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Barcelona, Spain 
b PROSYS Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800 Kgs, Lyngby, Denmark 
c Division of Industrial Electrical Engineering and Automation (IEA), Department of Biomedical Engineering, Lund University, Box 118, SE-221 00 Lund, Sweden   

A R T I C L E  I N F O   

Keywords: 
Benchmarking 
Control strategies 
EBPR 
GHG emissions 
BSM2 

A B S T R A C T   

In this study, a plant-wide model describing the fate of C, N and P compounds, upgraded to account for (on-site/ 
off-site) greenhouse gas (GHG) emissions, was implemented within the International Water Association (IWA) 
Benchmarking Simulation Model No. 2 (BSM2) framework. The proposed approach includes the main biological 
N2O production pathways and mechanistically describes CO2 (biogenic/non-biogenic) emissions in the activated 
sludge reactors as well as the biogas production (CO2/CH4) from the anaerobic digester. Indirect GHG emissions 
for power generation, chemical usage, effluent disposal and sludge storage and reuse are also included using 
static factors for CO2, CH4 and N2O. Global and individual mass balances were quantified to investigate the fluxes 
of the different components. Novel strategies, such as the combination of different cascade controllers in the 
biological reactors and struvite precipitation in the sludge line, were proposed in order to obtain high plant 
performance as well as nutrient recovery and mitigation of the GHG emissions in a plant-wide context. The 
implemented control strategies led to an overall more sustainable and efficient plant performance in terms of 
better effluent quality, reduced operational cost and lower GHG emissions. The lowest N2O and overall GHG 
emissions were achieved when ammonium and soluble nitrous oxide in the aerobic reactors were controlled and 
struvite was recovered in the reject water stream, achieving a reduction of 27% for N2O and 9% for total GHG, 
compared to the open loop configuration.   

1. Introduction 

In recent years, the scarcity of natural resources and the concern 
about climate change have shifted the water sector paradigm. Therefore, 
wastewater treatment plants (WWTPs) are becoming water resource 
recovery facilities (WRRFs). This fact has promoted both the chemical 
and environmental engineering community and the water industry to 
widen the scope of these utilities. To better understand and to design 
these new facilities, plant-wide modelling tools have become essential 
(Jeppsson et al., 2013). Wastewater treatment modelling researchers 
have integrated the main unit operations of a WRRF (primary clarifier, 
biological reactor, secondary settler, thickeners, anaerobic digester, 
dewatering unit, etc.) to account for all the interactions amongst pro
cesses (Barat et al., 2013; Gernaey et al., 2014; Grau et al., 2007; Hau
duc et al., 2019; Solon et al., 2017; Vaneeckhaute et al., 2018) in view of 

simulating WRRF under different scenarios and of designing novel 
control strategies for a better performance. 

Plant-wide WRRF modelling comprises chemical and physico- 
chemical models to assess the new challenges of the wastewater treat
ment. Particularly, precipitation models of common chemical com
pounds in wastewater (Hauduc et al., 2015; Kazadi Mbamba et al., 2016, 
2015b), aqueous phase chemistry models (Flores-Alsina et al., 2015; 
Solon et al., 2015) and mass transfer models (Amaral et al., 2019; Liz
arralde et al., 2015) have been proposed and calibrated to study 
different subprocesses of a WWRF in addition to the traditional activated 
sludge models (ASM) based on biological processes (Batstone et al., 
2002; Henze et al., 2015). Recently, Solon and co-workers (Solon et al., 
2017) proposed a novel plant-wide model capable of predicting the fate 
of phosphorus (P) in both water and sludge lines as well as the in
teractions with sulphur (S) and iron (Fe) thanks to the implementation of 
comprehensive physico-chemical process models. This work combined a 

* Corresponding author. 
E-mail addresses: borja.solis@uab.cat (B. Solís), albert.guisasola@uab.cat (A. Guisasola), xfa@kt.dtu.dk (X. Flores-Alsina), ulf.jeppsson@iea.lth.se (U. Jeppsson), 

JuanAntonio.Baeza@uab.cat (J.A. Baeza).  

Contents lists available at ScienceDirect 

Water Research 

journal homepage: www.elsevier.com/locate/watres 

https://doi.org/10.1016/j.watres.2022.118223 
Received 8 September 2021; Received in revised form 20 January 2022; Accepted 23 February 2022   

mailto:borja.solis@uab.cat
mailto:albert.guisasola@uab.cat
mailto:xfa@kt.dtu.dk
mailto:ulf.jeppsson@iea.lth.se
mailto:JuanAntonio.Baeza@uab.cat
www.sciencedirect.com/science/journal/00431354
https://www.elsevier.com/locate/watres
https://doi.org/10.1016/j.watres.2022.118223
https://doi.org/10.1016/j.watres.2022.118223
https://doi.org/10.1016/j.watres.2022.118223
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2022.118223&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Water Research 215 (2022) 118223

2

Nomenclature 

A2/O Anaerobic-Anoxic-Aerobic 
ABAC Aeration-based ammonium controller 
AD Anaerobic digester 
ADM1 Anaerobic Digestion Model No. 1 
AER Aerobic section 
ANAER Anaerobic section 
ANOX Anoxic section 
AOB Ammonia Oxidizing Bacteria 
AS Activated Sludge 
ASM Activated Sludge Model 
ASM2d Activated Sludge Model No. 2d 
BOD Biological Oxygen Demand 
BSM2 Benchmark Simulation Model No. 2 
BSM2-PSFe BSM2 for Phosphorus, Sulfur and Iron 
BSM2G BSM2 Greenhouse gas 
C Carbon 
Ca3(PO4)2 Amorphous calcium phosphate 
Ca5(PO4)3OH Hydroxyapatite 
CaCO3 Calcite 
CBIM Continuity-based interfacing method 
CH4 Methane 
CO2 Carbon dioxide 
CO2e Carbon dioxide equivalents 
COD Chemical Oxygen Demand 
CONVAS-AD Conversion ASM-ADM interface 
DEN pathway Denitrification pathway 
DEW Dewatering unit 
Di Diffusivity of component i in liquid phase (m2 d− 1) 
DO Dissolved Oxygen 
DO2 Diffusivity of oxygen in liquid phase (m2 d− 1) 
EBPR Enhanced Biological Phosphorus Removal 
N2O-EF Nitrous Oxide Emission Factor (%) 
Eproduction Electricity production 
EQI Effluent Quality Index 
FA Free Ammonia 
Fe Iron 
FeCl3 Ferric Chloride 
FeS Iron Sulphide 
FNA Free Nitrous Acid 
GHG Greenhouse gas 
GWP Global Warming Potential 
H2 Hydrogen gas 
H2O Water 
H2S Hydrogen sulphide 
HCO3

− Bicarbonate 
HFO Hydrous Ferric Oxides 
IC Inorganic Carbon 
KH,i Henry’s constant for the specie i 
kLai Mass transfer coefficient for component i (d− 1) 
kLaO2 Mass transfer coefficient for oxygen (d− 1) 
KNH4PO4 k-Struvite 
Mg(OH)2 Magnesium Hydroxide 
MgCO3 Magnesite 
MgHPO4 Newberyite 
MgNH4PO4 Struvite 
MLSS Mixed Liquor Suspended Solids 
MMP Multiple Mineral Precipitation 
N Nitrogen 
N2 Nitrogen gas 
N2O Nitrous oxide 
NaOH Sodium hydroxide 

ND pathway Nitrifier Denitrification pathway 
NH2OH Hydroxylamine 
NN pathway Nitrifier Nitrification pathway 
NO Nitric Oxide 
NO2

− Nitrite 
NO3

− Nitrate 
NOx Oxidized forms of nitrogen 
O2 Oxygen gas 
OCI Operational Cost Index 
OHO Ordinary Heterotrophic Organism 
P Phosphorus 
PAO Polyphosphate Accumulating Organisms 
PCM Physico-Chemical Models 
Pi Partial pressure of the gas specie i 
PI Proportional Integral controller 
Pinorg Inorganic phosphorus 
Porg Organic phosphorus 
PRIM Primary clarifier 
PROCESSAS-AD Process ASM-ADM interface 
Qw Purge flow rate 
S Sulphur 
SA Acetate (ASM) (gCOD m− 3) 
Saa Amino acids (ADM) (kgCOD m− 3) 
Sac Acetate (ADM) (kgCOD m− 3) 
SEC Secondary settler 
SF Soluble fermentable (ASM) (gCOD m− 3) 
Sfa Fatty acids (ADM) (kgCOD m− 3) 
SI Saturation index for mineral precipitation 
SI Unbiodegradable soluble organics (ASM) (gCOD m− 3) 
SIC Inorganic Carbon (ASM, ADM) (kmol m− 3) 
SN2O Nitrous oxide (ASM) (gN m− 3) 
SNH2OH Hydroxylamine (ASM) (gN m− 3) 
SNH4 Ammonium plus ammonia nitrogen (ASM) (gN m− 3) 
SNO Nitric oxide (ASM) (gN m− 3) 
SNO2 Nitrite (ASM) (gN m− 3) 
SO2 Dissolved oxygen (ASM) (gO m− 3) 
SPO4 Phosphate (ASM) (gP m− 3) 
SRT Sludge Retention Time 
Ssu Sugars (ADM) (kgCOD m− 3) 
ST Storage tank 
T Temperature 
THK Thickener 
TIV Time In Violation 
TKN Total Kjeldahl Nitrogen 
TN Total Nitrogen 
TP Total Phosphorus 
TSS Total Suspended Solids 
VS Volatile Solids 
WRRF Water Resource Recovery Facility 
WWTP Waste Water Treatment Plant 
XAOB Ammonia Oxidizing Bacteria (ASM) (gCOD m− 3) 
Xch Carbohydrates (ADM) (kgCOD m− 3) 
Xi Mineral concentration in solid phase (PCM) (kmol m− 3) 
XI Inert particulates organics (ASM, ADM) (gCOD m− 3) 

(kgCOD m− 3) 
Xli Lipids (ADM) (kgCOD m− 3) 
XNOB Nitrite Oxidizing Bacteria (ASM) (gCOD m− 3) 
XPP Polyphosphates (ASM, ADM) (gP m− 3) (kgP m− 3) 
Xpr Proteins (ADM) (kgCOD m− 3) 
XS Biodegradable particulate organics (ASM) (gCOD m− 3) 
XTSS Total Suspended Solids (ASM) (gTSS m− 3) 
REC Recovery unit  
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modified Activated Sludge Model No. 2d (ASM2d) model with a speci
ation model routine to predict pH at each time step (Flores-Alsina et al., 
2015). This model evaluated and compared several energy and nutrient 
recovery strategies, but without accounting for GHG emissions. 

Indeed, GHG emissions should be included when evaluating the 
overall sustainability of control/operational strategies for water 
resource recovery to add another important criterion in the multivari
able space of performance assessment; otherwise, a good a priori control 
structure providing excellent effluent quality and lower costs could 
obtain this at the expense of high GHG emissions that are not being 
considered. Previous modelling studies have already included GHG 
emissions as a potential performance criterion when evaluating the 
sustainability of WWTPs. amongst the GHGs, N2O emissions, which have 
a 300-fold stronger global warming effect than carbon dioxide CO2 
(IPCC, 2013), have recently received a lot of attention. Several exten
sions based on ASM models have been proposed in the literature to 
better describe N2O emissions during biological nitrogen removal 
(Domingo-Félez et al., 2017; Mannina et al., 2016; Massara et al., 2018; 
Ni and Yuan, 2015; Pocquet et al., 2016). However, although some 
parameters of the models are pH-dependent, the evolution of pH in the 
different reactors is not predicted since the effect on pH of the processes 
taking place are not considered. Specifically the growth rate of nitrifiers 
depends on pH, and consequently the N2O emissions produced by ni
trifiers cannot be described accurately for several operational conditions 
(Su et al., 2019). In addition, CO2 emissions are typically not accounted 
for, since the evolution of inorganic carbon (IC) is not modelled. How
ever, nitrifiers growth depends on IC availability (Guisasola et al., 2007; 
Torà et al., 2010; Wett and Rauch, 2003; Zhang et al., 2018) and its 
limitation could be significant in some scenarios. 

One of the most used plant-wide model that takes into account the 
GHG emissions is the BSM2G (Flores-Alsina et al., 2011). Several works 
in the literature have applied this model to study the effect on GHG 
emissions when implementing different control/operational strategies 
(Barbu et al., 2017; Flores-Alsina et al., 2014, 2011; Santín et al., 2018, 
2017; Sweetapple et al., 2015). However, BSM2G cannot describe the 
transformations and fate of P in the plant and, moreover, not all the 
known N2O production pathways are included in this model. Indeed, 
N2O could be produced during the denitrifying phosphorus removal 
process (Liu et al., 2015). Hence, a new model extension is needed to 
enable the evaluation of all the potential GHG emission sources when 
integrating the potential resource recovery mechanisms in WRRFs. 

The current limitations of the previous approaches create the need to 
define a new extended benchmarking scenario (BSM2-PSFe-GHG) 
including biological COD/N/P removal, GHG emissions, and chemical 
and physico-chemical models to evaluate resource recovery in WRRFs. 
The main objective of the present work is to develop and evaluate this 
BSM2-PSFe-GHG plant-wide benchmarking scenario by integrating: i) 
the biological model ASM2d-N2O proposed by Massara et al. (2018) 
accounting for both enhanced biological phosphorus removal (EBPR) 
and the most recently reported N2O production pathways, ii) potential 
sources of GHG emissions through the WRRF (updated from Flor
es-Alsina et al. (2011)), iii) plant-wide modelling of detailed P chemical 
processes (Solon et al., 2017) and iv) development of novel control 
strategies based on nitrite and nitrous oxide sensors to mitigate N2O 
emissions. Once the development of the BSM2-PSFe-GHG sub-models 
and their interfaces is detailed, simulations will help to understand how 
novel nutrient recovery/control strategies can affect GHG emissions in a 
plant-wide context. In this sense, this work aims at i) studying the effect 
on GHG emissions when implementing nutrient recovery/control stra
tegies and ii) designing and implementing novel control/operational 
strategies to optimise plant performance while reducing the GHG 
emissions. 

2. Material and methods 

2.1. BSM2-PSFe-GHG description 

2.1.1. Biological models 
The ASM2d-PSFe-N2O model defined in this work merges the BSM2- 

PSFe approach of Solon et al. (2017) and the ASM2d-N2O model of 
Massara et al. (2018) that has been successfully applied to describe N2O 
emissions in full-scale WWTPs (Solís et al., 2022). Hence, ASM2d-PS
Fe-N2O describes simultaneous biological C, N and P removal, as well as 
the chemical and biological processes related to S and Fe and N2O 
production and emission. Therefore, ASM2d-PSFe-N2O presents five 
new state variables compared to the BSM2-PSFe model (i.e., SNO2, SNO, 
SN2O, SNH2OH and XNOB). The N2O biological pathways adapted from 
Massara et al. (2018) are:  

1) NH2OH oxidation pathway (NN pathway): N2O is produced from the 
reduction of NO by the enzyme “Nor” of AOB coupled with the 
oxidation of NH2OH to NO2

− (Pocquet et al., 2016); 
2) AOB nitrifier denitrification pathway (ND pathway): N2O is pro

duced from NO2
− reduction to NO and subsequently to N2O by AOB. 

These two processes are lumped in one single reaction as in Pocquet 
et al. (2016); 

3) heterotrophic denitrification pathway (DEN pathway): N2O is pro
duced as an intermediate of the denitrification processes either by 
OHO or PAO (Hiatt and Grady, 2008). 

The three biological N2O production pathways were included in the 
ASM2d-PSFe-N2O model to account for all the known biological N2O 
production pathways and to fairly assess the contribution of each 
pathway under dynamic conditions and under the different control/ 
operational strategies implemented. The stoichiometric matrix and the 
continuity verification of the modified ASM2d-PSFe-N2O model were 
calculated as in Hauduc et al. (2010) and are provided in the Supple
mentary Information Section. 

The anaerobic digestion model (ADM) implemented is an extension 
of the ADM1 model (Batstone et al., 2002), reproducing the biological 
and chemical interactions between P, S and Fe as reported in previous 
works (Flores-Alsina et al., 2016; Solon et al., 2017). The kinetic pa
rameters of both models can be obtained from the software imple
mentation or from the original sub-models (Flores-Alsina et al., 2016; 
Massara et al., 2018; Solon et al., 2017). 

2.1.2. Physico-chemical models (PCMs) 
BSM2-PSFe-GHG embraces three different PCMs as proposed in the 

BSM2-PSFe approach (Solon et al., 2017): the pH and ion speci
ation/pairing model (aqueous phase chemistry model), the multiple 
mineral precipitation (MMP) model and the gas-liquid mass transfer 
model. 

2.1.2.1. pH and ion speciation/pairing. A general aqueous phase chem
istry model is used in both ASM and ADM, describing the pH variation 
and ion pairing at each time step (Flores-Alsina et al., 2015; Solon et al., 
2015). The aqueous phase chemistry model corrects for ionic strength 
via the Davies’ approach for chemical activity (Solon et al., 2017). The 
acid-base parameters and the activity coefficients are 
temperature-dependent and all calculations are performed under 
non-ideal conditions. The acid-base equilibria are described as a set of 
implicit algebraic equations and solved at each integration step of the 
ordinary differential equation solver. The species concentrations take 
part in the biological and physico-chemical processes. A more detailed 
description of the aqueous phase chemistry model can be found in 
Flores-Alsina et al. (2015) and Solon et al. (2015). 

The integration of the pH and ion speciation allows to account for 
weak acid-base conditions within the N2O production processes, since 
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the growth rates of nitrifiers (XAOB and XNOB) are functions of their 
substrates, i.e. free ammonia (FA, NH3) and free nitrous acid (FNA, 
HNO2), respectively. 

2.1.2.2. Multiple mineral precipitation (MMP). The precipitation equa
tions are integrated as temperature dependent reversible processes with 
the saturation index (SI) as the chemical driving force (Stumm and 
Morgan, 1996). The SI was calculated by comparing the multiplication 
of the chemical activities of the dissolved ions of each mineral with its 
solubility product. For a given aqueous phase, three conditions can 
occur (Kazadi Mbamba et al., 2015a): i) SI < 0, the aqueous phase is 
undersaturated and the mineral is dissolved; ii) SI = 0, the aqueous 
phase is at equilibrium; or iii) SI > 0, the aqueous phase is oversaturated 
and chemical precipitation may occur. The precipitation rate depends on 
the kinetic rate coefficient, the species concentration, the mineral solid 
phase and the order of the reaction (Kazadi Mbamba et al., 2015a, 
2015b; Solon et al., 2017). The MMP model includes the most likely 
minerals to precipitate during wastewater treatment: calcite (CaCO3), 
hydroxyapatite (Ca5(PO4)3(OH)), amorphous calcium phosphate 
(Ca3(PO4)2), struvite (MgNH4PO4⋅6H20), K-struvite (MgKPO4⋅6H20), 
newberyite (MgHPO4⋅3H20), magnesite (MgCO3) and iron sulphide 
(FeS). The simplified approach of Hauduc et al. (2015) is implemented 
to describe the precipitation of hydrous ferric oxides (HFOs), the phos
phate adsorption and phosphate co-precipitation to better estimate the 
phosphorus chemical precipitation. 

2.1.2.3. Gas-liquid transfer. The gas-liquid transfer processes are 
described for the gas components: CO2, O2, NO, N2O, N2 and H2S. The 
gas-liquid transfer is based on Fick’s first law (Eq. (1)), which states that 
the transfer rate (ρi) is proportional to the global mass transfer coeffi
cient (kLai) and the driving force is the difference between the saturation 
concentration and the concentration of the gas in the liquid phase. The 
saturation concentration is calculated through Henry’s law, which states 
that there is a proportionality (KH,i) between the saturation concentra
tion of the gas dissolved in the liquid and the partial pressure of the gas 
(Pi): 

ρi = kLai⋅
(
KH,i⋅Pi − Ci

)
(1) 

The mass transfer coefficient for each gas (i = CO2, O2, NO, N2O, N2 
and H2S) is calculated from Eq. (2) as the square root of the ratio of the 
diffusivities of the gaseous component in the liquid (Di) to that of oxygen 
(DO2) and proportional to the mass transfer coefficient of the reference 
compound oxygen (Lizarralde et al., 2015): 

kLai = kLao2 ⋅
(

Di

Do2

)1/2

(2) 

The gas-liquid transfer processes in ADM are included for the 
following gas components: H2O, CO2, H2, CH4 and H2S, and are imple
mented as described by Batstone et al. (2002). 

2.2. Model integration 

The different sub-models (ASM2d-PSFe-N2O, ADM and PCMs) in 
BSM2-PSFe-GHG were integrated using model interfaces. The 
ASM→ADM and ADM→ASM interfaces are based on the continuity- 
based interfacing method (Nopens et al., 2009) to ensure elemental 
mass and charge conservation. The interfaces consider instantaneous 
processes (i.e. PROCESSAS-AD) and state variable conversions (i.e. 
CONVAS-AD). The ASM→ADM interface PROCESSAS-AD involves: (1) the 
removal of COD demanding compounds (NH2OH, O2, NO3

− , NO2
− NO 

and N2O) with the associated growth of biomass, and (2) the decay of 
biomass (OHO, PAO, AOB and NOB) to produce proteins (Xpr), lipids 
(Xli), carbohydrates (Xch) and inert particulate organics (XI). The CON
VAS-AD involve (1) the conversion of soluble fermentable organics (SF) to 
amino acids (Saa), sugars (Ssu) and fatty acids (Sfa); (2) the conversion of 

biodegradable particulate organics (XS) to Xpr, Xli and Xch; and (3) the 
direct mapping of acetate (SA to Sac) and inert soluble and particulate 
organics (SI and XI) (Solon et al., 2017). Regarding the ADM→ASM 
interface, a comprehensive description of the involved processes and 
conversion can be found in Flores-Alsina et al. (2016). Finally, the PCMs 
integration into ASM and ADM models was made following the pro
cedures detailed in the original works (Flores-Alsina et al., 2015; Solon 
et al., 2017, 2015). 

2.3. Plant layout and ancillary processes 

BSM2-PSFe-GHG was implemented in the same plant layout as the 
BSM2-PSFe (Solon et al., 2017). The WRRF consists of a primary clarifier 
(PRIM), an activated sludge section (AS), a secondary clarifier (SEC), a 
sludge thickener (THK), an anaerobic digester (AD), a dewatering unit 
(DEW) and finally a storage tank (ST) (Fig. 1). Additional models were 
considered to simulate the ancillary processes PRIM, SEC, THK, DEW 
and ST. The PRIM (900 m3) was modelled according to Otterpohl and 
Freund (1992) with different settling velocities for biodegradable and 
non-biodegradable compounds (Wentzel et al., 2006). The AS had an 
A2/O configuration consisting of 7 tanks in series: Tanks 1 and 2 were 
anaerobic (ANAER1 and ANAER2) with a total volume of 2000 m3; tanks 
3 and 4 were anoxic (ANOX1 and ANOX2) with a total volume of 3000 
m3 while tanks 5, 6 and 7 were aerobic (AER1, AER2 and AER3) with a 
total volume of 9000 m3. The SEC (surface of 1500 m2 and height of 4 m) 
was modelled according to the double exponential settling velocity 
function of Takács et al. (1991) in a ten-layer one-dimensional settler. 
The THK and DEW units were modelled as ideal units, with no biological 
activity and a constant percentage of TSS in the concentrated sludge 
flows. The AD had a working volume of 3400 m3 and a headspace vol
ume of 300 m3. The ST was modelled as a non-reactive, ideally mixed 
tank of 160 m3. Additional information about the plant design and 
default operational conditions can be found in Gernaey et al. (2014) and 
Solon et al. (2017). 

The influent was generated following the principles proposed by 
Gernaey et al. (2011). Finally, the sensors and actuators were modelled 
with response time, delay and white noise to avoid creating unrealistic 
control applications (Rieger et al., 2003). 

2.4. Estimation of GHG emissions 

Different GHG compounds (CO2, CH4 and N2O) type of emissions 
(biogenic and non-biogenic) and sources of emissions (direct or indirect) 
were accounted for in BSM2-PSFe-GHG. Estimates not explicitly calcu
lated by the sub-models were estimated following the comprehensive 
methodology suggested by Flores-Alsina et al. (2014, 2011). The 
different sources of GHG emissions considered throughout the WRRF 
are:  

- Direct secondary treatment GHG emissions: CO2 generated from 
biomass respiration, CO2 generated from BOD5 oxidation, CO2 credit 
from nitrification and N2O generated during biological N-removal. 
CO2 emissions are explicitly accounted for by ASM2d-PSFe-N2O and 
PCMs (i.e. pH and ion speciation/pairing and gas-liquid transfer 
models), by including IC instead of alkalinity as a state variable 
(Flores-Alsina et al., 2015). N2O generated via the NN and ND 
pathways of AOB and DEN pathway of heterotrophic organisms 
(Massara et al., 2018). 

- Sludge processing GHG emissions: GHG emissions during sludge pro
cessing are generated in the anaerobic digester. CO2 and CH4 emis
sions are explicitly calculated by the modified ADM1 model 
(Flores-Alsina et al., 2016; Solon et al., 2017). Fugitive emissions 
from AD and co-generation units are included as a total of 2.7% of 
the produced biogas that was slipped and un-combusted (Magnus 
Arnell, 2016). The remaining biogas is combusted in the gas-engine 
turbine and all the CH4 is converted to CO2, generating electricity 
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and heat. The CO2 produced in the AD and the CO2 produced in the 
combustion are released into the atmosphere. Finally, dissolved CH4 
(and H2) in the digester effluent is assumed to be fully stripped in the 
following process units and emitted to the atmosphere. These emis
sions are accounted for in the AD (important to maintain mass bal
ances). Potential N2O emissions due to denitrification downstream of 
the AD unit (Oshita et al., 2014) were not considered since the DEW 
unit was modelled as a non-reactive unit. Moreover, it should be 
noted that neither NO3

− nor NO2
− were present in the AD.  

- Net power-related GHG emissions: Net power is the difference between 
energy consumption and production. Energy production is the elec
tricity produced by the AD turbine and it is calculated using a factor 
for the energy content of CH4 (50 014 MJ (kg CH4)− 1) and assuming 
an efficiency of 43% for electricity generation (Flores-Alsina et al., 
2011). Energy consumption involves pumping, mixing, aeration and 
heating and is calculated using the operational cost index (OCI), see 
Section 2.5. A value of 0.359 kg CO2 kWh− 1 is selected for the CO2 
emission from net power production (European production mix) 
(IEA, 2011).  

- Embedded GHG emissions from chemicals use: The possible addition of 
chemicals in the WRRF produces embedded indirect GHG emissions. 
The specific chemicals considered are: i) methanol dosage as external 
carbon source with a static factor of 1.54 kg CO2 (kg methanol)− 1 

(Flores-Alsina et al., 2011), ii) FeCl3 for P precipitation, 0.16 kg CO2 
(kg FeCl3)− 1, iii) NaOH to raise the pH, 1.24 kg CO2 (kg NaOH)− 1 and 
iv) Mg(OH)2 to favour the struvite precipitation, 1.17 kg CO2 (kg Mg 
(OH)2)− 1 (Gustavsson and Tumlin, 2013).  

- GHG emissions from effluent disposal: N2O is produced in the receiving 
effluent due to the partial conversion of the remaining TN. An 
emission factor of 5 g per kg TN discharged to recipient is obtained 
from the N2O emissions corresponding to disposal in lakes and rivers 
(Arnell, 2016). 

- Sludge storage, disposal and reuse: Direct emissions from sludge stor
age are estimated by assuming uncovered storage for 12 months as 
8.68 kg CH4 per ton of VS and 1.1% of TN in sludge emitted as N2O 
(Arnell, 2016). After the sludge storage, it is transported for disposal 
and reuse, causing indirect emissions of CO2, CH4 and N2O. The CO2 
emissions associated with the transport of biosolids are quantified by 

multiplying the truck movements by the distance of reuse. CO2 
emissions from mineralization are calculated based on the sludge 
mass multiplied by the carbon concentration and the conversion 
factor from C to CO2. N2O emissions are calculated based on a static 
factor of 0.01 kg N-N2O per kg of TN. In total, three different sludge 
disposal alternatives are included: Agriculture (38% sludge disposal, 
150 km from the WRRF), Compost (45% sludge, 20 km) and Forestry 
(17% sludge, 144 km) (Arnell, 2016; Bridle et al., 2008; Flor
es-Alsina et al., 2011). 

Finally, all GHG emissions are converted into units of CO2 equiva
lents (CO2e) by the Global Warming Potentials (GWP). The GWP for a 
100-year time horizon for N2O and CH4 are 298 kg CO2e per kg N2O and 
34 kg CO2e per kg CH4, respectively (IPCC, 2013). Additional details on 
the implementation of GHG emissions can be found in Section 6. 

2.5. Evaluation criteria 

Three performance indices were used to assess the plant performance 
for the different control/operational strategies. Besides the classical 
evaluation criteria based on the effluent quality index (EQI) and the OCI 
(Gernaey et al., 2014; Nopens et al., 2010), total GHG emissions (in 
CO2e) were added as an additional criterion, as first proposed by Flor
es-Alsina et al. (2014). This value enables the understanding of the 
synergies and trade-offs that different nutrient recovery control strate
gies can have on overall GHG emissions. On the other hand, EQI (kg 
pollution units d− 1) represents the overall pollution leaving the plant 
and is calculated with Eq. (3) as a weighted sum of effluent TSS, COD, 
BOD, TKN, NOx (oxidized forms of nitrogen, including NO3

− , NO2
− , NO, 

N2O and NH2OH) and organic and inorganic P (Porg and Pinorg, respec
tively) (Solon et al., 2017). 

EQI =
1

tobs 1000

∫ tstop

tstart

[βTss⋅TSS(t) + βCOD⋅COD(t) + βBOD⋅BOD(t)+

βTKN⋅TKN(t) + βNOx
⋅NOx(t) + βPorg

⋅Porg(t) + βPinorg
⋅Pinorg(t)

]
⋅Qe(t) ⋅dt

(3)  

where tobs is the total evaluation period, the βi are weighting factors for 
the different pollutants to convert them into general pollution units 

Fig. 1. Layout of the WRRF from the BSM2-PSFe-GHG. GHG emissions (green box) and overall and individual mass balances (C, N and P) and pH for the main 
streams of the WRRF are indicated in the tables (steady state results for A0 open loop configuration). Inlet and outlet streams of the mass balances are highlighted in 
yellow and orange, respectively. 
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(Solon et al., 2017) and Qe is the effluent flow rate in m3 d− 1. 
The OCI is calculated with Eq. (4) as a weighted sum of the costs 

related to aeration, pumping, mixing and heating energy, external car
bon source, sludge production disposal, chemicals as well as the po
tential benefits of methane production and nutrients recovered (e.g. 
struvite). 

OCI = AE + PE + fSP⋅SP + fEC⋅EC + ME − fMP⋅MP + max(0,HE − 7MP)+
fMA⋅MA + fMg⋅Mg − fSrecovered ⋅Srecovered

(4)  

where AE is aeration energy, PE is pumping energy, SP is sludge pro
duction, EC is external carbon addition, ME is mixing energy, MP is 
methane production, HE is required heating energy for the AD, MA is 
metal addition, Mg is magnesium addition and Srecovered is struvite 
recovered. The fi are weighting factors and are selected as in Gernaey 
et al. (2014) and Solon et al. (2017). 

Finally, other legal criteria, such as the percentage of time the plant 
is in violation (TIV), i.e. when effluent concentrations are above 
discharge limits for selected nutrients in the effluent, were also used to 
evaluate the plant performance. 

2.6. Control strategies 

Table 1 summarises the individual controllers and control strategies 
combining different controllers that were applied in this work. 
Figures S1-S5 (Supplementary Information Section) show the sche
matics of the control loops implemented in each control strategy. The 
default scenario (A0) is the open-loop configuration (Gernaey et al., 
2014), thus the air flow rate supplied to the aerobic reactors (value of 
the mass transfer coefficient kLa) and the purge flow rate were kept 
constant. The performance of each implemented control strategy is 
evaluated by comparison with A0 by means of the evaluation criteria 
indices. The control strategies A1 to A3 are based on the improvement of 
the water quality (reduction of EQI and TIV for N and P species) by 
optimizing the aeration strategy, the sludge age in winter or by 
including nutrient recovery. Finally, the control strategies A4 and A5 are 
mainly focused on reducing the GHG emissions while maintaining good 
effluent quality and low operating costs. 

All dynamic simulations (609 days) are preceded by a steady state 
simulation (300 days) but only data generated during the last 364 days 
of dynamic simulations are used to evaluate the implemented control 
strategies. The sensors characteristics applied in the implemented con
trol strategies are summarized in section S2. 

3. Results 

3.1. Steady-state simulations 

Fig. 1 shows the total GHG emissions, combined with the fraction
ation of GHG emissions (on-plant and off-plant), and the overall and 
individual mass balances for C, N and P as well as the pH under steady- 
state conditions for the A0 scenario. amongst the total GHG emissions, 
65% consisted of CO2 (of which 63% of the total CO2 emissions was 
biogenic CO2 emitted in the biotreatment), 29% of N2O (21% of the total 
N2O emitted was produced in the biotreatment section through N- 
removal) and 6% of CH4. The low CH4 emissions were due to all the 
produced CH4 in the AD was burnt in the gas engine unit and, therefore, 
transformed to CO2 and energy. Most of the GHG emissions were direct 
emissions (80%), i.e. produced in the WRRF. The predicted indirect GHG 
emissions were mainly produced due to sludge disposal and reuse, since 
the CO2 emissions produced due to electricity production were miti
gated from the electricity generated in the cogeneration unit of CH4 and 
no imbedded GHG emissions from chemicals use were produced. 

Regarding the fate of C, the inlet C ends up in three different forms: i) 
51.3% is emitted as CO2: 32.8% in the AS section as biogenic CO2, due to 
the organic matter oxidation and biomass respiration and 18.5% as 
combustion and leakages of biogas in the AD (this represents 38.7% of 
the inlet C to the digester), ii) 23.1% is dissolved in the effluent mainly in 
the form of SIC (80%) and SI (13.4%) and iii) 25.5% is disposed of in the 
sludge as particulate organics and biomass. 

In the case of N, the inlet N ends up in three different phases: i) 49% 
is discharged in the effluent mainly as SNO3 (31.4%) and dissolved SN2 
(56.5%), ii) 21.4% ends up in the gas phase of the biological reactors, 
mainly as N2, but with 1.0% of the inlet N as N–N2O, which is within the 
ranges reported by Massara et al. (2017) and Ahn et al. (2010) who 
obtained values of 0–3.3% of N2O emission in 12 different WWTPs, and 
iii) the remaining 29.6% of the inlet N is disposed in the sludge, mainly 
as biomass and entrapped in particulate organics. One important 
outcome of this A0 operation is its feasibility to accomplish N-removal 
despite its lack of active control, since the values of TKN (2.8 g N m-3) 
and TN (11.0 g N m-3) in the effluent for A0 are below the BSM discharge 
limits (TKNlimit = 4 g N m− 3, TNlimit = 18 g N m− 3). The analysis of this 
scenario also shows the important effects of some recycled streams, such 
as the overflows of the thickener and the dewatering unit, which in
crease the N influent load to the plant by 21.5%. 

Regarding the P results, only 22.3% of the influent P leaves the plant 
through the water line, mainly as soluble orthophosphate SPO4 (43.6%) 
and XPP (39.7%) that overflows in the secondary settler. The obtained 
effluent TP concentration is 2.37 g P m-3, above the BSM discharge limit 
of TPlimit = 2.0 g P m− 3. The remaining 77.7% of inlet P remain in the 

Table 1 
Characteristics of the implemented controllers and control strategies.  

Controller→ DO NH4
þ MLSS PO4

3¡ Magnesium Nitrite N2O 

Characteristics↓        
Measured variable 

(s) 
SO2 in AER2 SNH4 in AER2 XTSS and T in AER3 SPO4 in 

AER3 
Effluent SPO4 in REC 
unit 

SNO2 in AER2 SN2O in AER2 

Controlled variable SO2 in AER2 SNH4 in AER2 XTSS in AER3 SPO4 in 
AER3 

XMg(OH)2 in REC unit SNO2 in AER2 SN2O in AER2 

Set-point - gO m-3 2 g N m-3 3000 g m-3 (if T > 15 ◦C) 4000 g m- 

3 (if T < 15 ◦C) 
1.0 g P m-3 50 g P m-3 0.5 g N m-3 0.01 g N m-3 

Manipulated 
variable 

kLa in AER1, 2 
& 3 

SO2 set-point in 
AER2 

Qw QFeCl3 QMg(OH)2 SO2 set-point in 
AER2 

SO2 set-point in 
AER2 

Control algorithm PI Cascaded PI PI PI PI Cascaded PI Cascaded PI         

Control strategy        
A0        

A1 X X X     
A2 X X X X    
A3 X X X  X   
A4 X X X  X X  
A5 X X X  X  X  
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waste sludge, pointing out the possibility of recovering P from the 
anaerobic digestate. Moreover, the recycles of the thickener overflows 
and the reject water, 7.7 and 229.9 kg P d− 1, respectively, increase the 
influent P load by 95%. 

3.2. Dynamic simulations 

The dynamic simulation results of the default A0 scenario and the 
runs with implemented control strategies A1-A5 are summarized in 
Table 2. In the case of A0, 22.5% of the total GHG emissions come from 
N2O during biological N-removal, which represents a N2O emission 
factor (N2O-EF) of 2.10%. This emission factor could be reduced by 
analysing which biological pathways are producing most of the N2O 
and, then, designing adequate mitigation strategies Table 2. also shows 
that the effluent obtained is acceptable in terms of effluent average 
concentrations during the evaluated period. However, the percentages 
of TIV for ammonium and P are high (35.3% and 40.5%, respectively) 
and thus, there is a niche for a performance improvement using control 
strategies. In the following sections, the results for each implemented 
control strategy (Table 1) are presented and discussed. The GHG emis
sions and the overall and individual mass balances (Q, C, N and P) and 
pH for the main streams of the WRRF for each control strategy are re
ported in sections S3 and S4 (Supplementary Information Section). 

3.2.1. Control strategy A1: Ammonium cascade & waste controller 
The A1 control strategy involves three controllers. The first two 

control loops include two controllers following a cascade configuration, 
currently known as aeration-based ammonium controller (ABAC). In 
this configuration, the DO controller of the secondary feedback control 
loop is in charge of maintaining the DO concentration in AER2 by 
manipulating the aeration flow (kLa value), while the primary feedback 
control loop manipulates the DO set-point in AER2 using the ammonium 
concentration in AER2 as the controlled variable. The ammonium set- 
point in AER2 reactor is fixed at 2 g N m− 3. An additional control loop 
acts on the purge flow (Qw) to maintain the desired XTSS concentration in 
AER3. The XTSS set-point depends on the temperature (Table 1). The XTSS 
concentration is increased from 3 000 to 4 000 g TSS m-3 during winter 
conditions (i.e. T < 15 ◦C) to establish a longer sludge retention time 

(SRT) and to maintain the nitrification capacity (Solon et al., 2017; 
Vanrolleghem et al., 2010). 

Table 2 shows that there is a reduction in N2O emissions due to the 
increase of the DO-setpoint, which decreases the nitrite concentration 
compared to A0 and leads to a reduction of N2O emissions through the 
ND pathway Fig. 2.a shows that there are two different trends in N2O 
emission rates depending on the season. On the one hand, the aeration 
demand is low during summer (day 254 to 357 and day 549 to 609), the 
DO ranges between 1 and 2 g O2 m− 3 and nitrite is accumulating in the 
reactors (Fig. 2g). This causes N2O emissions via the ND pathway of 
AOBs to increase (Fig. 2d). On the other hand, during winter conditions, 
aeration increases and nitrite levels decrease, which deactivates the ND 
pathway. However, the production of N2O by the NN and DEN pathways 
increases because the cascade NH4

+ control has difficulty in maintaining 
the desired NH4

+ concentration during winter (see Figs. 2d and 2g) 
considering the applied constraints in the DO set-point to avoid unre
alistic control applications (minimum of 0 g O2 m-3 and maximum of 6 g 
O2 m-3). The GHG emissions from the biotreatment (CO2 biogenic plus 
N2O from N-removal) and the total GHG emissions decreased (4.0% and 
3.6%, respectively), due to the decrease in N2O emissions. The variation 
of the waste flow rates during summer and winter led to an improvement 
in the AD performance, since more methane was produced (Eproduction 
increased), which however led to an increase in AD emissions due to 
increased combustion of biogas. 

EQI improved in A1 due to lower effluent N concentrations: TKN 
decreased from 5.8 to 3.6 g N m− 3 (A0 vs A1) and the TIV of ammonium 
decreased from 35.3 to 0.2%. The average P concentration remained the 
same and the total P concentration in the effluent decreased by only 0.1 
g P m-3 compared to A0. The OCI increased compared to A0 mainly due to 
increased aeration costs during the winter period (i.e. when the tem
perature is below 15 ◦C, between days 357 and 549 of the simulation), 
since a higher DO set-point is required to maintain the desired ammo
nium concentration (Fig. 2g). 

3.2.2. Control strategy A2: Fe chemical precipitation of PO4
3- 

Control strategy A2 aims at reducing the effluent P concentration via 
its chemical precipitation with Fe by adsorption and co-precipitation of 
phosphate species onto HFOs. A2 includes A1 and a PI controller that 

Table 2 
Performance evaluation criteria for each control strategy.  

Control strategy → A0 A1 A2 A3 A4 A5 units 

Emitted CO2 biogenic 7 467 7 510 7 616 7 470 7 569 7 527 kg CO2e d− 1 

Emitted N2O N-removal 5 237 4 681 4 685 4 312 3 987 3 832 kg CO2e d− 1 

N2O-EF total 2.10 1.33 1.35 1.27 1.17 1.11 % 
Total emissions biotreatment 12 703 12 191 12 301 11 782 11 556 11 359 kg CO2e d− 1 

AD emissions 4 366 4 462 4 528 4 252 4 238 4 261 kg CO2e d− 1 

Total GHG emissions 23 339 22 494 22 844 22 363 21 333 21 164 kg CO2e d¡1 

Direct GHG emissions 18 970 18 582 18 796 17 743 17 491 17 326 kg CO2e d− 1 

Indirect GHG emissions 4 369 3 912 4 049 4 620 3 842 3 837 kg CO2e d− 1 

Nkjeldahl 5.8 3.6 3.5 3.8 3.6 3.6 g N m− 3 

Ntotal 13.0 11.3 11.4 10.6 10.9 10.9 g N m− 3 

Pinorg 1.0 1.0 0.5 0.1 0.1 0.1 g P m− 3 

Ptotal 2.5 2.4 1.8 0.9 0.9 0.9 g P m− 3 

TIV SNH4 (= 4 g N m− 3) 35.3 0.2 0.6 0.2 0.1 0.1 % 
TIV Ntotal (= 18 g N m− 3) 0.2 0.0 0.0 0.0 0.0 0.0 % 
TIV Ptotal (= 2 g P m− 3) 40.5 34.1 20.0 0.3 0.3 0.3 % 
EQI 11 769 10 338 9 074 7 129 7 240 7 238 kg p.u. d¡1 

Eaeration 4 000 4 445 4 838 4 031 4 126 4 237 kWh d− 1 

Eproduction 
a 5 674 5 791 5 897 5 906 5 829 5 860 kWh d− 1 

SPdisposal 4 033 4 068 4 532 3 643 3 632 3 641 kg TSS d− 1 

QFeCl3 
b 0 0 88 0 0 0 kg Fe d− 1 

QMg(OH)2 
b 0 0 0 80 80 80 kg Mg d− 1 

Srecovered 
c 0 0 0 442 442 442 kg struv d-1 

OCI 11 864 12 306 16 109 10 045 10 224 10 362 –  

a Energy production. The electricity generated by the turbine, calculated as the energy content of methane gas. 
b Relative costs for FeCl3, Mg(OH)2 and recovered struvite are the same as in Solon et al. (2017). 
c Srecovered refers to recovered struvite. 
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regulates the FeCl3 addition in AER3 reactor to maintain the P concen
tration in AER3 reactor at the desired set-point of 1 g P m− 3 (Table 1). 
The average SPO4 concentration in scenario A0 already was 1 g P⋅m− 3, 
but high P peaks were observed in the effluent. The objective of A2 is 
mitigating these P peaks avoiding the high TIV = 40.5% observed. 

Regarding GHG emissions, total emissions in A2 increased slightly 
due to i) more biogenic CO2 was emitted: PAO activity decreased 
because there was less phosphate in the anaerobic reactor, resulting in a 
higher fraction of COD removed by heterotrophic biomass; this biomass 
produces more inorganic carbon than PAO when removing COD, ii) 
higher production of biogas and therefore higher emissions from the AD: 
the iron species enhance primary clarification and more COD is redir
ected to the AD system and iii) indirect CO2 emitted by the use of FeCl3. 
The observed N2O emissions were the same as in control strategy A1 
because the N fluxes were not affected by the addition of iron (see 
Table 2). 

A2 led to a lower concentration of P in the effluent and, consequently, 
the TIV of total P decreased from 40.5% with A0 to 20.0% with A2 and 
the EQI was reduced by about 23% (Table 2). The phosphate controller 
was able to reduce the SPO4 peaks in the AER3 reactor with the addition 

of Fe, compared to control strategy A0 (Table 2). However, the controller 
was not able to maintain the SPO4 at the desired set-point. The average 
FeCl3 flow rate throughout the evaluation period was 88 kg Fe/d, which 
led to a considerable increase of the operational cost, mainly due to the 
iron dosage (2400 $ (Ton Fe)− 1, (Solon et al., 2017)). 

3.2.3. Control strategy A3: Struvite recovery 
Control strategy A3 complements A1 by including P- (and N-) re

covery as struvite in the digester supernatant. The layout of the WRRF 
was modified by including a recovery unit (REC) based on struvite 
precipitation (see Figure S3 in Supplementary Information Section). The 
REC unit includes a crystallizer to support struvite precipitation, a 
storage tank for magnesium hydroxide (Mg(OH)2) and a dewatering unit 
(Kazadi Mbamba et al., 2016; Solon et al., 2017). A PI controller was 
added to control the effluent P from the recovery unit at a set-point of 50 
g P m-3 by manipulating the Mg(OH)2 flow rate (QMg(OH)2). 

GHG emissions from the whole WRRF decreased (Table 2). N2O 
emissions decreased slightly because the influent N load to the AS unit 
decreased due to struvite crystallization in the reject water stream and, 
thus, P- and N-recovery as struvite also had a potential benefit on GHG 

Fig. 2. Dynamic profiles of control strategies A1 (a, d, 
g), A4 (b, e, h) and A5 (c, f, i). (a, b, c): N2O emissions in 
the AS unit; (d, e, f): N2O production rates in AER2 
reactor and (g, h, i): nitrite, ammonium and DO con
centrations in AER2 reactor. A 3-day first-order expo
nential filter is used to improve visualization of the 
results. Negative values of the DEN pathway mean that, 
for the 4-step denitrification process, the rate of N2O 
reduction to N2 is higher than that of N2O production 
from NO. Additional dynamic profiles for all the control 
strategies are shown in section S4 of SI.   
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emissions due to more diluted streams. The struvite recovered was 442 
kg d− 1, which resulted in 99.8 kg P d− 1 (48.5% of the total P influent 
load) and 45.0 kg N d− 1 recovered (4.2% of the total N influent load), 
respectively. The reject water P load was reduced from 232.3 kg P d− 1 

(A1) to 11.2 kg P d− 1 (A3), which resulted in a 95% reduction in the 
influent P load to the biological reactors. 

Table 2 shows that the average effluent P concentrations in A3 were 
lower than those in strategies A0 to A2: the WRRF was able to discharge P 
below the legal limits most of the time (TIV of 0.3%) and EQI decreased 
by a significant 31% with respect to A1. Table 2 also shows that OCI 
decreased 18% compared to A1, i.e. struvite recovery is techno- 
economically feasible considering only the operational costs associ
ated with the addition of Mg and struvite revenues in a current market 
scenario. More struvite could be recovered by lowering the phosphate 
set-point of the controller, since there was still a surplus of 11.2 kg d− 1 of 
inorganic P available to be precipitated as struvite (Fig. 3a). However, 
this would imply a higher cost of Mg(OH)2 and with the selected setpoint 
it was enough to meet P discharge limits. Struvite can be precipitated in 
a wide range of pH (between 7 and 11) with an optimum pH range 
between 8.0 and 9.5. The addition of Mg(OH)2 was enough to increase 
pH from 7.1 to 8.3 (Fig. 3b) favouring struvite precipitation without 
requiring an additional aeration unit for CO2 stripping nor the addition 
of more alkalinity such as NaOH (Kazadi Mbamba et al., 2016; Solon 
et al., 2017). Further studies are required to assess the capital costs 
associated with struvite recovery and additional transport costs (these 
costs were not considered in the evaluation criteria). 

3.2.4. Control strategy A4: Ammonium & nitrite cascade controllers and 
struvite recovery 

Control strategy A4 aims at reducing GHG emissions with a particular 
emphasis on N2O emissions derived from biological N-removal. A4 ex
tends A3 with a cascade PI nitrite controller in AER2 reactor. Nitrite 
concentration was maintained at the desired set-point by manipulating 
the set-point of the DO controller in conjunction with the ammonium 

cascade PI controller. Both controllers calculated an adequate DO set- 
point and the maximum value was chosen (see Table 1 for the charac
teristics of the controllers). The set-point signal of both controllers was 
smoothened using a first-order exponential filter with a time constant of 
15 min to avoid numerical instabilities during solver integration. 

A4 led to the minimum GHG emissions with respect to the previously 
implemented strategies (A0 to A3): the N2O emissions were reduced by 
7.5% compared to A3. The implementation of the nitrite PI cascade 
controller reduced the N2O emissions during the summer conditions 
compared to A1 (Figs. 2a and 2b), since one of the substrates of the ND 
pathway, i.e. nitrite, was minimized (Figs. 2d and 2e). The N2O emis
sions during winter conditions remained the same as in A1 because the 
ammonium PI cascade was preferentially fixing the DO set-point. The 
nitrification capacity should be increased in order to further reduce the 
N2O emissions during winter by, for example, increasing the DO levels 
or the MLSS concentration, with the trade-off of further increasing the 
operational costs. 

A4 slightly increased the effluent N concentration in comparison to 
A3 (2.8% increase in total N compared to A3) due to more ammonium 
being nitrified in A4 compared to A3 (effluent TKN decreased by 5%) and 
the increase of effluent nitrate concentration. In this sense, the imple
mentation of ammonium and nitrite cascade controllers also slightly 
increased OCI by 1.8%, compared to A3, since the applied DO set-point 
was always the maximum of the ammonium and nitrite controllers and 
the aeration costs incremented by 2.3% compared to A3. The same 
amount of struvite was obtained as in A3 because the fluxes of P in the 
sludge line remained unaffected. Fig. 2h shows that during summer 
conditions (i.e. T above 15 ◦C) the DO set-point is mostly defined by the 
nitrite controller (NH4

+ is below the set-point of 2 g N m− 3 and NO2
−

concentration is around the set-point of 0.5 g N m− 3). The NH4
+

controller is only activated during the daily peaks when the influent N 
load is high (in summer the DO set-point is defined by the NH4

+

controller only 23% of the time). On the other hand, during winter 
conditions the DO set-point is defined most of the time (62%) by the 
NH4

+ controller to ensure complete nitrification. 

3.2.5. Control strategy A5: Ammonium & nitrous oxide cascade controllers 
and struvite recovery 

A5 is a modification of A4 that also aimed at reducing N2O emissions. 
New sensors have appeared in the market that enable the monitoring of 
soluble N2O concentration in the reactors with high accuracy and, thus, 
allow designing novel mitigation strategies. For this reason, A5 included 
a cascade PI controller based on the measurement and control of N2O 
concentration in AER2. In a similar way to A4, N2O and NH4

+ controllers 
calculated SO2 set-points for the DO controller and the chosen value was 
the maximum (Table 1). 

The GHG emissions obtained were the lowest amongst all the control 

Fig. 3. a) Total P effluent load of the recovery unit (returns to water line) for 
control strategies A1 and A3. b) Simulated pH values of the recovery unit 
influent prior and post magnesium addition for control strategy A3. A 3-day 
first-order exponential filter is used to improve the visualization of the re
sults. Raw data is shown in grey. 

Fig. 4. Simulated soluble N2O concentration in AER2 for A4 and A5. A 3-day 
first-order exponential filter is used to improve the visualization of the results. 
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strategies implemented (Table 2), with 13% reduction in N2O emissions 
compared to A1, and 1% reduction compared to A4. Fig. 4 shows the 
concentration of soluble N2O in AER2 predicted in A4 and A5. N2O 
concentration in A5 was much more constant due to the N2O PI cascade 
controller, which actively imposed the DO set-point when the N2O 
concentration in AER2 was too high. Only in the transition period from 
summer to winter (T around 15 ◦C), the cascade PI controllers of A4 
achieved lower N2O concentrations (and lower N2O emissions) than in 
A5. This was due to the N2O PI of A5 being deactivated and the DO 
setpoint was being fixed by the NH4

+ controller. On the other hand, 
during summer and winter, i.e. T above ~16 ◦C and T below ~14 ◦C, the 
cascade controllers of A5 achieved lower N2O soluble concentration in 
AER2 (Fig. 4) and lower global N2O emissions (Fig. 2b and c). These 
results also point to a simpler alternative strategy that could lead to 
reduction in N2O and GHG emissions. Reducing the NH4

+ set-point in 
strategy A1 or implementing a properly selected temperature-dependent 
NH4

+ set-point (similar to the TSS controller) would probably provide 
some further improvements, although the automated set-point selection 
of the closed-loop control would be lost in this case. 

The effluent concentrations and the TIV obtained for A5 were the 
same as for A4, therefore, a high effluent quality was obtained. However, 
the OCI was 1.3% higher than A4, since slightly more oxygen was 
required to maintain the N2O set-point: the DO set-point was set by the 
N2O cascade PI in A5 58% of the time whereas the DO set-point was fixed 
by the nitrite controller in A4 56% of the time. 

3.2.6. Comparison of the evaluation criteria for the control strategies 
implemented 

Fig. 5 compares EQI, OCI, biogenic N2O emissions and total GHG 
emissions for each control strategy implemented. The data are normal
ised considering 100% for the values obtained with the reference 
operation A0. All control strategies led to a more sustainable overall 
plant performance, since all of them obtained a better effluent quality (i. 
e. lower EQI) and lower GHG emissions compared to the default sce
nario. Regarding operational costs, the ammonium cascade controller 
(A1) increased the OCI by 4% compared to A0 due to the more intense 
aeration demands. The chemical P precipitation strategy (A2) increased 
the OCI by 36% compared to A0 due to the high cost of FeCl3 dosage. On 
the other hand, struvite precipitation in the reject water (control strat
egy A3) was the most successful strategy in terms of EQI and OCI, leading 
to a reduction in EQI of 40% compared to A0 and 31% compared to A1, 
and a reduction in OCI of 11% and 14% compared to A0 and A1, 
respectively. These improvements were due to: 1) the potential benefits 
of struvite sales and 2) the reduction in influent load of P and N, which 
led to lower aeration demand. Control strategies A4 and A5 obtained 
higher reduction in N2O emission from N-removal compared to A0. 

Control strategies A4 and A5 merged the ammonium cascade controller 
of A1 with another nitrite or soluble N2O cascade controller and the 
struvite precipitation of A3. Both control strategies led to higher oper
ational costs than A3, 1.8 and 2.8%, respectively, due to the increased 
aeration demand imposed by the cascade controllers. A5 seems to have a 
better performance since it led to a reduction of the emitted N2O in the 
biotreatment of 27% but at the expense of higher costs (i.e. 1.3% higher 
in A5 compared to A4). There is therefore a compromise between oper
ational costs and GHG emissions, since operational costs increased 
slightly in both strategies compared to A3, where the main difference 
between the objectives of A3 compared to A4 and A5 was the reduction of 
GHG emissions, and moreover, A4 and A5 achieved the same EQI. 

Finally, Fig. 5 shows that the largest reduction in total GHG emis
sions was 9% compared to A0, despite the fact that the main aim of the 
novel control strategies is N2O reduction. Other sources of GHG emis
sions were not reduced, such as indirect emissions (electricity, chemical 
usage, sludge storage and reuse) which represented about 20% of the 
total GHG emissions, and other direct GHG sources that were not 
controllable, such as biogenic CO2 and methane combustion, which 
together represented around 50% of the total GHG emissions (see 
Table S1 of Supplementary Information Section). 

4. Comparison with other works and limitations of the proposed 
methodology 

The proposed BSM2-PSFe-GHG plant-wide model and the imple
mented control strategies results represent an improvement to the cur
rent BSM modelling framework BSM2-PSFe (Solon et al., 2017) by 
adding the GHG production and emission during nutrient removal and 
recovery operational/control strategies. In this sense, the 
BSM2-PSFe-GHG provides a new tool that shows, in a plant-wide 
context, the trade-offs that different novel control strategies had on 
the sustainability of the WRRF. On the other hand, the BSM2-PSFe-GHG 
updates previous works addressed to characterize GHG emissions, with a 
particular emphasis on N2O emissions, which were designed for 
different plant-wide models (Flores-Alsina et al., 2014, 2011; Sweet
apple et al., 2014) by: i) adding the GHG emissions to the most recent 
BSM modelling framework capable of simulating nutrient recovery 
strategies (Solon et al., 2017), ii) adding all the known biological N2O 
pathways reported in the ASM2d-N2O model (Massara et al., 2018), iii) 
improving the calculation of CO2 emissions by including the general 
aqueous phase model (Flores-Alsina et al., 2015; Solon et al., 2017) and 
iv) updating the sources of direct and indirect GHG emissions (Flor
es-Alsina et al., 2011; Arnell, 2016). 

The results reported for each control strategy were unified into three 
main groups (EQI, OCI and GHG) as proposed by Flores-Alsina et al. 

Fig. 5. Comparison of the evaluation criteria for the control strategies implemented. Data is shown in relative percentage compared to control strategy A0.  
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(2014). This enabled a fairer evaluation of the different strategies, since 
none of the criteria depended on the others. Other works have proposed 
to unify the multicriteria into a single cost function by transforming 
effluent quality into monetary units by defining tariffs or taxes when the 
concentrations in the effluent are above a certain limit (Guerrero et al., 
2012; Stare et al., 2007), or applying a defined weighted average of the 
different evaluation criteria (Machado et al., 2020). The benefits of the 
latter approach are that control strategies are compared with a single 
index. In this work, a unified cost function could be defined if GHG 
emissions were also translated into monetary units, by imposing tariffs 
due to high emissions. Special attention should be paid to defining the 
different weights of the cost function, since an optimisation of the cost 
function could lead to high GHG emissions or to poor effluent quality 
with low operational costs. 

P recovery as struvite (strategies A3 onwards) showed an improve
ment in the operational costs due to the potential revenues from struvite; 
however, these results should be taken with caution as the assumed price 
of struvite (200 $ ton− 1 as in Solon et al. (2017)) is very uncertain. In 
addition, struvite recovery improved effluent quality due to reduced P 
and N loading in the sludge line recycles and that also decreases oper
ational costs. In fact, the OCI would also improve by 17.6%, compared to 
A1, assuming no benefit from struvite sales. Finally, P recovery as stru
vite also showed a reduction in GHG emissions from the AS unit, mainly 
due to the decrease in the N influent load. Other important assumptions 
were made in the crystallizer unit model, such as ideal solids separation 
and simplified precipitate dissolution (Solon et al., 2017). In addition, 
potential pipe clogging in the REC unit due to struvite precipitation was 
not considered and is known to be a major issue during P recovery as 
struvite. These limitations in the crystallizer model should be addressed 
in future work to obtain a better estimation of struvite recovery. 

One limitation of BSM2-PSFe-GHG is that capital expenditure was 
not included in the evaluation criteria and the comparison between 
control strategies was only subject to operational costs. Adding the 
capital costs of equipment, sensors, civil, electrical and piping will 
provide a more complete assessment (Machado et al., 2020; Ostace 
et al., 2013; Solon et al., 2017). For example, integrating P-recovery as 
struvite recovery implies a modification of the plant layout or adding a 
REC unit and all related equipment. That would result in a higher capital 
investment when retrofitting or upgrading the WRRF. On the other 
hand, P precipitation by Fe addition (control strategy A2), showed 
higher operational costs than A3 but this strategy “only” implies adding 
an extra dosing tank to the existing plant layout. 

The proposed control strategies showed the logical steps that a WRRF 
manager should take to improve effluent quality (A1 to A3) and, after
wards, to reduce GHG emissions (A4 and A5). However, each of the 
control strategies could be optimized:  

i) the location of the Fe addition in A2 can be optimised to reduce 
operational costs as already reported (Kazadi Mbamba et al., 
2019);  

ii) each of the set-point values can be optimized as in Guerrero et al. 
(2011) in order to decrease the EQI and OCI, and to minimise 
GHG emissions. For instance, the reduction of the NH4

+ set-point 
value from 2.0 to 1.0 g N m− 3 in A1 (Table 1) led to a 45% 
reduction in N2O emissions, while the OCI increased by 4% and 
the EQI by 14%.  

iii) N2O emissions in the AS unit could be reduced by adding DO, 
NH4

+, NO2
− or N2O sensors and controllers in each aerobic 

reactor to better control the WRRF as in Santín et al. (2017), who 
also aimed at reducing GHG emissions during wastewater treat
ment by using the BSM2G modelling framework (Flores-Alsina 
et al., 2011). This strategy enabled a more robust DO control and, 
therefore, a more robust control of N2O emissions. However, the 
addition of multiple controllers in each aerobic reactor results in 
a more complex control structure for the biological reactors and 

would increase the capital and maintenance costs of the associ
ated sensors, instruments and controllers. 

5. Conclusions 

In this paper, a novel plant-wide model that integrates the latest 
advances in energy and nutrient recovery modelling for an accurate 
description of N2O- and EBPR-related processes is proposed. Five control 
strategies are evaluated in view of optimising plant performance, 
minimizing GHG emissions and implementing nutrient recovery. The 
main findings of the work are:  

- Direct and indirect GHG emissions for CO2, N2O and CH4 were 
quantified in the whole WRRF.  

- Overall and individual mass balances quantify the distribution of C, 
N and P in the whole WRRF. 

- All five control strategies led to an overall more efficient and sus
tainable plant performance.  

- P-recovery as struvite led to decreased P and N concentrations in the 
biological reactors which reduced the N2O emissions in the bio
treatment by 17%, compared to the open loop configuration.  

- The lowest N2O and overall GHG emissions were achieved when 
ammonium and soluble nitrous oxide in the aerobic reactors were 
controlled, achieving a reduction of 24% and 27% for N2O, respec
tively, and 9% for total GHG, compared to the open loop 
configuration. 
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Groot, C., Bellandi, G., Nopens, I., Takács, I., Lizarralde, I., Jimenez, J.A., Fiat, J., 
Rieger, L., Arnell, M., Andersen, M., Jeppsson, U., Rehman, U., Fayolle, Y., 
Amerlinck, Y., Rosso, D., 2019. Modelling gas–liquid mass transfer in wastewater 
treatment: when current knowledge needs to encounter engineering practice and 
vice versa. Water Sci. Technol. 80, 607–619. https://doi.org/10.2166/ 
wst.2019.253. 

Arnell, M., 2016. Performance Assessment of Wastewater Treatment Plants. Lund 
University. 
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Torà, J.a, Lafuente, F.J., Baeza, J.A., Carrera, J., 2010. Combined effect of inorganic 
carbon limitation and inhibition by free ammonia and free nitrous acid on ammonia 
oxidizing bacteria. Bioresour. Technol. 101, 6051–6058. https://doi.org/10.1016/j. 
biortech.2010.03.005. 

Vaneeckhaute, C., Claeys, F.H.A., Tack, F.M.G., Meers, E., Belia, E., Vanrolleghem, P.A., 
2018. Development, implementation, and validation of a generic nutrient recovery 
model (NRM) library. Environ. Model. Softw. 99, 170–209. https://doi.org/ 
10.1016/j.envsoft.2017.09.002. 

Vanrolleghem, P.A., Corominas, L., Flores-Alsina, X., 2010. Real-Time Control and 
Effluent Ammonia Violations Induced by Return Liquor Overloads. Proc. Water 
Environ. Fed. 2010, 7101–7108. https://doi.org/10.2175/193864710798207503. 
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