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ABSTRACT 
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Abstract 
 
 
Along the years there have been large advances in Wastewater Treatment Plants 
(WWTP since now), from the basic treatment until applying the last technologies in 
automatic control systems, concentration measurements and mathematical modelling of 
wastewater treatments. About the last technologies it has to be stood out the fast 
advanced of computer systems, that let not only implement the most complex models of 
WWTP to check the evolution of the system in a short time, but also the possibility of 
integrating more complex controls, and it has to be stood the advanced of electronic 
systems too, that let apply the last sensor technologies, increasing the reliability and the 
device life in the abrasive ambient as it is the waste water. 
 
The difficulty in WWTP is the biological processes that take part within the vessels. 
Principally the growth of biological microorganisms that are the responsible of 
removing the organic matter dissolved in the wastewater. The main organic matter that 
is removed from wastewater is the carbon, the nitrogen and the phosphorus, although 
the phosphorus can be removed sometimes by chemistry processes, which are faster 
than biological processes. The problem in biological processes is its slow dynamic and 
the external perturbations, which can affect considerably the growth of biological 
microorganisms. 
 
Currently, the companies involved in WWTP offer automation tools and packages that 
let to apply automation techniques in WWTP easily. One of the most important devices 
offered is the controller, which will try to lead the progress of the wastewater by the 
right values and to ensure the process is getting the goals. It means that the controller is 
going to control the biological processes that take part in wastewater treatment applying 
the different control strategies programmed. 
 
Here there are three concepts all together; the controller, the biological process and the 
control strategy. First, the control strategy is tested using a model of the WWTP. After, 
it is implemented in the controller to apply it to the real WWTP to control the biological 
process. The problem appears when the control strategy is applied to the real process. It 
is impossible to predict all that is going to happen in WWTP, because there are 
unpredictable external disturbances (rain, storms, temperature, dry weather, snow, ice, 
etc) that can affect the biological processes. The biological processes are sensible to the 
external changes of the weather. It means that a control strategy tested in a simulation 
within ideal conditions can not be the suitable. 
 
The problem rises when the control strategy is not the suitable. The biological processes 
dynamic is really slow, a time constant of days, even weeks some times. Hence, it is 
possible to know when a control strategy is wrong after days or weeks, and then, is too 
late to try to control the process and one more week is needed to test another control 
strategy. All this time checking the control strategy means to spend a lot of resources. 
 
There is one possible solution that would save a lot time and would let to test more 
control strategies using less resources. The solution consists in building a complete 
model of the WWTP that is going to be controlled (it would be necessary a particular 
model for each WWTP), and to simulate it in real time at the same time as the evolution 
of the real WWTP. It would let the controller to have two kinds of data, the data 
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measured in the WWTP and the data from the simulation of the model. With these data 
the controller or the operator can compare and test the control strategies, so that if the 
data measured in the WWTP are far from the data calculated in the simulation, it is 
possible to guess that there is something wrong with the control strategy. 
 
Of course, this solution forces to implement a perfect model of the WWTP because the 
controller is comparing the data of the simulation of the model and the data of the 
WWTP, considering that the data calculated with the model are always right. 
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CHAPTER 1 
 
Introduction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

This chapter is a brief sight of the thesis; motivations, contributions, structure 
and objectives. 
After reading this chapter the reader knows the contents of each point in this 
thesis, so it’s important to know how to read it and where is each topic 
studied. 
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1.1 MOTIVATION 
 
The treatment of the waste water is a complex process, process compound of several 
biological processes sensitive to the external disturbances, as can be the storm, the rain, 
the snow, the ice; all the climatological changes can affect the wastewater treatment 
process. The sensitive biological processes and the disturbances of the weather make 
difficult the control of the wastewater treatment process. 
 
Through the new technologies the most avant-garde companies have tried to solve the 
problem of the complex control needed and the existing disturbances within the process. 
With the new sensors it is easier to measure the state of the process and try to design 
suitable control strategies. The possibilities of the new computers let this and more, but 
there is still one restriction: the dynamic of the biological processes. 
 
With the new advances of the techniques sometimes it is forgot that the new techniques 
cant change the process, they are only developed to control it, to get a stable and 
controllable process. The dynamic of some biological process are so slow, it means that 
the results of an action control will be observed a long time after applying it. This 
difficult the control of the process more than it seems at the beginning, because when 
the controller tries to solve the mistakes of the strategies or the effect of the disturbances 
it is too late, and the process need double time to became stable again. 
 
The task group formed by “Veolia Water System” (krüger, in Copenhagen, Denmark) 
and the department of “Industrial Electrical Engineering and Automation (LTH, Lund, 
Sweden) was formed to improve the wastewater treatment processes using sophisticate 
techniques to model the whole process including the sensors model, the controller 
model and the plant model. Within the group rose the idea of simulating the wastewater 
process plant in real time. What does this idea mean? How can the real time simulation 
of the WWTP improve the behaviour or the control of the plant? 
 
The answer to these questions is the motivation of this thesis. If it is possible to 
implement a perfect model of the WWTP and the controller that is being applied in the 
real WWTP, and to start the simulation of the process from the values of the data 
measured in the real plant, it would be possible to have the progress of the WWTP at 
the same time as the progress of the model implemented, and it would be easy to 
compare the values of the state variables of the simulation and the state variables of the 
real process. Comparing these values would be suitable to find disturbances in the 
process or important features of the plant that are not included in the model used usually 
to check the control strategies in simulation time. By the other side, the values of the 
simulation in real time would let to see the progress of some state variables that the real 
measurements can not let due to the characteristics of the sensor: the noise, the error, the 
precision, etc. 
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1.2 OBJECTIVES 
 
In the point before has been discussed the motivation of the present thesis, but there is 
not enough with motivations to developed a thesis. The motivation is the beginning, the 
main idea to solve a problem, to improve a process, to do anything. 
 
The motivation says that it would be a good idea to simulate the model of the WWTP at 
the same time that the plant is working, with the same conditions, the same value of the 
state variables, the same control strategy, and after, to compare the results of the 
simulation and the measurements of the process. But now the motivation has to be 
translated to objectives, which will represent a concrete aims. 
 
If we start to analyze the motivation, the purpose is to simulate a model while the 
WWTP is working. So the first objective will be the implementation of an application to 
simulate the model of the WWTP. 
 
The controller has to compare the results of the simulation and the measurements of the 
WWTP. It points that it is need a communication between the application developed 
and the controller of the WWTP. 
 
The application is simulating the model of the WWTP at the same time that the real 
plant is working, and the controller is transferring data from the real process to ensure 
the model of the simulation and the real plant have the same conditions. So not is only 
needed a communication between the application and the controller, the synchronization 
is needed too. 
 
At last, the most important is the model. The model of the WWTP has to be developed. 
There are a lot of possibilities to implement a model of the WWTP, and only to model 
one part of the plant can be a master thesis. Here in this thesis in implemented the 
model of the batch process (see chapter 2 to know what a batch process is) in one 
vessel. From the model exposed is possible to implement the full model of the 
secondary treatment in WWTP, but it will not be the aim of this thesis. 
 
Summarising, the objectives of the present thesis are: 
 

• Implementation of an automatic application to simulate a model of the WWTP 
in real time. 

• To program the communication and the synchronization with the controller. 
• To model batch process in one simple vessel and implement it. 
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1.3 CONTRIBUTIONS 
 
There have been named the objectives of the thesis to get improve the control in 
wastewater treatment plants. To get these objectives is join to the techniques and 
applications that are going to be used for getting them. 
 
The whole code programmed in this thesis and the user interface of the application has 
been programmed within Matlab package toolbox. Matlab is a powerful application that 
let the researchers to implement, simulate, check, program, control near all the things. 
There are a big number of packages to complement Matlab and let the user to execute 
different things or processes sharing the same workspace, thing that allows interconnect 
implemented applications in Matlab and simulations that are running at the same time, 
without translating the data from one application to another. 
 
The thesis has each chapter divided in two virtual parts; the first one explain the abstract 
discussion of the topic that is going to be developed. After the abstract discussion, the 
second part is the implementation of the topic discussed in a real and operative code. 
 
Starting from the paragraphs before, the contributions can be understood as: 
 

• The design of an automatic application that simulate the model of the real 
WWTP in real time. 

• The implementation of the automatic application in Matlab. 
• The communication of the application with the controller through the Ethernet 

network. The basis and the implementation in Matlab. 
• The synchronization of the controller and the implemented application, the 

design of several possibilities and the posterior implementation of it. 
• The design of the batch process model, with the evolution of the equations along 

all the phases, and the translation of the equations into code to implement the 
model. 

 
The contributions have been presented as independent works, but they can be read as a 
main big contribution, the contribution of implementing an application to get the 
combination between the abstract part of the control and the real part of the control in 
the process working together. 
 
The abstract part would be the implementation of the model of the process that is going 
to be controlled, all the part of the code programmed dedicated to model and simulate 
the WWTP plants. And the real part would represent all the structures and devises that 
form the WWTP, the controller, the sensors, the actuators. 
 
The implementation of this application is not the substitute for the first simulation and 
testing of the control strategies before applying it, it is like an automatic test of the 
control strategy in real time, a test to verify the control of the WWTP while it is 
working. 
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1.4 OUTLINE OF THE THESIS 
 
The distribution of the thesis try to get the better way to understand the topic developed 
in. It tries to introduced and explain all the concepts used along the thesis, and to give 
the necessary bibliography to look for extra information if it is necessary for the reader, 
not only to better understanding the thesis, but also to increase the given information in 
the present work. 
 
The thesis is divided in four parts: 
 

1. Introduction. 
2. Modelling the Wastewater Treatment Plant in Matlab. 
3. Appendixes. 
4. Bibliography. 

 
Each part is divided in chapters that expose the topics developed along the thesis. The 
first and the second part form the work of the thesis, and the third and fourth part are 
complementary to read more about the topics developed in the first and second part. 
 
The first part is an introduction about wastewater treatment processes, what they are, 
how to model, the parts of a WWTP plant, the previous knowledge to better understand 
the thesis. This part is divided in two chapters: chapter 1 and chapter 2. The chapter 1 
is the current chapter. The chapter 2 is an introduction about wastewater treatment 
plants, the description of the process, automation in WWTP and the basis of modelling 
WWTP. 
 
The second part is that we can call the work developed. There are three chapters: 
chapter 3, chapter 4 and chapter 5. The chapter 3 contains the design and 
implementation of the main application and the user interface. In chapter 4 is discussed 
and programmed the communication with the controller and the database and the 
synchronization with the controller. In chapter 5 is designed and programmed the batch 
process model in Matlab. 
 
The third part contains the appendixes to the chapters of the first and second part, and 
the last part is the bibliography used to develope the thesis. 
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CHAPTER 2 
 
Wastewater Treatment Processes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Previous to the full report of the project presented in this thesis it is essential 
a brief explanation about wastewater treatment processes, what is that, 
basic modelling and automation within it. 
In the pages below it is made a description about wastewater treatment 
processes, giving more details of the second treatment in the plant. After it, a 
brief introduction about automation in wastewater treatment and finally the 
basic modelling in wastewater treatment plants is presented. 
In this chapter is presented only a basic idea about description, automation 
and modelling wastewater treatment, for further knowledge it is the possibility 
of checking the chapter 7 (“Appendix of CHAPTER 2”) and the bibliography. 
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2.1 PROCESS DESCRIPTION 
 
There are four disciplines involved in wastewater treatment processes, and we need all 
of them to make work the wastewater plant. In the figure below there is a schema of 
these disciplines: 
 

 
 

figure 1: disciplines involved in wastewater treatment 
 
The process starts when wastewater is collected in a sewer system and transported to a 
plant for treatment prior to disposal (hydraulic discipline). Once the wastewater arrives 
to the treatment plant it has to pass through three main treatments: 
 

 
 

figure 2: main treatments in wastewater treatment plants 
 
The primary treatment is the simplest one, and the most of times it consists in a group 
of screens and primary settler to remove the largest rejects (plastic bags, food and 
another solid products) and to skims off floating greases and oils. After this first 
treatment it is the secondary treatment, where it takes part the biological reactions, 
chemical precipitation, nutrient mass transfer, biomass growth and settling and 
clarification; it is called Biological Nutrient Removal (BNR). The last treatment, 
tertiary treatment, is a group of filters and membrane techniques and, this part of the 
plant can change considerably, it depends of the final use of the e-fluent water (human 
consume, industry use, river recirculation, etc); this treatment attempts to limit the 
micro-organisms and other pathogens in the treated water. 
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All the work of this thesis has been developed about modelling of secondary treatment, 
and below it is showed the scheme of this treatment: 
 

 
 

figure 3: Layout for the secondary treatment in a continuous wastewater treatment plant 
 
We can find in the secondary treatment the following mechanisms: 
 

 HYDRAULICS: Wastewater flows through the treatment plant by the force of 
gravity if it is possible, and pumping the wastewater to lift it from the sewer to 
the plant inlet. The mechanisms which take part are the vessels, which are 
usually concrete tanks of various shapes and sizes with controlled levels, and 
pumps which are almost used to recycle mixed liquor and sludge and the small 
sludge wastage streams. 

 NUTRIENT REACTIONS: The biological reactions involved are: removal of 
organic carbon, removal of nitrogen (nitrification and denitrification) and 
removal of phosphorus. The reactions are showed below: 
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Carbon removal and nitrogen removal are the most common process modelled 
and used in wastewater treatment. The first one is easily understood, but the 
complexity of nitrogen removal makes it was necessary a brief explanation of it. 
 
Predenitrification AS process 
 
Many modern treatment plants utilising AS have biological nitrogen removal. 
Biological nitrogen removal relies on nitrifying and denitrifying bacteria for 
removal of nitrogen in two steps (as it is showed in figure 4): nitrification and 
denitrification. Two different types of bacteria cultures are used to achieve 
nitrification and denitrification: 
 

 autotrophic bacteria uses inorganic carbon as carbon source. 
 heterotrophic bacteria uses organic carbon as carbon source. 

 
In the nitrification step, ammonium is oxidised to nitrite and then nitrate 
(nitrification) by autotrophs. In the second step, nitrate is reduced to nitrogen gas 
(denitrification) by heterotrophs. A difficulty with this procedure is that the two 
steps require different ambient conditions to function effectively. The 
nitrification step needs dissolved oxygen, whereas the denitrification step 
requires an oxygen free environment. A solution to this is to divide the reaction 
volume into separate compartments in which the conditions are different. 
A relatively common configuration for nitrogen removal is the predenitrification 
process. The first reactor is anoxic, that is no dissolved oxygen is present, and is 
followed by an aerated volume. This may appear somewhat backwards as the 
nitrification is done after the denitrification. However, the denitrification process 
requires readily biodegradable organic substrate and this is normally present in 
the influent wastewater. If the denitrificaiton has to take place after the 
nitrification (i.e. a post-denitrification configuration), most of the organic 
substrate will have been consumed and external carbon will have to be added. 
Thus, to provide the anoxic reactor with nitrate, a recirculation stream is 
introduced from the last reactor to the first reactor (sometimes the sludge 
recirculation is sufficient and no internal recirculation is needed). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Internal nitrate recirculation 

Sludge recirculation 

ANOXIC 

AEROBIC

figure 5: Basic principle of the 
predenitrification 
configuration 
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 CHEMICAL PRECIPITATION: Sometimes it is possible to remove the phosphorus 

using chemical precipitation instead of nutrient reactions; it is faster and more 
economically favourable. This mechanism is made by the addition of aluminium 
or iron compounds such as alum, pickle liquor, ferric hydroxide or ferric 
chloride. 

 
 NUTRIENT MASS TRANSFER: this mechanism occurs in biological reactions and 

the purpose is to get oxygen from gaseous air into water, and it is promoted in 
stirred vessels. 

 
 BIOMASS GROWTH: It means the maintenance of the right proportions of 

different species of organisms within the sludge in an active state. The aim is to 
avoid the growth of harmful organisms. 

 
 SETTLING AND CLARIFICATION: Finally it takes part the separation of insoluble 

particles form water. It is used the gravity force, thus the insoluble particles 
which are denser than the water go down the settler and they form the sludge 
(see figure 3). 

 
 
2.2 AUTOMATION IN WASTEWATER TREATMENT PLANTS 
 
Online measuring and data collection systems 
 
The number of measurable entities increases as research on and development of 
instrumentation and sensors progress. A difficulty in online measuring is the aggressive 
environment in which the sensors must function and that many of the interesting entities 
must be derived from reaction analysis in batch or continuous experiments. 
Interesting development in the sensor area involves new types of sensors such as sensor 
arrays or soft sensors, where variables are deduced from a number of measurements, 
biosensors that utilise (immobilised) cultures of bacteria, and microbial sensors for 
measuring inhibitors and substrates. 
 
In the last few years, a wide variety of biosensors have been developed. Within this 
large field, microbial sensors stand out because of their multi-receptor behaviour. In 
fact, these results in rather poor selectivity, but a great variety of substances can be 
detected simultaneously with one sensor. It is for this reason that microbial sensors are 
preferred for measuring environmentally relevant summary parameters (such as 
Biochemical Oxygen Demand) or for detecting inhibiting and toxic effects. 
Compared to enzyme sensors, their higher stability and lower production costs are 
additional arguments for using microbial sensors for environmental analyses.  
With rapid, direct, and exact detection of these parameters with microbial sensors, it 
will be possible to make the momentary situation in a water or wastewater stream 
visible. This results in new possibilities for the control of sewage plants.  
 
The data collecting systems differ from plant to plant and from supplier to supplier but 
common sampling rates (in Sweden) are 10 and 12 per hour, i.e. every sixth and fifth 
minute, respectively. The sample values are often an average over the sampling period, 
during which some sensors continuously deliver values and others perhaps only once a 
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minute. All sensors are afflicted with time lags, but normally these are short in 
comparison to the dominant time constants of the process. 
 
The most often measurements in wastewater treatment are aerobic growth of 
heterotrophs, anoxic growth of heterotrophs, aerobic growth of autotrophs, ‘decay’ of 
heterotrophs, ‘decay’ of autotrophs, ammonification of soluble organic nitrogen, 
‘hydrolysis’ of entrapped organics and ‘hydrolysis’ of entrapped organic nitrogen in 
biological processes, and settler velocity, suspend solids concentration, feed volumetric 
flow rate, effluent volumetric flow rate and underflow volumetric flow rate in settler 
processes. 
 
Control handles 
 
There are limitations to what can be controlled in a wastewater treatment plant. This is 
due to a lack of powerful control handles in comparison to the relatively severe 
disturbances that varying influent wastewater characteristics impose on the system. 
A majority of the manipulated variables are macro variables (DO and some of the 
chemical additions excepted) whereas some of the major mechanisms that drive the 
processes are on the micro level. Moreover, these mechanisms are often coupled. Thus, 
most control handles must be considered rather blunt and often a combination of control 
handles is required to reach a certain control objective. 
 
Environmental control increasingly requires the use of analytical methods, which should 
be uncomplicated and thus able to operate at low cost and with minimal maintenance. 
Miniaturized components should make the devices suitable for mobile investigations. 
They should also be capable of carrying out rapid measurements. Biosensors fulfil these 
requirements due to their simple principle of operation. 
 
In biological process, soluble inert organic matter (SI), readily biodegradable substrate 
(SS), particulate inert organic (XI), slowly biodegradable substrate (XS), active 
heterotrophic biomass (XB,H), active autotrophic biomass (XB,A), particulate products 
arising from biomass decay (XP), oxygen (SO), nitrate and nitrite nitrogen (SNO), 
NH4+NH3 nitrogen (SNH), soluble biodegradable organic nitrogen (SND), particulate 
biodegradable organic nitrogen (XND) and alkalinity-molar units (SALK), and in 
activated sludge, suspend solids concentration and sludge concentration are examples 
of the state variables we can control in a wastewater treatment plant. 
 
STAR controller (Superior Tuning And Reporting) is an example of commercial 
controller for wastewater treatment plants distributed by Krüger (VEOLIA group); the 
one used to developed the thesis. Its main performances are: 
 

• Supervisory control system for WWTP 
• Control modules for different unit processes 
• Rule-based control 
• Data screening and reconciliation system 
• Web-based interface 
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Below it is showed the network interface of the STAR controller. Through this software 
interface it is possible to check the values measured by the controller from every place 
if there is an Ethernet connection. 
 

 
 

figure 6: Ethernet interface of the STAR controller 
 
Process dynamics 
 
A wastewater treatment process consists of many sub-processes with dynamics of 
different time scales. Some variations are slow, for instance sludge dynamics and 
temperature, with time scales of days, week and even months. The daily variation in 
influent flow rate and substance concentrations is perhaps the most dominant variation. 
However, there are even faster dynamics present, such as dissolved oxygen (DO) 
dynamics and hydraulic shocks. The different time scales make it difficult to analyse the 
cause-effect relationships, especially when recirculation and other feedback loops are 
present. Therefore, it is important to establish the dynamic behaviour of the involved 
processes and adapt the analysis methods in accordance to the dynamics. 
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It is important to project out the different dynamics within the sub-processes in 
Biological Nutrient Removal. It is possible to divide the process dynamic in six sub-
processes as well as it was showed before in “process description”. Thus these are 
different dynamics: 
 

 HYDRAULIC DYNAMIC: Commonly the exponential lag characterizes the 
hydraulic dynamic, and the size of the lag depends on the weir geometry. 
In spite of this, it is usual to find different time constants. In instance intensive 
variable, concentration or temperature, dynamics for flow through vessels are 
characterised by the mean residence time (vessel volume divided by flow rate). 
This parameter is commonly known as the hydraulic residence time or HRT. The 
spread of the residence time depends on the flow patterns within the vessel 
which will fall somewhere between plug flow, no spread giving a dead time 
response, and perfectly mixed a first-order lag with time constant equal to the 
residence time. The time constant is typically of the order of minutes to hours. 
Flow down pipes causes a transport delay for intensive variables such as nutrient 
concentrations. The dead time is equal to pipe length divided by liquid velocity. 
These are unlikely to be significant with the possible exception of return 
activated sludge which could experience dead times of a few minutes, and 
poorly designed analyser sampling systems which have been known to have 
dead times of hours. 
Recycle flows slow down the dynamics of intensive variables. For a well-mixed 
vessel, the time constant of the dynamic response is (R+1) times the mean 
residence time of the vessel, where R is the recycle ratio (recycle flow rate 
divided by inlet flow rate). 

 
 NUTRIENT REACTIONS: Nutrient removal by the biomass in a well-mixed 

reactor effectively speeds up the dynamics for that nutrient concentration 
compared to the residence time of the tank. If the effluent concentration is one 
tenth the influent concentration, the time constant is one tenth the reactor 
residence time. It follows that time constants for nutrient concentrations will be 
within an order of magnitude of the reactor residence times, and generally 
smaller, depending on nutrient removal ratios and recycle ratios. Thus time 
constants of the order of 1 to 10 hours could be expected. Recirculation of 
nitrate in a pre-denitrification system is a fast process, since the flow rate is so 
high. Consequently the nitrate concentration can be changed within minutes. 

 
 CHEMICAL PRECIPITATION: The most important aspect of chemical 

precipitation is to achieve rapid and complete mixing. Once the chemicals are 
mixed with the wastewater, the dynamics are very fast, responding in a matter of 
seconds. 

 
 MASS TRANSFER: The transfer of oxygen from a gaseous form to a dissolved 

form takes place within a time scale of 15-30 minutes. A change in air flow rates 
therefore does not immediately affect the dissolved oxygen concentration in the 
aerator. The respiration rate may change within minutes due to changes in 
substrate loading or toxic inputs. This will result in DO changes that take place 
in the time scale determined by the DO dynamics. 
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 BIOMASS GROWTH: If biomass growth and sludge wastage are in balance, the 

sludge dynamics time constant is equal to the solids residence time (SRT). The 
SRT is the solids hold-up divided by the solids wastage, where the suspended 
solids in the effluent should be neglected with great care. This is typically of the 
order of several days for the activated-sludge process. Significant changes in the 
proportions of different species within the biomass could take longer, maybe 
several weeks for slow growing species. 

 
 CLARIFICATION: The flow patterns in a clarifier will approximate plug flow 

upwards for clarified effluent and plug flow downwards for return activated 
sludge. This would typically involve a dead time of 1-4 hours in each stream. 

 
Summarising, it is possible to distinguish three kind of dynamics in wastewater 
processes attending to the speed; fast dynamic (flow dynamic and dissolved oxygen 
dynamic), medium dynamic (concentration dynamic and nutrient removal) and slow 
dynamic (biomass growth). 
 
 
2.3 MODELLING OF WASTEWATER TREATMENT PROCESSES 
 
First, it is necessary to leave clear some questions about the nomenclature in going to be 
used in this point, in order to understand the equations shown below: 
 

S, used for concentrations of components dissolved in wastewater 
X, used for concentrations of solid components in wastewater 
V, used to refer to the tank volume (it is assumed is constant) 

inq or outq , referred to the input and output flow rate 
 
After this brief introduction, how modelling wastewater treatment plants is exposed and, 
as it was shown before, can be divided in different groups: 
 
Modelling mass transfer 
 
Mass transfer is defined as the movement of a component from one phase to another. 
The main mass transfer in wastewater treatment is the transfer of oxygen from the air 
into the water to be used by the biomass. 
The mass transfer is represented as: 
 
  )( , OsatOLa SSaKr −=        (2.1) 
 
, where:  ‘ra’ is rate of oxygen transfer 
  ‘KL’ is the mass transfer coefficient 
  ‘a’ is the air water surface area 
, and  ‘SO,sat – SO’ is the concentration difference 
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In that way, if we consider a well mixed tank with constant volume, chemical oxygen 
demand (COD) and water, without taking care about the transfer of oxygen, the 
component mass balance is the one below: 
 

OoutinOin
O SqSq

dt
VSd

−= ,
)(       (2.2) 

 
, but now the new oxygen mass balance in the tank is: 
 

  VSSaKSqSq
dt
VSd

OsatOLOoutinOin
O )(

)(
,, −−−=    (2.3) 

 
Modelling biological nutrient removal 
 
In biological nutrient removal there are involved different processes; carbon removal, 
nitrogen removal and phosphorus removal. And it is pertinent to add the modelling of a 
single nutrient, because it has to be modelled not only the nutrient removal but also the 
biomass present in wastewater. By the other side it is assumed a well-mixed tank for 
modelling biological nutrient removal. 
 

 MODELLING A SINGLE NUTRIENT: In the simplest example there are involved 
three components; water, nutrient and biomass. The microorganisms absorb the 
nutrient from the wastewater using it to grow and to produce more biomass. We 
assume constant volume tank and constant density so: 
 
Mass balance: inout qq =        (2.4) 

Biomass balance: VrXqXq
dt

VXd
BoutBoutinBin

B +−= ,,
)(

   (2.5) 

Nutrient mass balance: VrSqSq
dt
VSd

NoutNoutinNin
N −−= ,,

)(
  (2.6) 

 
, where: rB is reaction rate for biomass growth 
  rN is nutrient reaction rate  
  XB is biomass concentration 
  SN is nutrient concentration 

 
 MODELLING CARBON REMOVAL: Now let to go further, and to consider four 

components; water, soluble carbon, oxygen and heterotrophic biomass. It is the 
simplest example of biological treatment of wastewater. There are the balances 
shown below: 
 

Heterotrophic biomass balance: VrXqXq
dt

VXd
HoutHoutinHin

H +−= ,,
)(

 (2.7) 

Carbon mass balance: VrSqSq
dt
VSd

SoutSoutinSin
S −−= ,,
)(

   (2.8) 

Oxygen mass balance: VSSaKSqSq
dt
VSd

OsatOLOoutinOin
O )(

)(
,, −−−=  (2.3) 
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, where: rH is reaction rate for biomass growth 
  rS is nutrient reaction rate 
  XH is biomass concentration 
  SS is soluble carbon nutrient concentration 

 
 MODELLING NITROGEN REMOVAL: The main description of this process was 

made before, and it was exposed there are two steps for nitrogen removal: 
 

1. Aerobic growth of autotrophs 
2. Anoxic growth of heterotrophs 

 
Now there are two biological processes; carbon removal and nitrogen removal. 
The balances of the different concentrations to model the nitrogen removal are: 
 

Autotrophic biomass balance: VrXqXq
dt

VXd
AoutAoutinAin

A +−= ,,
)(

 (2.9) 

Ammonia nutrient mass balance: VrSqSq
dt

VSd
NHoutNHoutinNHin

NH −−= ,,
)(

(2.10) 

Nitrate mass balance: d(VSNO )
dt

= qinSNO,in − qoutSNO − rNOV   (2.11) 

 
, where: rA is reaction rate for autotrophic biomass growth 
  rNH is reaction rate of ammonia nutrient 
  rNO is reaction rate of nitrate 
  XA is biomass concentration 
  SNH is soluble ammonia nutrient concentration 
  SNO is nitrate concentration 

 
 MODELLING PHOSPHORUS REMOVAL: In the figure 4 it is shown the process of 

phosphorus removal. It is evident the phosphorus removal is a complex process 
for modelling, but there are for basic mechanisms to describe it: 
 

1. Fermentation of fermentable COD, SF, to volatile fatty acids (VFA), SA, 
which can be utilised by the PAO microorganisms to store carbon as 
polyhydroxyl-alkanoates (PHA), XPHA. 

2. Phosphorus release from poly-phosphate (PP), XPP, into solution at the 
same time as the VFA is converted to PHA. 

3. Phosphorus uptake from solution to PP utilising the PHA and dissolved 
oxygen, SO. 

4. Growth of the PAO biomass, XPAO, also utilising the PHA and dissolved 
oxygen. 

 
And this model of the phosphorus removal process introduces five more mass 
balances and states: SA, SPO4, XPHA, XPP, XPAO. 
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The additional mass balance is integrated with the nitrogen removal model, but 
it is replaced the single component balance (SS) by two component balances (SA 
and SF) and using the kinetic expressions shown in the tabular forms in appendix 
I (appendixes to CHAPTER 2). 
 

 ACTIVATED SLUDGE MODEL Nº1 (ASM1): The Activated Sludge Model No.1 
(ASM1) was developed by a task group work in collaboration with the 
International Water Association (IWA, formerly IAWQ and IAWPRC) in 1983 
and published in 1987. 
The state variables included in the ASM1 are listed in the table below: 
 

The state variables of the ASM1 model 
Symbol Variable 
  
SI Inert organic matter 
SS Readily biodegradable substrate 
XI Particulate inert organic matter 
XS Slowly biodegradable substrate 
XB,H Active heterotrophic biomass 
XB,A Active autotrophic biomass 
XP Particulate product from biomass decay 
SO Dissolved oxygen 
SNO Nitrate and nitrite nitrogen 
SNH Ammonia nitrogen 
SND Biodegradable organic nitrogen 
XND Particulate biodegradable organic nitrogen 
SALK Alkalinity 
  

 
Table 1: state variables of the ASM1 model. 

 
And to model the total suspended solids (TSS), which is a normally measured, in 
wastewater treatment plants, it is used the following conversion: 
 

TSS = 0,75(XI + XP + XS) + 0,9(XB,H + XB,A)   (2,12) 
 
There are eight different dynamic processes in the ASM1 model for describing 
the dynamics: 
 

1. Aerobic growth of heterotrophs 
2. Anoxic growth of heterotrophs 
3. Aerobic growths of autotrophs 
4. Decay of heterotrophs 
5. Decay of autotrophs 
6. Ammonification of soluble organic nitrogen 
7. Hydrolysis of entrapped organics 
8. Hydrolysis of entrapped organic nitrogen 

 
Phosphorus removal is not modelled in ASM1 model, the one used in this thesis 
for programming batch process with Matlab as it will be shown later. 
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Modelling hydraulics 
 
To begin, it is assumed there are no waves on the surface, so the total flow rate over all 
the weirs with an arbitrary shape is: 
 

  ∫=
h

zout dzzvzbNq
0

)()(       (2.13) 

 
, where: vz(z), is the velocity of the flow rate 
  b(z), is the shape of the weir 

z, is the translocation from the surface of the weir until where we are 
measuring the velocity 

In the flow-sheet below it is shown all of them: 
 

figure 7: weir geometry 
 
 
 
 
 
 
 
 
 
 
 
 
 
The liquid velocity is calculated from Bernoulli equation: 
 

  2
0 2

1
zstat vgzpp ρρ −+=       (2.14) 

 
, where ‘ρ’ is the density and ‘g’ is the gravity acceleration. It is assumed the pressures 
are equals, so pstat = p0 and the velocity of the flow rate is: 
 
  gzzvz 2)( =         (2.15) 
 
If the equation 2.15 is inserted into equation 2.13 the total flow rate becomes: 
 

  ∫=
h

out dzzzbgNq
0

)(2       (2.16) 
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Modelling settling and clarification 
 
For modelling settling and clarification is used the one-dimensional layer model. It only 
describes the settling process along the vertical axis, leaving cross-sectional area and 
depth as design parameters. 
The main assumptions in this model were made by Stenstrom in 1975: 
 

• The continuous thickener does not exhibit vertical dispersion. 
• The concentration of suspended solids is completely uniform within any 

horizontal plane within the settler. 
• The bottom of the solids-liquid separator represents a physical boundary to 

separation and the solids flux due to gravitational settling is zero at the bottom. 
• There is no significant biological reaction affecting the solid mass concentration 

within the separator. 
• The mass flux into a differential volume cannot exceed the mass flux, the 

volume is capable of passing, nor can it exceed the mass flux which the volume 
immediately below it is capable of passing. 

• The gravitational settling velocity is a function only of the suspended solids 
concentration except when the assumption immediately above is violated. 

 
The model was extended to include the clarification zone (not included by Stenstrom) 
by Vitasovic in 1985. The settler was divided into ‘n’ layers with the feed entering in 
layer ’m’. It is assumed the feed is instantaneously and completely distributed 
throughout the feed layer. 
Thus, the region below the feed level is modelled according to Strenstrom’s approach 
and the clarification zone according Vitasovic’s extension of the model. The equations 
of the model are exposed below: 
 
Concentration in each layer (not valid for feed layer and thickening layer) in the settling 
zone: 

  
( ) ( ) ( )

i

isisisisiidni

z
JJJJXXv

dt
dX 1,,1,,1 ,min,min +−− −+−

=   (2.17) 

, where: Js, is the settling flux 
  zi, is the height of layer i 

vdn is defined by: 
A

Q
v u

dn = , where ‘Qu’ is the underflow volumetric flow 

rate and ‘A’ is the cross –sectional area of the settler. 
 
The concentration for the bottom layer is: 

  
( ) ( )

n

nsnsnndnn

z
JJXXv

dt
dX ,1,1 ,min −− −−

=     (2.18) 
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In the clarification zone, from layer ‘2’ to layer ‘m-1’ (where ‘m’ is the feed layer), it is 
given the following equation: 
 

  
i

iclariupiclariupi

z
JJJJ

dt
dX ,,1,1, −−+

= −+     (2.19) 

 
, where the fluxes are defined as: 
 
  iupiup XvJ =,         (2.20) 
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And the equation for the feed layer is: 
 

  
( ) ( )

m

msmsmdnupmclar
ff

m

z

JJXvvJ
A
XQ

dt
dX 1,,1, ,min +− −−−+

=  (2.23) 

 
, where: ‘Qf’ is the feed volumetric flow rate to the settler 

‘Xf’ is the suspended solids concentration of the feed. 
 
The equation to describe the top layer becomes:  
 

1

1,1,2,1

z
JJJ

dt
dX clarupup −−

=       (2.24) 

 
In figure 7 it is shown graphically a general description of the one dimensional layer 
model. 
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figure 8: General description of the traditional one-
dimensional layer settler model (Jeppsson; 1996) 

 
It has been shown the one dimensional layer settler model and all the equations to 
define it, but it hasn’t said anything about the settling velocity. The determination of an 
appropriate settling velocity model is indispensable for modelling the secondary 
clarifier using the solids flux theory. In the model used in this thesis it is chosen the 
empirical double-exponential settling velocity function proposed by Takács et al. 
(1991): 
 

( )( ))()(
00

minmin(,'min,0max XXrXXr
s

ph eevvv −−−− −=    (2.25) 
 
, where: v0’ is the maximum settling velocity 

rh is a settling parameter characteristic of the hindered settling zone 
rp is a parameter associated with the settling behaviour at low solids 

concentrations 
Xmin is the minimum attainable concentration of suspended solids in the 

effluent and it is possible to express it as: 
 



Josep Carrasco Martínez 

25 

 
The minimum attainable concentration of suspended solids is defined by the equation: 
 

fns XfX =min         (2.26) 
 
, where fns is the non-settleable fraction of Xf (suspended solid concentration of the 
feed) 
 
In figure 8 it is shown the function of the double-exponential settling velocity where it 
is possible to see how the velocity would increase if it was defined by a single 
exponential function: 
 

 
figure 9: schematic description of the 

double-exponential settling 
velocity (equation 2.25) model 
suggested by Takács et al. 
(1991) 

 
 
 
 
 
 
 
 
 
 
Modelling batch processes 
 
Moreover continuous modelling processes there is another possibility which has 
increased in popularity the last years and it is used in many wastewater treatment plants. 
This one is Modelling Batch Processes. 
 
It means until now, wastewater treatment processes have been model as a continuous 
system, with biological treatment tanks before the settler, so the wastewater goes 
through the anoxic tank, after the aerobic and finally to vessel where it takes part the 
settling and clarification. All of it happens always with constant volume and constant 
flow rate. 
 
In batch processes there is no constant volume and there is no constant flow rate always. 
The aim of batch processes is to model all biological process in wastewater treatment, 
including settling and clarification, in the same tank. 
 
There is no a tank for a specific biological process, there will be several tanks with a 
number of distinct time phases. In the figure 9 below is shown the typical activated 
sludge sequenced batch reactor: 
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figure 10: main sequenced batch reactor (SBR) 
 
It is possible to see in figure 9 de difference between the phases: 
 

• Filling phase: The wastewater is going in the tank, so the height of the tank is 
increasing. It is assumed a well mixed vessel. 

• Mixing phase: The tank is full, the height is equal to its maximum value and it is 
assumed a well mixed vessel. Now it is taking part the biological processes. 

• Settling phase: The height is still constant and with the maximum value, but in 
this phase the solid particulates are settling on the bottom of the tank. 

• Draw phase: Finally when the settling process has finished it starts to draw the 
tank and the cleaned water returns to the weirs. 

 
This is the simplest example of batch process. It can have as much phases as the 
designer needs. For instance it is possible to divide the ‘mixing phase’ in two phases, 
one the ‘anoxic phase’ and the other the ‘aerobic phase’. 
 
Notice that the balances are the same in all phases but the equations for each one are 
different depending of the phase where the process is. 
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CHAPTER 3 
 
Application Design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Now that modelling wastewater treatment plants has been introduced it is 
time to expose the application designed. 
This chapter is dedicated to the design of the main application with Matlab, 
which is connected to the STAR controller. It is included the design of the 
main code, the structure of the programme, the flow-sheet of the code and 
the functions which ones it is divided to make easier update the code in the 
future. 
Nevertheless, it is not included the data-exchange and synchronization code 
and the simulink model, the following chapters (chapter 4 and chapter 5) are 
dedicated to those parts. 
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3.1 INTRODUCTION 
 
In the chapter before it has been introduce how to model and to control wastewater 
treatment processes to understand the contributions developed in this thesis. But now, it 
is going to be described the main objective of the thesis. 
 
This thesis is the result of the collaboration of the “industrial electric engineering and 
automation” department (Lund University) and “VEOLIA Water Systems” company. 
The project pretends to develop an automatic application able to communicate with the 
STAR controller (developed by the company), simulate a model of the wastewater 
treatment plat which is controlled by STAR and returns the results from the simulation 
to the STAR controller database. 
 
The objective of this project is to improve the control handles. The STAR controller 
gives to the application some initial values (update the state variables of the plant 
model), the application simulates the plant model and returns another values to the 
STAR controller. The purpose of this data exchange is to make possible to compare the 
expected data (data from the simulation) with the real data measured from the 
wastewater treatment plant. Then it is possible to check differences between the 
expected results and the real results, and it makes easy to find out mistakes in the 
control strategy. And the controller is going to ask for new data from the simulation 
process to compare with the real measurements periodically, it means there is one part 
of the application is going to be executed regularly when it is running. 
 
One of the worst problems in wastewater treatment plants is the dynamic of biological 
processes, it is very slow. It makes a mistake in control strategy is detected after days, 
even weeks sometimes. With this kind of control, comparing the real data with expected 
data, it is possible to detected mistakes faster, and it makes possible to reduce the waste 
resources along the application process of a new control strategy. 
 
Now it is defined the problem, it has to be defined the connection between the database 
and the application and the platform to developed the application. As STAR controller 
has web-based interface, the application has to be able to connect with the database 
through Ethernet. The platform chosen to develop the application is Matlab, which is be 
able to exchange data through the network and to simulate a complex model necessary 
to simulate wastewater treatment processes (with Simulink features). 
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3.2 MAIN FLOWSHEET 
 
Once we know what the application has to do, it is necessary to set the different tasks 
within the application and the order of them. In the figure below is represented 
graphically the main tasks of the process that the application has to realise and the order 
of them: 
 

 
figure 11: flow-sheet diagram 

 
As it is shown there are two tasks with the name of “connect to the database”, but one is 
for reading data from the database and the other to write data in the database, so they are 
different tasks, although it is necessary to connect to the database in both of them. It 
means there is one similar feature in these tasks. 
 
They are defined the main tasks of the application, but there is one feature very 
important and it is necessary to take care of it, because it will change the configuration 
of all the application. This feature is the recursive characteristic of some tasks. 
Therefore there is one ‘main loop’ in the process where the recursive tasks will be 
included and there is the ‘initialization block’, necessary to start running the program 
and the simulation of the wastewater treatment plant. 
 
The main structure for the design is shown below: 
 

 
figure 12: main parts of the program 
 
So there are the tasks are going to be executed only at the beginning of the application 
(“initialization block” in figure 12) and the tasks are going to be executed each period 
defined by the controller (“main loop block” in figure 12). 
 
Finally there are summarized the main tasks that the application has to do, but now it is 
necessary to expose the specifications imposed by the company: 
 

• The simulation background for the prototype is Matlab/Simulink. 
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• The communication with the database and the STAR controller through Ethernet 
(XML files). 

• The period of the main loop is 2 minutes approximately. 
 
 
3.3 STRUCTURE OF THE PROGRAM 
 
In the point before (3.2 Main Flow-Sheet) it has been analyzed the main structure of the 
application is going to be developed, but more over the main tasks of the application, in 
this point it is discussed and presented the full structure of the program with its 
functions and all the features needed to program it. 
 
If we remember again the main diagram of the process to program (see figure 13): 

 
figure 13: diagram of the process 
 
 
There are two tasks that they need to connect with the database of the 
STAR controller, well for reading data, well for writing data. It 
means the application is acceding to another program that is being 
used by the STAR controller too. 
It is evident a synchronization is needed to avoid problems between 
both applications; the controller and the verification data application. 

 
Thus, a synchronization block must be included within “connect to the database” block, 
but which one of them? To ask this question make us to see there is more than one 
possibility of synchronization with the STAR controller. Below are presented some 
possibilities: 
 

• Function of synchronization inside the block “connect to the database to 
read”: As it is shown 
in figure 14, the 
synchronization takes 
part when the 
application is going to 
read data from the 
database, after this 
first synchronization, 
the program read the 
data, simulate the 
process and write the 
results in the 
database. When all 
the process is finished 
it waits for another 
synchronization to 
start again the “main 
loop”. 

 
figure 14: synchronize when reading 
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• Function of synchronization inside the block “connect to the database to 

write”: This time, the synchronization is made just before the application is 
going to connect to the database to write data, that is, the application starts to 
run, initialize all the variables, connect to the database to read data, simulate the 
process, synchronize with the controller and connect to the database to write the 
results. Then, it repeats the 
process again until the 
synchronization step. It means it 
has taken part the first access to 
the database without any control 
when the application has read 
the data to simulate the process. 
The process is shown in figure 
15. Of course it is possible to 
program some kind of control to 
avoid this first access to the 
database without control the first 
time the application starts to run. 

 
 

figure 15: synchronize when 
writing 

 
 
• Function of synchronization in both blocks, that is, there are two 

synchronizations: This third possibility, although longer than the others, its 
complexity let the application synchronize each time it is going to connect with 
the database. Now, there is 
synchronization in both blocks 
that they connect to the data 
base, as much as the application 
is going to read from the 
database as it is going to write in 
the database. The structure of 
the process now it is shown in 
figure 16, on the right of these 
lines. First there is 
synchronization before 
connecting to the database, the 
simulation of the process 
follows that step and finally 
there is another synchronization 
before writing the results in the 
database. Then the main loop 
starts again. 

 
 

figure 16: double synchronization 

INITIALIZATION 

SYNCHRONIZATION 

READ DATABASE 

Matlab ALGORITHM 

SYNCHRONIZATION 

WRITE DATABASE 

CONNECT TO 
THE 
DATABASE TO 
READ 

CONNECT TO 
THE DATABASE 
TO WRITE 

INITIALIZATION 

READ DATABASE 

Matlab ALGORITHM 

SYNCHRONIZATION 

WRITE DATABASE 

CONNECT TO 
THE 
DATABASE TO 
READ 

CONNECT TO 
THE DATABASE 
TO WRITE 



CHAPTER 3: Application Design 

34 

 
All the ways of synchronization explained before are correct to program the application, 
but the way to “synchronize when writing” has one difficult, it is necessary to make a 
pre-synchronization in the initialization block before starting the main loop, then we 
avoid the application accesses to the database without the controller allows it. 

 
The new flow-sheet is shown in figure 17. 
There is a pre-synchronization function 
after the initialization block, so now the 
application doesn’t start to access to the 
database until it is allow to it. This pre-
synchronization just would take part once 
at the beginning of the applications, each 
time it starts to run. 
 
 
figure 17: synchronize when writing 
                 with pre-synchronization 
 
 
 

By the other side, for “synchronizing when reading” or the last way (synchronizing 
always) it is no needed any extra-function to pre-synchronize the application because 
there is always a synchronization before the first reading time, something never happens 
in “synchronizing when writing” the first time that the main loop is executed. 
 
The synchronization chosen is the third case: double synchronization (before reading 
and before writing in the database). In the chapter after (chapter 4: “data exchange”) it is 
explained in detail the synchronization function, and in the next point; “3.4 program 
code” the code for both synchronization ways (synchronization when reading and 
synchronization always) is implemented, because it is the same code and the same 
function to synchronize but, this function is used once in “synchronization when 
reading” and twice in the other case. Thus they will be shown two solutions for the 
synchronization problem. 
 
Now it is going to be exposed the function of each blocks in the points bellow, 
following the main division made before: 
 

• Initialization of the application. 
• Main loop of the application. 
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3.3.1 Initialization 
 
This part of the code includes all data which need to be initialized and it is divided in 
several kinds of initializations: 
 

• Model parameters initialization: It means, to establish the value of the 
constants, the initial value of the parameters for the simulations, the value for the 
parameters of simulation, the initial conditions of the simulation background. 

• Model state variables initialization: This part seems unnecessary, but it is a 
mistake to avoid this point. Simulink always starts all state variables from cero 
value if there are no specific initial values for them. Thus, with a first simulation 
of the model it is possible to establish the initial value for the state variables 
trying to approximate the initial value of the state variables in the simulation 
process to the initial value of the state variables in the real wastewater treatment 
process. 

• Control parameters initialization (to start the loop and the simulation): They 
have been included within the application the possibility of stopping the 
simulation when the application is running and the possibility to stop all the 
process of data acquisition, simulation and data writing (to make possible break 
the main loop). In this part of the code the “control variables” are initialized to 
make the main loop and the simulation run. 

• Synchronization parameters initialization: This is another critic point. The 
variables used for the synchronization are modified by the STAR controller, 
which allows the application to read and write in the database, but at the 
beginning of the application running it is not possible to know the value of the 
“synchronization variables” stored in the memory, so it is suitable to initialize 
the variables to the expected values. 

 
3.3.2 Main loop 
 
The main loop implementation is more complex than the initialization, here is where all 
processes take part, the connection with the database to read, the simulation process, the 
second connection with the database to write. After making reference to all theses 
processes it is evident the main loop is divided in three parts (see figure 6 shown 
before). Below these parts are defined: 
 
Connection to the database to read 
 
As it was shown before there are two steps to connect to the database, first the 
synchronization and after the access to the database to read the data. The two steps are 
explained below: 
 

• Synchronization: The synchronization is important for two main reasons: to 
avoid the access of two applications at the same time to the same file and to 
ensure there is no repetition of data, it means, that the application does not 
simulate the process more than once when the controller needs the data only 
once, or there are new results of the simulation when the controller asks for them 
and they are not the ones of the past simulation. Summarizing, there are new 
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results when the controller asks for them, there is no simulation of the process 
when the controller does not ask for it. 
Hence, the synchronization allows to forbid the application accesses to the 
database until the controller needs the results of the simulation, then it let the 
application gets the data from the database, simulate the process and write the 
results. 
To get the purpose exposed before it has been implemented one auxiliary loop to 
synchronize with the controller. Inside this loop the application is asking for 
accessing to the database until the controller answers that it is possible, then the 
loop is bracken and the application goes on with the steps of the process (read 
the data, simulate the process and write the data if there is no double 
synchronization). 
In the case chosen, the double synchronization, there are two synchronizations, 
one before reading the database and the other before writing the results in the 
data base, so for each time the controller needs data it has to synchronize with 
the application twice. The improvement of the double synchronization case is 
discussed in the point “3.4.2 Program code”, because this improvement is 
related with the implementation. 

 
• Read from database: Once the synchronization has taken part, the application 

accesses to the database and gets the values stored in it within variables in order 
to be able to manage them in Matlab background. The values needed to the 
simulation are the “name”, the “numerical value” and the “quality value” of each 
variable, so the result after reading the database will be three vectors, one with 
all the names stored (vector “name”), one with the values stored (vector “value”) 
and the last one with the quality of each value stored (vector “quality”). This file 
stores the values so that the component ‘i’ of each vector belongs to the variable 
‘i’, it means: 
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, and ‘n’ is the number of variables acquired. 
 
Matlab Algorithm 
 
The “Matlab Algorithm”, the most important step of the “main loop”. The other steps 
are implemented to get the variables to the simulation of the process in Matlab and to 
return the results of Matlab simulation to the database, it means, the other functions are 
programmed to communicate the simulation process with the controller. 
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The Matlab algorithm is divided in three parts: processing the data before the simulation 
and processing the data after the simulation. Bellow is shown the diagram of the Matlab 
algorithm: 

 
figure 18: Matlab Algorithm 
 

• Processing data before the simulation: As it has been told before, the function 
to read the data from the database stores them in three vectors. But these three 
vectors contain information about the variables about the name, value and 
quality. To use them it is necessary to store the information in another format. 
This first step of the “Matlab algorithm” is the responsible of making the 
translation of the information received from the database to make possible its 
use in the simulation process. 

 
• Process simulation: After all the steps to acquired the data and translate them, it 

is possible to make the simulation. In this step the application executes the 
necessary commands to simulate the simulink file which includes the model of 
the wastewater treatment plant. This model included can be whatever the 
company wants, from only a simple model of the wastewater treatment plant to a 
complex model of the wastewater treatment plant and the sensor models and 
with a model of the controller. The possibilities are limited only by the 
simulation time needed and the capacity of the computer used. 

 
• Processing data after the simulation: This last step is the data treatment before 

sending them to the database. The simulation returns the data in a specific 
format, that format is not the appropriate to send them to the controller and to 
store them in the database the most of times. Here all data are processed and 
expressed in the format used by the function which writes them in the database. 
This format is the one used when the application reads from the database, where 
all data are stored in three vectors, one with the names of the variables, another 
with the values of the variables and the last one with the quality of the variables. 
The output of this step of the “Matlab algorithm” is the three vectors shown 
below: 
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, and ‘n’ is the number of 
variables acquired. 
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Write in database 
 
As it was shown before there are two steps to connect to the database, first the 
synchronization and after the access to the database to read the data. The two steps are 
explained below: 
 

Synchronization: Here the synchronization if exactly the same function 
described in the point before “read from database”. There is one auxiliary loop 
asking for access to the database. When the access is allowed the loop is bracken 
and the application goes on to the next step: write the results in the database. 

 
• Write to database: Once the synchronization has taken part, the application 

accesses to the database and writes the results the application has got from the 
simulation. The application has to write these three vectors in the database: 
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, and ‘n’ is the number of 
variables acquired. 

These three vectors have the same meaning and the same structure as the three 
vectors read from the database. 

 
 
3.4 APPLICATION IMPLEMENTED 
 
Until now, in the points before it has told how to implement the automatic application, 
which simulates the wastewater treatment plant process and which is controlled by the 
STAR controller. There have been shown the structure of the program and the necessary 
blocks to get the purpose. In these last points of the chapter is presented the code 
programmed and the graphic interface of the application, so it will be easy to modify 
and to improve the code, it means, to update the code for future versions. Right now, the 
version of the application developed is a prototype and it is able to do all requirements 
which the company was asking for. 
 
In the point below it is show the application, how it works and the code. It is divided in 
two points; the first to expose the application and the last to explain the code. 
 
3.4.1 Application Interface 
 
As all application software, it is needed a user interface to let the user manages the 
program. The user interface has been developed with GUIDE. A brief introduction 
about GUIDE is made in “ANNEX II”, and to know more about the code implemented 
to program the application is recommended to consult “ANNEX II”. The purpose of this 
point is to present the user interface developed. 
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Due to the simple actions that the user has to realise to run this application, the user 
interface is very simple. Bellow is shown in figure 19 the user interface developed: 
 

 
figure 19: User Interface 

 
The user interface has four buttons, two main buttons to run and to stop the program and 
another two to check that the synchronization is working right. The use of each button 
is: 

• “RUN PROCESS”: Push this button to start the application. This button executes 
the file which contains all the code with the “initialization block” and the “main 
loop”, so once the application is opened and the user press the button “RUN 
PROCESS” it is not necessary to do any action in the program, it will run until 
the user presses “STOP PROCESS”, the user closes the application or the STAR 
controller makes the application to go out of the “main loop” using the control 
variables (aux_sim and aux_loop). 

• “STOP PROCESS”: The process can be stopped from the controller or from the 
user interface. To stop it from the user interface the user just has to push the 
button “STOP PROCESS” and the program will go out of the “main loop”. 

 
The other two buttons are programmed to emulate the STAR controller only with the 
synchronization of the simulation. As the application has been developed to have 
double synchronization, there are two buttons, one to check the synchronization before 
reading from the database and another to check the synchronization before writing data 
in the database. 
 

• “READ FROM DATABASE”: When the application is running it is waiting until 
the controller let it to access to the database before doing the simulation of the 
plant model. This button changes the value of the variables for the 
synchronization as it was the STAR controller, so if the application goes on with 
the simulation it means it is reading right the control variables. It is a good way 
to check if it is failing the Ethernet connection or the application if there is no 
synchronization. 

• “WRITE IN DATABASE”: This button has the same function as the one explained 
before, but for the second synchronization. If we implement the program with 
single synchronization it is possible to use the same user interface, but this 
button doesn’t have to be used, or it has to be removed. 
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3.4.2 Program code 
 
In the following lines it is detailed all the code implemented to program the application 
described along this chapter. The lines in red are comments introduced within the 
program code, so the compiler doesn’t take care about these lines to execute the 
application code. 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%     MAIN PROGRAM TO SIMULATE THE WASTE WATER TREATMENT        %%% 
%%%                                                                PLANT                                                                  %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
The first part that the program executes is the initialization functions. These functions 
are used once each time that the button “START PROCESS” (see point 3.4.1 
“application interface”) is pushed to start the application. The functions used in this part 
are shown bellow. 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%% INITIALIZATION %%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
Here the program calls the Matlab file “INIT.m”. Inside this file all the variables and 
constants needed to the simulation of the process are defined. After, the program 
simulates the plant model to get the initial conditions of the state variables with the 
command “sim(‘name of the file of the plant model’)”. The last line is to define the 
vector ‘x’ to store the values of the initial values of the state variables. This part can be 
called “model parameters initialization and model state variables initialization” 
(see point “3.3.1 Initialization” described before). 
 

%Initialize parameters--------------------------------------------------------------------------------------- 
 INIT; %file .m to initialize all parameters of the model 
 
 % simulate plant to steady state 
 sim('plantmodel'); 
 x=xInitial; 

 
The following part is to initialize the control parameters. These parameters control the 
simulation and the main loop. If the variable “aux_loop” is equal to the value one the 
condition to go in the loop is complained and the application will run. The other 
variable is “aux_sim”, and if it is equal to the value one the main loop is running but 
there is no simulation of the wastewater treatment process model. Thus, the application 
has the possibility of stopping the simulation if the controller doesn’t want to do it. 
The code initializes the value of both variables to one, so the application always starts 
executing the “main loop” and the simulation of the process. After the first time that the 
“main loop” is executed, the program read again the value of the “control variables” and 
it decides if the simulation or the main loop has to stop. In the point where it has been 
explained before this part was called “control parameters initialization”. 
 

%Initialize control parameters 
 control_value = [1 1]; 



Josep Carrasco Martínez 

41 

 controlloop(control_value); 
 
 %read control parameters 
 [aux_loop aux_sim] = control_check; %we are reading control.xml 

 

 
 
To control the synchronization with the STAR controller have been defined two 
variables: ‘readV’ and ‘writeV’. The controller will change the value of these variables 
to choose if it needs the application read data from the database or the applications 
writes in the database. In the initialization the values chosen are readV=0 and 
writeV=1, so in the first synchronization at the beginning of the “main loop”, the 
application will wait until the controller chose the “read” option, it means, readV=1 and 
writeV≠1. This part is called “synchronization parameters initialization”. 
 

 %variables to synchronize with the controller 
 readV = 0; %when it has to read the XML file 
 writeV = 1; %when it has to write the XML file 

 
This last part of the initialization is used to initialize the value of one variable used to 
read the data from the database. It is explained in detail in the following chapter. 
 

% initialization variable to read from database 
 datatag=['data']; 

 
 
Now, all the variables of the model and the variables of the program (synchronization 
variables and control variables) are initialized and the program executes the main loop 
to simulate the plant process each time STAR controller requires it. 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%   MAIN LOOP  %%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
At the beginning of the “main loop”, the first thing the code is doing is to check the 
value of the control variable “aux_loop” (it has been initialized to the one value before). 
If the value is the one expected the “main loop” starts running. 
After there is a conditional instruction to check the other control variable: “aux_sim”. If 
the value is not the expected the “main loop” executes itself but there is no simulation. 
As “aux_sim” has been initialized to unity value this first time that the “main loop” is 
executed the simulation will run. 
 

while aux_loop = = 1 
    %variable used in the application to stop the simulation 
    if aux_sim ~= 1 
        disp('simulation stopped') 
        pause(5); 
    end 
     

NOTE: check the “APPENDIX II” to read more about the functions “controlloop” 
and “control_check”. About how the application is connecting with the database, 
read the next chapter “chapter 4”. 
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    %process execution. I can stop the simulation if aux_sim not equal 1 
    if aux_sim = = 1 

 
The following step once the control variables are checked is the synchronization. For 
the synchronization there are two possibilities: single synchronization and double 
synchronization. As it is shown in the code bellow, the implementation is the same in 
both cases, but there is one difference, in “single synchronization” there is one more line 
of code (code inside keys). As well as in “double synchronization” is the controller the 
one which changes the value of the synchronization variables always (there is one 
variable each time the controller synchronizes, when reading and when writing), in 
“single synchronization” it is only used the one variable (“readV”), because there is 
only one synchronization, when the application is going to read from the database. So, 
when the controller changes the value to the variable “readV” to indicate it is possible to 
read data from the database, the application has to reset this variable after going out of 
the “synchronization loop” in order to avoid that the application starts to simulate the 
process out of control because it read “readV” always as set value. 
The problem of the “single synchronization” is that the controller can’t reset the 
synchronization variable “readV”. With the “double synchronization” this problem 
disappears. There are two synchronization variables: “readV” and “writeV”. So, the first 
condition to synchronize is to have readV=1 and writeV≠1. After, the application will 
wait until the second condition: readV≠1 and writeV=1. It is evident is impossible to 
lose the control of the “main loop”. The controller is the one which changes the value of 
the synchronization variables, and like there are two stops along the “main loop” to 
synchronize the application will always simulate the plant model once each period. 
Below is shown the code for both cases: “single synchronization” and “double 
synchronization”. 
 
CASE SINGLE SYNCHRONIZATION 
 

        %Synchronize with the server------------------------------------------------------------------------ 
 
        while readV ~= 1 
            %we wait for the signal of the server, so we can synchronize each 6 minutes 
            [readF writeF]=synchronizer; 
            if (readF==1) & (writeF~=1) 
                readV=1; 
                writeV=0; 
                break 
            else 
                readV=0; 
                disp('we can not read now') 
            end 
            pause(15); %we wait 15 seconds until read again the file 
        end 
 
         %the variable is rise to 0 to stop the loop when it has to read data again 
         readV=0; 

 
CASE DOUBLE SYNCHRONIZATION 
 

        %Synchronize with the server------------------------------------------------------------------------ 
 
        while readV ~= 1 
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            %we wait for the signal of the server, so we can synchronize each 6 minutes 
            [readF writeF]=synchronizer; 
            if (readF==1) & (writeF~=1) 
                readV=1; 
                writeV=0; 
                break 
            else 
                readV=0; 
                disp('we can not read now') 
            end 
            pause(15); %we wait 15 seconds until read again the file 
        end 

 

 
 
Once the synchronization has taken part the program accesses to the database to read the 
data. First are defined the three vectors where the values of the variables are going to be 
stored: “nameR” to store the names of the variables, “valueR” to store the values and 
“qualityR” to store the quality of the value read. The function “readXML” used to 
access to the database is discussed in the following chapter “chapter 4”. The code 
implemented in the main code is presented below: 
 

        %Read from database--------------------------------------------------------------------------------- 
        nameR=['']; 
        valueR=[ ]; 
        qualityR=[ ]; 
        [nameR,valueR,qualityR]=readXML(datatag); %file .m where we must read the data 

from database 
 
The next step after reading the data from the database is to execute the “Matlab 
Algorithm”, which is divided in three functions shown below: 
 
MATLAB ALGORITHM 
 
The first thing the Algorithm has to do is to translate the data read into a format useful 
for the model is going to be simulated in Simulink. The function “read_data” is 
responsible to do this task. An example of how to implement this function is detailed in 
“APPENDIX II”. 
 

        %Initialize parameters with the new data--------------------------------------------------------- 
        read_data; %file .m to initialize with the new data 

 
Following the translation of the data read is executed the simulation of the process. It is 
done in two steps; first the options for the simulation are set with the function simset, 
and finally the model is simulated with the function sim. Both functions are standard 
functions from Matlab, for more information about them it is recommended to use the 
help of the program. 
 

        %Simulate the model----------------------------------------------------------------------------------- 
        options=simset('InitialState',x(end,:),'Solver','ode45'); 
        [t,x]=sim('plantmodel',[t(end) t(end)+6/60/24],options);) 

 

NOTE: the function used to synchronize with the controller is explained the next 
chapter “chapter 4”. 
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The last step of the Algorithm is to translate the results of the simulation into the three 
vectors needed to send the data to the controller. To get this task is used the function 
“wirte_data”. As before with the function “read_data”, there is an example of how 
implementing this function in the “APPENDIX II”. 
 

        %Write the new data in vectors form work space----------------------------------------------- 
        write_data; %function to write the data in three vectors 

 
CASE DOUBLE SYNCHRONIZATION 
 
This code is only present in the program when it is implemented the double 
synchronization. If it is used the single synchronization it is not necessary. 
 

        %Synchronize with the server------------------------------------------------------------------------ 
        while writeV ~= 1 
             %we wait for the signal of the server, so we can synchronize each 6 minutes 
             [readF writeF]=synchronizer; 
             if (writeF==1) & (readF~=1) 
                 writeV=1; 
                 readV=0; 
                 break 
             else 
                 writeV=0; 
                 disp('we can not write now') 
             end 
             pause(15); %we wait 15 seconds until read again the file 
        end 

 
The outputs of the “Matlab Algorithm” are three vectors: “name”, “value” and 
“quality”. These three vectors have the same structure than the vectors read from the 
database, but they have stored the values of the results of the simulation. The function 
“writeXML” has been implemented to send the data to the database. The function is 
explained in “chapter 4”. 
 

        %Send data to the database-------------------------------------------------------------------------- 
        n=length(value); 
        writeXML(name,value,quality,n); %we write all data i an XML file 
    end 

 
The last step of the program is to check the value of the control variables in order to 
know if the “main loop” has to go on running or the controller has ordered to stop with 
the simulation.  
 

    %it tests if the simulation or the main control loop has to stop or not 
    %read variable "aux_loop" and variable "aux_sim" 
    [aux_loop aux_sim] = control_check; %we are reading control.xml 
     

 end 
 
 

 
 

NOTE: check the “APPENDIX II” to read more about the function “control_check”. 
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CHAPTER 4 
 
Data Exchange 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The main application implemented has been shown in the chapter before, 
what is its purpose, the implemented code, the user interface, all the 
features. And it was said that one of the most important things is the 
communication with the STAR controller to: synchronize the application and 
the controller, to read data from the database, write the data and stop the 
application from the controller. 
Now, how the application interacts with the controller is detailed in this 
chapter, it means, the code of all the functions used to transmit the data 
between the controller and the application or in the other way around, and 
the files where the variables are stored. 
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4.1 Introduction 
 
Talking again about the purpose of this thesis, in the figure below (figure 20) is shown 
the diagram of the project developed taking care only about the communication between 
all of the devices involved: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

figure 20: communication diagram 
 
 
It is possible to see that there are three main devices: 
 

• STAR controller: which is connected directly with the wastewater treatment 
plant and it receives the measurements of the sensors that there are installed. 

• Database: which stores the different values that the controller gets from: the 
sensors, the control action applied, the time, the data, at last, all data that needs 
to be analysed. 

• Matlab application: Application developed in this thesis which simulates the 
wastewater treatment plant and gives the results to the controller, which 
compares the real results with the expected results got in the simulation process. 

 
And, as it was said before, these three devices are connected using the Ethernet 
protocol. So, the functions implemented in the main code shown in chapter 3 (point 
3.4.2 program code) must be able to connect with the controller and the database using 
an Ethernet protocol. 
 
Nowadays, the different platforms connected through Ethernet are using different 
application code: the Matlab application is running under Windows Operative System, 
the database is running in the same interface or another and the STAR controller is a 
specific device able to use Ethernet network but not running under Windows Operative 
System. The best way to connect them is using Web Services (see “APPENDIX II” to 
better understanding). Web Services provide an abstraction layer between the client 
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application and the code application, it means that there is a layer programmed between 
the code application and the network, so it doesn’t mind if the code application of the 
different platforms is not the same, because after the abstraction layer it will be possible 
communicate all of them. This abstraction layer translates the message into a standard 
that can be read by the other client application. In the figure below is represented the 
abstraction layer: 
 
 
 

figure 21: abstraction layer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To program the Web Services is possible to use an amount of codes to program the web 
services, which makes difficult the choice: java, Visual C, Basic, C++, Perl, etc. By the 
other side there are a lot of possible standards that can be chosen as XML protocol, 
XKMS, SAML, XML-Dsig, XML-Enc, XSD, P3P, WSFL, Jabber, ebXML, SOAP, etc. 
But the one used by the company to communicate the database and the STAR controller 
is SOAP protocol, which is going to be introduced in the next point. 
 
4.1.1 What SOAP is 
 
“Simple Object Access Protocol”, that is SOAP. Let define in a few lines SOAP as a 
standardized packaging protocol used to transmit and receive messages by applications 
through Ethernet. 
 
SOAP is an application of the XML specification. It means that the basis of SOAP is 
formed by XML messaging (applications exchange information using XML 
documents). 
 
The best thing of SOAP protocol is that is based in XML, and XML is not tied to any 
application, operative system, programming language or whatever other technical 
implementation. With XML is possible to share information using only a message 
encoded understood by the applications, which are going to transmit and receive 
message. 

Specific communication makes reference to the 
communication between the application and its 
Web Service. 
Agnostic communication makes references to the 
network, where is possible to use whatever way of 
communication because with web services we are 
using a standard for the sent messages and the 
received messages understood for all listeners. 
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This step of the project design has been made by the company, so this introduction to 
SOAP protocol is not going further (to know more check the “APPENDIX III” and the 
bibliography). The company has developed an intermediated application which receives 
and transmits the messages into SOAP protocol through the network. Now the diagram 
of the communication is the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 

figure 22: SOAP interface 
 
 
 
Beginning from here, the code implemented has to be able to read and translate the 
information that is going to arrive as XML data file. Thus, the communication between 
the application developed with Matlab and the other devices is reduced to read and write 
XML files. 
 
4.1.2 XML communication files 
 
Definitely, the Ethernet communication between the application developed in Matlab 
and the STAR controller and the database has been reduced to the task of writing and 
reading XML files. Hence, to write an XML file will be equivalent than to send a 
message to the controller or to the database, and to read an XML file will be equal than 
to receive a message. 
 
It takes us to think about another question, if to write or to read an XML file is like 
writing or reading a message, it will be necessary to use one XML file for each kind of 
message, it means, one file for control variables, another for synchronization variables, 
another to read data from the database and at last one for writing the results from the 
simulation. The four XML files that store and are used to transmit and receive the 
information are the following files: 
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• “database.XML”: the dates from the database, that the application needs to 

use in the simulation, are stored within this XML file. After reading 
the file, these dates are stores in three vectors with the values of the 
variables. The structure of the file is: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• “results.XML”: the Matlab application writes the results of the simulation in 
this file. The controller will read the values stored here. The 
structure of the file is: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• “synchro.XML”: the value of the variables used for the synchronization is 
stored within “synchro.XML”. The controller writes the values and 
the Matlab application reads the content stored inside the file. The 
structure of the file is: 

 
 
 
 
 
 

<?xml version="1.0" encoding="utf-8"?> 
<dataexchange> 
  
   <data> 
        <name>name(1)</name> 
        <value>value(1)</value> 
        <quality>quality(1)</quality> 
   </data> 
. 
. 
. 
   <data> 
        <name>name(n)</name> 
        <value>value(n)</value> 
        <quality>quality(n)</quality> 
   </data> 
</dataexchange><!--this is a comment--> 

<?xml version="1.0" encoding="utf-8"?> 
<dataexchange> 
  
   <data> 
        <name>name(1)</name> 
        <value>value(1)</value> 
        <quality>quality(1)</quality> 
   </data> 
. 
. 
. 
   <data> 
        <name>name(k)</name> 
        <value>value(k)</value> 
        <quality>quality(k)</quality> 
   </data> 
</dataexchange><!--this is a comment--> 

<?xml version="1.0" encoding="utf-8"?> 
<synchronize> 
   <sincro> 
      <read>”readF value”</read> 
      <write>”writeF value”</write> 
   </sincro> 
</synchronize> 



CHAPTER 4: Data Exchange 

50 

 
• “controlFILE.XML”: This XML file has the same function as 

“synchro.XML”, but this file stores the value of the control 
variables, variables that are modified by the controller and read by 
the Matlab application. The structure of the file is: 

 
 
 
 
 
 
 

 
 
The functions implemented to modify the files shown before within the application code 
are: 

“control_check”: to read “controlFILE.XML”. This function is described in the 
point “II.2.2 “control_check” code” in “APPENDIX II”. 

“controlloop”: to write “controlFILE.XML”. This function is described in the 
point “II.2.1 “controlloop” code” in “APPENDIX II”. 

 “synchronizer”: to read “synchro.XML” 
“writeXML_synchro”: to write “synchro.XML”. This function is described in 

the point “II.1.1 “writeXML_synchro” code” in “APPENDIX 
II”. 

 “readXML”: to read “database.XML” 
 “writeXML”: to write “results.XML” 
 
 
4.2 Data-flux in the communication 
 
Now we have arrived to this point is evident that the problem of the communication of 
the application has been reduced to implement two functions: the function which reads 
the XML file and the function which writes the XML file. Because of there are four 
XML files, there are necessary more than one function to read and one to write, it 
means, it would be needed two functions for each XML file. Remembering the file 
“database.XML” only needs to be read by the application but not to be written, and 
“results.XML” to be written by the application but not to be read. The number of 
necessary functions is six; three functions to read and three functions to write (the six 
functions are shown up in point “4.1.2 XML communication files”). 
 
It seems better to try to implement a general function to read and another to write, and 
use both of them for reading and writing the four XML files. The problem is that it 
supposes to define the functions with a lot parameters as a variables, then, each time is 
going to be read or write an XML file these parameters have to be introduced into these 
functions. Thus, as the functions are not large (the largest one near fifty code lines) and 
the number of variables in the Matlab work-space can be reduced, at the moment the 

NOTE: to know more about the variables that are stored in each XML file and for 
what is using the application each variable, it is recommended to check the point 
“3.4.2 Program code” in “chapter 4”. The function of each variable is not the 
purpose of this chapter. 

<?xml version="1.0" encoding="utf-8"?> 
<control> 
   <data> 
      <loop>”aux_loop value”</loop> 
      <simulation>”aux_sim value”</simulation> 
   </data> 
</control> 
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solution with six functions is preferred. It has to be considerer that the code of the 
functions to read and to write would be increased considerably if we try to write or read 
four different structure message with the same functions. 
 
Despite to have six functions, all of them follow the same data flux shown in the figure 
23 (“figure 23.A” represents the data flux when writing the XML file and “figure 23.B” 
represents the data flux when reading the XML file): 
 

 
 

figure 23: data-exchange. A) write data into “file.XML”, B) read data from “file.XML”. 
 
The diagrams shown in figure 23 represent the procedures used to read and write XML 
files. There is one common step in both diagrams (figure 23.A and figure 23.B), this step 
is the definition of the variable “xDoc”, variable used to store the values contented in 
the messages expressed as a XML files. The variable is the type of 
“org.apache.xerces.dom.DocumentImpl” (check “APPENDIX III” to know more about 
it), which is a class needed by the command “xmlwrite()” to create the XML file, and is 
the class that the command “xmlread()” returns when it is reading the XML file. 
 
The steps followed to write an XML file are: 
 

1. To create the variable “xDoc” of type “org.apache.xerces.dom.DocumentImpl”. 
2. To create the XML file with the variable xmlFileName. 
3. To use the command “xmlwrite(xmlFileName, xDoc)” to generate the XML file. 

 

XML file 

xDoc = xxmmllrreeaadd (‘name of the File’) 

Reading XML 
file 

xmlFileName = [‘name’ , ‘xml’] 
xxmmllwwrriittee(xmlFileName , xDoc)  

xDoc →jjaavvaa  ccllaassss  

XML file 

Writing XML 
file
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The steps for reading the XML file are: 
 

1. To use the command “xmlread(name of the XML file)” to store the XML file 
inside the variable called “xDoc” of type 
“org.apache.xerces.dom.DocumentImpl”. 

2. To scan the variable “xDoc” and extract the information stored. 
 
 
4.3 Data-exchange with the database 
 
In the points above it has been explained the kind of communication used between the 
Matlab application and the others devices connect to the network (STAR controller and 
database), the protocol used and the data-flux in the functions implemented to make 
possible this communication. Here the functions used to get data from the database and 
to write data inside the database are exposed explaining all the code implemented step 
by step. 
 
4.3.1 Write the data in “results.XML” 
 
The file “results.XML” is the XML file that the SOAP interface developed by the 
company sends as a message to the database with the results of the simulation of the 
Wastewater Treatment process. In agreement with the company the structure of the 
XML file has to be the one shown in the point “4.1.2 Communication files” and below 
these lines: 

 
 
As it can be appreciated, there is a number of ‘n’ elements (children) called “data” that 
have three sub-elements: “name”, “value” and “quality”. Each element represents one 
variable with three properties, the name of the variable to know which variable is, the 
value of the measurement of this variable in the wastewater treatment plant stored in the 
database and the quality of this measurement. 
 
The file “database.XML” that has to be read by the application has to follow the same 
structure than the XML file “results.XML”. 
 

<?xml version="1.0" encoding="utf-8"?> 
<dataexchange> 
  
   <data> 
        <name>name(1)</name> 
        <value>value(1)</value> 
        <quality>quality(1)</quality> 
   </data> 
. 
. 
. 
   <data> 
        <name>name(k)</name> 
        <value>value(k)</value> 
        <quality>quality(k)</quality> 
   </data> 
</dataexchange><!--this is a comment--> 
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In the following lines is explained the code implemented to write the XML file as it was 
shown in the lines above in this point. 
 
 “writeXML” code 
 
function archivoXML=writeXML(name,value,quality,n) 
 
This first part of the code is the one which makes reference to the step one mentioned in 
“4.2 Data-flux in the communication”, to write an XML file: to create the variable 
“xDoc” of type “org.apache.xerces.dom.DocumentImpl”. 
The variable created is “docNode”. 
 
    % Create a sample XML document. 
    %program 
    docNode = com.mathworks.xml.XMLUtils.createDocument('dataexchange'); 
    docRootNode = docNode.getDocumentElement; 

 
Inside the same step, as the function does not know how many “data” children has to 
create, it goes in a loop that will do as much children as long was the vector “name” 
(remember that the vectors “name”, “value” and “quality” have the same size). 
 
    for i=1:n 
       dataElement = docNode.createElement(sprintf('data')); 
       nameElement = docNode.createElement(sprintf('name')); 
       valueElement = docNode.createElement(sprintf('value')); 
       qualityElement = docNode.createElement(sprintf('quality')); 
        
       nameElement.setTextContent(sprintf('%s',name(i,:))); %name of the 

variable 
       valueElement.setTextContent(sprintf('%2.2f',value(i))); %value of the 

variable 
       qualityElement.setTextContent(sprintf('%2.2f',quality(i))); %quality of 

the variable 

 
The first part of the loop is to create the child with the three sub-elements (the 
lines above), and the last lines of the loop are to close each child once it has 
been created. 

 
       dataElement.appendChild(nameElement); 
       dataElement.appendChild(valueElement); 
       dataElement.appendChild(qualityElement); 
       docRootNode.appendChild(dataElement); 
  
    end 

 
The second step is: to create the XML file with the variable xmlFileName. To do it is 
defined a structure with two elements: the route where is going to be created the file and 
the extension of the file (note that if it is only defined the name and not the route the 
function “xmlwrite” will create the XML file in the current directory). 
 
    % Save the sample XML document. 
    xmlFileName = ['results','.xml']; %we have the file in our current 

directory 
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Finally it is executed the function “xmlwrite” to create the XML file and finish with the 
third step: to use the command “xmlwrite(xmlFileName, xDoc)” to generate the XML 
file. 
 
    xmlwrite(xmlFileName,docNode); 

 

 
 
4.3.2 Read the data from “database.XML” 
 
The function “readXML” is the one which will read the file “database.XML”, where are 
stored the data that the database sends to the application. The structure of the XML file 
that is going to be read has to be the same exposed before for “results.XML”. 
 
“readXML” code 
 
As it has been said in the point “4.2 Data-flux in the communication”, the function read 
the XML file in two steps: 
 

1. To use the command “xmlread(name of the XML file)” to store the XML file 
inside the variable called “xDoc” of type 
“org.apache.xerces.dom.DocumentImpl”. 

2. To scan the variable “xDoc” and extract the information stored. 
 
function [a,b,c]=readXML(data) 
 
Definition of the auxiliary variables: 
 
dataname=['']; 
datavalue=[]; 
dataquality=[]; 
  
infoLabel = 'Plot Tools'; 
infoCbk = ''; 
itemFound = false; 

 
The first step is made here (to use the command “xmlread(name of the XML file)”), 
when the information stored in the XML file passes to the variable “xDoc”. The 
function used to define the variable is “xmlread”, which needs one parameter; the name 
of the file with the extension. Thus, the function looks for the XML file in the current 
directory, if the file is in another directory the parameter included will be the name of 
the file with the extension and the route: C:/program 
files/application/files/database.xml, for example. 
 
xDoc = xmlread('database.xml'); 

 

NOTE: All the functions implemented to write an XML file follow the same structure 
that has been exposed above, so all the comment in this point is not going to be told 
anymore along this thesis, except if it is necessary. 
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Here starts the second step. Previous to go in the loop used to scan the class where is 
stored the XML message, it is define the variable “allListItems”. This variable stores the 
number of children “data” in the message that is the same as the number of variables 
stored in the message. 
 
    % Find a deep list of all list item elements. 
    allListItems = xDoc.getElementsByTagName(sprintf('%s',data(1,:)));  

 
Once it is known the number of children “data” (check the structure of the message 
shown before) the loop scans the class storing all variables in a vectors to work in the 
application. 
 
    % Note that the item list index is zero-based. 
    for i = 1:allListItems.getLength          %it's looking for all items with 

<data(i,:)> 
        thisListItem = allListItems.item(i-1); 
        childNode = thisListItem.getFirstChild; 

 
With this “while” loop we ensure the function scans the child until it has read 
all the sub-elements inside each child. 

 
        while ~isempty(childNode) 
            %Filter out text, comments, and processing instructions. 
            if childNode.getNodeType == childNode.ELEMENT_NODE 
                % Assume that each element has a single 
                % org.w3c.dom.Text child. 
                childText = char(childNode.getFirstChild.getData);%get the 

data text 

 
Inside each child there are three sub-elements, the “switch” is used to store the 
value of each sub-element inside the vector that it has to be stored in. 

 
                switch char(childNode.getTagName) 
                    case 'name'; 
                        %itemFound = strcmp(childText, infoLabel); 
                        dataname(i,:)=sprintf('%s',childText);%to get the data 

name 
                    case 'value' ; 
                        %infoCbk = childText; 
                        datavalue(i)=sscanf(childText,'%f');%to get the data 

value 
                    case 'quality' ; 
                        dataquality(i)=sscanf(childText,'%f');%to get de data 

quality 
                end 
            end  % End IF 
            childNode = childNode.getNextSibling; 
        end  % End WHILE 
  
        if itemFound 
            break; 
        else 
            infoCbk = ''; 
        end 
    end  % End FOR 

 



CHAPTER 4: Data Exchange 

56 

 
Finally the three vectors got from the scanning of the XML file are stored inside the 
vectors ‘a’, ‘b’ and ‘c’ that the function is going to return to the Matlab work-space. 
 
%read value 
 a=dataname; 
 b=datavalue; 
 c=dataquality; 

 
 
4.4 Synchronization 
 
As it has said before, the synchronization is made through the communication between 
the application and the STAR controller. The controller writes the value of the variables 
used for the synchronization in the file “synchro.XML”, and the application reads the 
value of these variables from the XML file. 
 

 
 
4.4.1 Read the data from “synchro.XML” 
 
The function implemented to read the synchronization XML file (“synchro.XML”) is 
“synchronizer”. The code is the same used to implemented “readXML” but with the 
particularities needed to decode the message written by the controller inside 
“synchro.XML”. 
 
“synchronizer” code 
 
As it has been said in the point “4.2 Data-flux in the communication” and mentioned 
before, the function read the XML file in two steps: 
 

1. To use the command “xmlread(name of the XML file)” to store the XML file 
inside the variable called “xDoc” of type 
“org.apache.xerces.dom.DocumentImpl”. 

2. To scan the variable “xDoc” and extract the information stored. 
 
function [readF writeF]=syncrhronizer 
  
readdata=[]; 
writedata=[]; 
  
infoLabel = 'Plot Tools'; 
infoCbk = ''; 
itemFound = false; 

 
FIRST STEP: 
 
xDoc = xmlread('synchro.xml'); 

NOTE: there is a function implemented to write the “synchro.XML” file, but it is used 
only in the initialization part of the application’s main code (see “CHAPTER 3: 
Application design” point “3.4.2 Program code”). This function is used almost in the 
emulator to check the synchronization code of the application. To read more about 
this function check the point “II.1.1 “writeXML synchro” code” in “APPENDIX II”.
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SECOND STEP: 
 
    % Find a deep list of all listitem elements. 
    allListItems = xDoc.getElementsByTagName('sincro');  
  
    % Note that the item list index is zero-based. 
    for i = 1:allListItems.getLength          %it's looking for all items with 

<data(i,:)> 
        thisListItem = allListItems.item(i-1); 
        childNode = thisListItem.getFirstChild; 
  
        while ~isempty(childNode) 
            %Filter out text, comments, and processing instructions. 
            if childNode.getNodeType == childNode.ELEMENT_NODE 
                % Assume that each element has a single 
                % org.w3c.dom.Text child. 
                childText = char(childNode.getFirstChild.getData);%get the 

data text 
  
                switch char(childNode.getTagName) 
                    case 'read'; 
                        readdata(i)=sscanf(childText,'%f');%to get the 

readdata value 
                    case 'write' ; 
                        %infoCbk = childText; 
                        writedata(i)=sscanf(childText,'%f');%to get the 

writedata value 
                end 
            end  % End IF 
            childNode = childNode.getNextSibling; 
        end  % End WHILE 
  
        if itemFound 
            break; 
        else 
            infoCbk = ''; 
        end 
    end  % End FOR 

 
Finally the function stores the value of the synchronization variables into two variables 
that will return to the Matlab work-space: 
 
%read value 
 readF=readdata; 
 writeF=writedata; 
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CHAPTER 5 
 
Modelling Batch Processes with Matlab 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Along the past chapters the design and implementation of an automatic 
application in Matlab work-space has been discussed. The aim of this 
application is to simulate a model of the wastewater treatment plant that is 
being controlled by the STAR controller. The tool package used by Matlab to 
simulate processes and all kind of systems is Simulink. Therefore is needed 
a model implement within Simulink. 
In this chapter is exposed one possible way to implement bach processes in 
Matlab, starting from one biological model implemented by the department of 
“Industrial Electric Engineering and Automation (IEA)”. 
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5.1 Introduction 
 
In “CHAPTER 1: Introduction” was made a presentation about the aims of the thesis. 
The main aim was to implement an application to simulate a model of the wastewater 
treatment plant controlled by the STAR controller. So that, the main goal is to simulate 
a model, it means, a model of the wastewater treatment plant is needed. 
 
The application design in the chapters before has to be able to simulate the model 
implemented. The easiest way to get it is to implement the “wastewater treatment plant 
model” in Simulink, a tool of Matlab that shares the same work-space as Matlab, so 
there will be no problems to the data-exchange between the model implemented and the 
application. 
 
Otherwise, to decide the application to implement the model is not the only problem. 
There are a lot of solutions when a model of a wastewater treatment plant has to be 
implemented; different biological processes have to be modelled, a model for settling 
and clarification vessel, modelling hydraulics, and a long etc. 
 
Here in this chapter the ASM1 model developed by a task group work in collaboration 
with the International Water Association (IWA, formerly IAWQ and IAWPRC) in 1983 
and published in 1987 has been chosen to model biological processes. For modelling 
settling and clarification is used the traditional one-dimensional layer settler model. 
Both of them have been explained in “chapter 2”, so this chapter is not going further in 
this point, to read more about it check the information in “chapter 2” or the 
bibliography. 
 
Finally, the reader has to know that the model introduced in this chapter is not enough 
to simulate a complete wastewater treatment plant. The purpose of the chapter is to get a 
model to implement a standard block in the future, so it can be made a “wastewater 
model library” including more standard blocks ready to be used by other researchers. 
The block tries to include the necessary code to simulate the batch processes within a 
vessel (check the chapter 2 or the bibliography to know more about the batch 
processes). 
 
 
5.2 Model developed 
 
About the introduction before, it id deduced that an extended model is needed in order 
to include “settling and clarification” and “biological processes” within the same model. 
It means that, if ASM1 model and traditional one-dimensional layer settler model are 
used, the new model developed must included both of them, with the particularity of 
using it as “batch process model”, hence, this model developed will not be used in the 
typical configurations designed to model wastewater treatment plants as a continuous 
model with constant effluent. 
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The starting point is to use the “traditional one-dimensional layer model” explained in 
“chapter 2”. The vessel is going to be divided in ten layers. 
 
The second step is to include the equations of the “ASM1 model” in each layer to model 
the biological processes within them. So there are the general equations to model the 
process of settling and clarification and there are the particulate equations of the 
biological processes to model the biological processes of each layer. It means that it is 
assumed that the concentration of the suspended solids and the soluble particles inside 
one layer is constant and well mixed in that layer, so there are no elements with 
different concentrations within the same layer. 
 
As it was said in “chapter 2”, the ASM1 model is going to be extended to fourteenth 
state variables because the TSS (total suspended solids) is included. 
 
All the things said until now are not new. The goal is only to join two models exposed 
before. But there are two particularities if we try to model batch process: 
 

• The height now is variable, so is not a constant, it has to be included as a state 
variable, the fifteenth state variable in the model of each layer. 

• There is a new input to model the flux generated by the turbines in the “mixing 
phase” (one phase that the batch process model has to have included, check 
“chapter 2”), this flux is called Jdown_up and it has its maximum value in the 
“mixing phase” and it is equal to zero when the process is in another phase. 

 
In the lines before it has been mentioned the “mixing phase”. In “chapter 2”, when we 
were talking about the batch process, the main characteristic was that this kind of model 
was not a continuous model with constant effluent, it was a discrete model with 
different phases. It means that the batch process model goes through several phases, to 
finish all the wastewater treatment in the same vessel, there are no needed several tanks 
and vessels, some of them for removing carbon or nitrogen and the others for settling 
and clarification, all the biological processes are taking part in the same vessel, but each 
one in a different phase. 
 
The simplest batch process was presented in “chapter 2” and there are only four phases: 
“filling phase”, “mixing phase”, “settling phase” and “draw phase”. The batch model 
described in this chapter has six phases: “filling phase”, “mixing phase”, “reaction 
phase”, “settling phase”, “draw phase” and “waiting phase”. 
 
The model for all the phases is the same, but the different is the value of the inputs, so 
that is one of the most important factors in the model, to decide which ones are the 
model inputs. For better understanding how a batch process plant works and which ones 
can be the inputs, the following figures shows the secondary treatment of one 
wastewater treatment plant with three vessels, working all of them as batch processes: 
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figure 24: Wastewater Treatment Plant with three vessels. The 

diagram a) (on the left) represents the model plant, and 
the diagram b) (on the right) represents the same model 
plant in another phase. 

 
The model developed would represent the biological progress of one of the tanks of the 
wastewater treatment plant shown in “figure 24”. As it is evident, in one wastewater 
treatment plant the input flowrate of wastewater and the output flowrate of treated water 
is constant. It means that are necessary more than one tank to model the plant, and the 
tanks must be synchronized to pass all of them through all the phases keeping the total 
effluent of the plant constant. 
 
Looking the diagram of the “figure 24” can be deduced some of the inputs of the model. 
One input is the input flowrate, another input is the output flowrate (the controller 
decides when the tank can be drawed), and the others are not evident. One is the extra 
flux needed to get the tank was well mixed in the filling phase and in the mixing phase. 
This flux represents the flux generated by the input flowrate in the filling phase and the 
one generated by the turbines in the mixing and reaction phase. The extra flux will be 
applied in both senses, up and down, so the concentration of suspended solids that is 
going down in the tank is going up too and the vessel is well mixed, characteristic 
common in these three first phases. 
There are two inputs more in the model: the waste sludge flowrate and the constant of 
the dissolved oxygen concentration’s reaction. The first one is always constant, and the 
second one represents the increasing of dissolved oxygen in the biological phases 
(mixing phase and reaction phase). The inputs of the model are: 
 

• Qi: input flowrate 
• Qo: output flowrate 
• Jdown_up: extra flux in filling phase and the biological phases 
• Qu: waste sludge flowrate 
• Kla: constant of the dissolved oxygen concentration’s reaction 

 

TANK1 
 
 
 
 
 
 
TANK2 
 
 
 
 
 

 
TANK3 
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5.2.1 Model diagram 
 
The batch process model implemented has six different phases: “filling phase”, “mixing 
phase”, “reaction phase”, “settling phase”, “draw phase” and “waiting phase”. Each 
phase represents one state of the process and it is characterised by the different values of 
the inputs defined in the point before: Qi, Qo, Jdown_up, Qu, and Kla. In the figure bellow 
(figure 25) is represented the main diagram of the batch process’ phases and the order of 
progressing. 
 

 
figure 25: Batch process model diagram 

 
The input Qu is not represented, but this input will be constant along all the phases, so 
its value is the same always. By the other side, in figure 25 is shown the evolution of the 
new state variable height that depends of Qi and Qo. 
 
It has to be said the particularity of the waiting, phase, it is not representing a reaction 
step in the evolution of the process, as can be the “settling and clarification”, the 
“mixing” of wastewater. This phase is an auxiliary phase programmed to make easier 
the control of the different tanks in the wastewater treatment plant. It is known that the 
effluent of wastewater in the treatment plant is constant (see figure 24 in the page 
before), so if there is one tank asking for input flowrate, and after another one asks for 
it, this second tank will have to wait until the other one has finished the filling phase. 
 
With the output flowrate does not occurs the same because the settling phase can work 
as a waiting phase too. If there is one tank in the draw phase the next one can wait in 
the settling phase until the first one has finished. 
 
Otherwise, the control has to find the best synchronization between all the tanks of the 
wastewater treatment plant to try to minimize the time spent in the waiting phase. 
 
Now is going to be explained the particularities of each phase and shown the diagram of 
each one. 
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The filling phase is the first 
phase of the model, although 
the programmer of the model 
can chose the phase in initial 
conditions. It is assumed that 
the height of the layers have 
the minimum value (the level 
of the tank is the minimum 
level of wastewater) at the 
beginning of this phase. 
The characteristics of the 
filling phase are: 
 

• Tank well mixed. The 
value of the flux 
generated by the input 
flowrate (Jup = -Juown) 
is bigger than the 
settling flux due to the 
gravity force and the 
bulk flux due to the 
waste sludge flowrate, 
both of them are 
despicable in front of 
the value of Jup. 

• Jup = -Jdown > 0. 
• qout = 0. 
• qin > 0. 
• qu > 0. 
• KLa = 0, there is no 

reaction. 
figure 26: Filling Phase 

 

• 
A

qq
dt
dh outin −= , where A is the area of the tank. The derivative of the height is 

positive which means that the height of the level is increasing. This is the main 
characteristic of the filling phase. 

 
The two main characteristics of the filling phase are that the tank is well mixed and that 
the value of the derivative of the height is not zero. 
 
This phase is active until the height reaches its maximum value, then it starts the 
following phase and the filling phase is finished. 
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The mixing phase is the next 
phase after the filling phase. 
There is no more input flowrate 
and the level of the wastewater is 
the maximum (maximum height). 
The principal characteristics are: 
 

• Tank well mixed. The 
value of the flux 
generated by the input 
flowrate (Jup = -Juown) is 
bigger than the settling 
flux due to the gravity 
force and the bulk flux 
due to the waste sludge 
flowrate, both of them are 
despicable in front of the 
value of Jup. 

• Jup = -Jdown > 0. 
• qout = 0. 
• qin = 0. 
• qu > 0. 
• KLa = 0, there is no 

reaction. 

• 0=
dt
dh , the derivative of 

the height is null because 
there is no input and 
output flowrate, and it is 
right because the height 
has a constant value. 

figure 27: Mixing Phase 
 
The main characteristic of the mixing phase is that the tank is well mixed, as the name 
of the phase stands up. There is an external flux that makes practically despicable the 
settling flux and the flux due to the waste sludge flowrate. 
 
When the tank is in this phase is equivalent to an anoxic tank where the biological 
process called nitrification is taking part by the autotrophs microorganisms (see chapter 
2: Wastewater Treatment Processes, point “2.1 Process description”). 
 
The next phase after the mixing phase is the reaction phase, explained in the following 
page. 
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The main characteristics in the 
reaction phase are: 
 

• Tank well mixed. The 
value of the flux 
generated by the input 
flowrate (Jup = -Juown) is 
bigger than the settling 
flux due to the gravity 
force and the bulk flux 
due to the waste sludge 
flowrate, both of them are 
despicable in front of the 
value of Jup. 

• Jup = -Jdown > 0. 
• qout = 0. 
• qin = 0. 
• qu > 0. 
• KLa > 0, there is reaction. 

• 0=
dt
dh , the derivative of 

the height is null because 
there is no input and 
output flowrate, and it is 
right because the height 
has a constant value. 

 
The value of the KLa is the only 
difference between the mixing 
phase and the reaction phase. 

figure 28: Reaction Phase 
 
The reaction phase is equivalent to the aerobic tank in modelling continuous 
wastewater treatments (see chapter 2: Wastewater Treatment Processes, point “2.1 
Process description”). 
 
The main characteristics of this phase are that the tank is well mixed and that there is an 
increment of the concentration of dissolved oxygen because of the tank is now aerated. 
In this phase is taking part the denitrification by the heterotrophs microorganisms 
principally. 
 
 



Josep Carrasco Martínez 

67 

 
Once the reaction phase has taken part, the 
process goes in the settling phase. This is 
the first phase where the vessel is not well 
mixed. In this phase takes part the settling 
of solid particles in the down layer of the 
settler, because now the tank is working as 
a settler. Although there are taking part 
biological processes, the principal process 
is settling and clarification. 
 
The main characteristics of this phase are: 
 

• The tank is not well mixed. The 
value of the flux generated by the 
input flowrate (Jup = Juown= 0) is 
zero and there are only the settling 
flux and the flux due to the waste 
sludge flowrate. 

• Jup = Jdown = 0. 
• qout = 0. 
• qin = 0. 
• qu > 0. 
• KLa = 0, there is no reaction. 

• 0=
dt
dh , the derivative of the height 

is null because there is no input and 
output flowrate, and it is right 
because the height has a constant 
value. 

f
figure 29: Settling Phase 

 
As it has been said, the main characteristic of this phase is the settling and clarification. 
Now the flux present in the three first phases is not present, so the settling flux and the 
flux due to the waste settling flowrate are the responsible of the settling of the solid 
particles in the down layer on the button of the vessel. 
 
This phase is the last treatment of the wastewater in the “secondary treatment” (see 
chapter 2: Wastewater Treatment Processes, point “2.1 Process description”). The 
wastewater will go out from the vessel to trespass the tertiary treatment. 
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This phase is certainly the real last phase of 
the process. The clarified wastewater goes out 
of the vessel, the level of the wastewater in 
the vessel decreases and almost all the solid 
bulks rest on the button layer of the vessel. 
After the past phases there are no solid 
particles in the up layers of the vessel. 
 
The main characteristics of the draw phase 
are: 
 

• The tank is not well mixed. The value 
of the flux generated by the input 
flowrate (Jup = Juown= 0) is zero and 
there are only the settling flux and the 
flux due to the waste sludge flowrate. 

• Jup = Jdown = 0. 
• qout > 0, is the main characteristic, 

now there is output flow rate. 
• qin = 0. 
• qu > 0. 
• KLa = 0, there is no reaction. 

• 
A

qq
dt
dh outin −= , where A is the area of 

the tank. The derivative of the height 
is negative which means that the 
height of the level is decreasing. This 
is the main characteristic of the draw 
phase. 

 
figure 30: Draw Phase 

 
This phase is practically like the settling phase, the only particularity is the variation of 
the height in the level of the wastewater. 
 
The draw phase could be the last one, but there is one problem that has been exposed 
before. When the draw phase has reached the end (the height has the minimum value it 
can have) the process has to start again from the first phase, the filling phase. It means 
that it is necessary input flowrate. The input flowrate in one wastewater treatment plant 
is assumed is constant, so if there is another tank in the filling phase, another one can 
not goes from the draw phase to the filling phase because there is no input flowrate for 
both tanks. But the process can not be in the draw phase until there is input flowrate, 
because there is a minimum value for the height ‘h’ of the level in the vessel. So, it is 
need a last phase to avoid this problematic situation. This phase is called waiting phase. 
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The waiting phase is the last phase of the 
process modelled. This phase is a 
transition phase from the draw phase to the 
filling phase. The main characteristics of 
the phase are the same as the ones in the 
settling phase, but here the height of the 
wastewater level has the minimum value. 
The characteristics are: 
 

• The tank is not well mixed. The 
value of the flux generated by the 
input flowrate (Jup = Juown= 0) is 
zero and there are only the settling 
flux and the flux due to the waste 
sludge flowrate. 

• Jup = Jdown = 0. 
• qout = 0. 
• qin = 0. 
• qu > 0. 
• KLa = 0, there is no reaction. 

• 0=
dt
dh , the derivative of the height 

is null because there is no input and 
output flowrate, and it is right 
because the height has a constant 
value. 

 
The inputs have exactly the same value as 
in the settling phase. 
 

figure 31: Waiting Phase 
 
After analysing all the phases, there are some things that must be stood up. The waste 
sludge flowrate (qu) is always active in all phases and thereby the flux generated by it. 
The gravity force is always present too; it is which generate the settling flux. By the 
other side, there are three phases where the vessel is well mixed, the three first phases: 
filling phase, mixing phase and reaction phase. And in the last three phases the vessel is 
not well mixed, there is more concentration of solid particles in the button of the vessel. 
 
Rather there is one data is not clear when the phases are explained. How takes part the 
transition between two phases. It is clear that the transition between the filling phase 
and the mixing phase is the value of the height, and between the draw phase and the 
waiting phase is the height too. And between the waiting phase and the filling phase is 
clear too, when the controller can give to the vessel input flowrate. But the other three 
transitions are not clear. To do these transitions they can be suitable more than one 
condition. For example it is possible to measure in the real plants where it is apply the 
batch process the time of each phase. Another condition is to choose a limit value of the 
critical concentration of solid particles in each phase (ammonium in the mixing phase, 
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nitrate in the reaction phase, “total suspended solids” in the settling phase, for 
example). 
 
5.2.2 Model equations 
 
The characteristics and differences of the phases have been explained in the point 
before, but, how to express it as logic equations, this is the step that has to be resolved 
once it is clear the model is going to be applied. 
 
The starting point is the traditional one-dimensional layer settler model, with the 
ASM1 model included in each layer to model the biological reactions and the settling 
and clarification process in the same mathematical model. This model was implemented 
by Ulf Jeppsson (Industrial Electrical Engineering and Automation –IEA-, LTH, 
Sweden) and Krist V. Gernaey (CAPEC, Dept. of Chemical Engineering, DTU, 
Denmark) previously, so here is not going to be designed the model from the beginning. 
The existing model has been used to get the batch process equations. There have been 
introduced some modifications in the equations of the current model. 
 
In the lines bellow are shown the modified equations in the model, but is not presented 
the whole model that was developed before by Ulf Jeppsson and Krist V. Gernaey. 
Otherwise (the equations are the ones explained in chapter 2, point 2.3 Modelling of 
wastewater treatment processes), the reader can see the whole model if he checks the 
code implementation in the point after (5.3 Implementation of the model). The equations 
modified are: 
 
STATE VARIABLE height: 
 

area
qq

dt
dh outin −=  

 
VELOCITY OF THE BULK MOVEMENT: 
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DISSOLVED OXYGEN CONCENTRATION: 
 
Equation for the layers up to the feed layer: 
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Equation for the layers down to the feed layer: 
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Equation for the feed layer: 
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, and ‘i’ indicates the layer. 

 
SUSPENDED SOLID CONCENTRATION: 
 
This equation is the same for all suspended solids. 
 
Equation for the layers up to the feed layer: 
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Equation for the layers down to the feed layer: 
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Equation for the feed layer: 
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, where X represents the solid particles concentration of XI, XS, XB,H, XB,A, XP or XND, 
and ‘i’ represents the layer. The fluxes are: 
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To know more about the meaning of each parameter in the equations check it in chapter 
2, point 2.3 Modelling of wastewater treatment processes, or see the bibliography 
(recommended Ulf Jeppsson’s book [2] in the bibliography, in pages 372 and 373 is 
written the ASM1 model with all the parameters). About the fluxes and the settling 
equations check Ulf Jeppsson’s book [2] too. 
 
 
5.3 Implementation of the model 
 
In chapter 3 was described the application designed and the background of the 
simulation. For the simulation of the model is run Simulink, the simulation tool of 
Matlab. 
 
To program the equations of the model is used the object S-function. Is a Simulink 
object which let to program with C code or with Matlab code (m-function) a model and 
include it as a block in the Simulink workspace, so it is possible to use the tools of 
Simulink to define the value of the inputs and the representation of the outputs, the 
feedback of the model process. 
 
The S-function chosen is the one which let to program the model as a C file and to 
include it in Simulink workspace. 
 
ABOUT THE “S-function”: 

 
We can find the S-
function in the 
“Simulink Library 
Brower”, as the 
figure 32 shows. 
 
We select the object 
S-function and drag 
it to the workspace 
of the Simulink file 
where is going to be 
implemented the 
model. 
 
 
 
 
 
 
 
 
figure 32: S-function 
in Simulink Library 
Browser. 
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Once the block of the S-function is in the Simulink workspace, the only thing it is 
necessary to do is to press click twice selecting the block S-Function, and the window to 
define the S-function Block Parameters will open. See figure 33 bellow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
figure 32: defining the  

S-function. 
 
 
There are three fields to fill up: “S-function name”, “S-function parameters” and “S-
function modules”. The only two necessary fields are the “S-function name” and the “S-
function parameters”. In the first one it has to be written the name of the c-file where it 
is implemented the code of the S-function. The program locks for a file with the 
extension .C, so it is not necessary to indicate the extension of the file. In the second 
field they are written the input parameters used to define the value of the coefficients in 
the equations. These parameters have to be define within the c-code before the functions 
definition, in the field of the include libraries. 
 
In the following lines is presented the functions that Matlab define to implement the 
code of the S-function. It is recommended to use only these defined functions, because 
Simulink can have problems with the simulation if we try to define another functions 
different to the usual functions that the application can recognise. 
 
The first part is the include libraries, where it is indicated the name of the c-file, the 
include libraries and the constants define in Matlab workspace that the S-function is 
going to use to define variables: 
 
#define S_FUNCTION_NAME name_of_the_c-file 
  
#include "simstruc.h" 
#include <math.h> 
  
#define NAME_OF_THE_PARAMETER   ssGetArg(S,0) 
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The second part is the function where it is defined the size of the input vector, output 
vector, the number of state variables continuous and discontinuous and another 
important parameters. If we don’t write anything the value is zero: 
 
/* 
 * mdlInitializeSizes - initialize the sizes array 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
    ssSetNumContStates(S, 0); /*13 number of continuous states         */ 
    ssSetNumDiscStates(S, 0); /* number of discrete states             */ 
    ssSetNumInputs(S, 0);  /* number of inputs                      */ 
    ssSetNumOutputs(S, 0);  /* number of outputs                     */ 
    ssSetDirectFeedThrough(S, 0);/* direct feedthrough flag               */ 
    ssSetNumSampleTimes(S, 0); /* number of sample times                */ 
    ssSetNumSFcnParams(S, 0); /* number of input arguments             */ 
    ssSetNumRWork(S, 0);  /* number of real work vector elements   */ 
    ssSetNumIWork(S, 0);  /* number of integer work vector elements*/ 
    ssSetNumPWork(S, 0);  /* number of pointer work vector elements*/ 
} 

 
The following function is used to define the sample time needed to simulate the model 
defined. Here is defined if the function is continuous or the period of simulation if the 
model is a discontinuous model. 
 
/* 
 * mdlInitializeSampleTimes - initialize the sample times array 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 

 
In this function are defined the value of the initial conditions of the state variables of the 
model: 
 
/* 
 * mdlInitializeConditions - initialize the states 
 */ 
static void mdlInitializeConditions(double *x0, SimStruct *S) 
{ 
} 

 
In the mdlOutputs function are defined the value of the outputs of the model: 
 
/* 
 * mdlOutputs - compute the outputs 
 */ 
  
static void mdlOutputs(double *y, double *x, double *u, SimStruct *S, int tid) 
{ 
} 
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This is the last function, where the model and the derivative functions are implemented. 
Here are defined all the auxiliary variables and the equations of the model: 
 
/* 
 * mdlDerivatives - compute the derivatives 
 */ 
static void mdlDerivatives(double *dx, double *x, double *u, SimStruct *S, int 

tid) 
{ 
} 

 
This part of the chapter is an introduction of the S-functions, they are not explained all 
the functions that can be implemented in the S-function and all their features. If the 
reader is interested in going further with the S-function definitions and uses he can 
check the bibliography. 
 
5.3.1 S-function programmed 
 
To implement the S-function it has been used the code programmed by Ulf Jeppsson 
and Krist V. Gernaey, following the same structure and utilising the equations 
implemented by them. Hence, in this point it is not going to be explained all the 
structure and parameters of the S-function programmed, it is only stood up the 
modifications made to the original file. Thereby it is possible to see the all code of the 
function checking the “APPENDIX IV”. 
 
In the following lines is explained the code implemented to write the modified 
equations described in “5.2.2 Model equations” in the current chapter. 
 
The first thing is to define the parameters that are needed by the equations. These 
parameters are declared as a constants join to the declaration of the libraries used by the 
program. How to declare the parameters is shown bellow: 
 
#define XINIT   ssGetArg(S,0)      /* initial values                    */ 
#define SEDPAR   ssGetArg(S,1)     /* parameters sedimentation model    */ 
#define DIM     ssGetArg(S,2)      /* dimensions clarifier              */ 
#define LAYER   ssGetArg(S,3)      /* Number of layers                  */ 
#define ASMPAR   ssGetArg(S,4)     /* parameters activated sludge model */ 
#define SOSAT   ssGetArg(S,5) 

 
After declaring all the libraries and parameters, the next step is to implement the 
functions. The first function in the S-function is the mdlInitializeSizes function. This 
function is only to indicate to the compiler the number of inputs, outputs, state 
variables, parameters, etc. The mdlInitializeSizes function implemented is: 
 
static void mdlInitializeSizes(SimStruct *S) 
{ 
  ssSetNumContStates(  S, 141); /* number of continuous states, ASM1 

components + TSS for each settler layer + total height for the 
vessel*/ 

  ssSetNumDiscStates(    S, 0); /* number of discrete states         */ 
  ssSetNumInputs(       S, 19); /* number of inputs, 13 ASM1 components + TSS 

+ influent flow rate + Kla + J_down_up + 
Q_output+ Q_u waste sludge flowrate */ 

  ssSetNumOutputs(     S, 144); /* number of outputs: 141 states 13 ASM1 
components + height + TSS for each layer)+ 
Q_e + Q_out + Q_u*/ 
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  ssSetDirectFeedThrough(S, 1); /* direct feedthrough flag           */ 
  ssSetNumSampleTimes(   S, 1); /* number of sample times            */ 
  ssSetNumSFcnParams(    S, 6); /* number of input arguments         */ 
  ssSetNumRWork(         S, 0); /* number of real work vector elements */ 
  ssSetNumIWork(         S, 0); /* number of integer work vector elements*/ 
  ssSetNumPWork(         S, 0); /* number of pointer work vector elements*/ 
} 

 
The functions between mdlInitializeSizes function and mdlOutputs function are not 
modified, so the next function implemented is mdlOutputs function. Within this 
function is defined the value of all the outputs. The 141 state variables are defined as an 
outputs to can measure and represent the evolution of the state variables of the model. 
The other outputs are the effluent flowrate (Q_e), the waste sludge flowrate (Q_u) and 
the output flowrate (Q_o). 
 
static void mdlOutputs(double *y, double *x, double *u, 

SimStruct *S, int tid) 
{ 
int i; 
int j; 
    /* Clarifier state variables */ 
    for (i=0;i<10;i++){ 
        for (j=0;j<14;j++){ 
        y[(i*14)+j]=x[i+j*10];   //we have written 14 because now we have 15 

states variables per each layer 
        }                        //the order of outputs is from 1 to 14 layer 

1, from 15 to 28 layer 2, etc 
    }                        //the inputs is, from 1 to 10 the SI of all 

layers, from 11 to 20 the Ss of all 
layers, etc 

   y[140] = x[140]; 
    
   /* Flow rates out of the vessel */ 
   if ((u[14]>0)&&(u[17]==0)){ 
       y[141]=u[14]-u[18];       /* Q_e  */  
   } 
   if ((u[14]==0)&&(u[17]>0)){ 
       y[141]=u[17]-u[18];       /* Q_e  */  
   } 
   else y[141]=0; 
  
   y[142]=u[18];                 /* Q_u   */  
   y[143]=u[17];                 /* Q_out */ 
 } 

 
The more complex function that has to be defined is the mdlDerivatives function. 
Within it is where is defined the model of the wastewater treatment plant. The 
implementation made is longer than the lines shown bellow, but here are shown the 
main changes made in the original S-function to program the batch process model 
(check the appendix IV to see the full code) 
 
static void mdlDerivatives(double *dx, double *x, double *u, 

SimStruct *S, int tid) 
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The implementation of the equation of the velocity up vup, which have the solid particles 
presents up to the feed layer, shown in the point 5.2.2 Model equations, in the current 
chapter, is shown bellow: 
 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%    NEW    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
// Equaction of effluent 
   if ((u[14]>0)&&(u[17]==0)){ 
       Q_e = u[14]-Q_u;       /* Q_e  */  
   } 
   if ((u[14]==0)&&(u[17]>0)){ 
       Q_e = u[17]-Q_u;       /* Q_e  */  
   } 
   else Q_e = 0; 
  
// Equation of the velocity up 
   if ((u[14]>0)||(u[17]>0)){ 
       v_up = Q_e/area;        
   } 
   else v_up = -v_dn; 
  
// The flux for filling, mixing and reaction phase, 
// where the wastewater is well mixed 
J_d_u = u[16]; 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 

 
The line “J_d_u = u[16];” is the declaration of the flux generated in filling phase, 
mixing phase and reaction phase to get that the vessel was well mixed. 
 
The following representative change is the code programmed to implement the sludge 
flux due to the liquid flow: 
 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%    NEW    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
/* calculation of the sludge flux due to the liquid flow (upflow or downflow, 
depending on layer) */ 
for (i = 0; i < 11; i++) {               
   //bulk movement up to the feed layer 
   if (i < (feedlayer-eps)){ 
       if ((u[14]>0)||(u[17]>0)){ 
           Jflow[i] = v_up*xtemp[i+130]; 
       } 
       else{ 
           Jflow[i] = v_dn*xtemp[i-1+130]; 
       } 
   } 
   //bulk movement down to the feed layer and in the feed layer 
   else 
      Jflow[i] = v_dn*xtemp[i-1+130];  
} 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 

⎩
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The first state variable defined is the state variable height, the main characteristic of this 
model. Now the height of the vessel is not a constant as in the models before. As it is 
assumed all the layers have the same height, first is define the state variable of the total 
height of the vessel, and after it is divided by the number of layers in the model: 
 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%    NEW    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
/* height of the tank: H*/ 
     
    dx[140] = (u[14]-u[17])/area; /*the heigth of the vessel*/ 
    h = x[140]/n;                 /*the heigth of each layer*/ 
 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 

 
The other significant change in the state variables has been to include the flux needed to 
get the vessel was well mixed (J_d_u) within the equations of the particulate 
components: XI, XS, XB,H, XB,A, XP and XND. The changes made are stood up in black 
letters: 
 
/* particulate component X_I */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
      dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+20]/xtemp[i+1+130])*Jflow[i+1])/h + 
(xtemp[i+1+20]/xtemp[i+1+130])*J_d_u + reac3[i]; 

   else if (i > (feedlayer-eps))  
      dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h + 
(xtemp[i-1+20]/xtemp[i-1+130])*J_d_u + reac3[i]; 

   else 
      dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-1+130])*Js[i]+v_in*u[2])/h + 
(xtemp[i-1+20]/xtemp[i-1+130])*J_d_u + reac3[i]; 

} 

 
The last equation modified is the equation of the state variable dissolved oxygen “SO”. 
Has been included the reaction rate (KLa*(SO_sat-xtemp[i+70])) of the oxygen to 
model the reaction phase. The second change is to add the variables a and b within the 
equations. It is necessary because of the different values of the velocity up vup, which 
depends of qeffluent (Q_e). 
 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%    NEW    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
/* soluble component S_O */ 
  
KLa = u[15]; 
  
for (i = 0; i < 10; i++) { 
   if(v_up==-v_dn){ 
       a = xtemp[i-1+70]; 
       b = xtemp[i+70]; 
   } 
   else{ 
       a = xtemp[i+70]; 
       b = xtemp[i+1+70]; 
   } 
  
   if (i < (feedlayer-1-eps)) 
      dx[i+70]  = (-v_up*a +v_up*b)/h +reac8[i] + KLa*(SO_sat-xtemp[i+70]); 

//we have added rSO (Kla!=0) 
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   else if (i > (feedlayer-eps))  
      dx[i+70]  = (v_dn*xtemp[i-1+70] -v_dn*xtemp[i+70])/h +reac8[i] + 

KLa*(SO_sat-xtemp[i+70]); //we have added rSO (Kla!=0) 
   else 
      dx[i+70]  = ((v_in*u[7] -v_up*a -v_dn*xtemp[i+70])/h +reac8[i]) + 

KLa*(SO_sat-xtemp[i+70]); //we have added rSO (Kla!=0) 
} 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 

 
 
5.4 Comments 
 
In the points before a batch process model has been implemented. The S-function has 
been programmed to model the six phases of the batch process model. The inputs that 
control if the model is in one or another phase are: 
 

• Qi: input flowrate 
• Qo: output flowrate 
• Jdown_up: extra flux in filling phase and the biological phases 
• Qu: waste sludge flowrate 
• Kla: constant of the dissolved oxygen concentration’s reaction 

 
Now, only rests to implement a control as it shows the figure 33: 
 

 
figure 33: batch process control 

 
Matlab offers a lot of possibilities to implement the control in Simulink or even in 
Matlab workspace as an “m function”. 
 
The aim of this chapter was to model batch process model, the controller is not part of 
it, so the chapter is not going further in this topic. 
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APPENDIX I 
 
Appendixes to CHAPTER 2 (Wastewater Treatment Processes) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

In this chapter there is more information about Wastewater Treatment 
Processes, in order to extend the one given in “Chapter 2” before, for these 
ones who want to know more about it. 
But if it is needed more knowledge and to go further from this introduction to 
wastewater treatment process, there is the possibility of checking the 
bibliography. 
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I.1 Appendixes for MODELLING WASTEWATER TREATMENT 

PROCESSES 
 
The first thing it is pertinent to know is how to read the tabular form in which activates 
sludge stoichiometry and kinetics are conventionally presented. 
The kind of the tabular form is presented below: 
 

COMPONENTS PROCESS 
State var. 1 State var. 2 … State var. n 

KINETICS 

Process 1 Value 1,1 Value 1,2 … Value 1,n Kinetic 1 
Process 2 Value 2,1 Value 2,2 … Value 2,n Kinetic 2 
… … … … … … 
Process k Value k,1 Value k,2 … Value k,n Kinetic k 
 
, where, for instance, the reaction rate of the “state variable 2” is: 
 

...)2(*)2,2()1(*)2,1(2 ++= kineticvaluekineticvaluetereactionra  
    )(*)2,( kkinetickvalue+  
 
I.1.1 Tabular form for “simple biological kinetics” 
 

COMPONENTS PROCESS 
Nutrient N Biomass B 

KINETICS

Aerobic 
heterotrophic 
growth BY

1
−  1 B

NN

N X
SK

S
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∧

μ  

 
 
I.1.2 Tabular form for “simple biological kinetics” and “carbon removal 

kinetics” 
 

COMPONENTS PROCESS 
Nutrient Oxygen Biomass 

KINETICS

Aerobic 
heterotrophic 
growth HY

1
−  

H

H

Y
Y 1−

 1 H
OOH

O

SS

S
H X

SK
S

SK
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

μ

Decay of 
heterotrophs 1 - fP  -1 bHXH 
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I.1.3 Tabular form for “simple biological kinetics”, “carbon removal 

kinetics” and “nitrogen removal kinetics” 
 

COMPONENTS PROCESS 
Carbo
n 

Oxygen Ammonium Nitrate Heterotroph
s biomass 

Autotroph
s biomass 

Aerobic 
heterotrophi
c growth HY

1
−  

H

H

Y
Y 1−

 -iXB  1  

Anoxic 
heterotrophi
c growth 

HY
1

−   -iXB H

H

Y
Y

86,2
1−

 
1  

Aerobic 
autotrophic 
growth  A

A

Y
Y 57,4−

 
-iXB 

AY
1

−  
AY

1   1 

Decay of 
heterotrophs Pf−1   XPPXB ifi −

 
 -1  

Decay of 
autotrophs Pf−1   XPPXB ifi −

 
  -1 

 
PROCESS KINETICS

Aerobic 
heterotrophic 
growth 

H
OOH

O

SS

S
H X

SK
S

SK
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

μ  

Anoxic 
heterotrophic 
growth 

Hg
NONO

NO

OOH

OH

SS

S
H X

SK
S

SK
K

SK
S

ημ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

 

Aerobic 
autotrophic 
growth 

A
OOA

O

NHNH

NH
A X

SK
S

SK
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

μ  

Decay of 
heterotrophs bHXH 
Decay of 
autotrophs bAXA 
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I.1.4 Tabular form for “phosphorus removal kinetics” 
 

COMPONENTS PROCESS 
SF SA SO2 SPO4 XPHA XPP XPAO 

Fermentation -1 1      
P Release  -1  YPO4 1 - YPO4  
P Uptake   - YPHA -1 - YPHA 1  

PAO Growth   1
HY
1

−  -iPBM 
HY
1

−   1 

PHA 
Breakdown  1   -1   

PP 
Breakdown    1  -1  

PAO 
Breakdown    νP   -1 

 
PROCESS KINETICS

Fermentation H
FFE

F

NONO

NO

OO

O
FE X

SK
S

SK
K

SK
K

q ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 33

3

22

2  

P Release PAO
PAOPPPP

PAOPP

AA

A
PHA X

XXK
XX

SK
S

q ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ /

/

2

 

P Uptake ( ) PAO
PAOPPMAXIPP

PAOPPMAX

PAOPHAPHA

PAOPHA

POP

PO

OO

O
PP X

XXKK
XXK

XXK
XX

SK
S

SK
S

q ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ /

/
/

/

4

4

22

2

PAO Growth ( ) PAO
PAOPHAPHA

PAOPHA

NHNH

NH

POP

PO

OO

O
PAO X

XXK
XX

SK
S

SK
S

SK
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

/
/

4

4

22

2μ  

PHA 
Breakdown bPHAXPHA 
PP 
Breakdown bPPXPP 
PAO 
Breakdown bPAOXPAO 
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APPENDIX II 
 
Appendixes to CHAPTER 3 (Application Design) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

In this chapter there is more information about the application designed with 
Matlab; the code and the ‘.exe’ application. 
There is nothing about the synchronization, data exchange and model 
design, these parts are described in chapters 4 and 5 and the appendixes of 
those chapters. 
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This appendix tries to complete the information given in “chapter 3” about the 
implementation of the application. But first it is necessary to do a brief explanation 
about the communication between the application and the controller, part which is 
explained in detail in “chapter 3”. 
 
The way chosen to communicate the controller and the application through Ethernet is 
writing and reading “XML” files, so to store the value of all the variables that the 
controller has to update (control variables, synchronization variables, data read from the 
database and the results from the simulation) it is needed an “XML” file. It means that 
all the functions implemented to change or to read the values of the control variables 
and of the synchronization variables, they only have to be able to write or to read an 
“XML” file. About how to get this with Matlab is explained in “chapter 4”. 
 
Another reason for storing the variables that they are changing during the application 
running in “XML” files is that Matlab is not able to change the value of the variables in 
the work-space directly when it is executing a loop. It only can change the values of the 
variables of the work-space inside the loop, or with a function which reads the value of 
these variables from a file, where the values are stored. So, when the application is 
executing the “main loop”, to make possible that it reads the changes that the controller 
or the other buttons out of the “main loop” make to the control and synchronization 
variables, they have to change the values writing the file where they are stored, so when 
the reading functions inside the “main loop” reads the file the changes made have effect. 
 
II.1 STAR emulator to check the synchronization code 
 
The user interface designed for the application has two buttons to check the 
synchronization phases. An image about the user interface is shown below: 
 

 
 
 
 
 
 
 
 
 
figure 34: User Interface 
 

 
The buttons “READ FROM DATABASE” and “WRITE IN DATABASE” use the 
function implemented to emulate the controller only in the synchronization phases. 
These buttons execute the function “writeXML_synchro (variables)”, where “variables” 
is a vector with two components. This function writes the value introduced (variables) 
in the file “XML” that stores the value of the synchronization variables. 
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II.1.1 “writeXML_synchro” code 
 
The function “writeXML_synchro” uses the “xmlwrite” command to write an XML file 
where stores the value of the two synchronization variables. This function works like 
the function “writeXML” uses to write in the database the results of the simulation. The 
function makes the XML file in three steps: 
 

• to create a “java object” 
• to create an XML file 
• to write the “java object” which contains the variables and the values in the 

XML file with the function “xmlwrite” 
 
function archivoXML=writeXML_synchro(valueP) 
 
    % Create a sample XML document. 
     
    docNode = com.mathworks.xml.XMLUtils.createDocument('synchronize'); 
    docRootNode = docNode.getDocumentElement; 
    %docRootNode.setAttribute('attribute','attribute_value'); 
       dataElement = docNode.createElement(sprintf('sincro')); 
       nameElement = docNode.createElement(sprintf('read')); 
       valueElement = docNode.createElement(sprintf('write')); 
        
       nameElement.setTextContent(sprintf('%f',valueP(1))); %name of the 

variable 
       valueElement.setTextContent(sprintf('%f',valueP(2))); %value of the 

variable 
       dataElement.appendChild(nameElement); 
       dataElement.appendChild(valueElement); 
       docRootNode.appendChild(dataElement); 
 
    % Save the sample XML document. 
    xmlFileName = ['synchro','.xml']; %we have the file in our current 

directory 
    xmlwrite(xmlFileName,docNode); 

 
How to create the “java object” to write an XML file or read an XML file is explained 
in “chapter 4”, which is about the data-exchange and the synchronization files. 
 
 
II.2 Control functions 
 
In the implementation of the program there have been defined two control variables: 
“aux_loop” and “aux_sim”. The value of these variables is stored in the file 
“controlFILE.xml” and the meaning of each variable is: 
 

• aux_loop: control variable for the “main loop”, so if “aux_loop≠1” the 
condition to keep running the program is not complained and the program goes 
out of the “main loop”. 

• aux_sim: control variable to stop the simulation of the plant process. The 
difference between “aux_sim” and “aux_loop” is that “aux_sim” doesn’t stop 
the “main loop”. 
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With these variables the controller can stop the simulation if it is not necessary in some 
period, but also it can stop the application if there is no needed more data. Nevertheless, 
don’t forget once the application goes out of the main loop it is not possible to start it 
again from the controller. 
 
II.2.1 “controlloop” code 
 
As the function described in the point 7.1.1 “writeXML_synchro” code, “controlloop” 
has the same structure, the only difference is that the two variables stored inside are the 
control variables and not the synchronization variables as before. 
This function is used once in the initialization part (check chapter 3 last point 3.4.2 
programme code) to write the initial values of the control variables. After that, only the 
controller will be the one which changes the values of the control variables. The code is 
presented below: 
 
function archivoXML=controlloop(control) 
  
    % Create a sample XML document. 
    %program 
    docNode = com.mathworks.xml.XMLUtils.createDocument('control'); 
    docRootNode = docNode.getDocumentElement; 
    %docRootNode.setAttribute('attribute','attribute_value'); 
%    for i=1:n 
       dataElement = docNode.createElement(sprintf('data')); 
       loopElement = docNode.createElement(sprintf('loop')); 
       simElement = docNode.createElement(sprintf('simulation')); 
        
       loopElement.setTextContent(sprintf('%f',control(1))); %name of the 

variable 
       simElement.setTextContent(sprintf('%f',control(2))); %value of the 

variable 
  
       dataElement.appendChild(loopElement); 
       dataElement.appendChild(simElement); 
       docRootNode.appendChild(dataElement); 
  
    % Save the sample XML document. 
    xmlFileName = ['controlFILE','.xml']; %we have the file in our current 

directory 
    xmlwrite(xmlFileName,docNode); 

 
II.2.2 “control_check” code 
 
As well as the function presented in the point 7.2.1 “controlloop” code is a function 
which writes an XML file, “control_check” read the values of the control variables 
stored in the XML file “controlFILE”. The Maltlab command used to read the XML file 
is “xmlread”. This function is divided in three steps: 
 

• First it reads the XML file with the function “xmlread”, that stores the XML file 
in a java object. 

• After it scans the java object to find the items with the name “data”. The item 
data has two children; “loop” is the child which has the value of the control 
variable “aux_loop” and “simulation” is the child which has the value of the 
control variable “aux_sim”. 

• At last, the function stores the values in the variables that returns to the Matlab 
work-space. 
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function [loop sim]=control_check 
  
loopdata=[]; 
simdata=[]; 
  
infoLabel = 'Plot Tools'; 
infoCbk = ''; 
itemFound = false; 
  
xDoc = xmlread('controlFILE.xml'); 
  
  
    % Find a deep list of all listitem elements. 
    allListItems = xDoc.getElementsByTagName('data');  
  
    % Note that the item list index is zero-based. 
    for i = 1:allListItems.getLength         %it's looking for all items with 

<data(i,:)> 
        thisListItem = allListItems.item(i-1); 
        childNode = thisListItem.getFirstChild; 
  
        while ~isempty(childNode) 
            %Filter out text, comments, and processing instructions. 
            if childNode.getNodeType == childNode.ELEMENT_NODE 
                % Assume that each element has a single 
                % org.w3c.dom.Text child. 
                childText = char(childNode.getFirstChild.getData);%get the 

data text 
  
                switch char(childNode.getTagName) 
                    case 'loop'; 
                        %itemFound = strcmp(childText, infoLabel); 
                        loopdata(i)=sscanf(childText,'%f');%to get the 

readdata value 
                    case 'simulation' ; 
                        %infoCbk = childText; 
                        simdata(i)=sscanf(childText,'%f');%to get the 

writedata value 
                end 
            end  % End IF 
            childNode = childNode.getNextSibling; 
        end  % End WHILE 
  
        if itemFound 
            break; 
        else 
            infoCbk = ''; 
        end 
    end  % End FOR 
  
%read value 
 loop=loopdata; 
 sim=simdata; 

 
This kind of function is explained with more details in chapter 4, chapter about the 
communication of the application and the controller. 
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II.3 Processing data within Matlab 
 
It has been shown in chapter 3 that the “Matlab algorithm” contains three parts: process 
the data read, simulate the plant model and process the results. To do the steps of 
“process the data read” and “process the results” two functions have been implemented. 
These two functions are examples, and they depend of the model used in the 
application. So these functions are presented as a guide to implement them in the future. 
 
II.3.1 “read_data” function 
 
This function is the one which processes the data read from the database, it means, it 
has to translate the three vectors stored into variables useful to the simulation: 
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, and ‘n’ is the number of variables 
acquired. 

 
One simple way is to implement a loop with conditional statements that scans the vector 
of the names, then for the variable “variableDO” used in the model, when the loop finds 
the component nameR(i) = ‘DO’, it stores the value of valueR(i) inside the variable 
“variableDO”. 
 
% file to write the data from the database to work space 
  
endloop = length (valueR); 
  
for i = 1:endloop 
    if nameR(i,:) == 'DO' 
        variableDO = valueR(i) 
    end 
    if nameR(i,:) == 'SS' 
        variableSS = valueR(i) 
    end 
    if nameR(i,:) == 'Xs' 
        variableXs = valueR(i) 
    end 
    if nameR(i,:) == 'Hh' 
        variableHh = valueR(i) 
    end 
end 
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II.3.2 “write_data.m” function 
 
To implement the function which builds the three vectors with the results of the 
simulation is even easier than the case before. The only task is to write the three vectors 
and all the components ordered. The code is shown below: 
 
% file to write the data from the work space to database 
  
name = ['SI';'SS';'XI'] 
value = [reac5(end,1) reac5(end,14) reac5(end,3)]  
quality = [1 0 1]  
 
 
II.4 GUIDE application 
 
II.4.1 What’s GUIDE 
 
To developed the graphical interface of the application has been used GUIDE. GUIDE 
is an application integrated in Matlab which makes possible in a few steps and with a 
little time developed graphical interfaces. By the other side, the main advantage of 
GUIDE is that it is a Matlab application, so all the programs developed with GUIDE 
can access directly to the Matlab work-space. 
 
To start GUIDE it has to be typed the command “guide” in Matlab work-space and it 
appears the window shown in the following figure: 
 

 
figure 35: GUIDE background 

 
Once this window is opened, the only things we have to do is to set the graphical 
interface that we want and to save the application. 
 
II.4.2 Application GUIDE code 
 
When the application implemented in GUIDE is saved, it is created another file with the 
same name which contains all internal code. This internal code contains the functions of 
the objects that have been included in the window of the application. GUIDE defines 
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the functions when we add an object in the graphical work-space, and the only thing it is 
necessary to do is to include the code of the functions that the button has to execute. 
 
In the following lines is shown the function of the four buttons of the user interface 
implemented in the application of this thesis. 
 
RUN PROCESS 
 
The function of the button that start the process: 
 
% --- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
 
control_value = [1 1]; 
controlloop(control_value); 
MAIN 
disp('the process is RUNNING') 
 
STOP PROCESS 
 
The function of the button to stop the process completely: 
 
% --- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
 
control_value = [1 0] 
controlloop(control_value); 
disp('the process is STOPED') 
 
READ FROM DATABASE 
 
Function of the button that simulates the STAR controller to check the synchronization 
before reading the data from the database: 
 
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
 
valueP = [1 0] 
writeXML_synchro(valueP);  
disp('the process is READING') 
 
WRITE IN DATABASE 
 
Function of the button that simulate the STAR controller to check the synchronization 
before writing the results of the simulation in the database: 
 
% --- Executes on button press in pushbutton4. 
function pushbutton4_Callback(hObject, eventdata, handles) 
 
valueP = [0 1]  
writeXML_synchro(valueP);        
disp('the process is WRITING') 
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APPENDIX III 
 
Appendixes to CHAPTER 4 (Data Exchange) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

This appendix tries to clarify some concepts mentioned in “CHAPTER 4: 
Data Exchange”. 
The chapter is divided in three points: “Web Services”, “SOAP protocol” and 
“<org.apache.xerces.dom.DocumentImpl> class”. These three points give us 
a brief sight about Web Services, SOAP protocol and the class 
“org.apache.xerces.dom.DocumentImpl”, so that, check the bibliography if 
you are really interested in going further in these topics. 
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III.1 Web Services 
 
Web Services can be defined as network accessible interface to application functionality, 
built using standard Internet Technologies. It means that an application is a Web Service 
if it can be accessed using a standard protocols as HTTP, XML, SMTP or Jabber, or a 
combination of them, over the network. 
 
A more technically definition can be: 
 

• Web Service: interface positioned between the application code and the user of 
that code. It acts as an abstraction layer, separating the platform 
and programming-language-specific details of how the application 
code is actually invoked. This standarized layer means that any 
language that supports the web service can access the application’s 
functionality. 

 
The abstraction layer provided by the Web Service means that it does not matter if the 
application services and the browser are written using different languages (Java, C++, 
Perl, .NET), or one is deployed on an Unix box and the other on Windows, the Web 
Service will be capable of sending and receiving messages, and always using a standard 
Internet protocol to program it. 
 
A web service consists in two parts: 
 

• Service Proxy: that decodes the requests into calls into the application code. 
• Service Listener: that speaks the transport protocol (SOAP in the case of this 

thesis) and receives incoming requests. 
 
The web services are divided in two parts, but to implement them it is made through the 
layering of five types of technologies, organized into layers that build upon one another. 
This division is called “Web Service Technology Stack” and the five layers that 
compound the Web Services are, starting from the down layer to the up layer: “network 
layer”, “transport layer”, “packaging layer”, “description layer” and “discovery layer”. 
 
Each part of the web services stack addresses a separate business problem, so it is not 
necessary to rewrite significant chunks of the infrastructure when a new layer of the 
stack is needed, to support a new form of exchanging information. 
 
To finish with the introduction to Web Services, some of the most important 
standarizations initiatives currently being pursued in programming Web Services are: 
 

• XML protocol 
• XKMS 
• SAML (Security Assertions Markup Language): it is an XML grammar for 

expressing the occurrence of security events. 
• XML-Dsig (XML digital signatures) 
• XML-Enc (XML encryption) 
• XSD 
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• P3P 
• WSFL (Web Services Flow Language): it is an extension to WSDL. 
• Jabber: asynchronous transport protocol used in peer-to-peer applications. 
• ebXML: built to use SOAP. 

 
 
III.2 SOAP Protocol 
 
The point before talks about Web Services and what is this. Here there is an 
introduction about SOAP protocol, the protocol used by the company (Veolia Water 
System) to write Web Services. 
 
A definition of SOAP can be: a standardized packaging for the messages shared by 
applications. The SOAP’s specification defines a simple XML-based envelope for 
transferring information, and a set of rules for translating application and platform-
specific data types into XML representations. So it can be deduced that SOAP is an 
application of the XML specification. It relies heavily on XML standards like XML 
Schema and XML Namespace for its definition and function (check the World Wide 
Web Consortium’s web site at http://www.w3c.org to find more information about these 
specifications). 
 
So, to understand how works SOAP, it is necessary to understand XML messaging. It is 
where applications exchange information using XML documents. It provides a flexible 
way for applications to communicate. The exchange of information through XML 
documents forms the basis of SOAP. The fundamental idea is that two applications may 
openly share information using message encoded in a way that both applications 
understand, not taking care about the operative system, the programming code or 
another technical limitation. SOAP provides a standard way to structure XML 
messages. 
 
SOAP has two related applications: RPC and EDI. 
 

• Remote Procedure Call (RPC) is the basis of distributed computing, the way for 
one program to make a procedure call on another, passing arguments and 
receiving return values. 

• Electronic Document Interchange (EDI) is basis of automated business 
transactions, defining a standard format and interpretation of financial and 
commercial documents and messages. 

 
But, it is not enough saying that the server and the client are using XML both of them. It 
is necessary to define too: 
 

• The types of information we are exchanging. 
• How that information is to be expressed as XML. 
• How to actually go about sending that information. 

 
SOAP provides these conventions that help to decode the information given. 

http://www.w3c.org/
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The structure of a SOAP message consists of an envelope containing an optional header 
and a required body: 
 

• The header contains blocks of information relevant to how the message is to be 
processed. 

• The body contains the actual message to be delivered and processed. 
 
There have been several versions of the SOAP specification. The last version, SOAP 
version 1.2, represents the first fruits of the World Wide Web Consortium’s (W3C) 
effort to standardize an XML-based packaging protocol for web services. The W3C 
chose SOAP as the basis for that effort. The previous version of SOAP, Version 1.1, is 
still widely used. 
 
 
III.3 “org.apache.xerces.dom.DocumentImpl” class 
 
The package “org.apache.xerces.dom” uses DocumentImpl, this is because the class is 
called org.apache.xerces.dom.DocumentImpl. DocumentImpl can be used by other 
packages: “org.apache.html.dom”, “org.apache.wml.dom” and 
“org.apache.xerces.parses”. 
 
The public class DocumentImpl is the Document interface that represents the entire 
HTML or XML document. Conceptually, it is the root of the document tree, and 
provides the primary access to the document's data. 
Since elements, text nodes, comments, processing instructions, etc. cannot exist outside 
the context of a Document, the Document interface also contains the factory methods 
needed to create these objects. The Node objects created have an ownerDocument 
attribute which associates them with the Document within whose context they were 
created.  
The DocumentImpl class also implements the DOM Level 2 DocumentTraversal 
interface. This interface is comprised of factory methods needed to create NodeIterators 
and TreeWalkers. The process of creating NodeIterator objects also adds these 
references to this document. After finishing with an iterator it is important to remove the 
object using the remove methods in this implementation. This allows the release of the 
references from the iterator objects to the DOM Nodes.  
 
The uses of “DocumentImpl” in “org.apache.xerces.dom”: 
 
SUBCLASSES: 
 

• DeferredDocumentImpl: the document interface represents the entire HTML or 
XML document. Conceptually, it is the root of the document tree, and provides 
the primary access to the document's data. Since elements, text nodes, 
comments, processing instructions, etc. cannot exist outside the context of a 
Document, the Document interface also contains the factory methods needed to 
create these objects. The Node objects created have a ownerDocument attribute 
which associates them with the Document within whose context they were 
created. 
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CONSTRUCTORS in “org.apache.xerces.dom” with parameters of type DocumentImp: 
 

• RangeImpl(DocumentImpl document): Clients must use 
DocumentRange.createRange(), because it registers the Range with the 
document, so it can be fixed-up. 

 
• NodeIteratorImpl(DocumentImpl document, Node root, int whatToShow, 

NodeFilter nodeFilter, boolean entityReferenceExpansion): DefaultNodeIterator 
implements a NodeIterator, which iterates a DOM tree in the expected depth 
first way. The whatToShow and filter functionality is implemented as expected. 
This class also has method removeNode to enable iterator "fix-up" on DOM 
remove. It is expected that the DOM implementation call removeNode right 
before the actual DOM transformation. If not called by the DOM, the client 
could call it before doing the removal.  

 
At last the methods of the class DocumentImpl are exposed bellow (All information 
about the methods of the org.apache.xerces.dom.DocumentImpl class expose here has 
been extracted from http://xerces.apache.org/xerces-
j/apiDocs/org/apache/xerces/dom/DocumentImpl.html): 
 

addEventListener(NodeImpl node, java.lang.String type, 
EventListener listener, boolean useCapture) 

cloneNode(boolean deep) 
createEvent(java.lang.String type) 
createNodeIterator(Node root, int whatToShow, NodeFilter filter, 

boolean entityReferenceExpansion) 
createNodeIterator(Node root, short whatToShow, NodeFilter filter) 
createRange() 
createTreeWalker(Node root, int whatToShow, NodeFilter filter, 

boolean entityReferenceExpansion) 
createTreeWalker(Node root, short whatToShow, NodeFilter filter) 
dispatchAggregateEvents(NodeImpl node, AttrImpl enclosingAttr, 

java.lang.String oldvalue, short change) 
dispatchAggregateEvents(NodeImpl node, 

org.apache.xerces.dom.DocumentImpl.EnclosingAttr 
ea) 

dispatchEvent(NodeImpl node, Event event) 
dispatchEventToSubtree(NodeImpl node, Node n, Event e) 
getEventListeners(NodeImpl n) 
getImplementation() 
getUserData(NodeImpl n) 
removeEventListener(NodeImpl node, java.lang.String type, 

EventListener listener, boolean useCapture) 
saveEnclosingAttr(NodeImpl node) 
setEventListeners(NodeImpl n, java.util.Vector listeners) 
setUserData(NodeImpl n, java.lang.Object data) 

 
 
 

http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#addEventListener(org.apache.xerces.dom.NodeImpl, java.lang.String, org.w3c.dom.events.EventListener, boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/events/EventListener.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#cloneNode(boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createEvent(java.lang.String)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createNodeIterator(org.w3c.dom.Node, int, org.w3c.dom.traversal.NodeFilter, boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/traversal/NodeFilter.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createNodeIterator(org.w3c.dom.Node, short, org.w3c.dom.traversal.NodeFilter)
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/traversal/NodeFilter.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createRange()
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createTreeWalker(org.w3c.dom.Node, int, org.w3c.dom.traversal.NodeFilter, boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/traversal/NodeFilter.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createTreeWalker(org.w3c.dom.Node, short, org.w3c.dom.traversal.NodeFilter)
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/traversal/NodeFilter.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#dispatchAggregateEvents(org.apache.xerces.dom.NodeImpl, org.apache.xerces.dom.AttrImpl, java.lang.String, short)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttrImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#dispatchAggregateEvents(org.apache.xerces.dom.NodeImpl, org.apache.xerces.dom.DocumentImpl.EnclosingAttr)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#dispatchEvent(org.apache.xerces.dom.NodeImpl, org.w3c.dom.events.Event)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/events/Event.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#dispatchEventToSubtree(org.apache.xerces.dom.NodeImpl, org.w3c.dom.Node, org.w3c.dom.events.Event)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/events/Event.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#getEventListeners(org.apache.xerces.dom.NodeImpl)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#getImplementation()
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#getUserData(org.apache.xerces.dom.NodeImpl)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#removeEventListener(org.apache.xerces.dom.NodeImpl, java.lang.String, org.w3c.dom.events.EventListener, boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/events/EventListener.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#saveEnclosingAttr(org.apache.xerces.dom.NodeImpl)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#setEventListeners(org.apache.xerces.dom.NodeImpl, java.util.Vector)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#setUserData(org.apache.xerces.dom.NodeImpl, java.lang.Object)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
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APPENDIX IV 
 
Appendixes to CHAPTER 5 (Modelling Batch Processes with Matlab) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

This appendix contains the full code of the functions not shown in chapter 5. 
The main parts of the code were explained in chapter 5, so the reader does 
not find any other information related with the S-functions and the model 
implemented for modelling Batch Processes. 
To go further with the researching it is recommended to check the 
bibliography. 
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IV.1 S-function “settlerB_batchM.c” code 
 
In this point is exposed the code programmed in the S-function to model batch 
processes with Matlab: 
 
/* 
 * settler1d_reac is a C-file S-function for defining a reactive 10 layer 
sedimentation tank model 
 * Compatibility: ASM1 model 
 * The model is developed based on the settler1dv4.c model of Ulf Jeppsson 
(IEA, LTH, Sweden) 
 * 
 * 25 October 2003 
 * Krist V. Gernaey, CAPEC, Dept. of Chemical Engineering, DTU, Denmark 
 * 
 * Modified on 29 August 2006 
 * by Josep Carrasco Martínez, Dept. of Industrial Electrical Engineering and 
Automation, LTH, Sweden. Model modified to use in "batch processes" 
 */ 
  
#define S_FUNCTION_NAME settlerB_batchM 
  
#include "simstruc.h" 
#include <math.h> 
  
#define XINIT   ssGetArg(S,0)      /* initial values                    */ 
#define SEDPAR   ssGetArg(S,1)     /* parameters sedimentation model    */ 
#define DIM     ssGetArg(S,2)      /* dimensions clarifier              */ 
#define LAYER   ssGetArg(S,3)      /* Number of layers                  */ 
#define ASMPAR   ssGetArg(S,4)     /* parameters activated sludge model */ 
#define SOSAT   ssGetArg(S,5) 
 
/* 
 * mdlInitializeSizes - initialize the sizes array 
 */ 
static void mdlInitializeSizes(SimStruct *S) 
{ 
  ssSetNumContStates(  S, 141); /* number of continuous states, ASM1 

components + TSS for each settler layer + total height for the 
vessel*/ 

  ssSetNumDiscStates(    S, 0); /* number of discrete states         */ 
  ssSetNumInputs(       S, 19); /* number of inputs, 13 ASM1 components + TSS 

+ influent flow rate + Kla + J_down_up + 
Q_output+ Q_u waste sludge flowrate */ 

  ssSetNumOutputs(     S, 144); /* number of outputs: 141 states 13 ASM1 
components + TSS (for each layer)+ + height 
Q_e + Q_out + Q_u*/ 

  ssSetDirectFeedThrough(S, 1); /* direct feedthrough flag           */ 
  ssSetNumSampleTimes(   S, 1); /* number of sample times            */ 
  ssSetNumSFcnParams(    S, 6); /* number of input arguments         */ 
  ssSetNumRWork(         S, 0); /* number of real work vector elements */ 
  ssSetNumIWork(         S, 0); /* number of integer work vector elements*/ 
  ssSetNumPWork(         S, 0); /* number of pointer work vector elements*/ 
} 
  
/* 
 * mdlInitializeSampleTimes - initialize the sample times array 
 */ 
static void mdlInitializeSampleTimes(SimStruct *S) 
{ 
    ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME); 
    ssSetOffsetTime(S, 0, 0.0); 
} 
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/* 
 * mdlInitializeConditions - initialize the states 
 */ 
static void mdlInitializeConditions(double *x0, SimStruct *S) 
{ 
int i; 
  
for (i = 0; i < 141; i++) { 
   x0[i] = mxGetPr(XINIT)[i]; 
} 
} 
  
/* 
 * mdlOutputs - compute the outputs 
 */ 
  
static void mdlOutputs(double *y, double *x, double *u, 

SimStruct *S, int tid) 
{ 
int i; 
int j; 
    /* Clarifier state variables */ 
    for (i=0;i<10;i++){ 
        for (j=0;j<14;j++){ 
        y[(i*14)+j]=x[i+j*10];   //we have written 14 because now we have 15 

states variables per each layer 
        }                        //the order of outputs is from 1 to 14 layer 

1, from 15 to 28 layer 2, etc 
    }                        //the inputs is, from 1 to 10 the SI of all 

layers, from 11 to 20 the Ss of all 
layers, etc 

   y[140] = x[140]; 
    
   /* Flow rates out of the vessel */ 
   if ((u[14]>0)&&(u[17]==0)){ 
       y[141]=u[14]-u[18];       /* Q_e  */  
   } 
   if ((u[14]==0)&&(u[17]>0)){ 
       y[141]=u[17]-u[18];       /* Q_e  */  
   } 
   else y[141]=0; 
  
   y[142]=u[18];                 /* Q_u   */  
   y[143]=u[17];                 /* Q_out */ 
 } 
  
/* 
 * mdlUpdate - perform action at major integration time step 
 */ 
  
static void mdlUpdate(double *x, double *u, SimStruct *S, int 

tid) 
{ 
} 
  
/* 
 * mdlDerivatives - compute the derivatives 
 */ 
static void mdlDerivatives(double *dx, double *x, double *u, 

SimStruct *S, int tid) 
{ 
  
double v0_max, v0, r_h, r_p, f_ns, X_t, area, h, feedlayer, volume; 
int n;  //number of layers 
double Q_f, Q_e, Q_u, v_up, v_dn, v_in, eps; 



APPENDIXES (included papers) 

104 

int i; 
double vs[10]; 
double Js[11]; 
double Jstemp[10]; 
double Jflow[11]; 
double mu_H, K_S, K_OH, K_NO, b_H, mu_A, K_NH, K_OA, b_A, ny_g, k_a, k_h, K_X, 

ny_h; 
double Y_H, Y_A, f_P, i_XB, i_XP, X_I2TSS, X_S2TSS, X_BH2TSS, X_BA2TSS, 

X_P2TSS ; 
double proc1[10], proc2[10], proc3[10], proc4[10], proc5[10], proc6[10], 

proc7[10], proc8[10]; 
double reac1[10], reac2[10], reac3[10], reac4[10], reac5[10], reac6[10], 

reac7[10], reac8[10]; 
double reac9[10], reac10[10], reac11[10], reac12[10], reac13[10], reac14[10]; 
double xtemp[150]; 
double SO_sat; //to calculate rSO 
double KLa, a, b, J_d_u;  
  
v0_max = mxGetPr(SEDPAR)[0]; 
v0 = mxGetPr(SEDPAR)[1]; 
r_h = mxGetPr(SEDPAR)[2]; 
r_p = mxGetPr(SEDPAR)[3]; 
f_ns = mxGetPr(SEDPAR)[4]; 
X_t = mxGetPr(SEDPAR)[5]; 
area = mxGetPr(DIM)[0]; 
// h = mxGetPr(DIM)[1]/mxGetPr(LAYER)[1]; /* now h is introduced as initial 

conditions */ 
 
n = mxGetPr (LAYER)[1]; //number of layers 
feedlayer = mxGetPr(LAYER)[0]; 
volume = area*mxGetPr(DIM)[1]; 
  
/* ASM1: Stoichiometric parameters */ 
mu_H = mxGetPr(ASMPAR)[0]; 
K_S = mxGetPr(ASMPAR)[1]; 
K_OH = mxGetPr(ASMPAR)[2]; 
K_NO = mxGetPr(ASMPAR)[3]; 
b_H = mxGetPr(ASMPAR)[4]; 
mu_A = mxGetPr(ASMPAR)[5]; 
K_NH = mxGetPr(ASMPAR)[6]; 
K_OA = mxGetPr(ASMPAR)[7]; 
b_A = mxGetPr(ASMPAR)[8]; 
ny_g = mxGetPr(ASMPAR)[9]; 
k_a = mxGetPr(ASMPAR)[10]; 
k_h = mxGetPr(ASMPAR)[11]; 
K_X = mxGetPr(ASMPAR)[12]; 
ny_h = mxGetPr(ASMPAR)[13]; 
Y_H = mxGetPr(ASMPAR)[14]; 
Y_A = mxGetPr(ASMPAR)[15]; 
f_P = mxGetPr(ASMPAR)[16]; 
i_XB = mxGetPr(ASMPAR)[17]; 
i_XP = mxGetPr(ASMPAR)[18]; 
X_I2TSS = mxGetPr(ASMPAR)[19]; 
X_S2TSS = mxGetPr(ASMPAR)[20]; 
X_BH2TSS = mxGetPr(ASMPAR)[21]; 
X_BA2TSS = mxGetPr(ASMPAR)[22]; 
X_P2TSS = mxGetPr(ASMPAR)[23]; 
SO_sat = mxGetPr(SOSAT)[0]; //to read SO_sat 
  
eps = 0.01; 
v_in = u[14]/area; 
Q_f = u[14]; 
Q_u = u[18]; 
v_dn = Q_u/area; 
  
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%    NEW    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
// Equaction of effluent 
   if ((u[14]>0)&&(u[17]==0)){ 



Josep Carrasco Martínez 

105 

       Q_e = u[14]-Q_u;       /* Q_e  */  
   } 
   if ((u[14]==0)&&(u[17]>0)){ 
       Q_e = u[17]-Q_u;       /* Q_e  */  
   } 
   else Q_e = 0; 
  
// Equation of the velocity up 
   if ((u[14]>0)||(u[17]>0)){ 
       v_up = Q_e/area;        
   } 
   else v_up = -v_dn; 
  
// The flux for filling, mixing and reaction phase, 
// where the wastewater is well mixed 
J_d_u = u[16]; 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
  
for (i = 0; i < 141; i++) { 
   if (x[i] < 0.0) 
     xtemp[i] = 0.0; 
   else 
     xtemp[i] = x[i]; 
} 
  
/* calculation of the sedimentation velocity for each of the layers */ 
for (i = 0; i < 10; i++) { 
   vs[i] = v0*(exp(-r_h*(xtemp[i+130]-f_ns*u[13]))-exp(-r_p*(xtemp[i+130]-

f_ns*u[13])));      /* u[13] = influent SS concentration */ 
   if (vs[i] > v0_max)      
      vs[i] = v0_max; 
   else if (vs[i] < 0.0) 
      vs[i] = 0.0; 
} 
  
/* calculation of the sludge flux due to sedimentation for each layer (not 
taking into account X limit) */ 
for (i = 0; i < 10; i++) { 
   Jstemp[i] = vs[i]*xtemp[i+130]; 
} 
  
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%    NEW    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
/* calculation of the sludge flux due to the liquid flow (upflow or downflow, 
depending on layer) */ 
for (i = 0; i < 11; i++) {               
   //bulk movement up to the feed layer 
   if (i < (feedlayer-eps)){ 
       if ((u[14]>0)||(u[17]>0)){ 
           Jflow[i] = v_up*xtemp[i+130]; 
       } 
       else{ 
           Jflow[i] = v_dn*xtemp[i-1+130]; 
       } 
   } 
   //bulk movement down to the feed layer and in the feed layer 
   else 
      Jflow[i] = v_dn*xtemp[i-1+130];  
} 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
  
/* calculation of the sludge flux due to sedimentation for each layer */ 
Js[0] = 0.0; 
Js[10] = 0.0; 
for (i = 0; i < 10; i++) { 
   if ((i < (feedlayer-1-eps)) && (xtemp[i+1+130] <= X_t)) 
      Js[i+1] = Jstemp[i]; 
   else if (Jstemp[i] < Jstemp[i+1])      
      Js[i+1] = Jstemp[i]; 
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   else 
      Js[i+1] = Jstemp[i+1]; 
} 
  
/* Reaction rates ASM1 model */ 
  
for (i = 0; i < 10; i++) { 
proc1[i] = mu_H*(xtemp[i+10]/(K_S+xtemp[i+10]))* 

(xtemp[i+70]/(K_OH+xtemp[i+70]))*xtemp[i+40]; 
proc2[i] = mu_H*(xtemp[i+10]/(K_S+xtemp[i+10]))*(K_OH/(K_OH+xtemp[i+70]))* 

(xtemp[i+80]/(K_NO+xtemp[i+80]))*ny_g*xtemp[i+40]; 
proc3[i] = mu_A*(xtemp[i+90]/(K_NH+xtemp[i+90]))* 

(xtemp[i+70]/(K_OA+xtemp[i+70]))*xtemp[i+50]; 
proc4[i] = b_H*xtemp[i+40]; 
proc5[i] = b_A*xtemp[i+50]; 
proc6[i] = k_a*xtemp[i+100]*xtemp[i+40]; 
proc7[i] = k_h*((xtemp[i+30]/xtemp[i+40])/(K_X+(xtemp[i+30]/xtemp[i+40])))* 

((xtemp[i+70]/(K_OH+xtemp[i+70]))+ny_h*(K_OH/(K_OH+xtemp[i+70]))*(xt
emp[i+80]/(K_NO+xtemp[i+80])))*xtemp[i+40]; 

proc8[i] = proc7[i]*xtemp[i+110]/xtemp[i+30]; 
  
reac1[i] = 0.0; 
reac2[i] = (-proc1[i]-proc2[i])/Y_H+proc7[i]; 
reac3[i] = 0.0; 
reac4[i] = (1.0-f_P)*(proc4[i]+proc5[i])-proc7[i]; 
reac5[i] = proc1[i]+proc2[i]-proc4[i]; 
reac6[i] = proc3[i]-proc5[i]; 
reac7[i] = f_P*(proc4[i]+proc5[i]); 
reac8[i] = -((1.0-Y_H)/Y_H)*proc1[i]-((4.57-Y_A)/Y_A)*proc3[i]; 
reac9[i] = -((1.0-Y_H)/(2.86*Y_H))*proc2[i]+proc3[i]/Y_A; 
reac10[i] = -i_XB*(proc1[i]+proc2[i])-(i_XB+(1.0/Y_A))*proc3[i]+proc6[i]; 
reac11[i] = -proc6[i]+proc8[i]; 
reac12[i] = (i_XB-f_P*i_XP)*(proc4[i]+proc5[i])-proc8[i]; 
reac13[i] = -i_XB/14.0*proc1[i]+((1.0-Y_H)/(14.0*2.86*Y_H)-

(i_XB/14.0))*proc2[i]-
((i_XB/14.0)+1.0/(7.0*Y_A))*proc3[i]+proc6[i]/14.0; 

reac14[i] = X_I2TSS*reac3[i]+X_S2TSS*reac4[i]+X_BH2TSS*reac5[i]+ 
X_BA2TSS*reac6[i]+X_P2TSS*reac7[i]; 

  
} 
  
/* ASM1 model component balances over the layers */ 
/* ASM1: [Si Ss Xi Xs Xbh Xba Xp So Sno Snh Snd Xnd Salk TSS Q_in]   */ 
/* New state variable => dH/dt*/ 
  
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%    NEW    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
/* height of the tank: H*/ 
     
    dx[140] = (u[14]-u[17])/area; /*the heigth of the vessel*/ 
    h = x[140]/n;                 /*the heigth of each layer*/ 
 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
  
/* soluble component S_I */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
      dx[i]  = (-v_up*xtemp[i] +v_up*xtemp[i+1])/h+reac1[i]; 
   else if (i > (feedlayer-eps))  
      dx[i]  = (v_dn*xtemp[i-1] -v_dn*xtemp[i])/h+reac1[i]; 
   else 
      dx[i]  = (v_in*u[0] -v_up*xtemp[i] -v_dn*xtemp[i])/h+reac1[i]; 
} 
  
/* soluble component S_S */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps)) 
      dx[i+10]  = (-v_up*xtemp[i+10] +v_up*xtemp[i+1+10])/h +reac2[i]; 
   else if (i > (feedlayer-eps))  
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      dx[i+10]  = (v_dn*xtemp[i-1+10] -v_dn*xtemp[i+10])/h +reac2[i]; 
   else 
      dx[i+10]  = (v_in*u[1] -v_up*xtemp[i+10] -v_dn*xtemp[i+10])/h +reac2[i]; 
} 
  
/* particulate component X_I */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
      dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+20]/xtemp[i+1+130])*Jflow[i+1])/h + 
(xtemp[i+1+20]/xtemp[i+1+130])*J_d_u + reac3[i]; 

   else if (i > (feedlayer-eps))  
      dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h + 
(xtemp[i-1+20]/xtemp[i-1+130])*J_d_u + reac3[i]; 

   else 
      dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-1+130])*Js[i]+v_in*u[2])/h + 
(xtemp[i-1+20]/xtemp[i-1+130])*J_d_u + reac3[i]; 

} 
  
/* particulate component X_S */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
       dx[i+30] = ((xtemp[i+30]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+30]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+30]/xtemp[i+1+130])*Jflow[i+1])/h + 
(xtemp[i+1+30]/xtemp[i+1+130])*J_d_u + reac4[i]; 

   else if (i > (feedlayer-eps))  
       dx[i+30] = ((xtemp[i+30]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+30]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h + 
(xtemp[i-1+30]/xtemp[i-1+130])*J_d_u + reac4[i]; 

   else 
       dx[i+30] = ((xtemp[i+30]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+30]/xtemp[i-1+130])*Js[i]+v_in*u[3])/h + 
(xtemp[i-1+30]/xtemp[i-1+130])*J_d_u + reac4[i]; 

} 
  
/* particulate component X_BH */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
       dx[i+40] = ((xtemp[i+40]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+40]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+40]/xtemp[i+1+130])*Jflow[i+1])/h + 
(xtemp[i+1+40]/xtemp[i+1+130])*J_d_u + reac5[i]; 

   else if (i > (feedlayer-eps))  
       dx[i+40] = ((xtemp[i+40]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+40]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h + 
(xtemp[i-1+40]/xtemp[i-1+130])*J_d_u + reac5[i]; 

   else 
       dx[i+40] = ((xtemp[i+40]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+40]/xtemp[i-1+130])*Js[i]+v_in*u[4])/h + 
(xtemp[i-1+40]/xtemp[i-1+130])*J_d_u + reac5[i]; 

} 
  
/* particulate component X_BA */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
       dx[i+50] = ((xtemp[i+50]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+50]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+50]/xtemp[i+1+130])*Jflow[i+1])/h + 
(xtemp[i+1+50]/xtemp[i+1+130])*J_d_u + reac6[i]; 

   else if (i > (feedlayer-eps))  
       dx[i+50] = ((xtemp[i+50]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+50]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h + 
(xtemp[i-1+50]/xtemp[i-1+130])*J_d_u + reac6[i]; 

   else 
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       dx[i+50] = ((xtemp[i+50]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-
J_d_u)+(xtemp[i-1+50]/xtemp[i-1+130])*Js[i]+v_in*u[5])/h + 
(xtemp[i-1+50]/xtemp[i-1+130])*J_d_u + reac6[i]; 

} 
  
/* particulate component X_P */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
       dx[i+60] = ((xtemp[i+60]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+60]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+60]/xtemp[i+1+130])*Jflow[i+1])/h + 
(xtemp[i+1+60]/xtemp[i+1+130])*J_d_u + reac7[i]; 

   else if (i > (feedlayer-eps))  
       dx[i+60] = ((xtemp[i+60]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+60]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h + 
(xtemp[i-1+60]/xtemp[i-1+130])*J_d_u + reac7[i]; 

   else 
       dx[i+60] = ((xtemp[i+60]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+60]/xtemp[i-1+130])*Js[i]+v_in*u[6])/h + 
(xtemp[i-1+60]/xtemp[i-1+130])*J_d_u + reac7[i]; 

} 
  
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%    NEW    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
/* soluble component S_O */ 
  
KLa = u[15]; 
  
for (i = 0; i < 10; i++) { 
   if(v_up==-v_dn){ 
       a = xtemp[i-1+70]; 
       b = xtemp[i+70]; 
   } 
   else{ 
       a = xtemp[i+70]; 
       b = xtemp[i+1+70]; 
   } 
  
   if (i < (feedlayer-1-eps)) 
      dx[i+70]  = (-v_up*a +v_up*b)/h +reac8[i] + KLa*(SO_sat-xtemp[i+70]); 

//we have added rSO (Kla!=0) 
   else if (i > (feedlayer-eps))  
      dx[i+70]  = (v_dn*xtemp[i-1+70] -v_dn*xtemp[i+70])/h +reac8[i] + 

KLa*(SO_sat-xtemp[i+70]);       //we have added rSO (Kla!=0) 
   else 
      dx[i+70]  = ((v_in*u[7] -v_up*a -v_dn*xtemp[i+70])/h +reac8[i]) + 

KLa*(SO_sat-xtemp[i+70]); //we have added rSO (Kla!=0) 
} 
/*  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  */ 
  
/* soluble component S_NO */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps)) 
      dx[i+80]  = (-v_up*xtemp[i+80] +v_up*xtemp[i+1+80])/h +reac9[i]; 
   else if (i > (feedlayer-eps))  
      dx[i+80]  = (v_dn*xtemp[i-1+80] -v_dn*xtemp[i+80])/h +reac9[i]; 
   else 
      dx[i+80]  = (v_in*u[8] -v_up*xtemp[i+80] -v_dn*xtemp[i+80])/h +reac9[i]; 
} 
  
/* soluble component S_NH */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps)) 
      dx[i+90]  = (-v_up*xtemp[i+90] +v_up*xtemp[i+1+90])/h +reac10[i]; 
   else if (i > (feedlayer-eps))  
      dx[i+90]  = (v_dn*xtemp[i-1+90] -v_dn*xtemp[i+90])/h +reac10[i]; 
   else 
      dx[i+90]  = (v_in*u[9] -v_up*xtemp[i+90] -v_dn*xtemp[i+90])/h 

+reac10[i]; 
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} 
  
/* soluble component S_ND */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps)) 
      dx[i+100]  = (-v_up*xtemp[i+100] +v_up*xtemp[i+1+100])/h +reac11[i]; 
   else if (i > (feedlayer-eps))  
      dx[i+100]  = (v_dn*xtemp[i-1+100] -v_dn*xtemp[i+100])/h +reac11[i]; 
   else 
      dx[i+100]  = (v_in*u[10] -v_up*xtemp[i+100] -v_dn*xtemp[i+100])/h 

+reac11[i]; 
} 
  
/* particulate component X_ND */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
      dx[i+110] = ((xtemp[i+110]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+110]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+110]/xtemp[i+1+130])*Jflow[i+1])/h 
+ (xtemp[i+1+110]/xtemp[i+1+130])*J_d_u + reac12[i]; 

   else if (i > (feedlayer-eps))  
      dx[i+110] = ((xtemp[i+110]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+110]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h + 
(xtemp[i-1+110]/xtemp[i-1+130])*J_d_u + reac12[i]; 

   else 
      dx[i+110] = ((xtemp[i+110]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+110]/xtemp[i-1+130])*Js[i]+v_in*u[11])/h + 
(xtemp[i-1+110]/xtemp[i-1+130])*J_d_u + reac12[i]; 

} 
  
/* soluble component S_ALK */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps)) 
      dx[i+120]  = (-v_up*xtemp[i+120] +v_up*xtemp[i+1+120])/h +reac13[i]; 
   else if (i > (feedlayer-eps))  
      dx[i+120]  = (v_dn*xtemp[i-1+120] -v_dn*xtemp[i+120])/h +reac13[i]; 
   else 
      dx[i+120]  = (v_in*u[12] -v_up*xtemp[i+120] -v_dn*xtemp[i+120])/h 

+reac13[i]; 
} 
  
/* particulate component X_TSS */ 
for (i = 0; i < 10; i++) { 
   if (i < (feedlayer-1-eps))  
      dx[i+130] = ((-Jflow[i]-Js[i+1])+Js[i]+Jflow[i+1])/h +reac14[i]; 
   else if (i > (feedlayer-eps))  
      dx[i+130] = ((-Jflow[i+1]-Js[i+1])+(Jflow[i]+Js[i]))/h +reac14[i]; 
   else 
      dx[i+130] = ((-Jflow[i]-Jflow[i+1]-Js[i+1])+Js[i]+v_in*u[13])/h 

+reac14[i]; 
} 
  
} 
  
/* 
 * mdlTerminate - called when the simulation is terminated. 
 */ 
static void mdlTerminate(SimStruct *S) 
{ 
} 
  
#ifdef  MATLAB_MEX_FILE    /* Is this file being compiled as a MEX-file? */ 
#include "simulink.c"      /* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h"       /* Code generation registration function */ 
#endif 
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