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Highlights 

• Mobility data from mobile phones can provide dynamic population estimates 

• Seasonal and weekly population variations were easy to quantify 

• Mobility data enable dynamic load time series for model applications 

• Person loads with lowered variance reduced the uncertainty in model-based design 

• Nitrogen and phosphorous loads showed stronger correlation with population than 

BOD 

  

                  



2 

 

 

 
Mobility data for reduced uncertainties in 
model-based WWTP design 
 

Oscar Samuelsson1, Erik U. Lindblom1,2, Kenneth Djupsjö3, Linda Kanders1 and 

Lluís Corominas4 

1 IVL Swedish Environmental Research Institute, Valhallavägen 81, Stockholm, 114 28, 

Sweden. 

2 Lund University, Division of Industrial Electrical Engineering and Automation (IEA), 

Department of Biomedical Engineering, Lund University, P.O. Box 118, SE-22100 Lund, 

Sweden. 

3 Telia Company, Customized Delivery & LCM, Helsinki, Finland. 

4 ICRA Catalan Institute for Water Research, Spain. 

 

Keywords: Design guideline; Dimensioning; Sizing; Wastewater treatment; Water resource 

recovery facility. 

Abstract 

Model-based design is an emerging tool for dealing with the uncertain dynamic loads entering 

wastewater treatment plants (WWTPs). But our understanding about the load-driving 

population-dynamics is limited. Therefore, we studied if mobility data (mobile 

telecommunications data) could be used to reduce uncertainties during design. Mobility data 

from Uppsala, Sweden between 2019–2022 clearly quantified population movement patterns 

that were useful for simulating load scenarios such as seasonal load-shifts, without data gaps 

from irregular influent sampling. Further, they showed fair correlations with the daily influent 

nitrogen load (R2 = 0.49), which resulted in a more precise person load estimate than 

assuming a static population (23 % reduced variance). Unfortunately, BOD load variations 

showed little correlation with the population variations (R2 = 0.21). Nevertheless, model-

                  



3 

 

 

based reactor sizing based on mobility data successfully reduced the de-/nitrification volume 

safety factor with 5 %, which demonstrates their practical usefulness for WWTP design. 

1 Introduction 

Rapid urbanization pushes many wastewater treatment plants to retrofit and upsize their 

capacity. A key challenge is then to safeguard the treatment efficiency, despite the uncertainty 

in future influent load variations.  

The typical engineering practice is to set the future design load by the following actions: 

1) Identify the current load per person by normalizing the total load from the population, 

with the population size. 

2) Predict the future population at the design year. 

3) Multiply the person load from 1) with the anticipated population in 2). 

4) Add anticipated industry load and other non-population related sources to 3). 

These steps can be described in mathematical terms (Section 4.2) with a statistical data model. 

A challenge in the design load computation is to obtain a good person load estimate in 1), 

since day-to-day population variations are unknown. Commonly, a constant population 

indicated by yearly population records is used as a proxy, which only accounts for resident 

persons that are registered within the sewer network area. This simplification may bias the 

person load, and effectively transfer any bias to the total design load in 3). 

A second challenge is to separate non-population related loads from being lumped with the 

total load in step 1). Unless industry and other non-population related loads (henceforth 

referred to as base load), are subtracted from total load, the person load will be overestimated 

and bias the design load. 

Today, state-of-the-art design leans on dynamic modelling and simulation for making 

informed decisions (Belia et al., 2021; Yang et al., 2022). But models are data hungry, calling 

for dynamic influent load time series of BOD, COD, phosphorous, and nitrogen components. 

Although on-line sensors exist for these parameters, they are seldom used in the influent due 

to the harsh conditions that require extensive sensor maintenance. For design purposes, 

historic load data are therefore mostly limited to 24-h composite samples. This leads to a 
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dynamic-data gap where load variations are assessed with irregular sampling, with, at the 

best, daily averages a few days a week. 

This data gap has triggered the development of so-called influent generators, which can 

produce any imagined influent load and flow – with complete data, see e.g. (Gernaey et al., 

2011; Li and Vanrolleghem, 2022; Talebizadeh et al., 2016). But the current influent 

generators have been developed with different purposes in mind. Benchmarking control 

strategies where the early focus in (Gernaey et al., 2011), where seasonal and industry 

variations were possible to manually tweak to test different load scenarios. Data-driven 

approaches have also been used (Li and Vanrolleghem, 2022) where historic data can be 

regenerated with varying load. Concentration dilution can be simulated by focusing on the 

flow rate variations (Talebizadeh et al., 2016). More recently, model-based influent estimation 

methods have been proposed (Alex, J., 2024; Wärff et. al., 2025), as a  solution to the real-

time data needs for digital twins. 

However, during design, the future load is predicted from a population prognosis. To our 

knowledge, influent generators so far does not consider population as an underlying driver for 

the influent load, although this could reduce the uncertainties during extrapolation and 

estimation of the future design load. Both on a short timescale (minutes to hours, e.g., for 

aeration system design), and for predicting seasonal variability such as weekend-to-weekday 

shifts in tourist attractive areas. Altogether, model-based design might benefit from an 

improved understanding of population variations, and how they are reflected in the influent 

load. 

One opportunity is to use data from the communication between mobile phones and base 

stations to estimate and analyse dynamic population variations. Such data, henceforth referred 

to as mobility data, have been used to normalize micropollutants and pathogens in the water 

based epidemiology domain (Baz-Lomba et al., 2019; Gudra et al., 2022; Sim et al., 2023). 

However, they have not yet been considered in a WWTP design context. The objective of this 

paper is therefore to explore how mobility data can support model-based design. 
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2 Results and Discussion 

2.1 Mapping mobility data with the sewer catchment area 

The common approach for estimating the population in step 1) is to identify the houses and 

properties within the sewer’s geographic area, which, in practice is defined by a specified area 

in the geographic information system (GIS). Then, the registered residents within this area 

(typically on a yearly basis) indicate the population, henceforth referred to as static population 

estimates. 

The alternative data source explored in this study are mobility data. These are produced from 

the network communication between mobile phones and antennas in a well-defined area 

(Section 4.1.2). In short, mobility data provides a high frequency estimate (down to 20 min) 

of mobile active persons within squared GIS-areas.  

However, these squares don’t align with the irregularly shaped sewer catchment area, which 

makes it difficult to match mobility data with the sewer area. Therefore, a normalization 

factor was developed to exclude the population, which was registered within the mobility data 

squares, but is outside the sewer area (Figure 5 in Section Materials and Methods). This 

normalization was obtained as the ratio between the static population within the sewer area, 

and within the larger mobility data squares (Section 4.1). The static population was used since 

it is available for any area shape. The normalization factor obtained for 2019 was 96 %, which 

indicates that 96 % of the static population within the mobility data squares, also were 

residents within the sewer catchment area . This normalizing method was found to be more 

representative than using the actual land area as normalizer, since the rural land outside the 

sewer area was unpopulated (Figure 5). 

2.2 Mobility data reflect population habit dynamics 

The difference between the static population estimates and the population indicated by 

mobility data is evident (Figure 1a), where mobility data shows seasonal dynamics that are 

related to big holidays and the vacation period in June–August. Part of the drop in population 

between June and September is caused by the university summer break with 26 000 full-time 

students (Uppsala universitet, 2023), as compared to the static population estimate of about 

185 000 people (Statistics Sweden, 2020). Note the pronounced dip in mid-June, indicated as 
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“midsummer”, which is a Swedish holiday that is traditionally celebrated on the countryside, 

hence outside the city. 

The clear seasonal variations suggest several interesting load-shifts to simulate and handle in 

the design phase. For example, the return from school break in mid-February could represent 

(a likely) extreme scenario, with the “extreme” being a cold wet-weather event coinciding 

with the instant increase in load from 150 000 to 180 000 persons. Similarly, the substantial 

population variations during Easter and Christmas quantify likely load-shifts that could be 

planned for in the operational strategy during design, much like a long-term feed-forward 

controller. 

From a design perspective, the week-to-week variation is also important. In particular, the 

maximum average weekly load is specified in the permit for Swedish WRRFs and should be 

compared with the average weekly design load. Figure 1(c) shows the non-Gaussian shape of 

the weekly mean population where standard working weeks with about 180 000 people 

clearly stand out as the mode, which may be useful for simulating permit compliance. 

  

Figure 1. (a) Difference between mobility data (grey solid line) and static population estimates (green dashed line) 

within Uppsala sewer catchment area 2019. (b) Population variation during weeks, when normalized to the weekly 

                  



7 

 

 

average population. The small peaks every night are anomalies caused by the anonymization step described in Section 

4.1.2. (c) Empirical probability density estimates of the weekly mean population (green solid line) with 10 and 90 

percentiles indicated with red vertical lines. 

Looking back on the details in Figure 1(a), there is a persistent noise in mobility data. A 

closer look reveals that the noise is in fact periodic and caused by weekly population 

variations (Figure 1b). The normalized population data indicates a 10 percent reduction during 

weekends and the opposite increase during weekdays (Figure 1b). A reduced wastewater 

generation during holidays has been found to indicate a high socio-economic area (Corominas 

et al., 2024), but here also non-resident commuters are likely also contributing to the 

differences between weekdays and holidays. Note that Figure 1 is based on data during 2019, 

and the norm before the pandemic 2020–2022. These weekly patterns may be useful for 

simulating effects from population behaviour, and their impact on load dynamics. 

Specifically, the increase in hybrid work and related changes in population movements can’t 

be analysed from historic data but needs to be simulated based on socioeconomic and 

behavioural prognoses. 

2.3 The impact of population estimates as a design load normaliser 

As mentioned in Introduction, an accurate person load is key in design where the total load is 

measured in terms of influent biological oxygen demand (BOD) and nitrogen mass per day. 

The daily load is then normalised by the estimated population and finally presented as an 

annual mean person load. 

Figure 1(a) shows that there are clear differences between the population estimates with, on 

average, 25 000 more people in the static population estimate as compared to the mobility 

data. This difference is, in part, explained by the fact that the mobility data model deliberately 

excludes children below 6 years (simply because they don’t use mobile phones). These count 

to 7 400 children for the whole Uppsala municipality during 2019 (Statistics Sweden, 2024). 

The remaining population difference is caused by the seen population decrease in mobility 

data during summer. 

Logically, the different population estimates resulted in differing person load estimates with 

68 g and 78 g BOD per person and day for the static population and mobility data, 

respectively.  
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At first, one may argue that such 15 percent person load difference indicates an equivalent 

difference in predicted design load (and required plant capacity). However, the population 

estimate impact on design load is likely less influential if the same population source is used 

for both normalization and prognosis. That is, the static population may be an overestimate 

compared to mobility data (causing a low person load) but using the same data source it 

would likely also suggest a larger population increase, and thereby end up in a similar design 

load as mobility data, in the end. With such reasoning, we suggest that it may be important to 

stick with one population source throughout the design process, regardless of whether this is 

mobility data or a static measure.  

2.4 Is population a good predictor for wastewater load? 

However, so far, we have not studied whether mobility data really are good predictors for the 

wastewater load. Therefore, we now analyse the correlation between the daily population and 

corresponding BOD, total nitrogen (nitrogen), and total phosphorus (phosphorous) loads. If 

the load data follow the model with a person load, we expect a straight-line relationship with 

respect to population variations (Equation 1 in Section 4.2). 

Unfortunately, the BOD load show little correlation (R2 = 0.21) with the population (Figure 

2a) and is difficult to predict from mobility data. Similarly, total organic carbon (TOC) had a 

poor correlation (R2 = 0.08, data not shown). However, nitrogen, and phosphorus showed fair 

correlations with the estimated population (Figure 2b and 2c) with R2 values of 0.49. This is 

in line with (Baz-Lomba et al., 2019) that concluded ammonia to be the best population 

predictor (as compared to electricity and drinking water), when validated with mobility data. 

Further, nitrogen and phosphorus loads show a straight-line relationship with the population, 

which supports the data model with a constant person load (Section 4.2). 
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The BOD7 on y-axis, in (a) will be replaced with BOD in the final figure. 

Figure 2. Linear regression fits for estimating the person load (slope) and baseload (intercept) from daily influent load 

data of BOD (a), total nitrogen – TN (b), and total phosphorus – TP (c); versus mobility data.  Static population 

estimates are indicated with vertical green dashed lines. Black symbols refer to weekday and red holidays. Solid lines 

show best fit regression lines with shaded areas for 95 % bootstrap confidence intervals. 

But for design, a good nitrogen prediction is not sufficient when BOD is unpredictable since 

unexplainable noise in BOD also impact the BOD-to-nitrogen ratio. This ratio is critical and 

decides the required pre-denitrification volume and needed dosage of external carbon source 

(Lindblom and Samuelsson, 2023). 

Therefore, we reconsidered the BOD load data and noticed that the average BOD person load 

differed depending on weekday (t-test at 0.05 significance level). In specific, both the person 

load and its variability were lower during holidays, as compared to weekdays (Table 1, 

Method A –Difference in means). Likewise, the correlation coefficients between BOD and 

nitrogen showed a stronger correlation on holiday data (mobility data: 0.40, static: 0.57), than 

on weekdays (mobility data: 0.1, static: 0.24). It should be noted that nitrogen showed similar 

variance and person load values, regardless of weekday. 

To conclude, mobility data best predicts nitrogen load, regardless of weekday, whereas BOD 

is difficult to predict, albeit with slightly lower variance during weekends. 

2.5 Can we blame industry for the BOD load variability? 

But why is the BOD person load variability lower during holidays? A natural guess is that the 

industry load (typically attributed with BOD/COD streams) is smaller during holidays. If so, 

one solution would be to estimate the base load distribution, and thereafter subtract it from the 
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total load, and potentially also reduce the unexplainable weekday variability. We tried two 

methods (Section 4.2.2) to estimate the base load as:  

A) The added load during weekdays by subtracting the population load, which, in turn, 

was estimated from holiday data. 

B) The intercept from a linear regression of the population variations and load, which 

indicates zero persons (Figure 2). 

These were compared with the current approach that uses emission reports from the largest 

industries. 

The results are given in Table 1 where method A shows a BOD base load in line with the 

industry emission data. Note that negative base loads are indicated for other components than 

BOD, which is an effect of having a lower person load during weekdays as compared to 

holidays. In fact, this result supports the previous observation that nitrogen person load is 

similar regardless of weekday and possibly not affected by a base load. 

Method B indicates a six times higher base load than method A. Additionally, the uncertainty 

in the regression is high (see confidence intervals in Figure 2(a) and Table 1). This is an effect 

of the low correlation between BOD load and mobility data. Thus, method A seems to be the 

better approach for estimating the baseload, although not necessarily better than the current 

method based on emission reports. In fact, reconsidering the noisy BOD load data one could 

question whether the general assumption with a person specific BOD load is valid. Our 

conclusion is that more data, from other data sources, are needed to understand the BOD 

variability, and to predict its future load.
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Table 1. Statistics for differences between holiday and weekday specific person loads 2019–2022. Estimated BOD baseloads are emphasized in bold. Acronyms are biological oxygen 

demand (BOD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC). 

  

Method A) – Difference in means Method B) – Linear regression Reference – Emission 

data 

  

n Population Baseload Population 

(slope) 

Baseload 

(intercept) 

R2 Industry 

load 

 Unit # (g p-1 d-1) (kg d-1) (g p-1 d-1) (kg d-1)  (kg d-1) 

 
  mean SD Mean SD mean 2.5 % 97.5 % mean 2.5 % 97.5 %  

2018/2019; 

2020/2021/2022 

BOD 

 

Weekday 121 79.7 15.7 1 070 217 39.8 10.0 69.6 6 910 1 670 12 200 0.06 940/440; 

450/1200/1099 Holiday 49 73.1 13.9  46.6 16.4 76.8 3 900 - 652 8 450 0.17 

TN 

 

Weekday 122 16.1 1.57 - 136 n.a. 12.9 9.86 16.0 554 13.3 1 090 0.37 41/48; 

54/180/184 Holiday 49 16.9 1.89  13.2 8.92 17.5 546 - 98.2 1 190 0.45 

TP 
Weekday 121 1.89 0.184 - 11 n.a. 1.11 0.781 1.44 136 78.0 193 0.27 20/21; 

19/31/33 Holiday 49 1.94 0.196  1.08 0.715 1.45 127 72.0 182 0.43 

TOC 
Weekday 122 60.6 20.9 - 247 n.a. 40.3 - 0.355 81.0 3 530 - 3 620 10 700 0.031 

n.a. 
Holiday 48 61.5 22.1  56.3 4.05 109 752 - 7 090 8 600 0.093 
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2.6 Can mobility data support model-based plant design? 

One aspect that we have overlooked so far is the role of sampling time during design. This is 

important since some process units, e.g., the aeration system, are designed for hourly or 

minute peak-loads, by contrasts to bioreactor volumes that are designed for monthly or yearly 

average loads. 

Figure 3 shows three dry-weather load profiles measured with bihourly resolution next to 

mobility data. Clearly, the correlation is low at this resolution (R2 < 0.1), where the load 

profiles show more pronounced dynamics than the population estimates. This is reasonable 

since our food intake (and waste secretion) follows a fixed pattern that is not evenly 

distributed throughout the day and night. 

But dry weather profiles are essential for dynamic simulations and model-based design. A 

future research study is therefore needed to analyse how the daily profile change with an 

increasing/decreasing population, and how this could be modelled to produce high resolution 

design scenarios. 

 

Figure 3. Bihourly data for daily nitrogen load profiles and mobility data for three dry-weather days, when normalized 

to daily mean values. 

On the other end of the timescale, seasonal load variations need to be analysed. But the 

dynamic data gap with incomplete historic time series (due to irregular influent sampling) 

limits whole-year simulations. Here, mobility data can support by generating time series that 

fill the dynamic data gap. Figure 4(a) shows how mobility data have been multiplied with the 

                  



13 

 

 

estimated person loads to generate a complete load time series. Such time series are practical 

in model-based design when simulating the permit compliance for a whole year. Figure 4(a) 

shows complete time series for both the present population and for the design year 2050 with 

an assumed population increase to 330 000 people (that follow the same weekly patterns as 

today, see Section 4.3). Any altered population-related scenarios, e.g., trends in person load 

values or commuter patterns could be generated straightforwardly. 

Finally, we analyse how the choice of population estimates, via person load estimates, impact 

a model-based WWTP design. We use the method and conventional plant configuration in 

(Lindblom and Samuelsson, 2025) to size de-/nitrification volumes with the design population 

2050 in Figure 4(a) as input. Since the person loads were estimated as a probability 

distribution (Section 4.2.3), it is straightforward to generate random samples of person loads 

and propagate them through the model-based design as an uncertainty analysis. 

Figure 4(b) shows the required reactor sizes (dots) from 1 000 Monte Carlo simulations, with 

an ellipsoid indicating the 60th percentile of an empirical kernel density estimate (the 60th 

influent flow percentile is a common design choice in Sweden). As expected, the most likely 

design (circle) increases with increasing person load (mobility data showed a 15 percent 

larger person loads in Section 2.3). Further, the higher variance in the static population 

estimates resulted in a greater design uncertainty. In fact, the needed safety factor for the total 

volume (here defined as the difference between the ellipsoid mode and the maximum volume 

in the 60th percentile) was 5 percent larger for static data, as compared to mobility data (19 % 

versus 13 %). This demonstrates the usefulness of mobility data for model-based design. 
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Figure 4. (a) Example of how mobility data can be used to generate complete influent load time series for current load 

(grey line) and a predicted design load (red line). (b) Difference in reactor volumes for model-based design of the 

predicted population in (a) when using static population estimates or mobility data for estimating person loads. The 

dots represent the 1 000 Monte Carlo-simulations, each representing one design and the corresponding Gaussian 

kernel density estimate (60th percentile ellipsoids), most likely design (the mode, circle), and maximum 60th 

percentile volume considered as the safety factor design (red squares).  

3 Conclusion 

Mobility data could support model-based design by: 

• Reducing the variance in person load estimates, which, in effect, reduced uncertainties 

in the reactor safety factor by 5 %. 

• Quantifying seasonal population variations that can be translated and extrapolated to 

whole-year simulation scenarios for design. 

These findings demonstrate that data from outside-the-fence are available and useful for 

understanding the population dynamics and the related dynamic influent load.  

This study emphasized the importance of having access to complete dynamic load time series 

for reducing uncertainties in model-based design. However, high quality time series 

describing seasonal and daily variations are of general interest in model applications, 

including the trending digital twins. We therefore suggest more research on mobility data and 

other socioeconomic data sources that relate to the WWTP influent. These data may 

complement online sensor and laboratory data, in particular for explaining BOD load 

variations.  
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4 Materials and Methods 

4.1 Data 

In this paper we explore a new data source, mobility data, and evaluate its usefulness for 

WRRF design by comparing it with the more common static population record. The static 

population records are explained in Section 4.1.1, and the mobility data are described in 

Section 4.1.2. Apart from this new data source, only standard influent data were used to 

characterize the wastewater, which are described in Section 4.1.3. 

4.1.1 Static population records 

The state-of-the-art approach for estimating the population is to first identify the properties 

and houses within the sewer’s geographical area, typically via the geographical information 

system (GIS). Then, the registered residents make out the population estimate. Such 

population estimates are typically obtained on a yearly basis from resident census data, and 

slowly change due to the net population change. Here, we refer to this as the static population 

estimate.  

In this study, the sewer GIS-area for Uppsala, Sweden, was matched with the residents 

registered by the governmental agency that is handling population statistics, Statistics Sweden 

(in Swedish: Statistiska centralbyrån – SCB). The sewer area included the main city alongside 

with a few surrounding villages (Figure 5) that were connected to the main plant 

Kungsängsverket. 

4.1.2 Dynamic population estimates – mobility data 

An alternative data source, which is explored in this study are mobility data. These data are 

produced from the network communication between cell phones and antennas in a well-

defined area. A short description of the mobility data is provided here, and details can be 

found on the data supplier’s website (Telia, Crowd insights). 

Raw cellular data from the network communication between cellular devices and antennas are 

converted to so-called mobility signals. The mobility signals contain geographical information 

about the cellular device location. However, the mobility signals cannot be used directly, but 

first needs to be anonymised. 
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In short, all cellular devices are provided random identifiers to separate information about the 

device, from its positional data. Also, the identifier is replaced at a 24-hour interval, making it 

impossible to extract time-series for consecutive days. To further ensure anonymity in the 

mobility data, only groups of 5 or more people are considered per geographic area and 

temporal resolution. The sampling time is available down to 20-minutes, although we here 

used 24-h and 2-h measurements to match the corresponding wastewater sampling rates. 

Only the total number of devices within a certain GIS-area (a square within GIS system) are 

provided as mobility data. That is, the exact position of the different devices cannot be 

obtained, but only its location up to a certain square. Further, the square size ranges between 

250 m × 250 m and 1 000 m × 1 000 m to assure a minimum number of devices within each 

square for integrity reasons (Figure 5). 

The sewer catchment area is however not square (see red areas in Figure 5). To only account 

for the population within the sewer catchment area, two simplifications were made. 

1) Any square containing a part of the sewer area was included as part of the whole 

“sewer population”. This produced a large area built-up by squares denoted the 

complete population area.  

2) A normalization factor was applied to correct for households within the complete 

population area but, which were outside the sewer catchment area (mainly rural areas 

as indicated in Figure 5). The normalization factor was obtained as the percentage of 

the static population within the sewer area, as compared to the static population within 

the complete population area. During 2019, this percentage was 96 percent, which was 

used to normalize the mobility data.  

The model translating cellular network data to a population estimate was developed by the 

data supplier. Hence, from our perspective, the data were regarded as black-box output from a 

dynamic population sensor. A key part of the black-box model is to extrapolate the data 

supplier’s 35 percent market share, to the whole population. It should be noted that the whole 

population in the model implicitly excludes people without a cellular phone. In Sweden, few 

children below 6 years of age carries a cellular phone and thus the dynamic population is 

underestimated. This is a deliberate decision by the data supplier, not trying to compensate for 

this young population proportion. 
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Figure 5. Overlap between the sewer catchment area (red) and the mobility data squares (thin black lines) in Uppsala, 

Sweden. Note that the square size is smaller in the dense city areas as compared to the rural areas with less people. 

4.1.3 Wastewater data 

The wastewater was characterized with the influent routine samples consisting of flow (Qin), 

total nitrogen (TN), and total phosphorus (TP), organic matter measured as biological oxygen 

consumption during seven days (BOD) and as total organic carbon (TOC). Flow-proportional 

wastewater samples were collected once a week at the WRRF influent and corresponding 

industry wastewater loads were obtained annually via emission reports. Four years of load 

data were considered during 2019–2022. This means that the first year, 2019, was before the 

pandemic, and the following three years were affected by restrictions such as reduced 

commuting and tourists. 

In addition to the standard data, data from a high frequency sampling campaign (2-h samples 

during four non-consecutive dry-weather days) were used to assess the short term dynamics in 

mobility data.  

4.2 Load estimates 

During design, several assumptions are made regarding the influent load generation. This 

section details our load assumptions explicitly in a data model, which was used to analyse the 

load and population data.   

4.2.1 Population person load 

The person load for a component x was defined as the average load per person and day (PL). 

This person load was analysed during weekdays and weekends. Weekends also include big 
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holidays, school breaks and the Swedish standard four-week industry vacation period. In total, 

the weekends amount to about 30 percent of a full year. 

4.2.2 Industry and baseload 

Three approaches were assessed to separate the population load from the remaining industry 

and baseload, henceforth denoted method A, B, and the third reference method based on 

industry emission report data. Method A and B used mobility data. 

Method A assume that the industry load is only active during weekdays. Then, an estimate of 

the person load during holidays can be used to subtract the person load during weekdays, 

where the remainder is assumed to be the industry load. An implicit assumption here is that 

the person load is constant, regardless of the day of the week. 

Method B uses linear regression with the total load on the y-axis and the population on the x-

axis. The regression line load at zero population then becomes an estimate of the base load. 

Similarly, the regression line slope estimates the person load. As an example, the regression 

for BOD would follow the line 

 
𝑄𝑖𝑛𝐵𝑂𝐷𝑐,𝑖𝑛 = 𝐵𝑂𝐷𝑚,𝑏𝑎𝑠𝑒 + 𝐵𝑂𝐷𝑃𝐿  𝑝𝑜𝑝 

(1) 

where 𝐵𝑂𝐷𝑃𝐿 is the BOD person load, 𝐵𝑂𝐷𝑚,𝑏𝑎𝑠𝑒 is the BOD base load, 𝐵𝑂𝐷𝑐,𝑖𝑛 is the influent 

BOD concentration, and 𝑝𝑜𝑝 is the population. Note that the base load is likely larger than the 

industry load since any source contributing to a fixed base load will be included in the base 

load. 

The reference method is the one in current use at the WRRF. The method relies on annual 

emission reports from the five largest industries. Based on these data, the load during 

weekdays was estimated as the proportional average of working days (weekdays) for one 

year. Thus, the reference method underestimates the total base load since it only considers the 

industry proportion. 

4.2.3 Stochastic load model 

The total influent load of a component 𝑥 at time 𝑡 day was described with the data model 

 
𝑥𝑡𝑜𝑡(𝑡) = 𝑥𝑏𝑎𝑠𝑒(𝑡) + 𝑝𝑜𝑝(𝑡) 𝑥𝑃𝐿(𝑡) 

(2a) 
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𝑥𝑏𝑎𝑠𝑒~Φ(𝑚𝑥𝑏𝑎𝑠𝑒
, 𝑅𝑥𝑏𝑎𝑠𝑒

) 

𝑥𝑃𝐿~𝑁(𝑚𝑥𝑃𝐿
, 𝑅𝑥𝑃𝐿

) 

(b) 

(c) 

 

where the base load 𝑥𝑏𝑎𝑠𝑒 was assumed to have first and second order moments 𝑚𝑥𝑏𝑎𝑠𝑒
 and 

𝑅𝑥𝑏𝑎𝑠𝑒
, respectively, and follow an unknown distribution Φ. The person load 𝑥𝑃𝐿 was assumed 

to be Gaussian with mean 𝑚𝑃𝐿, and variance 𝑅𝑃𝐿. The dynamic population 𝑝𝑜𝑝(𝑡) was assumed 

to vary during the year with an unknown distribution with mean and variance estimates 

Ε[𝑝𝑜𝑝] =
1

𝑇
∑ 𝑝𝑜𝑝(𝑡) = 𝑚𝑝𝑜𝑝

𝑇
𝑡=1  and Var[𝑝𝑜𝑝] = Ε[𝑝𝑜𝑝2] − Ε[𝑝𝑜𝑝]2 = 𝑅𝑝𝑜𝑝, respectively. 

The population load, baseload, and person load were assumed to be statistically independent, 

which then gives the mean 𝑚𝑡𝑜𝑡 and variance 𝑅𝑡𝑜𝑡 of 𝑥𝑡𝑜𝑡 as 

 

𝑚𝑡𝑜𝑡 = Ε[𝑥𝑡𝑜𝑡] = Ε[𝑥𝑏𝑎𝑠𝑒] + Ε[𝑝𝑜𝑝]Ε[𝑥𝑃𝐿] = 

= 𝑚𝑏𝑎𝑠𝑒 + 𝑚𝑝𝑜𝑝𝑚𝑃𝐿 (3a) 

 

𝑅𝑡𝑜𝑡 = Var[𝑥𝑡𝑜𝑡] = Var[𝑥𝑏𝑎𝑠𝑒] + Var[𝑝𝑜𝑝 𝑥𝑃𝐿] = 

= 𝑅𝑏𝑎𝑠𝑒 + (Var[𝑝𝑜𝑝] + Ε[𝑝𝑜𝑝]2) (Var[𝑥𝑃𝐿] + Ε[𝑥𝑃𝐿]2) − (Ε[𝑝𝑜𝑝]Ε[𝑥𝑃𝐿])2 = 

= 𝑅𝑏𝑎𝑠𝑒 + (𝑅𝑝𝑜𝑝 + 𝑚𝑝𝑜𝑝
2) (𝑅𝑃𝐿 + 𝑚𝑃𝐿

2) − (𝑚𝑝𝑜𝑝𝑚𝑃𝐿)
2

, 

(3b) 

where the law of expectations was used in (3a) and the variance of the product of independent 

variables in (3b). 

We however assumed a correlation between the different person load components BOD, 

nitrogen, and phosphorus. That is, when the BOD person load is high, it is also likely that 

corresponding nitrogen and phosphorus person loads are high. Thus, the person loads (2c) 

were additionally assumed to follow a multivariate Gaussian as 

 
𝑋𝑃𝐿~𝑁(𝑚𝑃𝐿 , 𝑅𝑃𝐿), 

(4a) 

 

𝑀𝑃𝐿 = (

𝑚𝑥1𝑃𝐿
…

𝑚𝑥𝑁𝑃𝐿

) 

𝑅𝑃𝐿 = (
𝑅𝑥1𝑃𝐿

. . √𝑅𝑥1𝑃𝐿
𝑅𝑥𝑁𝑃𝐿

. … . .

. . 𝑅𝑥𝑁𝑃𝐿

) 

(b) 

 

 

 

(c) 
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with the covariances in the off-diagonal elements in (3c). 

The load model (2) describe the underlying load drivers. In practice, several noise sources 

impact both the measurements and the underlying process. These have not been included here, 

but are straightforward to add, e.g., as additive Gaussian measurement noise. 

4.3 Predicting a design load 

The impact from population estimates on reactor sizing was exemplified by applying the four-

step design process with the considered data. 

1) Estimate the specific loads based on the static population estimate and mobility data. 

2) Assume a predicted population of 330 000, which was provided from the municipal 

population prognosis. 

3) Obtain the predicted population load as the product of 1) and 2) 

4) Add additional industry load as the mean value 2019–2022 from the emission reports 

in Table 1. 

A conventional WRRF with pre- and post-denitrification was then sized based on the 

predicted load using the automated and model-based approach in (Lindblom and Samuelsson, 

2025). One thousand Monte Carlo design were conducted for each population data source to 

also include the variance in specific load. 
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