
4.1.2. (c) Empirical probability density estimates of the weekly mean population (green solid line) with 10 and 90

percentiles indicated with red vertical lines.

Looking back on the details in Figure 1(a), there is a persistent noise in mobility data. A
closer look reveals that the noise is in fact periodic and caused by weekly population
variations (Figure 1b). The normalized population data indicates a 10 percent reduction during
weekends and the opposite increase during weekdays (Figure 1b). A reduced wastewater
generation during holidays has been found to indicate a high socio-economic area (Corominas
et al., 2024), but here also non-resident commuters are likely also contributing to the
differences between weekdays and holidays. Note that Figure 1 is based on data during 2019,
and the norm before the pandemic 2020-2022. These weekly patterns may be useful for
simulating effects from population behaviour, and their impact on load dynamics.
Specifically, the increase in hybrid work and related changes in population movements can’t
be analysed from historic data but needs to be simulated based on socioeconomic and

behavioural prognoses.

2.3 Theimpact of population estimates as a design load normaliser

As mentioned in Introduction, an accurate person load is key in design where the total load is
measured in terms of influent biological oxygen demand (BOD) and nitrogen mass per day.
The daily load is then normalised by the estimated population and finally presented as an

annual mean person load.

Figure 1(a) shows that there are clear differences between the population estimates with, on
average, 25 000 more people in the static population estimate as compared to the mobility
data. This difference is, in part, explained by the fact that the mobility data model deliberately
excludes children below 6 years (simply because they don’t use mobile phones). These count
to 7 400 children for the whole Uppsala municipality during 2019 (Statistics Sweden, 2024).
The remaining population difference is caused by the seen population decrease in mobility

data during summer.

Logically, the different population estimates resulted in differing person load estimates with
68 g and 78 g BOD per person and day for the static population and mobility data,

respectively.
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At first, one may argue that such 15 percent person load difference indicates an equivalent
difference in predicted design load (and required plant capacity). However, the population
estimate impact on design load is likely less influential if the same population source is used
for both normalization and prognosis. That is, the static population may be an overestimate
compared to mobility data (causing a low person load) but using the same data source it
would likely also suggest a larger population increase, and thereby end up in a similar design
load as mobility data, in the end. With such reasoning, we suggest that it may be important to
stick with one population source throughout the design process, regardless of whether this is
mobility data or a static measure.

2.4 Is population a good predictor for wastewater load?

However, so far, we have not studied whether mobility data realiy are good predictors for the
wastewater load. Therefore, we now analyse the correlation between the daily population and
corresponding BOD, total nitrogen (nitrogen), and total phosphorus (phosphorous) loads. If
the load data follow the model with a person load, we expect a straight-line relationship with
respect to population variations (Equation 1 in Section 4.2).

Unfortunately, the BOD load show little correlation (R? = 0.21) with the population (Figure
2a) and is difficult to predict from mobility data. Similarly, total organic carbon (TOC) had a
poor correlation (R? = 0.08, data not shown). However, nitrogen, and phosphorus showed fair
correlations with the estimated population (Figure 2b and 2¢) with R? values of 0.49. This is
in line with (Baz-Lomba et al., 2019) that concluded ammonia to be the best population
predictor (as compared to electricity and drinking water), when validated with mobility data.
Further, nitrogen and phosphorus loads show a straight-line relationship with the population,
which supports the data model with a constant person load (Section 4.2).
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Figure 2. Linear regression fits for estimating the person load (slope) and baseload (intercept) from daily influent load
data of BOD (a), total nitrogen - TN (b), and total phosphorus - TP (c); versus mobility data. Static population
estimates are indicated with vertical green dashed lines. Black symbols refer to weekday and red holidays. Solid lines

show best fit regression lines with shaded areas for 95 % bootstrap confidence intervals.

But for design, a good nitrogen prediction is not sufficient when BOD is unpredictable since
unexplainable noise in BOD also impact the BOD-to-nitrogen ratio. This ratio is critical and
decides the required pre-denitrification volume and needed dosage of external carbon source
(Lindblom and Samuelsson, 2023).

Therefore, we reconsidered the BOD load data and noticed that the average BOD person load
differed depending on weekday (t-test at 0.05 significance level). In specific, both the person
load and its variability were lower during holidays, as compared to weekdays (Table 1,
Method A —Difference in means). Likewise, the correlation coefficients between BOD and
nitrogen showed a stronger correlation on holiday data (mobility data: 0.40, static: 0.57), than
on weekdays (mobility data: 0.1, static: 0.24). It should be noted that nitrogen showed similar
variance and person load values, regardless of weekday.

To conclude, mobility data best predicts nitrogen load, regardless of weekday, whereas BOD

is difficult to predict, albeit with slightly lower variance during weekends.

2.5 Can we blame industry for the BOD load variability?

But why is the BOD person load variability lower during holidays? A natural guess is that the

industry load (typically attributed with BOD/COD streams) is smaller during holidays. If so,

one solution would be to estimate the base load distribution, and thereafter subtract it from the
9
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total load, and potentially also reduce the unexplainable weekday variability. We tried two

methods (Section 4.2.2) to estimate the base load as:

A) The added load during weekdays by subtracting the population load, which, in turn,
was estimated from holiday data.
B) The intercept from a linear regression of the population variations and load, which

indicates zero persons (Figure 2).

These were compared with the current approach that uses emission reports from the largest

industries.

The results are given in Table 1 where method A shows a BOD base load in line with the
industry emission data. Note that negative base loads are indicated for other components than
BOD, which is an effect of having a lower person load during weekdays as compared to
holidays. In fact, this result supports the previous observation that nitrogen person load is

similar regardless of weekday and possibly not affected by a base load.

Method B indicates a six times higher base load than method A. Additionally, the uncertainty
in the regression is high (see confidence intervals in Figure 2(a) and Table 1). This is an effect
of the low correlation between BOD load and mobility data. Thus, method A seems to be the
better approach for estimating the baseload, although not necessarily better than the current
method based on emission reports. In fact, reconsidering the noisy BOD load data one could
question whether the general assumption with a person specific BOD load is valid. Our
conclusion is that more data, from other data sources, are needed to understand the BOD

variability, and to predict its future load.

10
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Table 1. Statistics for differences between holiday and weekday specific person loads 2019-2022. Estimated BOD baseloads are emphasized in bold. Acronyms are biological oxygen
demand (BOD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC).

Method A) — Difference in means Method B) — Linear regression Reference — Emission
data
n Population Baseload Population Baseload R? Industry
(slope) (intercept) load
Unit # (gptd?) (kg d™) (gp*dh (kg d) (kg d™)
mean sD Mean SD mean | 25% | 97.5% | mean 25% | 975% 201812019
2020/2021/2022
BOD | Weekday | 121 | 79.7 | 157 | 1070 217 39.8 | 100 69.6 | 6910 | 1670 | 12200 0.06 940/440;
Holiday 49 73.1 13.9 46.6 16.4 76.8 3900 - 652 8450 0.17 450/1200/1099
TN | Weekday | 122 | 161 | 157 | -136 | n.a. 129 | 9.86 16.0 554 13.3 1090 0.37 41/48;
Holiday 49 16.9 1.89 13.2 8.92 17.5 546 -98.2 1190 0.45 54/180/184
P Weekday | 121 1.89 | 0184 | -11 | n.a. 111 | 0.781 | 1.44 136 78.0 193 0.27 20/21;
Holiday 49 194 | 0.196 1.08 | 0.715 1.45 127 72.0 182 0.43 19/31/33
ToC Weekday 122 60.6 20.9 - 247 | n.a. 40.3 | -0.355 | 81.0 3530 | -3620 | 10 700 0.031 na
Holiday 48 61.5 221 56.3 4.05 109 752 -7090 | 8600 0.093

11



Journal Pre-proof

2.6 Can mobility data support model-based plant design?

One aspect that we have overlooked so far is the role of sampling time during design. This is
important since some process units, e.g., the aeration system, are designed for hourly or
minute peak-loads, by contrasts to bioreactor volumes that are designed for monthly or yearly

average loads.

Figure 3 shows three dry-weather load profiles measured with bihourly resolution next to
mobility data. Clearly, the correlation is low at this resolution (R?< 0.1), where the load
profiles show more pronounced dynamics than the population estimates. This is reasonable
since our food intake (and waste secretion) follows a fixed pattern that is not evenly

distributed throughout the day and night.

But dry weather profiles are essential for dynamic simulations and model-based design. A
future research study is therefore needed to analyse how the daily profile change with an
increasing/decreasing population, and how this could be modelled to produce high resolution

design scenarios.

1.5

—
(¥

Normalized nitrogen load (-)
Normalized pop. estimate (-)

0.5 0.5
2h samples
) ‘ ) ) ) - - Mobility data
00 12 24 00 12 24 00 12 24
Nov 20th Nov 27th Dec 5th

Time

Figure 3. Bihourly data for daily nitrogen load profiles and mobility data for three dry-weather days, when normalized

to daily mean values.

On the other end of the timescale, seasonal load variations need to be analysed. But the
dynamic data gap with incomplete historic time series (due to irregular influent sampling)
limits whole-year simulations. Here, mobility data can support by generating time series that
fill the dynamic data gap. Figure 4(a) shows how mobility data have been multiplied with the

12
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estimated person loads to generate a complete load time series. Such time series are practical
in model-based design when simulating the permit compliance for a whole year. Figure 4(a)
shows complete time series for both the present population and for the design year 2050 with
an assumed population increase to 330 000 people (that follow the same weekly patterns as
today, see Section 4.3). Any altered population-related scenarios, e.g., trends in person load

values or commuter patterns could be generated straightforwardly.

Finally, we analyse how the choice of population estimates, via person load estimates, impact
a model-based WWTP design. We use the method and conventional plant configuration in
(Lindblom and Samuelsson, 2025) to size de-/nitrification volumes with the design population
2050 in Figure 4(a) as input. Since the person loads were estimated as a probability
distribution (Section 4.2.3), it is straightforward to generate random samples of person loads

and propagate them through the model-based design as an uncertainty analysis.

Figure 4(b) shows the required reactor sizes (dots) from 1 000 Monte Carlo simulations, with
an ellipsoid indicating the 60™ percentile of an empirical kernel density estimate (the 60™"
influent flow percentile is a common design choice in Sweden). As expected, the most likely
design (circle) increases with increasing person load (mobility data showed a 15 percent
larger person loads in Section 2.3). Further, the higher variance in the static population
estimates resulted in a greater design uncertainty. In fact, the needed safety factor for the total
volume (here defined as the difference between the ellipsoid mode and the maximum volume
in the 60™ percentile) was 5 percent larger for static data, as compared to mobility data (19 %

versus 13 %). This demonstrates the usefulness of mobility data for model-based design.

13
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Figure 4. (a) Example of how mobility data can be used to generate complete influent load time series for current load
(grey line) and a predicted design load (red line). (b) Difference in reactor volumes for model-based design of the
predicted population in (a) when using static population estimates or mobility data for estimating person loads. The
dots represent the 1 000 Monte Carlo-simulations, each representing one design and the corresponding Gaussian
kernel density estimate (60th percentile ellipsoids), most likely design (the mode, circle), and maximum 60th

percentile volume considered as the safety factor design (red squares).

3 Conclusion

Mobility data could support model-based design by:

¢ Reducing the variance in person load estimates, which, in effect, reduced uncertainties
in the reactor safety factor by 5 %.
e Quantifying seasonal population variations that can be translated and extrapolated to
whole-year simulation scenarios for design.
These findings demonstrate that data from outside-the-fence are available and useful for

understanding the population dynamics and the related dynamic influent load.

This study emphasized the importance of having access to complete dynamic load time series
for reducing uncertainties in model-based design. However, high quality time series
describing seasonal and daily variations are of general interest in model applications,
including the trending digital twins. We therefore suggest more research on mobility data and
other socioeconomic data sources that relate to the WWTP influent. These data may
complement online sensor and laboratory data, in particular for explaining BOD load

variations.

14
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4 Materials and Methods

4.1 Data

In this paper we explore a new data source, mobility data, and evaluate its usefulness for
WRREF design by comparing it with the more common static population record. The static
population records are explained in Section 4.1.1, and the mobility data are described in
Section 4.1.2. Apart from this new data source, only standard influent data were used to

characterize the wastewater, which are described in Section 4.1.3.

4.1.1 Static population records

The state-of-the-art approach for estimating the population is to first identify the properties
and houses within the sewer’s geographical area, typically via the geographical information
system (GIS). Then, the registered residents make out the population estimate. Such
population estimates are typically obtained on a yearly basis from resident census data, and
slowly change due to the net population change. Here, we refer to this as the static population

estimate.

In this study, the sewer GIS-area for Uppsala, Sweden, was matched with the residents
registered by the governmental agency that is handling population statistics, Statistics Sweden
(in Swedish: Statistiska centralbyran — SCB). The sewer area included the main city alongside
with a few surrounding villages (Figure 5) that were connected to the main plant

Kungsangsverket.

4.1.2 Dynamic population estimates — mobility data

An alternative data source, which is explored in this study are mobility data. These data are
produced from the network communication between cell phones and antennas in a well-
defined area. A short description of the mobility data is provided here, and details can be

found on the data supplier’s website (Telia, Crowd insights).

Raw cellular data from the network communication between cellular devices and antennas are
converted to so-called mobility signals. The mobility signals contain geographical information
about the cellular device location. However, the mobility signals cannot be used directly, but

first needs to be anonymised.

15
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In short, all cellular devices are provided random identifiers to separate information about the
device, from its positional data. Also, the identifier is replaced at a 24-hour interval, making it
impossible to extract time-series for consecutive days. To further ensure anonymity in the
mobility data, only groups of 5 or more people are considered per geographic area and
temporal resolution. The sampling time is available down to 20-minutes, although we here

used 24-h and 2-h measurements to match the corresponding wastewater sampling rates.

Only the total number of devices within a certain GIS-area (a square within GIS system) are
provided as mobility data. That is, the exact position of the different devices cannot be

obtained, but only its location up to a certain square. Further, the square size ranges between
250 m x 250 m and 1 000 m x 1 000 m to assure a minimum number of devices within each

square for integrity reasons (Figure 5).

The sewer catchment area is however not square (see red areas in Figure 5). To only account

for the population within the sewer catchment area, two simplifications were made.

1) Any square containing a part of the sewer area was included as part of the whole
“sewer population”. This produced a large area built-up by squares denoted the
complete population area.

2) A normalization factor was applied to correct for households within the complete
population area but, which were outside the sewer catchment area (mainly rural areas
as indicated in Figure 5). The normalization factor was obtained as the percentage of
the static population within the sewer area, as compared to the static population within
the complete population area. During 2019, this percentage was 96 percent, which was
used to normalize the mobility data.

The model translating cellular network data to a population estimate was developed by the
data supplier. Hence, from our perspective, the data were regarded as black-box output from a
dynamic population sensor. A key part of the black-box model is to extrapolate the data
supplier’s 35 percent market share, to the whole population. It should be noted that the whole
population in the model implicitly excludes people without a cellular phone. In Sweden, few
children below 6 years of age carries a cellular phone and thus the dynamic population is
underestimated. This is a deliberate decision by the data supplier, not trying to compensate for

this young population proportion.

16
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Figure 5. Overlap between the sewer catchment area (red) and the mobility data squares (thin black lines) in Uppsala,

Sweden. Note that the square size is smaller in the dense city areas as compared to the rural areas with less people.

4.1.3 Wastewater data

The wastewater was characterized with the influent routine samples consisting of flow (Qin),
total nitrogen (TN), and total phosphorus (TP), organic matter measured as biological oxygen
consumption during seven days (BOD) and as total organic carbon (TOC). Flow-proportional
wastewater samples were collected once a week at the WRRF influent and corresponding
industry wastewater loads were obtained annually via emission reports. Four years of load
data were considered during 2019-2022. This means that the first year, 2019, was before the
pandemic, and the following three years were affected by restrictions such as reduced

commuting and tourists.

In addition to the standard data, data from a high frequency sampling campaign (2-h samples
during four non-consecutive dry-weather days) were used to assess the short term dynamics in

mobility data.

4.2 Load estimates

During design, several assumptions are made regarding the influent load generation. This
section details our load assumptions explicitly in a data model, which was used to analyse the

load and population data.

4.2.1 Population person load
The person load for a component x was defined as the average load per person and day (PL).
This person load was analysed during weekdays and weekends. Weekends also include big
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holidays, school breaks and the Swedish standard four-week industry vacation period. In total,

the weekends amount to about 30 percent of a full year.

4.2.2 Industry and baseload
Three approaches were assessed to separate the population load from the remaining industry
and baseload, henceforth denoted method A, B, and the third reference method based on

industry emission report data. Method A and B used mobility data.

Method A assume that the industry load is only active during weekdays. Then, an estimate of
the person load during holidays can be used to subtract the person load during weekdays,
where the remainder is assumed to be the industry load. An implicit assumption here is that

the person load is constant, regardless of the day of the week.

Method B uses linear regression with the total load on the y-axis and the population on the x-
axis. The regression line load at zero population then becomes an estimate of the base load.
Similarly, the regression line slope estimates the person load. As an example, the regression
for BOD would follow the line

QinBOD. i = BODy, pase + BODp), pop

1)

where BoD,, is the BOD person load, BOD,, ,.s. 1S the BOD base load, Bob, ,, is the influent

BOD concentration, and pop is the population. Note that the base load is likely larger than the
industry load since any source contributing to a fixed base load will be included in the base

load.

The reference method is the one in current use at the WRRF. The method relies on annual
emission reports from the five largest industries. Based on these data, the load during
weekdays was estimated as the proportional average of working days (weekdays) for one
year. Thus, the reference method underestimates the total base load since it only considers the

industry proportion.

4.2.3 Stochastic load model
The total influent load of a component x at time ¢ day was described with the data model

Xeot () = Xpase (t) + pop(t) xp, ()

(22)
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Xbpase ~q)(mxbase' R

xbase) (b)

xPL~N(meL, RxPL) (C)

where the base load x,., Was assumed to have first and second order moments m,, . and
Ryp.s0» FESPECtively, and follow an unknown distribution . The person load x,, was assumed
to be Gaussian with mean m,,, and variance R,,. The dynamic population pop(t) was assumed
to vary during the year with an unknown distribution with mean and variance estimates

1 .
E[pop] = - X1-1 pop(t) = my,, and Var[pop] = E[pop®] — E[pop]* = Ry,,p, respectively.

The population load, baseload, and person load were assumed to be statistically independent,

which then gives the mean m,,, and variance R, of x,. as

Mot = E[xtot] = E[xbase] + E[POP]E[XPL] =

= Mpase T MpopMpy, (33.)

Rior = Var[xtot] = Var[xbase] + Var[pop xPL] =

= Rpase + (Var[pop] + E[pop]®) (Var[xp;] + E[xp.]?) — (E[poplE[xp.])? = ( b)
3

= Rbase + (Rpop + mpopz) (RPL + mPLz) - (mpomeL)z’

where the law of expectations was used in (3a) and the variance of the product of independent
variables in (3b).

We however assumed a correlation between the different person load components BOD,
nitrogen, and phosphorus. That is, when the BOD person load is high, it is also likely that
corresponding nitrogen and phosphorus person loads are high. Thus, the person loads (2c)

were additionally assumed to follow a multivariate Gaussian as

Xp,~N(mpy, RpL),
(4a)
(mxlpL>
MPL = b
Moy, (b)
RleL RleLRxNPL

Rp, = .

e ©
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with the covariances in the off-diagonal elements in (3c).

The load model (2) describe the underlying load drivers. In practice, several noise sources
impact both the measurements and the underlying process. These have not been included here,

but are straightforward to add, e.g., as additive Gaussian measurement noise.

4.3 Predicting a design load

The impact from population estimates on reactor sizing was exemplified by applying the four-

step design process with the considered data.

1) Estimate the specific loads based on the static population estimate and mobility data.

2) Assume a predicted population of 330 000, which was provided from the municipal
population prognosis.

3) Obtain the predicted population load as the product of 1) and 2)

4) Add additional industry load as the mean value 2019-2022 from the emission reports
in Table 1.

A conventional WRRF with pre- and post-denitrification was then sized based on the
predicted load using the automated and model-based approach in (Lindblom and Samuelsson,
2025). One thousand Monte Carlo design were conducted for each population data source to

also include the variance in specific load.
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