
In
d
u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n
g
in

e
e
ri
n
g
 a

n
d

A

u
to

m
a
ti
o
n

 CODEN:LUTEDX/(TEIE-5244)/1-126/(2006)

BENCHMARKING the STAR
Controller using Matlab

Josep Carrasco Martínez

Dept. of Industrial Electrical Engineering and Automation
Lund University

BENCHMARKING the STAR Controller
using Matlab

A MSC THESIS PRESENTED AT THE DEPARTMENT OF Industrial Electrical
Engineering and Automation (IEA) of LTH at LUND UNIVERSITY

Author: Josep Carrasco Martínez
For the Degree of: Master of Science
Supervisor: Dr Christian Rosen
Examiner: Dr Ulf Jeppsson
Date: September 2006

ii

iii

iv

ABSTRACT

v

Abstract

Along the years there have been large advances in Wastewater Treatment Plants
(WWTP since now), from the basic treatment until applying the last technologies in
automatic control systems, concentration measurements and mathematical modelling of
wastewater treatments. About the last technologies it has to be stood out the fast
advanced of computer systems, that let not only implement the most complex models of
WWTP to check the evolution of the system in a short time, but also the possibility of
integrating more complex controls, and it has to be stood the advanced of electronic
systems too, that let apply the last sensor technologies, increasing the reliability and the
device life in the abrasive ambient as it is the waste water.

The difficulty in WWTP is the biological processes that take part within the vessels.
Principally the growth of biological microorganisms that are the responsible of
removing the organic matter dissolved in the wastewater. The main organic matter that
is removed from wastewater is the carbon, the nitrogen and the phosphorus, although
the phosphorus can be removed sometimes by chemistry processes, which are faster
than biological processes. The problem in biological processes is its slow dynamic and
the external perturbations, which can affect considerably the growth of biological
microorganisms.

Currently, the companies involved in WWTP offer automation tools and packages that
let to apply automation techniques in WWTP easily. One of the most important devices
offered is the controller, which will try to lead the progress of the wastewater by the
right values and to ensure the process is getting the goals. It means that the controller is
going to control the biological processes that take part in wastewater treatment applying
the different control strategies programmed.

Here there are three concepts all together; the controller, the biological process and the
control strategy. First, the control strategy is tested using a model of the WWTP. After,
it is implemented in the controller to apply it to the real WWTP to control the biological
process. The problem appears when the control strategy is applied to the real process. It
is impossible to predict all that is going to happen in WWTP, because there are
unpredictable external disturbances (rain, storms, temperature, dry weather, snow, ice,
etc) that can affect the biological processes. The biological processes are sensible to the
external changes of the weather. It means that a control strategy tested in a simulation
within ideal conditions can not be the suitable.

The problem rises when the control strategy is not the suitable. The biological processes
dynamic is really slow, a time constant of days, even weeks some times. Hence, it is
possible to know when a control strategy is wrong after days or weeks, and then, is too
late to try to control the process and one more week is needed to test another control
strategy. All this time checking the control strategy means to spend a lot of resources.

There is one possible solution that would save a lot time and would let to test more
control strategies using less resources. The solution consists in building a complete
model of the WWTP that is going to be controlled (it would be necessary a particular
model for each WWTP), and to simulate it in real time at the same time as the evolution
of the real WWTP. It would let the controller to have two kinds of data, the data

vi

measured in the WWTP and the data from the simulation of the model. With these data
the controller or the operator can compare and test the control strategies, so that if the
data measured in the WWTP are far from the data calculated in the simulation, it is
possible to guess that there is something wrong with the control strategy.

Of course, this solution forces to implement a perfect model of the WWTP because the
controller is comparing the data of the simulation of the model and the data of the
WWTP, considering that the data calculated with the model are always right.

PREFACE

vii

Preface

Before has been introduced one of the current problems in WWTP, a problem
responsible of spending a lot of resources and time when testing control strategies to
improve the efficiency in WWTP.

The realization of the present thesis is one of the results of a task group work of the
“krüger” (in Copenhagen, Denmark, from “Veolia Water Systems” group,
http://www.kruger.dk) in collaboration with the department of “Industrial Electrical
Engineering and Automation” (IEA, at Lund University, Sweden). There has been
created a research group with workers of the company and researchers of the IEA
department, which purposes are to improve modelling WWTP and the control strategies
minimizing the necessary resources.

Acknowledgements:

At last, the finalization of this thesis was possible not only to the work realized by the
author, but also to the IEA department and the krüger company. There were involved
more people, directly and indirectly related with the thesis.

I would like to express my special gratitude to all the people that have helped me in one
or another way finishing the thesis.

Thank you to Christian Rosen (research associated of the IEA department), he has
followed and supervised the progress of the thesis, despite of all the work that he had.
He is part of the research group in collaboration with the company “Veolia Water
Systems”. It was inestimable his help to introduce me in the topic of waste water
treatment; it was absolutely new for me at the beginning of the thesis.

Thank you to Ulf Jeppsson, the responsible of the IEA department, who has supervised
the thesis too, specially the part of modelling batch process. His work about modelling
settling and clarification and the model programmed in Matlab by Krist V. Gernaey
(CAPEC, Dept. of Chemical Engineering, DTU, Denmark) and him, are the key model
implemented in this thesis.

Thank you to Eric Login from “Veolia Water System” (krüger, in Copenhagen,
Denmark). The communication of the main application was developed and discussed in
collaboration with him.

Thank you to Sergey Litvinov too. I never met him personally, but his help was
essential to resolve the creation of XML files with Matlab.

Finally, my gratitude to Dalius Misiunas, Fredrick Roos, Carlos Álbarez, Daniel
Aguado, Jon Bolmstedt, Gunnar Lindstedt and all the department of “Industrial
Electrical Engineering and Automation” (IEA, LTH, Lund, Sweden), and specially to
Lunds Universitet and the Polytechnic University of Valencia (Universidad Politécnica
de Valencia –UPV-, Valencia, Spain) who gave me the possibility of taking part in this
foreign experience and realise the final degree thesis abroad.

http://www.kruger.dk/

viii

CONTENTS

ix

Contents

ABSTRACT v

PREFACE vii

PART I: Introduction 1

 Chapter 1: Introduction 3
 1.1 Motivation 4

 1.2 Objectives 5

 1.3 Contribution 6

 1.4 Outline of the thesis 7

 Chapter 2: Wastewater Treatment Processes 9
 2.1 Process description 10

 2.2 Automation in wastewater treatment plants 13

 2.3 Modelling of wastewater treatment processes 17
 Modelling mass transfer 17
 Modelling biological nutrient removal (ASM1) 18
 Modelling hydraulics 21
 Modelling settling and clarification 22
 Modelling batch processes 25

PART II: Modelling the wastewater treatment plant with Matlab 27

 Chapter 3: Application Design 29
 3.1 Introduction 30

 3.2 Main flow-sheet 31

 3.3 Structure of the program 32
 3.3.1 Initialization 35
 3.3.2 Main loop 35

 3.4 Application Implemented 38
 3.4.1 Application Interface 38
 3.4.2 Program Code 40

CONTENTS

x

 Chapter 4: Data Exchange 45
 4.1 Introduction 46
 4.1.1 What SOAP is 47
 4.1.2 XML communication files 48

 4.2 Data-flux in the communication 50

 4.3 Data-exchange with the database 52
 4.3.1 Write the data in “results.XML” 52
 4.3.2 Read the data from “database.XML” 54

 4.4 Synchronization 56
 4.4.1 Read the data from “synchro.XML” 56

 Chapter 5: Modelling Batch Processes with Matlab 59
 5.1 Introduction 60

 5.2 Model developed 60
 5.2.1 Model diagram 63
 5.2.2 Model equations 70

 5.3 Implementation of the model 72
 5.3.1 S-function programmed 75

 5.4 Comments 79

PART III: Appendixes (included papers) 81

 APPENDIX I: Appendixes to CHAPTER 2 83
 I.1 Appendixes for MODELLING WASTEWATER

TREATMENT PROCESSES 84
 I.1.1 Tabular form for “simple biological kinetics” 84
 I.1.2 Tabular form for “simple biological kinetics” and

“carbon removal kinetics” 84
 I.1.3 Tabular form for “simple biological kinetics”,

“carbon removal kinetics” and “nitrogen removal kinetics” 85
 I.1.4 Tabular form for “phosphorus removal kinetics” 86

 APPENDIX II: Appendixes to CHAPTER 3 87
 II.1 STAR emulator to check the synchronization code 88
 II.1.1 “writeXML_synchro” code 89

 II.2 Control functions 89
 II.2.1 “controlloop” code 90
 II.2.2 “control_check” code 90

 II.3 Processing data with Matlab 92
 II.3.1 “read_data” function 92
 II.3.2 “wirte_data” function 93

CONTENTS

xi

 II.4 GUIDE application 93
 II.4.1 What’s GUIDE 93
 II.4.2 Application GUIDE code 93

 APPENDIX III: Appendixes to CHAPTER 4 95
 III.1 Web Services 96

 III.2 SOAP protocol 97

 III.3 “org.apache.xerces.dom.DocumetImpl” class 98

 APPENDIX IV: Appendixes to CHAPTER 5 101
 IV.1 S-function “settlerB_batchM.c” code 102

PART IV: Bibliography 111

CONTENTS

xii

1

PART I

TITLE: Introduction

2

3

CHAPTER 1

Introduction

This chapter is a brief sight of the thesis; motivations, contributions, structure
and objectives.
After reading this chapter the reader knows the contents of each point in this
thesis, so it’s important to know how to read it and where is each topic
studied.

CHAPTER 1: Introduction

4

1.1 MOTIVATION

The treatment of the waste water is a complex process, process compound of several
biological processes sensitive to the external disturbances, as can be the storm, the rain,
the snow, the ice; all the climatological changes can affect the wastewater treatment
process. The sensitive biological processes and the disturbances of the weather make
difficult the control of the wastewater treatment process.

Through the new technologies the most avant-garde companies have tried to solve the
problem of the complex control needed and the existing disturbances within the process.
With the new sensors it is easier to measure the state of the process and try to design
suitable control strategies. The possibilities of the new computers let this and more, but
there is still one restriction: the dynamic of the biological processes.

With the new advances of the techniques sometimes it is forgot that the new techniques
cant change the process, they are only developed to control it, to get a stable and
controllable process. The dynamic of some biological process are so slow, it means that
the results of an action control will be observed a long time after applying it. This
difficult the control of the process more than it seems at the beginning, because when
the controller tries to solve the mistakes of the strategies or the effect of the disturbances
it is too late, and the process need double time to became stable again.

The task group formed by “Veolia Water System” (krüger, in Copenhagen, Denmark)
and the department of “Industrial Electrical Engineering and Automation (LTH, Lund,
Sweden) was formed to improve the wastewater treatment processes using sophisticate
techniques to model the whole process including the sensors model, the controller
model and the plant model. Within the group rose the idea of simulating the wastewater
process plant in real time. What does this idea mean? How can the real time simulation
of the WWTP improve the behaviour or the control of the plant?

The answer to these questions is the motivation of this thesis. If it is possible to
implement a perfect model of the WWTP and the controller that is being applied in the
real WWTP, and to start the simulation of the process from the values of the data
measured in the real plant, it would be possible to have the progress of the WWTP at
the same time as the progress of the model implemented, and it would be easy to
compare the values of the state variables of the simulation and the state variables of the
real process. Comparing these values would be suitable to find disturbances in the
process or important features of the plant that are not included in the model used usually
to check the control strategies in simulation time. By the other side, the values of the
simulation in real time would let to see the progress of some state variables that the real
measurements can not let due to the characteristics of the sensor: the noise, the error, the
precision, etc.

Josep Carrasco Martínez

5

1.2 OBJECTIVES

In the point before has been discussed the motivation of the present thesis, but there is
not enough with motivations to developed a thesis. The motivation is the beginning, the
main idea to solve a problem, to improve a process, to do anything.

The motivation says that it would be a good idea to simulate the model of the WWTP at
the same time that the plant is working, with the same conditions, the same value of the
state variables, the same control strategy, and after, to compare the results of the
simulation and the measurements of the process. But now the motivation has to be
translated to objectives, which will represent a concrete aims.

If we start to analyze the motivation, the purpose is to simulate a model while the
WWTP is working. So the first objective will be the implementation of an application to
simulate the model of the WWTP.

The controller has to compare the results of the simulation and the measurements of the
WWTP. It points that it is need a communication between the application developed
and the controller of the WWTP.

The application is simulating the model of the WWTP at the same time that the real
plant is working, and the controller is transferring data from the real process to ensure
the model of the simulation and the real plant have the same conditions. So not is only
needed a communication between the application and the controller, the synchronization
is needed too.

At last, the most important is the model. The model of the WWTP has to be developed.
There are a lot of possibilities to implement a model of the WWTP, and only to model
one part of the plant can be a master thesis. Here in this thesis in implemented the
model of the batch process (see chapter 2 to know what a batch process is) in one
vessel. From the model exposed is possible to implement the full model of the
secondary treatment in WWTP, but it will not be the aim of this thesis.

Summarising, the objectives of the present thesis are:

• Implementation of an automatic application to simulate a model of the WWTP
in real time.

• To program the communication and the synchronization with the controller.
• To model batch process in one simple vessel and implement it.

CHAPTER 1: Introduction

6

1.3 CONTRIBUTIONS

There have been named the objectives of the thesis to get improve the control in
wastewater treatment plants. To get these objectives is join to the techniques and
applications that are going to be used for getting them.

The whole code programmed in this thesis and the user interface of the application has
been programmed within Matlab package toolbox. Matlab is a powerful application that
let the researchers to implement, simulate, check, program, control near all the things.
There are a big number of packages to complement Matlab and let the user to execute
different things or processes sharing the same workspace, thing that allows interconnect
implemented applications in Matlab and simulations that are running at the same time,
without translating the data from one application to another.

The thesis has each chapter divided in two virtual parts; the first one explain the abstract
discussion of the topic that is going to be developed. After the abstract discussion, the
second part is the implementation of the topic discussed in a real and operative code.

Starting from the paragraphs before, the contributions can be understood as:

• The design of an automatic application that simulate the model of the real
WWTP in real time.

• The implementation of the automatic application in Matlab.
• The communication of the application with the controller through the Ethernet

network. The basis and the implementation in Matlab.
• The synchronization of the controller and the implemented application, the

design of several possibilities and the posterior implementation of it.
• The design of the batch process model, with the evolution of the equations along

all the phases, and the translation of the equations into code to implement the
model.

The contributions have been presented as independent works, but they can be read as a
main big contribution, the contribution of implementing an application to get the
combination between the abstract part of the control and the real part of the control in
the process working together.

The abstract part would be the implementation of the model of the process that is going
to be controlled, all the part of the code programmed dedicated to model and simulate
the WWTP plants. And the real part would represent all the structures and devises that
form the WWTP, the controller, the sensors, the actuators.

The implementation of this application is not the substitute for the first simulation and
testing of the control strategies before applying it, it is like an automatic test of the
control strategy in real time, a test to verify the control of the WWTP while it is
working.

Josep Carrasco Martínez

7

1.4 OUTLINE OF THE THESIS

The distribution of the thesis try to get the better way to understand the topic developed
in. It tries to introduced and explain all the concepts used along the thesis, and to give
the necessary bibliography to look for extra information if it is necessary for the reader,
not only to better understanding the thesis, but also to increase the given information in
the present work.

The thesis is divided in four parts:

1. Introduction.
2. Modelling the Wastewater Treatment Plant in Matlab.
3. Appendixes.
4. Bibliography.

Each part is divided in chapters that expose the topics developed along the thesis. The
first and the second part form the work of the thesis, and the third and fourth part are
complementary to read more about the topics developed in the first and second part.

The first part is an introduction about wastewater treatment processes, what they are,
how to model, the parts of a WWTP plant, the previous knowledge to better understand
the thesis. This part is divided in two chapters: chapter 1 and chapter 2. The chapter 1
is the current chapter. The chapter 2 is an introduction about wastewater treatment
plants, the description of the process, automation in WWTP and the basis of modelling
WWTP.

The second part is that we can call the work developed. There are three chapters:
chapter 3, chapter 4 and chapter 5. The chapter 3 contains the design and
implementation of the main application and the user interface. In chapter 4 is discussed
and programmed the communication with the controller and the database and the
synchronization with the controller. In chapter 5 is designed and programmed the batch
process model in Matlab.

The third part contains the appendixes to the chapters of the first and second part, and
the last part is the bibliography used to develope the thesis.

CHAPTER 1: Introduction

8

9

CHAPTER 2

Wastewater Treatment Processes

Previous to the full report of the project presented in this thesis it is essential
a brief explanation about wastewater treatment processes, what is that,
basic modelling and automation within it.
In the pages below it is made a description about wastewater treatment
processes, giving more details of the second treatment in the plant. After it, a
brief introduction about automation in wastewater treatment and finally the
basic modelling in wastewater treatment plants is presented.
In this chapter is presented only a basic idea about description, automation
and modelling wastewater treatment, for further knowledge it is the possibility
of checking the chapter 7 (“Appendix of CHAPTER 2”) and the bibliography.

CHAPTER 2: Wastewater Treatment Processes

10

2.1 PROCESS DESCRIPTION

There are four disciplines involved in wastewater treatment processes, and we need all
of them to make work the wastewater plant. In the figure below there is a schema of
these disciplines:

figure 1: disciplines involved in wastewater treatment

The process starts when wastewater is collected in a sewer system and transported to a
plant for treatment prior to disposal (hydraulic discipline). Once the wastewater arrives
to the treatment plant it has to pass through three main treatments:

figure 2: main treatments in wastewater treatment plants

The primary treatment is the simplest one, and the most of times it consists in a group
of screens and primary settler to remove the largest rejects (plastic bags, food and
another solid products) and to skims off floating greases and oils. After this first
treatment it is the secondary treatment, where it takes part the biological reactions,
chemical precipitation, nutrient mass transfer, biomass growth and settling and
clarification; it is called Biological Nutrient Removal (BNR). The last treatment,
tertiary treatment, is a group of filters and membrane techniques and, this part of the
plant can change considerably, it depends of the final use of the e-fluent water (human
consume, industry use, river recirculation, etc); this treatment attempts to limit the
micro-organisms and other pathogens in the treated water.

PRIMARY
TREATMENT

SECONDARY
TREATMENT

TERTIARY
TREATMENT

Chemistry Hydraulics Biology

Water distribution
and

wastewater collection

Hydrology

Water processing
Water quality

and
pollution

Wastewater processing

Advanced wastewater treatment
and water reclamation

Water reuse

Josep Carrasco Martínez

11

All the work of this thesis has been developed about modelling of secondary treatment,
and below it is showed the scheme of this treatment:

figure 3: Layout for the secondary treatment in a continuous wastewater treatment plant

We can find in the secondary treatment the following mechanisms:

 HYDRAULICS: Wastewater flows through the treatment plant by the force of
gravity if it is possible, and pumping the wastewater to lift it from the sewer to
the plant inlet. The mechanisms which take part are the vessels, which are
usually concrete tanks of various shapes and sizes with controlled levels, and
pumps which are almost used to recycle mixed liquor and sludge and the small
sludge wastage streams.

 NUTRIENT REACTIONS: The biological reactions involved are: removal of
organic carbon, removal of nitrogen (nitrification and denitrification) and
removal of phosphorus. The reactions are showed below:

Primary
treatment

Secondary treatment

Tertiary
tretament

Biological reactors Secondary settler

Return activated sludge

Sludge

Clear water

Insoluble Carbon

HIDROLISIS

Soluble Carbon

Carbon dioxide

HETEROTROP

Dissolved
Oxygen

BIOMASS

ORGANIC
CARBON
REMOVAL

Amonium

NITRIFICATION

Soluble Carbon

NITROGEN
REMOVAL

Dissolved
Oxygen

HETEROTROP

Nitrogen Gas

BIOMASS

AUTOTROPHS

BIOMASS

Nitrites / Nitrates

DENITRIFICATION

PHOSPHORUS
REMOVAL

Soluble Carbon

Dissolved Oxygen

Bio-P
PHA

Soluble Phosphates

PHA

BIOMASS

Polyphosphat
nodules

Soluble
Phosphats

FERMENTATION

VFA

PAO Biomass

ANAEROBIC PROCESS AEROBIC PROCESS
(PO4 release) (PO4 uptake)

Bio-P: Organisms
which have the
removed PHA
nodules inside
PAO: Phosphorus
Accumulationg
Organisms
PHA: PolyHidroxy
Alkanoates
VFA: Volatile Fatty
Acids

figure 4: Nutrient Reactions

CHAPTER 2: Wastewater Treatment Processes

12

Carbon removal and nitrogen removal are the most common process modelled
and used in wastewater treatment. The first one is easily understood, but the
complexity of nitrogen removal makes it was necessary a brief explanation of it.

Predenitrification AS process

Many modern treatment plants utilising AS have biological nitrogen removal.
Biological nitrogen removal relies on nitrifying and denitrifying bacteria for
removal of nitrogen in two steps (as it is showed in figure 4): nitrification and
denitrification. Two different types of bacteria cultures are used to achieve
nitrification and denitrification:

 autotrophic bacteria uses inorganic carbon as carbon source.
 heterotrophic bacteria uses organic carbon as carbon source.

In the nitrification step, ammonium is oxidised to nitrite and then nitrate
(nitrification) by autotrophs. In the second step, nitrate is reduced to nitrogen gas
(denitrification) by heterotrophs. A difficulty with this procedure is that the two
steps require different ambient conditions to function effectively. The
nitrification step needs dissolved oxygen, whereas the denitrification step
requires an oxygen free environment. A solution to this is to divide the reaction
volume into separate compartments in which the conditions are different.
A relatively common configuration for nitrogen removal is the predenitrification
process. The first reactor is anoxic, that is no dissolved oxygen is present, and is
followed by an aerated volume. This may appear somewhat backwards as the
nitrification is done after the denitrification. However, the denitrification process
requires readily biodegradable organic substrate and this is normally present in
the influent wastewater. If the denitrificaiton has to take place after the
nitrification (i.e. a post-denitrification configuration), most of the organic
substrate will have been consumed and external carbon will have to be added.
Thus, to provide the anoxic reactor with nitrate, a recirculation stream is
introduced from the last reactor to the first reactor (sometimes the sludge
recirculation is sufficient and no internal recirculation is needed).

Internal nitrate recirculation

Sludge recirculation

ANOXIC

AEROBIC

figure 5: Basic principle of the
predenitrification
configuration

Josep Carrasco Martínez

13

 CHEMICAL PRECIPITATION: Sometimes it is possible to remove the phosphorus

using chemical precipitation instead of nutrient reactions; it is faster and more
economically favourable. This mechanism is made by the addition of aluminium
or iron compounds such as alum, pickle liquor, ferric hydroxide or ferric
chloride.

 NUTRIENT MASS TRANSFER: this mechanism occurs in biological reactions and

the purpose is to get oxygen from gaseous air into water, and it is promoted in
stirred vessels.

 BIOMASS GROWTH: It means the maintenance of the right proportions of

different species of organisms within the sludge in an active state. The aim is to
avoid the growth of harmful organisms.

 SETTLING AND CLARIFICATION: Finally it takes part the separation of insoluble

particles form water. It is used the gravity force, thus the insoluble particles
which are denser than the water go down the settler and they form the sludge
(see figure 3).

2.2 AUTOMATION IN WASTEWATER TREATMENT PLANTS

Online measuring and data collection systems

The number of measurable entities increases as research on and development of
instrumentation and sensors progress. A difficulty in online measuring is the aggressive
environment in which the sensors must function and that many of the interesting entities
must be derived from reaction analysis in batch or continuous experiments.
Interesting development in the sensor area involves new types of sensors such as sensor
arrays or soft sensors, where variables are deduced from a number of measurements,
biosensors that utilise (immobilised) cultures of bacteria, and microbial sensors for
measuring inhibitors and substrates.

In the last few years, a wide variety of biosensors have been developed. Within this
large field, microbial sensors stand out because of their multi-receptor behaviour. In
fact, these results in rather poor selectivity, but a great variety of substances can be
detected simultaneously with one sensor. It is for this reason that microbial sensors are
preferred for measuring environmentally relevant summary parameters (such as
Biochemical Oxygen Demand) or for detecting inhibiting and toxic effects.
Compared to enzyme sensors, their higher stability and lower production costs are
additional arguments for using microbial sensors for environmental analyses.
With rapid, direct, and exact detection of these parameters with microbial sensors, it
will be possible to make the momentary situation in a water or wastewater stream
visible. This results in new possibilities for the control of sewage plants.

The data collecting systems differ from plant to plant and from supplier to supplier but
common sampling rates (in Sweden) are 10 and 12 per hour, i.e. every sixth and fifth
minute, respectively. The sample values are often an average over the sampling period,
during which some sensors continuously deliver values and others perhaps only once a

CHAPTER 2: Wastewater Treatment Processes

14

minute. All sensors are afflicted with time lags, but normally these are short in
comparison to the dominant time constants of the process.

The most often measurements in wastewater treatment are aerobic growth of
heterotrophs, anoxic growth of heterotrophs, aerobic growth of autotrophs, ‘decay’ of
heterotrophs, ‘decay’ of autotrophs, ammonification of soluble organic nitrogen,
‘hydrolysis’ of entrapped organics and ‘hydrolysis’ of entrapped organic nitrogen in
biological processes, and settler velocity, suspend solids concentration, feed volumetric
flow rate, effluent volumetric flow rate and underflow volumetric flow rate in settler
processes.

Control handles

There are limitations to what can be controlled in a wastewater treatment plant. This is
due to a lack of powerful control handles in comparison to the relatively severe
disturbances that varying influent wastewater characteristics impose on the system.
A majority of the manipulated variables are macro variables (DO and some of the
chemical additions excepted) whereas some of the major mechanisms that drive the
processes are on the micro level. Moreover, these mechanisms are often coupled. Thus,
most control handles must be considered rather blunt and often a combination of control
handles is required to reach a certain control objective.

Environmental control increasingly requires the use of analytical methods, which should
be uncomplicated and thus able to operate at low cost and with minimal maintenance.
Miniaturized components should make the devices suitable for mobile investigations.
They should also be capable of carrying out rapid measurements. Biosensors fulfil these
requirements due to their simple principle of operation.

In biological process, soluble inert organic matter (SI), readily biodegradable substrate
(SS), particulate inert organic (XI), slowly biodegradable substrate (XS), active
heterotrophic biomass (XB,H), active autotrophic biomass (XB,A), particulate products
arising from biomass decay (XP), oxygen (SO), nitrate and nitrite nitrogen (SNO),
NH4+NH3 nitrogen (SNH), soluble biodegradable organic nitrogen (SND), particulate
biodegradable organic nitrogen (XND) and alkalinity-molar units (SALK), and in
activated sludge, suspend solids concentration and sludge concentration are examples
of the state variables we can control in a wastewater treatment plant.

STAR controller (Superior Tuning And Reporting) is an example of commercial
controller for wastewater treatment plants distributed by Krüger (VEOLIA group); the
one used to developed the thesis. Its main performances are:

• Supervisory control system for WWTP
• Control modules for different unit processes
• Rule-based control
• Data screening and reconciliation system
• Web-based interface

Josep Carrasco Martínez

15

Below it is showed the network interface of the STAR controller. Through this software
interface it is possible to check the values measured by the controller from every place
if there is an Ethernet connection.

figure 6: Ethernet interface of the STAR controller

Process dynamics

A wastewater treatment process consists of many sub-processes with dynamics of
different time scales. Some variations are slow, for instance sludge dynamics and
temperature, with time scales of days, week and even months. The daily variation in
influent flow rate and substance concentrations is perhaps the most dominant variation.
However, there are even faster dynamics present, such as dissolved oxygen (DO)
dynamics and hydraulic shocks. The different time scales make it difficult to analyse the
cause-effect relationships, especially when recirculation and other feedback loops are
present. Therefore, it is important to establish the dynamic behaviour of the involved
processes and adapt the analysis methods in accordance to the dynamics.

CHAPTER 2: Wastewater Treatment Processes

16

It is important to project out the different dynamics within the sub-processes in
Biological Nutrient Removal. It is possible to divide the process dynamic in six sub-
processes as well as it was showed before in “process description”. Thus these are
different dynamics:

 HYDRAULIC DYNAMIC: Commonly the exponential lag characterizes the
hydraulic dynamic, and the size of the lag depends on the weir geometry.
In spite of this, it is usual to find different time constants. In instance intensive
variable, concentration or temperature, dynamics for flow through vessels are
characterised by the mean residence time (vessel volume divided by flow rate).
This parameter is commonly known as the hydraulic residence time or HRT. The
spread of the residence time depends on the flow patterns within the vessel
which will fall somewhere between plug flow, no spread giving a dead time
response, and perfectly mixed a first-order lag with time constant equal to the
residence time. The time constant is typically of the order of minutes to hours.
Flow down pipes causes a transport delay for intensive variables such as nutrient
concentrations. The dead time is equal to pipe length divided by liquid velocity.
These are unlikely to be significant with the possible exception of return
activated sludge which could experience dead times of a few minutes, and
poorly designed analyser sampling systems which have been known to have
dead times of hours.
Recycle flows slow down the dynamics of intensive variables. For a well-mixed
vessel, the time constant of the dynamic response is (R+1) times the mean
residence time of the vessel, where R is the recycle ratio (recycle flow rate
divided by inlet flow rate).

 NUTRIENT REACTIONS: Nutrient removal by the biomass in a well-mixed

reactor effectively speeds up the dynamics for that nutrient concentration
compared to the residence time of the tank. If the effluent concentration is one
tenth the influent concentration, the time constant is one tenth the reactor
residence time. It follows that time constants for nutrient concentrations will be
within an order of magnitude of the reactor residence times, and generally
smaller, depending on nutrient removal ratios and recycle ratios. Thus time
constants of the order of 1 to 10 hours could be expected. Recirculation of
nitrate in a pre-denitrification system is a fast process, since the flow rate is so
high. Consequently the nitrate concentration can be changed within minutes.

 CHEMICAL PRECIPITATION: The most important aspect of chemical

precipitation is to achieve rapid and complete mixing. Once the chemicals are
mixed with the wastewater, the dynamics are very fast, responding in a matter of
seconds.

 MASS TRANSFER: The transfer of oxygen from a gaseous form to a dissolved

form takes place within a time scale of 15-30 minutes. A change in air flow rates
therefore does not immediately affect the dissolved oxygen concentration in the
aerator. The respiration rate may change within minutes due to changes in
substrate loading or toxic inputs. This will result in DO changes that take place
in the time scale determined by the DO dynamics.

Josep Carrasco Martínez

17

 BIOMASS GROWTH: If biomass growth and sludge wastage are in balance, the

sludge dynamics time constant is equal to the solids residence time (SRT). The
SRT is the solids hold-up divided by the solids wastage, where the suspended
solids in the effluent should be neglected with great care. This is typically of the
order of several days for the activated-sludge process. Significant changes in the
proportions of different species within the biomass could take longer, maybe
several weeks for slow growing species.

 CLARIFICATION: The flow patterns in a clarifier will approximate plug flow

upwards for clarified effluent and plug flow downwards for return activated
sludge. This would typically involve a dead time of 1-4 hours in each stream.

Summarising, it is possible to distinguish three kind of dynamics in wastewater
processes attending to the speed; fast dynamic (flow dynamic and dissolved oxygen
dynamic), medium dynamic (concentration dynamic and nutrient removal) and slow
dynamic (biomass growth).

2.3 MODELLING OF WASTEWATER TREATMENT PROCESSES

First, it is necessary to leave clear some questions about the nomenclature in going to be
used in this point, in order to understand the equations shown below:

S, used for concentrations of components dissolved in wastewater
X, used for concentrations of solid components in wastewater
V, used to refer to the tank volume (it is assumed is constant)

inq or outq , referred to the input and output flow rate

After this brief introduction, how modelling wastewater treatment plants is exposed and,
as it was shown before, can be divided in different groups:

Modelling mass transfer

Mass transfer is defined as the movement of a component from one phase to another.
The main mass transfer in wastewater treatment is the transfer of oxygen from the air
into the water to be used by the biomass.
The mass transfer is represented as:

)(, OsatOLa SSaKr −= (2.1)

, where: ‘ra’ is rate of oxygen transfer
 ‘KL’ is the mass transfer coefficient
 ‘a’ is the air water surface area
, and ‘SO,sat – SO’ is the concentration difference

CHAPTER 2: Wastewater Treatment Processes

18

In that way, if we consider a well mixed tank with constant volume, chemical oxygen
demand (COD) and water, without taking care about the transfer of oxygen, the
component mass balance is the one below:

OoutinOin
O SqSq

dt
VSd

−= ,
)((2.2)

, but now the new oxygen mass balance in the tank is:

 VSSaKSqSq
dt
VSd

OsatOLOoutinOin
O)(

)(
,, −−−= (2.3)

Modelling biological nutrient removal

In biological nutrient removal there are involved different processes; carbon removal,
nitrogen removal and phosphorus removal. And it is pertinent to add the modelling of a
single nutrient, because it has to be modelled not only the nutrient removal but also the
biomass present in wastewater. By the other side it is assumed a well-mixed tank for
modelling biological nutrient removal.

 MODELLING A SINGLE NUTRIENT: In the simplest example there are involved
three components; water, nutrient and biomass. The microorganisms absorb the
nutrient from the wastewater using it to grow and to produce more biomass. We
assume constant volume tank and constant density so:

Mass balance: inout qq = (2.4)

Biomass balance: VrXqXq
dt

VXd
BoutBoutinBin

B +−= ,,
)(

 (2.5)

Nutrient mass balance: VrSqSq
dt
VSd

NoutNoutinNin
N −−= ,,

)(
 (2.6)

, where: rB is reaction rate for biomass growth
 rN is nutrient reaction rate
 XB is biomass concentration
 SN is nutrient concentration

 MODELLING CARBON REMOVAL: Now let to go further, and to consider four

components; water, soluble carbon, oxygen and heterotrophic biomass. It is the
simplest example of biological treatment of wastewater. There are the balances
shown below:

Heterotrophic biomass balance: VrXqXq
dt

VXd
HoutHoutinHin

H +−= ,,
)(

 (2.7)

Carbon mass balance: VrSqSq
dt
VSd

SoutSoutinSin
S −−= ,,
)(

 (2.8)

Oxygen mass balance: VSSaKSqSq
dt
VSd

OsatOLOoutinOin
O)(

)(
,, −−−= (2.3)

Josep Carrasco Martínez

19

, where: rH is reaction rate for biomass growth
 rS is nutrient reaction rate
 XH is biomass concentration
 SS is soluble carbon nutrient concentration

 MODELLING NITROGEN REMOVAL: The main description of this process was

made before, and it was exposed there are two steps for nitrogen removal:

1. Aerobic growth of autotrophs
2. Anoxic growth of heterotrophs

Now there are two biological processes; carbon removal and nitrogen removal.
The balances of the different concentrations to model the nitrogen removal are:

Autotrophic biomass balance: VrXqXq
dt

VXd
AoutAoutinAin

A +−= ,,
)(

 (2.9)

Ammonia nutrient mass balance: VrSqSq
dt

VSd
NHoutNHoutinNHin

NH −−= ,,
)(

(2.10)

Nitrate mass balance: d(VSNO)
dt

= qinSNO,in − qoutSNO − rNOV (2.11)

, where: rA is reaction rate for autotrophic biomass growth
 rNH is reaction rate of ammonia nutrient
 rNO is reaction rate of nitrate
 XA is biomass concentration
 SNH is soluble ammonia nutrient concentration
 SNO is nitrate concentration

 MODELLING PHOSPHORUS REMOVAL: In the figure 4 it is shown the process of

phosphorus removal. It is evident the phosphorus removal is a complex process
for modelling, but there are for basic mechanisms to describe it:

1. Fermentation of fermentable COD, SF, to volatile fatty acids (VFA), SA,
which can be utilised by the PAO microorganisms to store carbon as
polyhydroxyl-alkanoates (PHA), XPHA.

2. Phosphorus release from poly-phosphate (PP), XPP, into solution at the
same time as the VFA is converted to PHA.

3. Phosphorus uptake from solution to PP utilising the PHA and dissolved
oxygen, SO.

4. Growth of the PAO biomass, XPAO, also utilising the PHA and dissolved
oxygen.

And this model of the phosphorus removal process introduces five more mass
balances and states: SA, SPO4, XPHA, XPP, XPAO.

CHAPTER 2: Wastewater Treatment Processes

20

The additional mass balance is integrated with the nitrogen removal model, but
it is replaced the single component balance (SS) by two component balances (SA
and SF) and using the kinetic expressions shown in the tabular forms in appendix
I (appendixes to CHAPTER 2).

 ACTIVATED SLUDGE MODEL Nº1 (ASM1): The Activated Sludge Model No.1
(ASM1) was developed by a task group work in collaboration with the
International Water Association (IWA, formerly IAWQ and IAWPRC) in 1983
and published in 1987.
The state variables included in the ASM1 are listed in the table below:

The state variables of the ASM1 model
Symbol Variable

SI Inert organic matter
SS Readily biodegradable substrate
XI Particulate inert organic matter
XS Slowly biodegradable substrate
XB,H Active heterotrophic biomass
XB,A Active autotrophic biomass
XP Particulate product from biomass decay
SO Dissolved oxygen
SNO Nitrate and nitrite nitrogen
SNH Ammonia nitrogen
SND Biodegradable organic nitrogen
XND Particulate biodegradable organic nitrogen
SALK Alkalinity

Table 1: state variables of the ASM1 model.

And to model the total suspended solids (TSS), which is a normally measured, in
wastewater treatment plants, it is used the following conversion:

TSS = 0,75(XI + XP + XS) + 0,9(XB,H + XB,A) (2,12)

There are eight different dynamic processes in the ASM1 model for describing
the dynamics:

1. Aerobic growth of heterotrophs
2. Anoxic growth of heterotrophs
3. Aerobic growths of autotrophs
4. Decay of heterotrophs
5. Decay of autotrophs
6. Ammonification of soluble organic nitrogen
7. Hydrolysis of entrapped organics
8. Hydrolysis of entrapped organic nitrogen

Phosphorus removal is not modelled in ASM1 model, the one used in this thesis
for programming batch process with Matlab as it will be shown later.

Josep Carrasco Martínez

21

Modelling hydraulics

To begin, it is assumed there are no waves on the surface, so the total flow rate over all
the weirs with an arbitrary shape is:

 ∫=
h

zout dzzvzbNq
0

)()((2.13)

, where: vz(z), is the velocity of the flow rate
 b(z), is the shape of the weir

z, is the translocation from the surface of the weir until where we are
measuring the velocity

In the flow-sheet below it is shown all of them:

figure 7: weir geometry

The liquid velocity is calculated from Bernoulli equation:

 2
0 2

1
zstat vgzpp ρρ −+= (2.14)

, where ‘ρ’ is the density and ‘g’ is the gravity acceleration. It is assumed the pressures
are equals, so pstat = p0 and the velocity of the flow rate is:

 gzzvz 2)(= (2.15)

If the equation 2.15 is inserted into equation 2.13 the total flow rate becomes:

 ∫=
h

out dzzzbgNq
0

)(2 (2.16)

CHAPTER 2: Wastewater Treatment Processes

22

Modelling settling and clarification

For modelling settling and clarification is used the one-dimensional layer model. It only
describes the settling process along the vertical axis, leaving cross-sectional area and
depth as design parameters.
The main assumptions in this model were made by Stenstrom in 1975:

• The continuous thickener does not exhibit vertical dispersion.
• The concentration of suspended solids is completely uniform within any

horizontal plane within the settler.
• The bottom of the solids-liquid separator represents a physical boundary to

separation and the solids flux due to gravitational settling is zero at the bottom.
• There is no significant biological reaction affecting the solid mass concentration

within the separator.
• The mass flux into a differential volume cannot exceed the mass flux, the

volume is capable of passing, nor can it exceed the mass flux which the volume
immediately below it is capable of passing.

• The gravitational settling velocity is a function only of the suspended solids
concentration except when the assumption immediately above is violated.

The model was extended to include the clarification zone (not included by Stenstrom)
by Vitasovic in 1985. The settler was divided into ‘n’ layers with the feed entering in
layer ’m’. It is assumed the feed is instantaneously and completely distributed
throughout the feed layer.
Thus, the region below the feed level is modelled according to Strenstrom’s approach
and the clarification zone according Vitasovic’s extension of the model. The equations
of the model are exposed below:

Concentration in each layer (not valid for feed layer and thickening layer) in the settling
zone:

() () ()

i

isisisisiidni

z
JJJJXXv

dt
dX 1,,1,,1 ,min,min +−− −+−

= (2.17)

, where: Js, is the settling flux
 zi, is the height of layer i

vdn is defined by:
A

Q
v u

dn = , where ‘Qu’ is the underflow volumetric flow

rate and ‘A’ is the cross –sectional area of the settler.

The concentration for the bottom layer is:

() ()

n

nsnsnndnn

z
JJXXv

dt
dX ,1,1 ,min −− −−

= (2.18)

Josep Carrasco Martínez

23

In the clarification zone, from layer ‘2’ to layer ‘m-1’ (where ‘m’ is the feed layer), it is
given the following equation:

i

iclariupiclariupi

z
JJJJ

dt
dX ,,1,1, −−+

= −+ (2.19)

, where the fluxes are defined as:

 iupiup XvJ =, (2.20)

A

Q
v e

up = (2.21)

 ()⎩
⎨
⎧

>
≤

=
+

+

+ ti

ti

isis

is
iclar XX

XX
ifJJ
ifJ

J
1

1

1,,

,
, ,min

 (2.22)

And the equation for the feed layer is:

() ()

m

msmsmdnupmclar
ff

m

z

JJXvvJ
A
XQ

dt
dX 1,,1, ,min +− −−−+

= (2.23)

, where: ‘Qf’ is the feed volumetric flow rate to the settler

‘Xf’ is the suspended solids concentration of the feed.

The equation to describe the top layer becomes:

1

1,1,2,1

z
JJJ

dt
dX clarupup −−

= (2.24)

In figure 7 it is shown graphically a general description of the one dimensional layer
model.

CHAPTER 2: Wastewater Treatment Processes

24

figure 8: General description of the traditional one-
dimensional layer settler model (Jeppsson; 1996)

It has been shown the one dimensional layer settler model and all the equations to
define it, but it hasn’t said anything about the settling velocity. The determination of an
appropriate settling velocity model is indispensable for modelling the secondary
clarifier using the solids flux theory. In the model used in this thesis it is chosen the
empirical double-exponential settling velocity function proposed by Takács et al.
(1991):

()())()(
00

minmin(,'min,0max XXrXXr
s

ph eevvv −−−− −= (2.25)

, where: v0’ is the maximum settling velocity

rh is a settling parameter characteristic of the hindered settling zone
rp is a parameter associated with the settling behaviour at low solids

concentrations
Xmin is the minimum attainable concentration of suspended solids in the

effluent and it is possible to express it as:

Josep Carrasco Martínez

25

The minimum attainable concentration of suspended solids is defined by the equation:

fns XfX =min (2.26)

, where fns is the non-settleable fraction of Xf (suspended solid concentration of the
feed)

In figure 8 it is shown the function of the double-exponential settling velocity where it
is possible to see how the velocity would increase if it was defined by a single
exponential function:

figure 9: schematic description of the

double-exponential settling
velocity (equation 2.25) model
suggested by Takács et al.
(1991)

Modelling batch processes

Moreover continuous modelling processes there is another possibility which has
increased in popularity the last years and it is used in many wastewater treatment plants.
This one is Modelling Batch Processes.

It means until now, wastewater treatment processes have been model as a continuous
system, with biological treatment tanks before the settler, so the wastewater goes
through the anoxic tank, after the aerobic and finally to vessel where it takes part the
settling and clarification. All of it happens always with constant volume and constant
flow rate.

In batch processes there is no constant volume and there is no constant flow rate always.
The aim of batch processes is to model all biological process in wastewater treatment,
including settling and clarification, in the same tank.

There is no a tank for a specific biological process, there will be several tanks with a
number of distinct time phases. In the figure 9 below is shown the typical activated
sludge sequenced batch reactor:

CHAPTER 2: Wastewater Treatment Processes

26

figure 10: main sequenced batch reactor (SBR)

It is possible to see in figure 9 de difference between the phases:

• Filling phase: The wastewater is going in the tank, so the height of the tank is
increasing. It is assumed a well mixed vessel.

• Mixing phase: The tank is full, the height is equal to its maximum value and it is
assumed a well mixed vessel. Now it is taking part the biological processes.

• Settling phase: The height is still constant and with the maximum value, but in
this phase the solid particulates are settling on the bottom of the tank.

• Draw phase: Finally when the settling process has finished it starts to draw the
tank and the cleaned water returns to the weirs.

This is the simplest example of batch process. It can have as much phases as the
designer needs. For instance it is possible to divide the ‘mixing phase’ in two phases,
one the ‘anoxic phase’ and the other the ‘aerobic phase’.

Notice that the balances are the same in all phases but the equations for each one are
different depending of the phase where the process is.

27

PART II

TITLE: Modelling the Wastewater
Treatment Plant with Matlab

28

29

CHAPTER 3

Application Design

Now that modelling wastewater treatment plants has been introduced it is
time to expose the application designed.
This chapter is dedicated to the design of the main application with Matlab,
which is connected to the STAR controller. It is included the design of the
main code, the structure of the programme, the flow-sheet of the code and
the functions which ones it is divided to make easier update the code in the
future.
Nevertheless, it is not included the data-exchange and synchronization code
and the simulink model, the following chapters (chapter 4 and chapter 5) are
dedicated to those parts.

CHAPTER 3: Application Design

30

3.1 INTRODUCTION

In the chapter before it has been introduce how to model and to control wastewater
treatment processes to understand the contributions developed in this thesis. But now, it
is going to be described the main objective of the thesis.

This thesis is the result of the collaboration of the “industrial electric engineering and
automation” department (Lund University) and “VEOLIA Water Systems” company.
The project pretends to develop an automatic application able to communicate with the
STAR controller (developed by the company), simulate a model of the wastewater
treatment plat which is controlled by STAR and returns the results from the simulation
to the STAR controller database.

The objective of this project is to improve the control handles. The STAR controller
gives to the application some initial values (update the state variables of the plant
model), the application simulates the plant model and returns another values to the
STAR controller. The purpose of this data exchange is to make possible to compare the
expected data (data from the simulation) with the real data measured from the
wastewater treatment plant. Then it is possible to check differences between the
expected results and the real results, and it makes easy to find out mistakes in the
control strategy. And the controller is going to ask for new data from the simulation
process to compare with the real measurements periodically, it means there is one part
of the application is going to be executed regularly when it is running.

One of the worst problems in wastewater treatment plants is the dynamic of biological
processes, it is very slow. It makes a mistake in control strategy is detected after days,
even weeks sometimes. With this kind of control, comparing the real data with expected
data, it is possible to detected mistakes faster, and it makes possible to reduce the waste
resources along the application process of a new control strategy.

Now it is defined the problem, it has to be defined the connection between the database
and the application and the platform to developed the application. As STAR controller
has web-based interface, the application has to be able to connect with the database
through Ethernet. The platform chosen to develop the application is Matlab, which is be
able to exchange data through the network and to simulate a complex model necessary
to simulate wastewater treatment processes (with Simulink features).

Josep Carrasco Martínez

31

3.2 MAIN FLOWSHEET

Once we know what the application has to do, it is necessary to set the different tasks
within the application and the order of them. In the figure below is represented
graphically the main tasks of the process that the application has to realise and the order
of them:

figure 11: flow-sheet diagram

As it is shown there are two tasks with the name of “connect to the database”, but one is
for reading data from the database and the other to write data in the database, so they are
different tasks, although it is necessary to connect to the database in both of them. It
means there is one similar feature in these tasks.

They are defined the main tasks of the application, but there is one feature very
important and it is necessary to take care of it, because it will change the configuration
of all the application. This feature is the recursive characteristic of some tasks.
Therefore there is one ‘main loop’ in the process where the recursive tasks will be
included and there is the ‘initialization block’, necessary to start running the program
and the simulation of the wastewater treatment plant.

The main structure for the design is shown below:

figure 12: main parts of the program

So there are the tasks are going to be executed only at the beginning of the application
(“initialization block” in figure 12) and the tasks are going to be executed each period
defined by the controller (“main loop block” in figure 12).

Finally there are summarized the main tasks that the application has to do, but now it is
necessary to expose the specifications imposed by the company:

• The simulation background for the prototype is Matlab/Simulink.

INITIALIZATION

MAIN LOOP

READ DATA

PROCESS
SIMULATION

WRITE DATA

INITIALIZATION
CONNECT TO THE

DATA BASE TO
READ DATA FROM

CONTROLER

SIMULATION OF
THE PROCESS

CONNECT TO THE
DATA BASE TO
WRITE DATA
FROM THE

SIMULATION

CHAPTER 3: Application Design

32

• The communication with the database and the STAR controller through Ethernet
(XML files).

• The period of the main loop is 2 minutes approximately.

3.3 STRUCTURE OF THE PROGRAM

In the point before (3.2 Main Flow-Sheet) it has been analyzed the main structure of the
application is going to be developed, but more over the main tasks of the application, in
this point it is discussed and presented the full structure of the program with its
functions and all the features needed to program it.

If we remember again the main diagram of the process to program (see figure 13):

figure 13: diagram of the process

There are two tasks that they need to connect with the database of the
STAR controller, well for reading data, well for writing data. It
means the application is acceding to another program that is being
used by the STAR controller too.
It is evident a synchronization is needed to avoid problems between
both applications; the controller and the verification data application.

Thus, a synchronization block must be included within “connect to the database” block,
but which one of them? To ask this question make us to see there is more than one
possibility of synchronization with the STAR controller. Below are presented some
possibilities:

• Function of synchronization inside the block “connect to the database to
read”: As it is shown
in figure 14, the
synchronization takes
part when the
application is going to
read data from the
database, after this
first synchronization,
the program read the
data, simulate the
process and write the
results in the
database. When all
the process is finished
it waits for another
synchronization to
start again the “main
loop”.

figure 14: synchronize when reading

INITIALIZATION

SYNCHRONIZATION

READ DATABASE

Matlab ALGORITHM

WRITE DATABASE

CONNECT TO
THE
DATABASE TO
READ

CONNECT TO
THE DATABASE
TO WRITE

Josep Carrasco Martínez

33

• Function of synchronization inside the block “connect to the database to

write”: This time, the synchronization is made just before the application is
going to connect to the database to write data, that is, the application starts to
run, initialize all the variables, connect to the database to read data, simulate the
process, synchronize with the controller and connect to the database to write the
results. Then, it repeats the
process again until the
synchronization step. It means it
has taken part the first access to
the database without any control
when the application has read
the data to simulate the process.
The process is shown in figure
15. Of course it is possible to
program some kind of control to
avoid this first access to the
database without control the first
time the application starts to run.

figure 15: synchronize when
writing

• Function of synchronization in both blocks, that is, there are two

synchronizations: This third possibility, although longer than the others, its
complexity let the application synchronize each time it is going to connect with
the database. Now, there is
synchronization in both blocks
that they connect to the data
base, as much as the application
is going to read from the
database as it is going to write in
the database. The structure of
the process now it is shown in
figure 16, on the right of these
lines. First there is
synchronization before
connecting to the database, the
simulation of the process
follows that step and finally
there is another synchronization
before writing the results in the
database. Then the main loop
starts again.

figure 16: double synchronization

INITIALIZATION

SYNCHRONIZATION

READ DATABASE

Matlab ALGORITHM

SYNCHRONIZATION

WRITE DATABASE

CONNECT TO
THE
DATABASE TO
READ

CONNECT TO
THE DATABASE
TO WRITE

INITIALIZATION

READ DATABASE

Matlab ALGORITHM

SYNCHRONIZATION

WRITE DATABASE

CONNECT TO
THE
DATABASE TO
READ

CONNECT TO
THE DATABASE
TO WRITE

CHAPTER 3: Application Design

34

All the ways of synchronization explained before are correct to program the application,
but the way to “synchronize when writing” has one difficult, it is necessary to make a
pre-synchronization in the initialization block before starting the main loop, then we
avoid the application accesses to the database without the controller allows it.

The new flow-sheet is shown in figure 17.
There is a pre-synchronization function
after the initialization block, so now the
application doesn’t start to access to the
database until it is allow to it. This pre-
synchronization just would take part once
at the beginning of the applications, each
time it starts to run.

figure 17: synchronize when writing
 with pre-synchronization

By the other side, for “synchronizing when reading” or the last way (synchronizing
always) it is no needed any extra-function to pre-synchronize the application because
there is always a synchronization before the first reading time, something never happens
in “synchronizing when writing” the first time that the main loop is executed.

The synchronization chosen is the third case: double synchronization (before reading
and before writing in the database). In the chapter after (chapter 4: “data exchange”) it is
explained in detail the synchronization function, and in the next point; “3.4 program
code” the code for both synchronization ways (synchronization when reading and
synchronization always) is implemented, because it is the same code and the same
function to synchronize but, this function is used once in “synchronization when
reading” and twice in the other case. Thus they will be shown two solutions for the
synchronization problem.

Now it is going to be exposed the function of each blocks in the points bellow,
following the main division made before:

• Initialization of the application.
• Main loop of the application.

Josep Carrasco Martínez

35

3.3.1 Initialization

This part of the code includes all data which need to be initialized and it is divided in
several kinds of initializations:

• Model parameters initialization: It means, to establish the value of the
constants, the initial value of the parameters for the simulations, the value for the
parameters of simulation, the initial conditions of the simulation background.

• Model state variables initialization: This part seems unnecessary, but it is a
mistake to avoid this point. Simulink always starts all state variables from cero
value if there are no specific initial values for them. Thus, with a first simulation
of the model it is possible to establish the initial value for the state variables
trying to approximate the initial value of the state variables in the simulation
process to the initial value of the state variables in the real wastewater treatment
process.

• Control parameters initialization (to start the loop and the simulation): They
have been included within the application the possibility of stopping the
simulation when the application is running and the possibility to stop all the
process of data acquisition, simulation and data writing (to make possible break
the main loop). In this part of the code the “control variables” are initialized to
make the main loop and the simulation run.

• Synchronization parameters initialization: This is another critic point. The
variables used for the synchronization are modified by the STAR controller,
which allows the application to read and write in the database, but at the
beginning of the application running it is not possible to know the value of the
“synchronization variables” stored in the memory, so it is suitable to initialize
the variables to the expected values.

3.3.2 Main loop

The main loop implementation is more complex than the initialization, here is where all
processes take part, the connection with the database to read, the simulation process, the
second connection with the database to write. After making reference to all theses
processes it is evident the main loop is divided in three parts (see figure 6 shown
before). Below these parts are defined:

Connection to the database to read

As it was shown before there are two steps to connect to the database, first the
synchronization and after the access to the database to read the data. The two steps are
explained below:

• Synchronization: The synchronization is important for two main reasons: to
avoid the access of two applications at the same time to the same file and to
ensure there is no repetition of data, it means, that the application does not
simulate the process more than once when the controller needs the data only
once, or there are new results of the simulation when the controller asks for them
and they are not the ones of the past simulation. Summarizing, there are new

CHAPTER 3: Application Design

36

results when the controller asks for them, there is no simulation of the process
when the controller does not ask for it.
Hence, the synchronization allows to forbid the application accesses to the
database until the controller needs the results of the simulation, then it let the
application gets the data from the database, simulate the process and write the
results.
To get the purpose exposed before it has been implemented one auxiliary loop to
synchronize with the controller. Inside this loop the application is asking for
accessing to the database until the controller answers that it is possible, then the
loop is bracken and the application goes on with the steps of the process (read
the data, simulate the process and write the data if there is no double
synchronization).
In the case chosen, the double synchronization, there are two synchronizations,
one before reading the database and the other before writing the results in the
data base, so for each time the controller needs data it has to synchronize with
the application twice. The improvement of the double synchronization case is
discussed in the point “3.4.2 Program code”, because this improvement is
related with the implementation.

• Read from database: Once the synchronization has taken part, the application

accesses to the database and gets the values stored in it within variables in order
to be able to manage them in Matlab background. The values needed to the
simulation are the “name”, the “numerical value” and the “quality value” of each
variable, so the result after reading the database will be three vectors, one with
all the names stored (vector “name”), one with the values stored (vector “value”)
and the last one with the quality of each value stored (vector “quality”). This file
stores the values so that the component ‘i’ of each vector belongs to the variable
‘i’, it means:

[]
[]
[]

niwhere
quality
value
name

iable

qualityqualityqualityquality
valuevaluevaluevalue
namenamenamename

i

i

i

i

ni

ni

ni

,...0

var

...
......
......

1

1

1

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪⎭

⎪
⎬

⎫

=
=
=

, and ‘n’ is the number of variables acquired.

Matlab Algorithm

The “Matlab Algorithm”, the most important step of the “main loop”. The other steps
are implemented to get the variables to the simulation of the process in Matlab and to
return the results of Matlab simulation to the database, it means, the other functions are
programmed to communicate the simulation process with the controller.

Josep Carrasco Martínez

37

The Matlab algorithm is divided in three parts: processing the data before the simulation
and processing the data after the simulation. Bellow is shown the diagram of the Matlab
algorithm:

figure 18: Matlab Algorithm

• Processing data before the simulation: As it has been told before, the function
to read the data from the database stores them in three vectors. But these three
vectors contain information about the variables about the name, value and
quality. To use them it is necessary to store the information in another format.
This first step of the “Matlab algorithm” is the responsible of making the
translation of the information received from the database to make possible its
use in the simulation process.

• Process simulation: After all the steps to acquired the data and translate them, it

is possible to make the simulation. In this step the application executes the
necessary commands to simulate the simulink file which includes the model of
the wastewater treatment plant. This model included can be whatever the
company wants, from only a simple model of the wastewater treatment plant to a
complex model of the wastewater treatment plant and the sensor models and
with a model of the controller. The possibilities are limited only by the
simulation time needed and the capacity of the computer used.

• Processing data after the simulation: This last step is the data treatment before

sending them to the database. The simulation returns the data in a specific
format, that format is not the appropriate to send them to the controller and to
store them in the database the most of times. Here all data are processed and
expressed in the format used by the function which writes them in the database.
This format is the one used when the application reads from the database, where
all data are stored in three vectors, one with the names of the variables, another
with the values of the variables and the last one with the quality of the variables.
The output of this step of the “Matlab algorithm” is the three vectors shown
below:

[]
[]
[]

niwhere
qualityqualityqualityquality

valuevaluevaluevalue
namenamenamename

ni

ni

ni

,...0
...

......

......

1

1

1

=
⎪⎭

⎪
⎬

⎫

=
=
=

, and ‘n’ is the number of
variables acquired.

Matlab
ALGORITHM

PROCESSING
DATA

PROCESS
SIMULATION

PROCESSING
DATA

CHAPTER 3: Application Design

38

Write in database

As it was shown before there are two steps to connect to the database, first the
synchronization and after the access to the database to read the data. The two steps are
explained below:

Synchronization: Here the synchronization if exactly the same function
described in the point before “read from database”. There is one auxiliary loop
asking for access to the database. When the access is allowed the loop is bracken
and the application goes on to the next step: write the results in the database.

• Write to database: Once the synchronization has taken part, the application

accesses to the database and writes the results the application has got from the
simulation. The application has to write these three vectors in the database:

[]
[]
[]

niwhere
qualityqualityqualityquality

valuevaluevaluevalue
namenamenamename

ni

ni

ni

,...0
...

......

......

1

1

1

=
⎪⎭

⎪
⎬

⎫

=
=
=

, and ‘n’ is the number of
variables acquired.

These three vectors have the same meaning and the same structure as the three
vectors read from the database.

3.4 APPLICATION IMPLEMENTED

Until now, in the points before it has told how to implement the automatic application,
which simulates the wastewater treatment plant process and which is controlled by the
STAR controller. There have been shown the structure of the program and the necessary
blocks to get the purpose. In these last points of the chapter is presented the code
programmed and the graphic interface of the application, so it will be easy to modify
and to improve the code, it means, to update the code for future versions. Right now, the
version of the application developed is a prototype and it is able to do all requirements
which the company was asking for.

In the point below it is show the application, how it works and the code. It is divided in
two points; the first to expose the application and the last to explain the code.

3.4.1 Application Interface

As all application software, it is needed a user interface to let the user manages the
program. The user interface has been developed with GUIDE. A brief introduction
about GUIDE is made in “ANNEX II”, and to know more about the code implemented
to program the application is recommended to consult “ANNEX II”. The purpose of this
point is to present the user interface developed.

Josep Carrasco Martínez

39

Due to the simple actions that the user has to realise to run this application, the user
interface is very simple. Bellow is shown in figure 19 the user interface developed:

figure 19: User Interface

The user interface has four buttons, two main buttons to run and to stop the program and
another two to check that the synchronization is working right. The use of each button
is:

• “RUN PROCESS”: Push this button to start the application. This button executes
the file which contains all the code with the “initialization block” and the “main
loop”, so once the application is opened and the user press the button “RUN
PROCESS” it is not necessary to do any action in the program, it will run until
the user presses “STOP PROCESS”, the user closes the application or the STAR
controller makes the application to go out of the “main loop” using the control
variables (aux_sim and aux_loop).

• “STOP PROCESS”: The process can be stopped from the controller or from the
user interface. To stop it from the user interface the user just has to push the
button “STOP PROCESS” and the program will go out of the “main loop”.

The other two buttons are programmed to emulate the STAR controller only with the
synchronization of the simulation. As the application has been developed to have
double synchronization, there are two buttons, one to check the synchronization before
reading from the database and another to check the synchronization before writing data
in the database.

• “READ FROM DATABASE”: When the application is running it is waiting until
the controller let it to access to the database before doing the simulation of the
plant model. This button changes the value of the variables for the
synchronization as it was the STAR controller, so if the application goes on with
the simulation it means it is reading right the control variables. It is a good way
to check if it is failing the Ethernet connection or the application if there is no
synchronization.

• “WRITE IN DATABASE”: This button has the same function as the one explained
before, but for the second synchronization. If we implement the program with
single synchronization it is possible to use the same user interface, but this
button doesn’t have to be used, or it has to be removed.

CHAPTER 3: Application Design

40

3.4.2 Program code

In the following lines it is detailed all the code implemented to program the application
described along this chapter. The lines in red are comments introduced within the
program code, so the compiler doesn’t take care about these lines to execute the
application code.

%%
%%% MAIN PROGRAM TO SIMULATE THE WASTE WATER TREATMENT %%%
%%% PLANT %%%
%%

The first part that the program executes is the initialization functions. These functions
are used once each time that the button “START PROCESS” (see point 3.4.1
“application interface”) is pushed to start the application. The functions used in this part
are shown bellow.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%% INITIALIZATION %%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Here the program calls the Matlab file “INIT.m”. Inside this file all the variables and
constants needed to the simulation of the process are defined. After, the program
simulates the plant model to get the initial conditions of the state variables with the
command “sim(‘name of the file of the plant model’)”. The last line is to define the
vector ‘x’ to store the values of the initial values of the state variables. This part can be
called “model parameters initialization and model state variables initialization”
(see point “3.3.1 Initialization” described before).

%Initialize parameters---
 INIT; %file .m to initialize all parameters of the model

 % simulate plant to steady state
 sim('plantmodel');
 x=xInitial;

The following part is to initialize the control parameters. These parameters control the
simulation and the main loop. If the variable “aux_loop” is equal to the value one the
condition to go in the loop is complained and the application will run. The other
variable is “aux_sim”, and if it is equal to the value one the main loop is running but
there is no simulation of the wastewater treatment process model. Thus, the application
has the possibility of stopping the simulation if the controller doesn’t want to do it.
The code initializes the value of both variables to one, so the application always starts
executing the “main loop” and the simulation of the process. After the first time that the
“main loop” is executed, the program read again the value of the “control variables” and
it decides if the simulation or the main loop has to stop. In the point where it has been
explained before this part was called “control parameters initialization”.

%Initialize control parameters
 control_value = [1 1];

Josep Carrasco Martínez

41

 controlloop(control_value);

 %read control parameters
 [aux_loop aux_sim] = control_check; %we are reading control.xml

To control the synchronization with the STAR controller have been defined two
variables: ‘readV’ and ‘writeV’. The controller will change the value of these variables
to choose if it needs the application read data from the database or the applications
writes in the database. In the initialization the values chosen are readV=0 and
writeV=1, so in the first synchronization at the beginning of the “main loop”, the
application will wait until the controller chose the “read” option, it means, readV=1 and
writeV≠1. This part is called “synchronization parameters initialization”.

 %variables to synchronize with the controller
 readV = 0; %when it has to read the XML file
 writeV = 1; %when it has to write the XML file

This last part of the initialization is used to initialize the value of one variable used to
read the data from the database. It is explained in detail in the following chapter.

% initialization variable to read from database
 datatag=['data'];

Now, all the variables of the model and the variables of the program (synchronization
variables and control variables) are initialized and the program executes the main loop
to simulate the plant process each time STAR controller requires it.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%% MAIN LOOP %%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

At the beginning of the “main loop”, the first thing the code is doing is to check the
value of the control variable “aux_loop” (it has been initialized to the one value before).
If the value is the one expected the “main loop” starts running.
After there is a conditional instruction to check the other control variable: “aux_sim”. If
the value is not the expected the “main loop” executes itself but there is no simulation.
As “aux_sim” has been initialized to unity value this first time that the “main loop” is
executed the simulation will run.

while aux_loop = = 1
 %variable used in the application to stop the simulation
 if aux_sim ~= 1
 disp('simulation stopped')
 pause(5);
 end

NOTE: check the “APPENDIX II” to read more about the functions “controlloop”
and “control_check”. About how the application is connecting with the database,
read the next chapter “chapter 4”.

CHAPTER 3: Application Design

42

 %process execution. I can stop the simulation if aux_sim not equal 1
 if aux_sim = = 1

The following step once the control variables are checked is the synchronization. For
the synchronization there are two possibilities: single synchronization and double
synchronization. As it is shown in the code bellow, the implementation is the same in
both cases, but there is one difference, in “single synchronization” there is one more line
of code (code inside keys). As well as in “double synchronization” is the controller the
one which changes the value of the synchronization variables always (there is one
variable each time the controller synchronizes, when reading and when writing), in
“single synchronization” it is only used the one variable (“readV”), because there is
only one synchronization, when the application is going to read from the database. So,
when the controller changes the value to the variable “readV” to indicate it is possible to
read data from the database, the application has to reset this variable after going out of
the “synchronization loop” in order to avoid that the application starts to simulate the
process out of control because it read “readV” always as set value.
The problem of the “single synchronization” is that the controller can’t reset the
synchronization variable “readV”. With the “double synchronization” this problem
disappears. There are two synchronization variables: “readV” and “writeV”. So, the first
condition to synchronize is to have readV=1 and writeV≠1. After, the application will
wait until the second condition: readV≠1 and writeV=1. It is evident is impossible to
lose the control of the “main loop”. The controller is the one which changes the value of
the synchronization variables, and like there are two stops along the “main loop” to
synchronize the application will always simulate the plant model once each period.
Below is shown the code for both cases: “single synchronization” and “double
synchronization”.

CASE SINGLE SYNCHRONIZATION

 %Synchronize with the server--

 while readV ~= 1
 %we wait for the signal of the server, so we can synchronize each 6 minutes
 [readF writeF]=synchronizer;
 if (readF==1) & (writeF~=1)
 readV=1;
 writeV=0;
 break
 else
 readV=0;
 disp('we can not read now')
 end
 pause(15); %we wait 15 seconds until read again the file
 end

 %the variable is rise to 0 to stop the loop when it has to read data again
 readV=0;

CASE DOUBLE SYNCHRONIZATION

 %Synchronize with the server--

 while readV ~= 1

Josep Carrasco Martínez

43

 %we wait for the signal of the server, so we can synchronize each 6 minutes
 [readF writeF]=synchronizer;
 if (readF==1) & (writeF~=1)
 readV=1;
 writeV=0;
 break
 else
 readV=0;
 disp('we can not read now')
 end
 pause(15); %we wait 15 seconds until read again the file
 end

Once the synchronization has taken part the program accesses to the database to read the
data. First are defined the three vectors where the values of the variables are going to be
stored: “nameR” to store the names of the variables, “valueR” to store the values and
“qualityR” to store the quality of the value read. The function “readXML” used to
access to the database is discussed in the following chapter “chapter 4”. The code
implemented in the main code is presented below:

 %Read from database---
 nameR=[''];
 valueR=[];
 qualityR=[];
 [nameR,valueR,qualityR]=readXML(datatag); %file .m where we must read the data

from database

The next step after reading the data from the database is to execute the “Matlab
Algorithm”, which is divided in three functions shown below:

MATLAB ALGORITHM

The first thing the Algorithm has to do is to translate the data read into a format useful
for the model is going to be simulated in Simulink. The function “read_data” is
responsible to do this task. An example of how to implement this function is detailed in
“APPENDIX II”.

 %Initialize parameters with the new data---
 read_data; %file .m to initialize with the new data

Following the translation of the data read is executed the simulation of the process. It is
done in two steps; first the options for the simulation are set with the function simset,
and finally the model is simulated with the function sim. Both functions are standard
functions from Matlab, for more information about them it is recommended to use the
help of the program.

 %Simulate the model---
 options=simset('InitialState',x(end,:),'Solver','ode45');
 [t,x]=sim('plantmodel',[t(end) t(end)+6/60/24],options);)

NOTE: the function used to synchronize with the controller is explained the next
chapter “chapter 4”.

CHAPTER 3: Application Design

44

The last step of the Algorithm is to translate the results of the simulation into the three
vectors needed to send the data to the controller. To get this task is used the function
“wirte_data”. As before with the function “read_data”, there is an example of how
implementing this function in the “APPENDIX II”.

 %Write the new data in vectors form work space---
 write_data; %function to write the data in three vectors

CASE DOUBLE SYNCHRONIZATION

This code is only present in the program when it is implemented the double
synchronization. If it is used the single synchronization it is not necessary.

 %Synchronize with the server--
 while writeV ~= 1
 %we wait for the signal of the server, so we can synchronize each 6 minutes
 [readF writeF]=synchronizer;
 if (writeF==1) & (readF~=1)
 writeV=1;
 readV=0;
 break
 else
 writeV=0;
 disp('we can not write now')
 end
 pause(15); %we wait 15 seconds until read again the file
 end

The outputs of the “Matlab Algorithm” are three vectors: “name”, “value” and
“quality”. These three vectors have the same structure than the vectors read from the
database, but they have stored the values of the results of the simulation. The function
“writeXML” has been implemented to send the data to the database. The function is
explained in “chapter 4”.

 %Send data to the database--
 n=length(value);
 writeXML(name,value,quality,n); %we write all data i an XML file
 end

The last step of the program is to check the value of the control variables in order to
know if the “main loop” has to go on running or the controller has ordered to stop with
the simulation.

 %it tests if the simulation or the main control loop has to stop or not
 %read variable "aux_loop" and variable "aux_sim"
 [aux_loop aux_sim] = control_check; %we are reading control.xml

 end

NOTE: check the “APPENDIX II” to read more about the function “control_check”.

45

CHAPTER 4

Data Exchange

The main application implemented has been shown in the chapter before,
what is its purpose, the implemented code, the user interface, all the
features. And it was said that one of the most important things is the
communication with the STAR controller to: synchronize the application and
the controller, to read data from the database, write the data and stop the
application from the controller.
Now, how the application interacts with the controller is detailed in this
chapter, it means, the code of all the functions used to transmit the data
between the controller and the application or in the other way around, and
the files where the variables are stored.

CHAPTER 4: Data Exchange

46

4.1 Introduction

Talking again about the purpose of this thesis, in the figure below (figure 20) is shown
the diagram of the project developed taking care only about the communication between
all of the devices involved:

figure 20: communication diagram

It is possible to see that there are three main devices:

• STAR controller: which is connected directly with the wastewater treatment
plant and it receives the measurements of the sensors that there are installed.

• Database: which stores the different values that the controller gets from: the
sensors, the control action applied, the time, the data, at last, all data that needs
to be analysed.

• Matlab application: Application developed in this thesis which simulates the
wastewater treatment plant and gives the results to the controller, which
compares the real results with the expected results got in the simulation process.

And, as it was said before, these three devices are connected using the Ethernet
protocol. So, the functions implemented in the main code shown in chapter 3 (point
3.4.2 program code) must be able to connect with the controller and the database using
an Ethernet protocol.

Nowadays, the different platforms connected through Ethernet are using different
application code: the Matlab application is running under Windows Operative System,
the database is running in the same interface or another and the STAR controller is a
specific device able to use Ethernet network but not running under Windows Operative
System. The best way to connect them is using Web Services (see “APPENDIX II” to
better understanding). Web Services provide an abstraction layer between the client

Josep Carrasco Martínez

47

application and the code application, it means that there is a layer programmed between
the code application and the network, so it doesn’t mind if the code application of the
different platforms is not the same, because after the abstraction layer it will be possible
communicate all of them. This abstraction layer translates the message into a standard
that can be read by the other client application. In the figure below is represented the
abstraction layer:

figure 21: abstraction layer

To program the Web Services is possible to use an amount of codes to program the web
services, which makes difficult the choice: java, Visual C, Basic, C++, Perl, etc. By the
other side there are a lot of possible standards that can be chosen as XML protocol,
XKMS, SAML, XML-Dsig, XML-Enc, XSD, P3P, WSFL, Jabber, ebXML, SOAP, etc.
But the one used by the company to communicate the database and the STAR controller
is SOAP protocol, which is going to be introduced in the next point.

4.1.1 What SOAP is

“Simple Object Access Protocol”, that is SOAP. Let define in a few lines SOAP as a
standardized packaging protocol used to transmit and receive messages by applications
through Ethernet.

SOAP is an application of the XML specification. It means that the basis of SOAP is
formed by XML messaging (applications exchange information using XML
documents).

The best thing of SOAP protocol is that is based in XML, and XML is not tied to any
application, operative system, programming language or whatever other technical
implementation. With XML is possible to share information using only a message
encoded understood by the applications, which are going to transmit and receive
message.

Specific communication makes reference to the
communication between the application and its
Web Service.
Agnostic communication makes references to the
network, where is possible to use whatever way of
communication because with web services we are
using a standard for the sent messages and the
received messages understood for all listeners.

CHAPTER 4: Data Exchange

48

This step of the project design has been made by the company, so this introduction to
SOAP protocol is not going further (to know more check the “APPENDIX III” and the
bibliography). The company has developed an intermediated application which receives
and transmits the messages into SOAP protocol through the network. Now the diagram
of the communication is the following:

figure 22: SOAP interface

Beginning from here, the code implemented has to be able to read and translate the
information that is going to arrive as XML data file. Thus, the communication between
the application developed with Matlab and the other devices is reduced to read and write
XML files.

4.1.2 XML communication files

Definitely, the Ethernet communication between the application developed in Matlab
and the STAR controller and the database has been reduced to the task of writing and
reading XML files. Hence, to write an XML file will be equivalent than to send a
message to the controller or to the database, and to read an XML file will be equal than
to receive a message.

It takes us to think about another question, if to write or to read an XML file is like
writing or reading a message, it will be necessary to use one XML file for each kind of
message, it means, one file for control variables, another for synchronization variables,
another to read data from the database and at last one for writing the results from the
simulation. The four XML files that store and are used to transmit and receive the
information are the following files:

Josep Carrasco Martínez

49

• “database.XML”: the dates from the database, that the application needs to

use in the simulation, are stored within this XML file. After reading
the file, these dates are stores in three vectors with the values of the
variables. The structure of the file is:

• “results.XML”: the Matlab application writes the results of the simulation in
this file. The controller will read the values stored here. The
structure of the file is:

• “synchro.XML”: the value of the variables used for the synchronization is
stored within “synchro.XML”. The controller writes the values and
the Matlab application reads the content stored inside the file. The
structure of the file is:

<?xml version="1.0" encoding="utf-8"?>
<dataexchange>

 <data>
 <name>name(1)</name>
 <value>value(1)</value>
 <quality>quality(1)</quality>
 </data>
.
.
.
 <data>
 <name>name(n)</name>
 <value>value(n)</value>
 <quality>quality(n)</quality>
 </data>
</dataexchange><!--this is a comment-->

<?xml version="1.0" encoding="utf-8"?>
<dataexchange>

 <data>
 <name>name(1)</name>
 <value>value(1)</value>
 <quality>quality(1)</quality>
 </data>
.
.
.
 <data>
 <name>name(k)</name>
 <value>value(k)</value>
 <quality>quality(k)</quality>
 </data>
</dataexchange><!--this is a comment-->

<?xml version="1.0" encoding="utf-8"?>
<synchronize>
 <sincro>
 <read>”readF value”</read>
 <write>”writeF value”</write>
 </sincro>
</synchronize>

CHAPTER 4: Data Exchange

50

• “controlFILE.XML”: This XML file has the same function as

“synchro.XML”, but this file stores the value of the control
variables, variables that are modified by the controller and read by
the Matlab application. The structure of the file is:

The functions implemented to modify the files shown before within the application code
are:

“control_check”: to read “controlFILE.XML”. This function is described in the
point “II.2.2 “control_check” code” in “APPENDIX II”.

“controlloop”: to write “controlFILE.XML”. This function is described in the
point “II.2.1 “controlloop” code” in “APPENDIX II”.

 “synchronizer”: to read “synchro.XML”
“writeXML_synchro”: to write “synchro.XML”. This function is described in

the point “II.1.1 “writeXML_synchro” code” in “APPENDIX
II”.

 “readXML”: to read “database.XML”
 “writeXML”: to write “results.XML”

4.2 Data-flux in the communication

Now we have arrived to this point is evident that the problem of the communication of
the application has been reduced to implement two functions: the function which reads
the XML file and the function which writes the XML file. Because of there are four
XML files, there are necessary more than one function to read and one to write, it
means, it would be needed two functions for each XML file. Remembering the file
“database.XML” only needs to be read by the application but not to be written, and
“results.XML” to be written by the application but not to be read. The number of
necessary functions is six; three functions to read and three functions to write (the six
functions are shown up in point “4.1.2 XML communication files”).

It seems better to try to implement a general function to read and another to write, and
use both of them for reading and writing the four XML files. The problem is that it
supposes to define the functions with a lot parameters as a variables, then, each time is
going to be read or write an XML file these parameters have to be introduced into these
functions. Thus, as the functions are not large (the largest one near fifty code lines) and
the number of variables in the Matlab work-space can be reduced, at the moment the

NOTE: to know more about the variables that are stored in each XML file and for
what is using the application each variable, it is recommended to check the point
“3.4.2 Program code” in “chapter 4”. The function of each variable is not the
purpose of this chapter.

<?xml version="1.0" encoding="utf-8"?>
<control>
 <data>
 <loop>”aux_loop value”</loop>
 <simulation>”aux_sim value”</simulation>
 </data>
</control>

Josep Carrasco Martínez

51

solution with six functions is preferred. It has to be considerer that the code of the
functions to read and to write would be increased considerably if we try to write or read
four different structure message with the same functions.

Despite to have six functions, all of them follow the same data flux shown in the figure
23 (“figure 23.A” represents the data flux when writing the XML file and “figure 23.B”
represents the data flux when reading the XML file):

figure 23: data-exchange. A) write data into “file.XML”, B) read data from “file.XML”.

The diagrams shown in figure 23 represent the procedures used to read and write XML
files. There is one common step in both diagrams (figure 23.A and figure 23.B), this step
is the definition of the variable “xDoc”, variable used to store the values contented in
the messages expressed as a XML files. The variable is the type of
“org.apache.xerces.dom.DocumentImpl” (check “APPENDIX III” to know more about
it), which is a class needed by the command “xmlwrite()” to create the XML file, and is
the class that the command “xmlread()” returns when it is reading the XML file.

The steps followed to write an XML file are:

1. To create the variable “xDoc” of type “org.apache.xerces.dom.DocumentImpl”.
2. To create the XML file with the variable xmlFileName.
3. To use the command “xmlwrite(xmlFileName, xDoc)” to generate the XML file.

XML file

xDoc = xxmmllrreeaadd (‘name of the File’)

Reading XML
file

xmlFileName = [‘name’ , ‘xml’]
xxmmllwwrriittee(xmlFileName , xDoc)

xDoc →jjaavvaa ccllaassss

XML file

Writing XML
file

CHAPTER 4: Data Exchange

52

The steps for reading the XML file are:

1. To use the command “xmlread(name of the XML file)” to store the XML file
inside the variable called “xDoc” of type
“org.apache.xerces.dom.DocumentImpl”.

2. To scan the variable “xDoc” and extract the information stored.

4.3 Data-exchange with the database

In the points above it has been explained the kind of communication used between the
Matlab application and the others devices connect to the network (STAR controller and
database), the protocol used and the data-flux in the functions implemented to make
possible this communication. Here the functions used to get data from the database and
to write data inside the database are exposed explaining all the code implemented step
by step.

4.3.1 Write the data in “results.XML”

The file “results.XML” is the XML file that the SOAP interface developed by the
company sends as a message to the database with the results of the simulation of the
Wastewater Treatment process. In agreement with the company the structure of the
XML file has to be the one shown in the point “4.1.2 Communication files” and below
these lines:

As it can be appreciated, there is a number of ‘n’ elements (children) called “data” that
have three sub-elements: “name”, “value” and “quality”. Each element represents one
variable with three properties, the name of the variable to know which variable is, the
value of the measurement of this variable in the wastewater treatment plant stored in the
database and the quality of this measurement.

The file “database.XML” that has to be read by the application has to follow the same
structure than the XML file “results.XML”.

<?xml version="1.0" encoding="utf-8"?>
<dataexchange>

 <data>
 <name>name(1)</name>
 <value>value(1)</value>
 <quality>quality(1)</quality>
 </data>
.
.
.
 <data>
 <name>name(k)</name>
 <value>value(k)</value>
 <quality>quality(k)</quality>
 </data>
</dataexchange><!--this is a comment-->

Josep Carrasco Martínez

53

In the following lines is explained the code implemented to write the XML file as it was
shown in the lines above in this point.

 “writeXML” code

function archivoXML=writeXML(name,value,quality,n)

This first part of the code is the one which makes reference to the step one mentioned in
“4.2 Data-flux in the communication”, to write an XML file: to create the variable
“xDoc” of type “org.apache.xerces.dom.DocumentImpl”.
The variable created is “docNode”.

 % Create a sample XML document.
 %program
 docNode = com.mathworks.xml.XMLUtils.createDocument('dataexchange');
 docRootNode = docNode.getDocumentElement;

Inside the same step, as the function does not know how many “data” children has to
create, it goes in a loop that will do as much children as long was the vector “name”
(remember that the vectors “name”, “value” and “quality” have the same size).

 for i=1:n
 dataElement = docNode.createElement(sprintf('data'));
 nameElement = docNode.createElement(sprintf('name'));
 valueElement = docNode.createElement(sprintf('value'));
 qualityElement = docNode.createElement(sprintf('quality'));

 nameElement.setTextContent(sprintf('%s',name(i,:))); %name of the

variable
 valueElement.setTextContent(sprintf('%2.2f',value(i))); %value of the

variable
 qualityElement.setTextContent(sprintf('%2.2f',quality(i))); %quality of

the variable

The first part of the loop is to create the child with the three sub-elements (the
lines above), and the last lines of the loop are to close each child once it has
been created.

 dataElement.appendChild(nameElement);
 dataElement.appendChild(valueElement);
 dataElement.appendChild(qualityElement);
 docRootNode.appendChild(dataElement);

 end

The second step is: to create the XML file with the variable xmlFileName. To do it is
defined a structure with two elements: the route where is going to be created the file and
the extension of the file (note that if it is only defined the name and not the route the
function “xmlwrite” will create the XML file in the current directory).

 % Save the sample XML document.
 xmlFileName = ['results','.xml']; %we have the file in our current

directory

CHAPTER 4: Data Exchange

54

Finally it is executed the function “xmlwrite” to create the XML file and finish with the
third step: to use the command “xmlwrite(xmlFileName, xDoc)” to generate the XML
file.

 xmlwrite(xmlFileName,docNode);

4.3.2 Read the data from “database.XML”

The function “readXML” is the one which will read the file “database.XML”, where are
stored the data that the database sends to the application. The structure of the XML file
that is going to be read has to be the same exposed before for “results.XML”.

“readXML” code

As it has been said in the point “4.2 Data-flux in the communication”, the function read
the XML file in two steps:

1. To use the command “xmlread(name of the XML file)” to store the XML file
inside the variable called “xDoc” of type
“org.apache.xerces.dom.DocumentImpl”.

2. To scan the variable “xDoc” and extract the information stored.

function [a,b,c]=readXML(data)

Definition of the auxiliary variables:

dataname=[''];
datavalue=[];
dataquality=[];

infoLabel = 'Plot Tools';
infoCbk = '';
itemFound = false;

The first step is made here (to use the command “xmlread(name of the XML file)”),
when the information stored in the XML file passes to the variable “xDoc”. The
function used to define the variable is “xmlread”, which needs one parameter; the name
of the file with the extension. Thus, the function looks for the XML file in the current
directory, if the file is in another directory the parameter included will be the name of
the file with the extension and the route: C:/program
files/application/files/database.xml, for example.

xDoc = xmlread('database.xml');

NOTE: All the functions implemented to write an XML file follow the same structure
that has been exposed above, so all the comment in this point is not going to be told
anymore along this thesis, except if it is necessary.

Josep Carrasco Martínez

55

Here starts the second step. Previous to go in the loop used to scan the class where is
stored the XML message, it is define the variable “allListItems”. This variable stores the
number of children “data” in the message that is the same as the number of variables
stored in the message.

 % Find a deep list of all list item elements.
 allListItems = xDoc.getElementsByTagName(sprintf('%s',data(1,:)));

Once it is known the number of children “data” (check the structure of the message
shown before) the loop scans the class storing all variables in a vectors to work in the
application.

 % Note that the item list index is zero-based.
 for i = 1:allListItems.getLength %it's looking for all items with

<data(i,:)>
 thisListItem = allListItems.item(i-1);
 childNode = thisListItem.getFirstChild;

With this “while” loop we ensure the function scans the child until it has read
all the sub-elements inside each child.

 while ~isempty(childNode)
 %Filter out text, comments, and processing instructions.
 if childNode.getNodeType == childNode.ELEMENT_NODE
 % Assume that each element has a single
 % org.w3c.dom.Text child.
 childText = char(childNode.getFirstChild.getData);%get the

data text

Inside each child there are three sub-elements, the “switch” is used to store the
value of each sub-element inside the vector that it has to be stored in.

 switch char(childNode.getTagName)
 case 'name';
 %itemFound = strcmp(childText, infoLabel);
 dataname(i,:)=sprintf('%s',childText);%to get the data

name
 case 'value' ;
 %infoCbk = childText;
 datavalue(i)=sscanf(childText,'%f');%to get the data

value
 case 'quality' ;
 dataquality(i)=sscanf(childText,'%f');%to get de data

quality
 end
 end % End IF
 childNode = childNode.getNextSibling;
 end % End WHILE

 if itemFound
 break;
 else
 infoCbk = '';
 end
 end % End FOR

CHAPTER 4: Data Exchange

56

Finally the three vectors got from the scanning of the XML file are stored inside the
vectors ‘a’, ‘b’ and ‘c’ that the function is going to return to the Matlab work-space.

%read value
 a=dataname;
 b=datavalue;
 c=dataquality;

4.4 Synchronization

As it has said before, the synchronization is made through the communication between
the application and the STAR controller. The controller writes the value of the variables
used for the synchronization in the file “synchro.XML”, and the application reads the
value of these variables from the XML file.

4.4.1 Read the data from “synchro.XML”

The function implemented to read the synchronization XML file (“synchro.XML”) is
“synchronizer”. The code is the same used to implemented “readXML” but with the
particularities needed to decode the message written by the controller inside
“synchro.XML”.

“synchronizer” code

As it has been said in the point “4.2 Data-flux in the communication” and mentioned
before, the function read the XML file in two steps:

1. To use the command “xmlread(name of the XML file)” to store the XML file
inside the variable called “xDoc” of type
“org.apache.xerces.dom.DocumentImpl”.

2. To scan the variable “xDoc” and extract the information stored.

function [readF writeF]=syncrhronizer

readdata=[];
writedata=[];

infoLabel = 'Plot Tools';
infoCbk = '';
itemFound = false;

FIRST STEP:

xDoc = xmlread('synchro.xml');

NOTE: there is a function implemented to write the “synchro.XML” file, but it is used
only in the initialization part of the application’s main code (see “CHAPTER 3:
Application design” point “3.4.2 Program code”). This function is used almost in the
emulator to check the synchronization code of the application. To read more about
this function check the point “II.1.1 “writeXML synchro” code” in “APPENDIX II”.

Josep Carrasco Martínez

57

SECOND STEP:

 % Find a deep list of all listitem elements.
 allListItems = xDoc.getElementsByTagName('sincro');

 % Note that the item list index is zero-based.
 for i = 1:allListItems.getLength %it's looking for all items with

<data(i,:)>
 thisListItem = allListItems.item(i-1);
 childNode = thisListItem.getFirstChild;

 while ~isempty(childNode)
 %Filter out text, comments, and processing instructions.
 if childNode.getNodeType == childNode.ELEMENT_NODE
 % Assume that each element has a single
 % org.w3c.dom.Text child.
 childText = char(childNode.getFirstChild.getData);%get the

data text

 switch char(childNode.getTagName)
 case 'read';
 readdata(i)=sscanf(childText,'%f');%to get the

readdata value
 case 'write' ;
 %infoCbk = childText;
 writedata(i)=sscanf(childText,'%f');%to get the

writedata value
 end
 end % End IF
 childNode = childNode.getNextSibling;
 end % End WHILE

 if itemFound
 break;
 else
 infoCbk = '';
 end
 end % End FOR

Finally the function stores the value of the synchronization variables into two variables
that will return to the Matlab work-space:

%read value
 readF=readdata;
 writeF=writedata;

CHAPTER 4: Data Exchange

58

59

CHAPTER 5

Modelling Batch Processes with Matlab

Along the past chapters the design and implementation of an automatic
application in Matlab work-space has been discussed. The aim of this
application is to simulate a model of the wastewater treatment plant that is
being controlled by the STAR controller. The tool package used by Matlab to
simulate processes and all kind of systems is Simulink. Therefore is needed
a model implement within Simulink.
In this chapter is exposed one possible way to implement bach processes in
Matlab, starting from one biological model implemented by the department of
“Industrial Electric Engineering and Automation (IEA)”.

CHAPTER 5: Modelling Batch Processes with Matlab

60

5.1 Introduction

In “CHAPTER 1: Introduction” was made a presentation about the aims of the thesis.
The main aim was to implement an application to simulate a model of the wastewater
treatment plant controlled by the STAR controller. So that, the main goal is to simulate
a model, it means, a model of the wastewater treatment plant is needed.

The application design in the chapters before has to be able to simulate the model
implemented. The easiest way to get it is to implement the “wastewater treatment plant
model” in Simulink, a tool of Matlab that shares the same work-space as Matlab, so
there will be no problems to the data-exchange between the model implemented and the
application.

Otherwise, to decide the application to implement the model is not the only problem.
There are a lot of solutions when a model of a wastewater treatment plant has to be
implemented; different biological processes have to be modelled, a model for settling
and clarification vessel, modelling hydraulics, and a long etc.

Here in this chapter the ASM1 model developed by a task group work in collaboration
with the International Water Association (IWA, formerly IAWQ and IAWPRC) in 1983
and published in 1987 has been chosen to model biological processes. For modelling
settling and clarification is used the traditional one-dimensional layer settler model.
Both of them have been explained in “chapter 2”, so this chapter is not going further in
this point, to read more about it check the information in “chapter 2” or the
bibliography.

Finally, the reader has to know that the model introduced in this chapter is not enough
to simulate a complete wastewater treatment plant. The purpose of the chapter is to get a
model to implement a standard block in the future, so it can be made a “wastewater
model library” including more standard blocks ready to be used by other researchers.
The block tries to include the necessary code to simulate the batch processes within a
vessel (check the chapter 2 or the bibliography to know more about the batch
processes).

5.2 Model developed

About the introduction before, it id deduced that an extended model is needed in order
to include “settling and clarification” and “biological processes” within the same model.
It means that, if ASM1 model and traditional one-dimensional layer settler model are
used, the new model developed must included both of them, with the particularity of
using it as “batch process model”, hence, this model developed will not be used in the
typical configurations designed to model wastewater treatment plants as a continuous
model with constant effluent.

Josep Carrasco Martínez

61

The starting point is to use the “traditional one-dimensional layer model” explained in
“chapter 2”. The vessel is going to be divided in ten layers.

The second step is to include the equations of the “ASM1 model” in each layer to model
the biological processes within them. So there are the general equations to model the
process of settling and clarification and there are the particulate equations of the
biological processes to model the biological processes of each layer. It means that it is
assumed that the concentration of the suspended solids and the soluble particles inside
one layer is constant and well mixed in that layer, so there are no elements with
different concentrations within the same layer.

As it was said in “chapter 2”, the ASM1 model is going to be extended to fourteenth
state variables because the TSS (total suspended solids) is included.

All the things said until now are not new. The goal is only to join two models exposed
before. But there are two particularities if we try to model batch process:

• The height now is variable, so is not a constant, it has to be included as a state
variable, the fifteenth state variable in the model of each layer.

• There is a new input to model the flux generated by the turbines in the “mixing
phase” (one phase that the batch process model has to have included, check
“chapter 2”), this flux is called Jdown_up and it has its maximum value in the
“mixing phase” and it is equal to zero when the process is in another phase.

In the lines before it has been mentioned the “mixing phase”. In “chapter 2”, when we
were talking about the batch process, the main characteristic was that this kind of model
was not a continuous model with constant effluent, it was a discrete model with
different phases. It means that the batch process model goes through several phases, to
finish all the wastewater treatment in the same vessel, there are no needed several tanks
and vessels, some of them for removing carbon or nitrogen and the others for settling
and clarification, all the biological processes are taking part in the same vessel, but each
one in a different phase.

The simplest batch process was presented in “chapter 2” and there are only four phases:
“filling phase”, “mixing phase”, “settling phase” and “draw phase”. The batch model
described in this chapter has six phases: “filling phase”, “mixing phase”, “reaction
phase”, “settling phase”, “draw phase” and “waiting phase”.

The model for all the phases is the same, but the different is the value of the inputs, so
that is one of the most important factors in the model, to decide which ones are the
model inputs. For better understanding how a batch process plant works and which ones
can be the inputs, the following figures shows the secondary treatment of one
wastewater treatment plant with three vessels, working all of them as batch processes:

CHAPTER 5: Modelling Batch Processes with Matlab

62

figure 24: Wastewater Treatment Plant with three vessels. The

diagram a) (on the left) represents the model plant, and
the diagram b) (on the right) represents the same model
plant in another phase.

The model developed would represent the biological progress of one of the tanks of the
wastewater treatment plant shown in “figure 24”. As it is evident, in one wastewater
treatment plant the input flowrate of wastewater and the output flowrate of treated water
is constant. It means that are necessary more than one tank to model the plant, and the
tanks must be synchronized to pass all of them through all the phases keeping the total
effluent of the plant constant.

Looking the diagram of the “figure 24” can be deduced some of the inputs of the model.
One input is the input flowrate, another input is the output flowrate (the controller
decides when the tank can be drawed), and the others are not evident. One is the extra
flux needed to get the tank was well mixed in the filling phase and in the mixing phase.
This flux represents the flux generated by the input flowrate in the filling phase and the
one generated by the turbines in the mixing and reaction phase. The extra flux will be
applied in both senses, up and down, so the concentration of suspended solids that is
going down in the tank is going up too and the vessel is well mixed, characteristic
common in these three first phases.
There are two inputs more in the model: the waste sludge flowrate and the constant of
the dissolved oxygen concentration’s reaction. The first one is always constant, and the
second one represents the increasing of dissolved oxygen in the biological phases
(mixing phase and reaction phase). The inputs of the model are:

• Qi: input flowrate
• Qo: output flowrate
• Jdown_up: extra flux in filling phase and the biological phases
• Qu: waste sludge flowrate
• Kla: constant of the dissolved oxygen concentration’s reaction

TANK1

TANK2

TANK3

TANK1

TANK2

TANK3

A B

Josep Carrasco Martínez

63

5.2.1 Model diagram

The batch process model implemented has six different phases: “filling phase”, “mixing
phase”, “reaction phase”, “settling phase”, “draw phase” and “waiting phase”. Each
phase represents one state of the process and it is characterised by the different values of
the inputs defined in the point before: Qi, Qo, Jdown_up, Qu, and Kla. In the figure bellow
(figure 25) is represented the main diagram of the batch process’ phases and the order of
progressing.

figure 25: Batch process model diagram

The input Qu is not represented, but this input will be constant along all the phases, so
its value is the same always. By the other side, in figure 25 is shown the evolution of the
new state variable height that depends of Qi and Qo.

It has to be said the particularity of the waiting, phase, it is not representing a reaction
step in the evolution of the process, as can be the “settling and clarification”, the
“mixing” of wastewater. This phase is an auxiliary phase programmed to make easier
the control of the different tanks in the wastewater treatment plant. It is known that the
effluent of wastewater in the treatment plant is constant (see figure 24 in the page
before), so if there is one tank asking for input flowrate, and after another one asks for
it, this second tank will have to wait until the other one has finished the filling phase.

With the output flowrate does not occurs the same because the settling phase can work
as a waiting phase too. If there is one tank in the draw phase the next one can wait in
the settling phase until the first one has finished.

Otherwise, the control has to find the best synchronization between all the tanks of the
wastewater treatment plant to try to minimize the time spent in the waiting phase.

Now is going to be explained the particularities of each phase and shown the diagram of
each one.

CHAPTER 5: Modelling Batch Processes with Matlab

64

The filling phase is the first
phase of the model, although
the programmer of the model
can chose the phase in initial
conditions. It is assumed that
the height of the layers have
the minimum value (the level
of the tank is the minimum
level of wastewater) at the
beginning of this phase.
The characteristics of the
filling phase are:

• Tank well mixed. The
value of the flux
generated by the input
flowrate (Jup = -Juown)
is bigger than the
settling flux due to the
gravity force and the
bulk flux due to the
waste sludge flowrate,
both of them are
despicable in front of
the value of Jup.

• Jup = -Jdown > 0.
• qout = 0.
• qin > 0.
• qu > 0.
• KLa = 0, there is no

reaction.
figure 26: Filling Phase

•
A

qq
dt
dh outin −= , where A is the area of the tank. The derivative of the height is

positive which means that the height of the level is increasing. This is the main
characteristic of the filling phase.

The two main characteristics of the filling phase are that the tank is well mixed and that
the value of the derivative of the height is not zero.

This phase is active until the height reaches its maximum value, then it starts the
following phase and the filling phase is finished.

Josep Carrasco Martínez

65

The mixing phase is the next
phase after the filling phase.
There is no more input flowrate
and the level of the wastewater is
the maximum (maximum height).
The principal characteristics are:

• Tank well mixed. The
value of the flux
generated by the input
flowrate (Jup = -Juown) is
bigger than the settling
flux due to the gravity
force and the bulk flux
due to the waste sludge
flowrate, both of them are
despicable in front of the
value of Jup.

• Jup = -Jdown > 0.
• qout = 0.
• qin = 0.
• qu > 0.
• KLa = 0, there is no

reaction.

• 0=
dt
dh , the derivative of

the height is null because
there is no input and
output flowrate, and it is
right because the height
has a constant value.

figure 27: Mixing Phase

The main characteristic of the mixing phase is that the tank is well mixed, as the name
of the phase stands up. There is an external flux that makes practically despicable the
settling flux and the flux due to the waste sludge flowrate.

When the tank is in this phase is equivalent to an anoxic tank where the biological
process called nitrification is taking part by the autotrophs microorganisms (see chapter
2: Wastewater Treatment Processes, point “2.1 Process description”).

The next phase after the mixing phase is the reaction phase, explained in the following
page.

CHAPTER 5: Modelling Batch Processes with Matlab

66

The main characteristics in the
reaction phase are:

• Tank well mixed. The
value of the flux
generated by the input
flowrate (Jup = -Juown) is
bigger than the settling
flux due to the gravity
force and the bulk flux
due to the waste sludge
flowrate, both of them are
despicable in front of the
value of Jup.

• Jup = -Jdown > 0.
• qout = 0.
• qin = 0.
• qu > 0.
• KLa > 0, there is reaction.

• 0=
dt
dh , the derivative of

the height is null because
there is no input and
output flowrate, and it is
right because the height
has a constant value.

The value of the KLa is the only
difference between the mixing
phase and the reaction phase.

figure 28: Reaction Phase

The reaction phase is equivalent to the aerobic tank in modelling continuous
wastewater treatments (see chapter 2: Wastewater Treatment Processes, point “2.1
Process description”).

The main characteristics of this phase are that the tank is well mixed and that there is an
increment of the concentration of dissolved oxygen because of the tank is now aerated.
In this phase is taking part the denitrification by the heterotrophs microorganisms
principally.

Josep Carrasco Martínez

67

Once the reaction phase has taken part, the
process goes in the settling phase. This is
the first phase where the vessel is not well
mixed. In this phase takes part the settling
of solid particles in the down layer of the
settler, because now the tank is working as
a settler. Although there are taking part
biological processes, the principal process
is settling and clarification.

The main characteristics of this phase are:

• The tank is not well mixed. The
value of the flux generated by the
input flowrate (Jup = Juown= 0) is
zero and there are only the settling
flux and the flux due to the waste
sludge flowrate.

• Jup = Jdown = 0.
• qout = 0.
• qin = 0.
• qu > 0.
• KLa = 0, there is no reaction.

• 0=
dt
dh , the derivative of the height

is null because there is no input and
output flowrate, and it is right
because the height has a constant
value.

f
figure 29: Settling Phase

As it has been said, the main characteristic of this phase is the settling and clarification.
Now the flux present in the three first phases is not present, so the settling flux and the
flux due to the waste settling flowrate are the responsible of the settling of the solid
particles in the down layer on the button of the vessel.

This phase is the last treatment of the wastewater in the “secondary treatment” (see
chapter 2: Wastewater Treatment Processes, point “2.1 Process description”). The
wastewater will go out from the vessel to trespass the tertiary treatment.

CHAPTER 5: Modelling Batch Processes with Matlab

68

This phase is certainly the real last phase of
the process. The clarified wastewater goes out
of the vessel, the level of the wastewater in
the vessel decreases and almost all the solid
bulks rest on the button layer of the vessel.
After the past phases there are no solid
particles in the up layers of the vessel.

The main characteristics of the draw phase
are:

• The tank is not well mixed. The value
of the flux generated by the input
flowrate (Jup = Juown= 0) is zero and
there are only the settling flux and the
flux due to the waste sludge flowrate.

• Jup = Jdown = 0.
• qout > 0, is the main characteristic,

now there is output flow rate.
• qin = 0.
• qu > 0.
• KLa = 0, there is no reaction.

•
A

qq
dt
dh outin −= , where A is the area of

the tank. The derivative of the height
is negative which means that the
height of the level is decreasing. This
is the main characteristic of the draw
phase.

figure 30: Draw Phase

This phase is practically like the settling phase, the only particularity is the variation of
the height in the level of the wastewater.

The draw phase could be the last one, but there is one problem that has been exposed
before. When the draw phase has reached the end (the height has the minimum value it
can have) the process has to start again from the first phase, the filling phase. It means
that it is necessary input flowrate. The input flowrate in one wastewater treatment plant
is assumed is constant, so if there is another tank in the filling phase, another one can
not goes from the draw phase to the filling phase because there is no input flowrate for
both tanks. But the process can not be in the draw phase until there is input flowrate,
because there is a minimum value for the height ‘h’ of the level in the vessel. So, it is
need a last phase to avoid this problematic situation. This phase is called waiting phase.

Josep Carrasco Martínez

69

The waiting phase is the last phase of the
process modelled. This phase is a
transition phase from the draw phase to the
filling phase. The main characteristics of
the phase are the same as the ones in the
settling phase, but here the height of the
wastewater level has the minimum value.
The characteristics are:

• The tank is not well mixed. The
value of the flux generated by the
input flowrate (Jup = Juown= 0) is
zero and there are only the settling
flux and the flux due to the waste
sludge flowrate.

• Jup = Jdown = 0.
• qout = 0.
• qin = 0.
• qu > 0.
• KLa = 0, there is no reaction.

• 0=
dt
dh , the derivative of the height

is null because there is no input and
output flowrate, and it is right
because the height has a constant
value.

The inputs have exactly the same value as
in the settling phase.

figure 31: Waiting Phase

After analysing all the phases, there are some things that must be stood up. The waste
sludge flowrate (qu) is always active in all phases and thereby the flux generated by it.
The gravity force is always present too; it is which generate the settling flux. By the
other side, there are three phases where the vessel is well mixed, the three first phases:
filling phase, mixing phase and reaction phase. And in the last three phases the vessel is
not well mixed, there is more concentration of solid particles in the button of the vessel.

Rather there is one data is not clear when the phases are explained. How takes part the
transition between two phases. It is clear that the transition between the filling phase
and the mixing phase is the value of the height, and between the draw phase and the
waiting phase is the height too. And between the waiting phase and the filling phase is
clear too, when the controller can give to the vessel input flowrate. But the other three
transitions are not clear. To do these transitions they can be suitable more than one
condition. For example it is possible to measure in the real plants where it is apply the
batch process the time of each phase. Another condition is to choose a limit value of the
critical concentration of solid particles in each phase (ammonium in the mixing phase,

CHAPTER 5: Modelling Batch Processes with Matlab

70

nitrate in the reaction phase, “total suspended solids” in the settling phase, for
example).

5.2.2 Model equations

The characteristics and differences of the phases have been explained in the point
before, but, how to express it as logic equations, this is the step that has to be resolved
once it is clear the model is going to be applied.

The starting point is the traditional one-dimensional layer settler model, with the
ASM1 model included in each layer to model the biological reactions and the settling
and clarification process in the same mathematical model. This model was implemented
by Ulf Jeppsson (Industrial Electrical Engineering and Automation –IEA-, LTH,
Sweden) and Krist V. Gernaey (CAPEC, Dept. of Chemical Engineering, DTU,
Denmark) previously, so here is not going to be designed the model from the beginning.
The existing model has been used to get the batch process equations. There have been
introduced some modifications in the equations of the current model.

In the lines bellow are shown the modified equations in the model, but is not presented
the whole model that was developed before by Ulf Jeppsson and Krist V. Gernaey.
Otherwise (the equations are the ones explained in chapter 2, point 2.3 Modelling of
wastewater treatment processes), the reader can see the whole model if he checks the
code implementation in the point after (5.3 Implementation of the model). The equations
modified are:

STATE VARIABLE height:

area
qq

dt
dh outin −=

VELOCITY OF THE BULK MOVEMENT:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=>
−

=>
−

==−

=

00

00

00

inout
uout

outin
uin

outindown

up

qandqif
area

qq

qandqif
area

qq
qandqifv

v , where
area
q

v u
down =

DISSOLVED OXYGEN CONCENTRATION:

Equation for the layers up to the feed layer:

()
i

i

i

i

i

i

i

i

i

i

i

i
OOsatL

AB
OAO

O

NHNH

NH
A

A

A

HB
OHO

O

SS

S
H

h

H

upupO SSaK

X
SK

S
SK

S
Y

Y

X
SK

S
SK

S
Y

Y

h
bvav

dt
dS

−+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
−

−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
−

+
+−

=

,
,

^

,
,

^

57,4

1

μ

μ

Josep Carrasco Martínez

71

Equation for the layers down to the feed layer:

()
i

i

i

i

i

i

i

i

i

i

i

iii

OOsatL

AB
OAO

O

NHNH

NH
A

A

A

HB
OHO

O

SS

S
H

h

H

OdownOdownO SSaK

X
SK

S
SK

S
Y

Y

X
SK

S
SK

S
Y

Y

h
SvSv

dt
dS

−+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
−

−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
−

+
−

= −

,
,

^

,
,

^

57,4

1

1

μ

μ

Equation for the feed layer:

()
i

i

i

i

i

i

i

i

i

i

i

ii

OOsatL

AB
OAO

O

NHNH

NH
A

A

A

HB
OHO

O

SS

S
H

h

H

OdownupOininO SSaK

X
SK

S
SK

S
Y

Y

X
SK

S
SK

S
Y

Y

h
SvavSv

dt
dS

−+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
−

−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
−

+
−−

=

,
,

^

,
,

^

57,4

1

μ

μ

⎩
⎨
⎧

−=
=

− downupO

O

vvifS
othersifS

awhere
i

i

1

⎩
⎨
⎧

−=
= +

downupO

O

vvifS
othersifS

band
i

i 1

, and ‘i’ indicates the layer.

SUSPENDED SOLID CONCENTRATION:

This equation is the same for all suspended solids.

Equation for the layers up to the feed layer:

() updown
i

iflow

i

i
settler

i

i
updownsettlerflow

i

ii J
TSS
X

h
J

TSS
X

J
TSS
X

JJJ
TSS
X

dt
dX i

iii _
1

1

1

11
_

+

+

+

+− +++−−−=

Equation for the layers down to the feed layer:

() updown
i

isettlerflow

i

i
updownsettlerflow

i

ii J
TSS
X

h
JJ

TSS
X

JJJ
TSS
X

dt
dX ii

ii _
1

1

1

1
_

−

−

+

+ +
+

+−−−=

Equation for the feed layer:

() updown
i

iIin
insettler

i

i
updownsettlerflowflow

i

ii J
TSS
X

h
X

vJ
TSS
X

JJJJ
TSS
X

dt
dX

iiii _
1

1

1

1
_1

−

−

−

− +++−−−−=
+

, where X represents the solid particles concentration of XI, XS, XB,H, XB,A, XP or XND,
and ‘i’ represents the layer. The fluxes are:

o Jdown_up = constant
o ientationsesettler TSSvJ

idim=

o
⎩
⎨
⎧ >><

=
− othersifTSSv

qorqandmiifTSSv
J

idown

outiniup
flowi

1

)00(
, where ‘m’ is the

feed layer.

CHAPTER 5: Modelling Batch Processes with Matlab

72

To know more about the meaning of each parameter in the equations check it in chapter
2, point 2.3 Modelling of wastewater treatment processes, or see the bibliography
(recommended Ulf Jeppsson’s book [2] in the bibliography, in pages 372 and 373 is
written the ASM1 model with all the parameters). About the fluxes and the settling
equations check Ulf Jeppsson’s book [2] too.

5.3 Implementation of the model

In chapter 3 was described the application designed and the background of the
simulation. For the simulation of the model is run Simulink, the simulation tool of
Matlab.

To program the equations of the model is used the object S-function. Is a Simulink
object which let to program with C code or with Matlab code (m-function) a model and
include it as a block in the Simulink workspace, so it is possible to use the tools of
Simulink to define the value of the inputs and the representation of the outputs, the
feedback of the model process.

The S-function chosen is the one which let to program the model as a C file and to
include it in Simulink workspace.

ABOUT THE “S-function”:

We can find the S-
function in the
“Simulink Library
Brower”, as the
figure 32 shows.

We select the object
S-function and drag
it to the workspace
of the Simulink file
where is going to be
implemented the
model.

figure 32: S-function
in Simulink Library
Browser.

Josep Carrasco Martínez

73

Once the block of the S-function is in the Simulink workspace, the only thing it is
necessary to do is to press click twice selecting the block S-Function, and the window to
define the S-function Block Parameters will open. See figure 33 bellow.

figure 32: defining the

S-function.

There are three fields to fill up: “S-function name”, “S-function parameters” and “S-
function modules”. The only two necessary fields are the “S-function name” and the “S-
function parameters”. In the first one it has to be written the name of the c-file where it
is implemented the code of the S-function. The program locks for a file with the
extension .C, so it is not necessary to indicate the extension of the file. In the second
field they are written the input parameters used to define the value of the coefficients in
the equations. These parameters have to be define within the c-code before the functions
definition, in the field of the include libraries.

In the following lines is presented the functions that Matlab define to implement the
code of the S-function. It is recommended to use only these defined functions, because
Simulink can have problems with the simulation if we try to define another functions
different to the usual functions that the application can recognise.

The first part is the include libraries, where it is indicated the name of the c-file, the
include libraries and the constants define in Matlab workspace that the S-function is
going to use to define variables:

#define S_FUNCTION_NAME name_of_the_c-file

#include "simstruc.h"
#include <math.h>

#define NAME_OF_THE_PARAMETER ssGetArg(S,0)

CHAPTER 5: Modelling Batch Processes with Matlab

74

The second part is the function where it is defined the size of the input vector, output
vector, the number of state variables continuous and discontinuous and another
important parameters. If we don’t write anything the value is zero:

/*
 * mdlInitializeSizes - initialize the sizes array
 */
static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumContStates(S, 0); /*13 number of continuous states */
 ssSetNumDiscStates(S, 0); /* number of discrete states */
 ssSetNumInputs(S, 0); /* number of inputs */
 ssSetNumOutputs(S, 0); /* number of outputs */
 ssSetDirectFeedThrough(S, 0);/* direct feedthrough flag */
 ssSetNumSampleTimes(S, 0); /* number of sample times */
 ssSetNumSFcnParams(S, 0); /* number of input arguments */
 ssSetNumRWork(S, 0); /* number of real work vector elements */
 ssSetNumIWork(S, 0); /* number of integer work vector elements*/
 ssSetNumPWork(S, 0); /* number of pointer work vector elements*/
}

The following function is used to define the sample time needed to simulate the model
defined. Here is defined if the function is continuous or the period of simulation if the
model is a discontinuous model.

/*
 * mdlInitializeSampleTimes - initialize the sample times array
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}

In this function are defined the value of the initial conditions of the state variables of the
model:

/*
 * mdlInitializeConditions - initialize the states
 */
static void mdlInitializeConditions(double *x0, SimStruct *S)
{
}

In the mdlOutputs function are defined the value of the outputs of the model:

/*
 * mdlOutputs - compute the outputs
 */

static void mdlOutputs(double *y, double *x, double *u, SimStruct *S, int tid)
{
}

Josep Carrasco Martínez

75

This is the last function, where the model and the derivative functions are implemented.
Here are defined all the auxiliary variables and the equations of the model:

/*
 * mdlDerivatives - compute the derivatives
 */
static void mdlDerivatives(double *dx, double *x, double *u, SimStruct *S, int

tid)
{
}

This part of the chapter is an introduction of the S-functions, they are not explained all
the functions that can be implemented in the S-function and all their features. If the
reader is interested in going further with the S-function definitions and uses he can
check the bibliography.

5.3.1 S-function programmed

To implement the S-function it has been used the code programmed by Ulf Jeppsson
and Krist V. Gernaey, following the same structure and utilising the equations
implemented by them. Hence, in this point it is not going to be explained all the
structure and parameters of the S-function programmed, it is only stood up the
modifications made to the original file. Thereby it is possible to see the all code of the
function checking the “APPENDIX IV”.

In the following lines is explained the code implemented to write the modified
equations described in “5.2.2 Model equations” in the current chapter.

The first thing is to define the parameters that are needed by the equations. These
parameters are declared as a constants join to the declaration of the libraries used by the
program. How to declare the parameters is shown bellow:

#define XINIT ssGetArg(S,0) /* initial values */
#define SEDPAR ssGetArg(S,1) /* parameters sedimentation model */
#define DIM ssGetArg(S,2) /* dimensions clarifier */
#define LAYER ssGetArg(S,3) /* Number of layers */
#define ASMPAR ssGetArg(S,4) /* parameters activated sludge model */
#define SOSAT ssGetArg(S,5)

After declaring all the libraries and parameters, the next step is to implement the
functions. The first function in the S-function is the mdlInitializeSizes function. This
function is only to indicate to the compiler the number of inputs, outputs, state
variables, parameters, etc. The mdlInitializeSizes function implemented is:

static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumContStates(S, 141); /* number of continuous states, ASM1

components + TSS for each settler layer + total height for the
vessel*/

 ssSetNumDiscStates(S, 0); /* number of discrete states */
 ssSetNumInputs(S, 19); /* number of inputs, 13 ASM1 components + TSS

+ influent flow rate + Kla + J_down_up +
Q_output+ Q_u waste sludge flowrate */

 ssSetNumOutputs(S, 144); /* number of outputs: 141 states 13 ASM1
components + height + TSS for each layer)+
Q_e + Q_out + Q_u*/

CHAPTER 5: Modelling Batch Processes with Matlab

76

 ssSetDirectFeedThrough(S, 1); /* direct feedthrough flag */
 ssSetNumSampleTimes(S, 1); /* number of sample times */
 ssSetNumSFcnParams(S, 6); /* number of input arguments */
 ssSetNumRWork(S, 0); /* number of real work vector elements */
 ssSetNumIWork(S, 0); /* number of integer work vector elements*/
 ssSetNumPWork(S, 0); /* number of pointer work vector elements*/
}

The functions between mdlInitializeSizes function and mdlOutputs function are not
modified, so the next function implemented is mdlOutputs function. Within this
function is defined the value of all the outputs. The 141 state variables are defined as an
outputs to can measure and represent the evolution of the state variables of the model.
The other outputs are the effluent flowrate (Q_e), the waste sludge flowrate (Q_u) and
the output flowrate (Q_o).

static void mdlOutputs(double *y, double *x, double *u,

SimStruct *S, int tid)
{
int i;
int j;
 /* Clarifier state variables */
 for (i=0;i<10;i++){
 for (j=0;j<14;j++){
 y[(i*14)+j]=x[i+j*10]; //we have written 14 because now we have 15

states variables per each layer
 } //the order of outputs is from 1 to 14 layer

1, from 15 to 28 layer 2, etc
 } //the inputs is, from 1 to 10 the SI of all

layers, from 11 to 20 the Ss of all
layers, etc

 y[140] = x[140];

 /* Flow rates out of the vessel */
 if ((u[14]>0)&&(u[17]==0)){
 y[141]=u[14]-u[18]; /* Q_e */
 }
 if ((u[14]==0)&&(u[17]>0)){
 y[141]=u[17]-u[18]; /* Q_e */
 }
 else y[141]=0;

 y[142]=u[18]; /* Q_u */
 y[143]=u[17]; /* Q_out */
 }

The more complex function that has to be defined is the mdlDerivatives function.
Within it is where is defined the model of the wastewater treatment plant. The
implementation made is longer than the lines shown bellow, but here are shown the
main changes made in the original S-function to program the batch process model
(check the appendix IV to see the full code)

static void mdlDerivatives(double *dx, double *x, double *u,

SimStruct *S, int tid)

Josep Carrasco Martínez

77

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=>
−

=>
−

==−

=

00

00

00

inout
uout

outin
uin

outindown

up

qandqif
area

qq

qandqif
area

qq
qandqifv

v

The implementation of the equation of the velocity up vup, which have the solid particles
presents up to the feed layer, shown in the point 5.2.2 Model equations, in the current
chapter, is shown bellow:

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%% NEW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
// Equaction of effluent
 if ((u[14]>0)&&(u[17]==0)){
 Q_e = u[14]-Q_u; /* Q_e */
 }
 if ((u[14]==0)&&(u[17]>0)){
 Q_e = u[17]-Q_u; /* Q_e */
 }
 else Q_e = 0;

// Equation of the velocity up
 if ((u[14]>0)||(u[17]>0)){
 v_up = Q_e/area;
 }
 else v_up = -v_dn;

// The flux for filling, mixing and reaction phase,
// where the wastewater is well mixed
J_d_u = u[16];
/* %% */

The line “J_d_u = u[16];” is the declaration of the flux generated in filling phase,
mixing phase and reaction phase to get that the vessel was well mixed.

The following representative change is the code programmed to implement the sludge
flux due to the liquid flow:

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%% NEW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* calculation of the sludge flux due to the liquid flow (upflow or downflow,
depending on layer) */
for (i = 0; i < 11; i++) {
 //bulk movement up to the feed layer
 if (i < (feedlayer-eps)){
 if ((u[14]>0)||(u[17]>0)){
 Jflow[i] = v_up*xtemp[i+130];
 }
 else{
 Jflow[i] = v_dn*xtemp[i-1+130];
 }
 }
 //bulk movement down to the feed layer and in the feed layer
 else
 Jflow[i] = v_dn*xtemp[i-1+130];
}
/* %% */

⎩
⎨
⎧ >><

=
− othersifTSSv

qorqandmiifTSSv
J

idown

outiniup
flowi

1

)00(

CHAPTER 5: Modelling Batch Processes with Matlab

78

The first state variable defined is the state variable height, the main characteristic of this
model. Now the height of the vessel is not a constant as in the models before. As it is
assumed all the layers have the same height, first is define the state variable of the total
height of the vessel, and after it is divided by the number of layers in the model:

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%% NEW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* height of the tank: H*/

 dx[140] = (u[14]-u[17])/area; /*the heigth of the vessel*/
 h = x[140]/n; /*the heigth of each layer*/

/* %% */

The other significant change in the state variables has been to include the flux needed to
get the vessel was well mixed (J_d_u) within the equations of the particulate
components: XI, XS, XB,H, XB,A, XP and XND. The changes made are stood up in black
letters:

/* particulate component X_I */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+20]/xtemp[i+1+130])*Jflow[i+1])/h +
(xtemp[i+1+20]/xtemp[i+1+130])*J_d_u + reac3[i];

 else if (i > (feedlayer-eps))
 dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h +
(xtemp[i-1+20]/xtemp[i-1+130])*J_d_u + reac3[i];

 else
 dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-1+130])*Js[i]+v_in*u[2])/h +
(xtemp[i-1+20]/xtemp[i-1+130])*J_d_u + reac3[i];

}

The last equation modified is the equation of the state variable dissolved oxygen “SO”.
Has been included the reaction rate (KLa*(SO_sat-xtemp[i+70])) of the oxygen to
model the reaction phase. The second change is to add the variables a and b within the
equations. It is necessary because of the different values of the velocity up vup, which
depends of qeffluent (Q_e).

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%% NEW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* soluble component S_O */

KLa = u[15];

for (i = 0; i < 10; i++) {
 if(v_up==-v_dn){
 a = xtemp[i-1+70];
 b = xtemp[i+70];
 }
 else{
 a = xtemp[i+70];
 b = xtemp[i+1+70];
 }

 if (i < (feedlayer-1-eps))
 dx[i+70] = (-v_up*a +v_up*b)/h +reac8[i] + KLa*(SO_sat-xtemp[i+70]);

//we have added rSO (Kla!=0)

⎩
⎨
⎧

−=
=

− downupO

O

vvifS
othersifS

a
i

i

1

⎩
⎨
⎧

−=
= +

downupO

O

vvifS
othersifS

b
i

i 1

Josep Carrasco Martínez

79

 else if (i > (feedlayer-eps))
 dx[i+70] = (v_dn*xtemp[i-1+70] -v_dn*xtemp[i+70])/h +reac8[i] +

KLa*(SO_sat-xtemp[i+70]); //we have added rSO (Kla!=0)
 else
 dx[i+70] = ((v_in*u[7] -v_up*a -v_dn*xtemp[i+70])/h +reac8[i]) +

KLa*(SO_sat-xtemp[i+70]); //we have added rSO (Kla!=0)
}
/* %% */

5.4 Comments

In the points before a batch process model has been implemented. The S-function has
been programmed to model the six phases of the batch process model. The inputs that
control if the model is in one or another phase are:

• Qi: input flowrate
• Qo: output flowrate
• Jdown_up: extra flux in filling phase and the biological phases
• Qu: waste sludge flowrate
• Kla: constant of the dissolved oxygen concentration’s reaction

Now, only rests to implement a control as it shows the figure 33:

figure 33: batch process control

Matlab offers a lot of possibilities to implement the control in Simulink or even in
Matlab workspace as an “m function”.

The aim of this chapter was to model batch process model, the controller is not part of
it, so the chapter is not going further in this topic.

CHAPTER 5: Modelling Batch Processes with Matlab

80

81

PART III

TITLE: Appendixes
(Included Papers)

82

83

APPENDIX I

Appendixes to CHAPTER 2 (Wastewater Treatment Processes)

In this chapter there is more information about Wastewater Treatment
Processes, in order to extend the one given in “Chapter 2” before, for these
ones who want to know more about it.
But if it is needed more knowledge and to go further from this introduction to
wastewater treatment process, there is the possibility of checking the
bibliography.

APPENDIXES (included papers)

84

I.1 Appendixes for MODELLING WASTEWATER TREATMENT

PROCESSES

The first thing it is pertinent to know is how to read the tabular form in which activates
sludge stoichiometry and kinetics are conventionally presented.
The kind of the tabular form is presented below:

COMPONENTS PROCESS
State var. 1 State var. 2 … State var. n

KINETICS

Process 1 Value 1,1 Value 1,2 … Value 1,n Kinetic 1
Process 2 Value 2,1 Value 2,2 … Value 2,n Kinetic 2
… … … … … …
Process k Value k,1 Value k,2 … Value k,n Kinetic k

, where, for instance, the reaction rate of the “state variable 2” is:

...)2(*)2,2()1(*)2,1(2 ++= kineticvaluekineticvaluetereactionra
)(*)2,(kkinetickvalue+

I.1.1 Tabular form for “simple biological kinetics”

COMPONENTS PROCESS
Nutrient N Biomass B

KINETICS

Aerobic
heterotrophic
growth BY

1
− 1 B

NN

N X
SK

S
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∧

μ

I.1.2 Tabular form for “simple biological kinetics” and “carbon removal

kinetics”

COMPONENTS PROCESS
Nutrient Oxygen Biomass

KINETICS

Aerobic
heterotrophic
growth HY

1
−

H

H

Y
Y 1−

 1 H
OOH

O

SS

S
H X

SK
S

SK
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

μ

Decay of
heterotrophs 1 - fP -1 bHXH

Josep Carrasco Martínez

85

I.1.3 Tabular form for “simple biological kinetics”, “carbon removal

kinetics” and “nitrogen removal kinetics”

COMPONENTS PROCESS
Carbo
n

Oxygen Ammonium Nitrate Heterotroph
s biomass

Autotroph
s biomass

Aerobic
heterotrophi
c growth HY

1
−

H

H

Y
Y 1−

 -iXB 1

Anoxic
heterotrophi
c growth

HY
1

− -iXB H

H

Y
Y

86,2
1−

1

Aerobic
autotrophic
growth A

A

Y
Y 57,4−

-iXB

AY
1

−
AY

1 1

Decay of
heterotrophs Pf−1 XPPXB ifi −

 -1

Decay of
autotrophs Pf−1 XPPXB ifi −

 -1

PROCESS KINETICS

Aerobic
heterotrophic
growth

H
OOH

O

SS

S
H X

SK
S

SK
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

μ

Anoxic
heterotrophic
growth

Hg
NONO

NO

OOH

OH

SS

S
H X

SK
S

SK
K

SK
S

ημ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

Aerobic
autotrophic
growth

A
OOA

O

NHNH

NH
A X

SK
S

SK
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

μ

Decay of
heterotrophs bHXH
Decay of
autotrophs bAXA

APPENDIXES (included papers)

86

I.1.4 Tabular form for “phosphorus removal kinetics”

COMPONENTS PROCESS
SF SA SO2 SPO4 XPHA XPP XPAO

Fermentation -1 1
P Release -1 YPO4 1 - YPO4
P Uptake - YPHA -1 - YPHA 1

PAO Growth 1
HY
1

− -iPBM
HY
1

− 1

PHA
Breakdown 1 -1

PP
Breakdown 1 -1

PAO
Breakdown νP -1

PROCESS KINETICS

Fermentation H
FFE

F

NONO

NO

OO

O
FE X

SK
S

SK
K

SK
K

q ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ 33

3

22

2

P Release PAO
PAOPPPP

PAOPP

AA

A
PHA X

XXK
XX

SK
S

q ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ /

/

2

P Uptake () PAO
PAOPPMAXIPP

PAOPPMAX

PAOPHAPHA

PAOPHA

POP

PO

OO

O
PP X

XXKK
XXK

XXK
XX

SK
S

SK
S

q ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ /

/
/

/

4

4

22

2

PAO Growth () PAO
PAOPHAPHA

PAOPHA

NHNH

NH

POP

PO

OO

O
PAO X

XXK
XX

SK
S

SK
S

SK
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∧

/
/

4

4

22

2μ

PHA
Breakdown bPHAXPHA
PP
Breakdown bPPXPP
PAO
Breakdown bPAOXPAO

87

APPENDIX II

Appendixes to CHAPTER 3 (Application Design)

In this chapter there is more information about the application designed with
Matlab; the code and the ‘.exe’ application.
There is nothing about the synchronization, data exchange and model
design, these parts are described in chapters 4 and 5 and the appendixes of
those chapters.

APPENDIXES (included papers)

88

This appendix tries to complete the information given in “chapter 3” about the
implementation of the application. But first it is necessary to do a brief explanation
about the communication between the application and the controller, part which is
explained in detail in “chapter 3”.

The way chosen to communicate the controller and the application through Ethernet is
writing and reading “XML” files, so to store the value of all the variables that the
controller has to update (control variables, synchronization variables, data read from the
database and the results from the simulation) it is needed an “XML” file. It means that
all the functions implemented to change or to read the values of the control variables
and of the synchronization variables, they only have to be able to write or to read an
“XML” file. About how to get this with Matlab is explained in “chapter 4”.

Another reason for storing the variables that they are changing during the application
running in “XML” files is that Matlab is not able to change the value of the variables in
the work-space directly when it is executing a loop. It only can change the values of the
variables of the work-space inside the loop, or with a function which reads the value of
these variables from a file, where the values are stored. So, when the application is
executing the “main loop”, to make possible that it reads the changes that the controller
or the other buttons out of the “main loop” make to the control and synchronization
variables, they have to change the values writing the file where they are stored, so when
the reading functions inside the “main loop” reads the file the changes made have effect.

II.1 STAR emulator to check the synchronization code

The user interface designed for the application has two buttons to check the
synchronization phases. An image about the user interface is shown below:

figure 34: User Interface

The buttons “READ FROM DATABASE” and “WRITE IN DATABASE” use the
function implemented to emulate the controller only in the synchronization phases.
These buttons execute the function “writeXML_synchro (variables)”, where “variables”
is a vector with two components. This function writes the value introduced (variables)
in the file “XML” that stores the value of the synchronization variables.

Josep Carrasco Martínez

89

II.1.1 “writeXML_synchro” code

The function “writeXML_synchro” uses the “xmlwrite” command to write an XML file
where stores the value of the two synchronization variables. This function works like
the function “writeXML” uses to write in the database the results of the simulation. The
function makes the XML file in three steps:

• to create a “java object”
• to create an XML file
• to write the “java object” which contains the variables and the values in the

XML file with the function “xmlwrite”

function archivoXML=writeXML_synchro(valueP)

 % Create a sample XML document.

 docNode = com.mathworks.xml.XMLUtils.createDocument('synchronize');
 docRootNode = docNode.getDocumentElement;
 %docRootNode.setAttribute('attribute','attribute_value');
 dataElement = docNode.createElement(sprintf('sincro'));
 nameElement = docNode.createElement(sprintf('read'));
 valueElement = docNode.createElement(sprintf('write'));

 nameElement.setTextContent(sprintf('%f',valueP(1))); %name of the

variable
 valueElement.setTextContent(sprintf('%f',valueP(2))); %value of the

variable
 dataElement.appendChild(nameElement);
 dataElement.appendChild(valueElement);
 docRootNode.appendChild(dataElement);

 % Save the sample XML document.
 xmlFileName = ['synchro','.xml']; %we have the file in our current

directory
 xmlwrite(xmlFileName,docNode);

How to create the “java object” to write an XML file or read an XML file is explained
in “chapter 4”, which is about the data-exchange and the synchronization files.

II.2 Control functions

In the implementation of the program there have been defined two control variables:
“aux_loop” and “aux_sim”. The value of these variables is stored in the file
“controlFILE.xml” and the meaning of each variable is:

• aux_loop: control variable for the “main loop”, so if “aux_loop≠1” the
condition to keep running the program is not complained and the program goes
out of the “main loop”.

• aux_sim: control variable to stop the simulation of the plant process. The
difference between “aux_sim” and “aux_loop” is that “aux_sim” doesn’t stop
the “main loop”.

APPENDIXES (included papers)

90

With these variables the controller can stop the simulation if it is not necessary in some
period, but also it can stop the application if there is no needed more data. Nevertheless,
don’t forget once the application goes out of the main loop it is not possible to start it
again from the controller.

II.2.1 “controlloop” code

As the function described in the point 7.1.1 “writeXML_synchro” code, “controlloop”
has the same structure, the only difference is that the two variables stored inside are the
control variables and not the synchronization variables as before.
This function is used once in the initialization part (check chapter 3 last point 3.4.2
programme code) to write the initial values of the control variables. After that, only the
controller will be the one which changes the values of the control variables. The code is
presented below:

function archivoXML=controlloop(control)

 % Create a sample XML document.
 %program
 docNode = com.mathworks.xml.XMLUtils.createDocument('control');
 docRootNode = docNode.getDocumentElement;
 %docRootNode.setAttribute('attribute','attribute_value');
% for i=1:n
 dataElement = docNode.createElement(sprintf('data'));
 loopElement = docNode.createElement(sprintf('loop'));
 simElement = docNode.createElement(sprintf('simulation'));

 loopElement.setTextContent(sprintf('%f',control(1))); %name of the

variable
 simElement.setTextContent(sprintf('%f',control(2))); %value of the

variable

 dataElement.appendChild(loopElement);
 dataElement.appendChild(simElement);
 docRootNode.appendChild(dataElement);

 % Save the sample XML document.
 xmlFileName = ['controlFILE','.xml']; %we have the file in our current

directory
 xmlwrite(xmlFileName,docNode);

II.2.2 “control_check” code

As well as the function presented in the point 7.2.1 “controlloop” code is a function
which writes an XML file, “control_check” read the values of the control variables
stored in the XML file “controlFILE”. The Maltlab command used to read the XML file
is “xmlread”. This function is divided in three steps:

• First it reads the XML file with the function “xmlread”, that stores the XML file
in a java object.

• After it scans the java object to find the items with the name “data”. The item
data has two children; “loop” is the child which has the value of the control
variable “aux_loop” and “simulation” is the child which has the value of the
control variable “aux_sim”.

• At last, the function stores the values in the variables that returns to the Matlab
work-space.

Josep Carrasco Martínez

91

function [loop sim]=control_check

loopdata=[];
simdata=[];

infoLabel = 'Plot Tools';
infoCbk = '';
itemFound = false;

xDoc = xmlread('controlFILE.xml');

 % Find a deep list of all listitem elements.
 allListItems = xDoc.getElementsByTagName('data');

 % Note that the item list index is zero-based.
 for i = 1:allListItems.getLength %it's looking for all items with

<data(i,:)>
 thisListItem = allListItems.item(i-1);
 childNode = thisListItem.getFirstChild;

 while ~isempty(childNode)
 %Filter out text, comments, and processing instructions.
 if childNode.getNodeType == childNode.ELEMENT_NODE
 % Assume that each element has a single
 % org.w3c.dom.Text child.
 childText = char(childNode.getFirstChild.getData);%get the

data text

 switch char(childNode.getTagName)
 case 'loop';
 %itemFound = strcmp(childText, infoLabel);
 loopdata(i)=sscanf(childText,'%f');%to get the

readdata value
 case 'simulation' ;
 %infoCbk = childText;
 simdata(i)=sscanf(childText,'%f');%to get the

writedata value
 end
 end % End IF
 childNode = childNode.getNextSibling;
 end % End WHILE

 if itemFound
 break;
 else
 infoCbk = '';
 end
 end % End FOR

%read value
 loop=loopdata;
 sim=simdata;

This kind of function is explained with more details in chapter 4, chapter about the
communication of the application and the controller.

APPENDIXES (included papers)

92

II.3 Processing data within Matlab

It has been shown in chapter 3 that the “Matlab algorithm” contains three parts: process
the data read, simulate the plant model and process the results. To do the steps of
“process the data read” and “process the results” two functions have been implemented.
These two functions are examples, and they depend of the model used in the
application. So these functions are presented as a guide to implement them in the future.

II.3.1 “read_data” function

This function is the one which processes the data read from the database, it means, it
has to translate the three vectors stored into variables useful to the simulation:

[]
[]
[]

niwhere
quality
value
name

iable

qualityqualityqualityquality
valuevaluevaluevalue
namenamenamename

i

i

i

i

ni

ni

ni

,...0

var

...
......
......

1

1

1

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎪⎭

⎪
⎬

⎫

=
=
=

, and ‘n’ is the number of variables
acquired.

One simple way is to implement a loop with conditional statements that scans the vector
of the names, then for the variable “variableDO” used in the model, when the loop finds
the component nameR(i) = ‘DO’, it stores the value of valueR(i) inside the variable
“variableDO”.

% file to write the data from the database to work space

endloop = length (valueR);

for i = 1:endloop
 if nameR(i,:) == 'DO'
 variableDO = valueR(i)
 end
 if nameR(i,:) == 'SS'
 variableSS = valueR(i)
 end
 if nameR(i,:) == 'Xs'
 variableXs = valueR(i)
 end
 if nameR(i,:) == 'Hh'
 variableHh = valueR(i)
 end
end

Josep Carrasco Martínez

93

II.3.2 “write_data.m” function

To implement the function which builds the three vectors with the results of the
simulation is even easier than the case before. The only task is to write the three vectors
and all the components ordered. The code is shown below:

% file to write the data from the work space to database

name = ['SI';'SS';'XI']
value = [reac5(end,1) reac5(end,14) reac5(end,3)]
quality = [1 0 1]

II.4 GUIDE application

II.4.1 What’s GUIDE

To developed the graphical interface of the application has been used GUIDE. GUIDE
is an application integrated in Matlab which makes possible in a few steps and with a
little time developed graphical interfaces. By the other side, the main advantage of
GUIDE is that it is a Matlab application, so all the programs developed with GUIDE
can access directly to the Matlab work-space.

To start GUIDE it has to be typed the command “guide” in Matlab work-space and it
appears the window shown in the following figure:

figure 35: GUIDE background

Once this window is opened, the only things we have to do is to set the graphical
interface that we want and to save the application.

II.4.2 Application GUIDE code

When the application implemented in GUIDE is saved, it is created another file with the
same name which contains all internal code. This internal code contains the functions of
the objects that have been included in the window of the application. GUIDE defines

APPENDIXES (included papers)

94

the functions when we add an object in the graphical work-space, and the only thing it is
necessary to do is to include the code of the functions that the button has to execute.

In the following lines is shown the function of the four buttons of the user interface
implemented in the application of this thesis.

RUN PROCESS

The function of the button that start the process:

% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)

control_value = [1 1];
controlloop(control_value);
MAIN
disp('the process is RUNNING')

STOP PROCESS

The function of the button to stop the process completely:

% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)

control_value = [1 0]
controlloop(control_value);
disp('the process is STOPED')

READ FROM DATABASE

Function of the button that simulates the STAR controller to check the synchronization
before reading the data from the database:

% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)

valueP = [1 0]
writeXML_synchro(valueP);
disp('the process is READING')

WRITE IN DATABASE

Function of the button that simulate the STAR controller to check the synchronization
before writing the results of the simulation in the database:

% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)

valueP = [0 1]
writeXML_synchro(valueP);
disp('the process is WRITING')

95

APPENDIX III

Appendixes to CHAPTER 4 (Data Exchange)

This appendix tries to clarify some concepts mentioned in “CHAPTER 4:
Data Exchange”.
The chapter is divided in three points: “Web Services”, “SOAP protocol” and
“<org.apache.xerces.dom.DocumentImpl> class”. These three points give us
a brief sight about Web Services, SOAP protocol and the class
“org.apache.xerces.dom.DocumentImpl”, so that, check the bibliography if
you are really interested in going further in these topics.

APPENDIXES (included papers)

96

III.1 Web Services

Web Services can be defined as network accessible interface to application functionality,
built using standard Internet Technologies. It means that an application is a Web Service
if it can be accessed using a standard protocols as HTTP, XML, SMTP or Jabber, or a
combination of them, over the network.

A more technically definition can be:

• Web Service: interface positioned between the application code and the user of
that code. It acts as an abstraction layer, separating the platform
and programming-language-specific details of how the application
code is actually invoked. This standarized layer means that any
language that supports the web service can access the application’s
functionality.

The abstraction layer provided by the Web Service means that it does not matter if the
application services and the browser are written using different languages (Java, C++,
Perl, .NET), or one is deployed on an Unix box and the other on Windows, the Web
Service will be capable of sending and receiving messages, and always using a standard
Internet protocol to program it.

A web service consists in two parts:

• Service Proxy: that decodes the requests into calls into the application code.
• Service Listener: that speaks the transport protocol (SOAP in the case of this

thesis) and receives incoming requests.

The web services are divided in two parts, but to implement them it is made through the
layering of five types of technologies, organized into layers that build upon one another.
This division is called “Web Service Technology Stack” and the five layers that
compound the Web Services are, starting from the down layer to the up layer: “network
layer”, “transport layer”, “packaging layer”, “description layer” and “discovery layer”.

Each part of the web services stack addresses a separate business problem, so it is not
necessary to rewrite significant chunks of the infrastructure when a new layer of the
stack is needed, to support a new form of exchanging information.

To finish with the introduction to Web Services, some of the most important
standarizations initiatives currently being pursued in programming Web Services are:

• XML protocol
• XKMS
• SAML (Security Assertions Markup Language): it is an XML grammar for

expressing the occurrence of security events.
• XML-Dsig (XML digital signatures)
• XML-Enc (XML encryption)
• XSD

Josep Carrasco Martínez

97

• P3P
• WSFL (Web Services Flow Language): it is an extension to WSDL.
• Jabber: asynchronous transport protocol used in peer-to-peer applications.
• ebXML: built to use SOAP.

III.2 SOAP Protocol

The point before talks about Web Services and what is this. Here there is an
introduction about SOAP protocol, the protocol used by the company (Veolia Water
System) to write Web Services.

A definition of SOAP can be: a standardized packaging for the messages shared by
applications. The SOAP’s specification defines a simple XML-based envelope for
transferring information, and a set of rules for translating application and platform-
specific data types into XML representations. So it can be deduced that SOAP is an
application of the XML specification. It relies heavily on XML standards like XML
Schema and XML Namespace for its definition and function (check the World Wide
Web Consortium’s web site at http://www.w3c.org to find more information about these
specifications).

So, to understand how works SOAP, it is necessary to understand XML messaging. It is
where applications exchange information using XML documents. It provides a flexible
way for applications to communicate. The exchange of information through XML
documents forms the basis of SOAP. The fundamental idea is that two applications may
openly share information using message encoded in a way that both applications
understand, not taking care about the operative system, the programming code or
another technical limitation. SOAP provides a standard way to structure XML
messages.

SOAP has two related applications: RPC and EDI.

• Remote Procedure Call (RPC) is the basis of distributed computing, the way for
one program to make a procedure call on another, passing arguments and
receiving return values.

• Electronic Document Interchange (EDI) is basis of automated business
transactions, defining a standard format and interpretation of financial and
commercial documents and messages.

But, it is not enough saying that the server and the client are using XML both of them. It
is necessary to define too:

• The types of information we are exchanging.
• How that information is to be expressed as XML.
• How to actually go about sending that information.

SOAP provides these conventions that help to decode the information given.

http://www.w3c.org/

APPENDIXES (included papers)

98

The structure of a SOAP message consists of an envelope containing an optional header
and a required body:

• The header contains blocks of information relevant to how the message is to be
processed.

• The body contains the actual message to be delivered and processed.

There have been several versions of the SOAP specification. The last version, SOAP
version 1.2, represents the first fruits of the World Wide Web Consortium’s (W3C)
effort to standardize an XML-based packaging protocol for web services. The W3C
chose SOAP as the basis for that effort. The previous version of SOAP, Version 1.1, is
still widely used.

III.3 “org.apache.xerces.dom.DocumentImpl” class

The package “org.apache.xerces.dom” uses DocumentImpl, this is because the class is
called org.apache.xerces.dom.DocumentImpl. DocumentImpl can be used by other
packages: “org.apache.html.dom”, “org.apache.wml.dom” and
“org.apache.xerces.parses”.

The public class DocumentImpl is the Document interface that represents the entire
HTML or XML document. Conceptually, it is the root of the document tree, and
provides the primary access to the document's data.
Since elements, text nodes, comments, processing instructions, etc. cannot exist outside
the context of a Document, the Document interface also contains the factory methods
needed to create these objects. The Node objects created have an ownerDocument
attribute which associates them with the Document within whose context they were
created.
The DocumentImpl class also implements the DOM Level 2 DocumentTraversal
interface. This interface is comprised of factory methods needed to create NodeIterators
and TreeWalkers. The process of creating NodeIterator objects also adds these
references to this document. After finishing with an iterator it is important to remove the
object using the remove methods in this implementation. This allows the release of the
references from the iterator objects to the DOM Nodes.

The uses of “DocumentImpl” in “org.apache.xerces.dom”:

SUBCLASSES:

• DeferredDocumentImpl: the document interface represents the entire HTML or
XML document. Conceptually, it is the root of the document tree, and provides
the primary access to the document's data. Since elements, text nodes,
comments, processing instructions, etc. cannot exist outside the context of a
Document, the Document interface also contains the factory methods needed to
create these objects. The Node objects created have a ownerDocument attribute
which associates them with the Document within whose context they were
created.

Josep Carrasco Martínez

99

CONSTRUCTORS in “org.apache.xerces.dom” with parameters of type DocumentImp:

• RangeImpl(DocumentImpl document): Clients must use
DocumentRange.createRange(), because it registers the Range with the
document, so it can be fixed-up.

• NodeIteratorImpl(DocumentImpl document, Node root, int whatToShow,

NodeFilter nodeFilter, boolean entityReferenceExpansion): DefaultNodeIterator
implements a NodeIterator, which iterates a DOM tree in the expected depth
first way. The whatToShow and filter functionality is implemented as expected.
This class also has method removeNode to enable iterator "fix-up" on DOM
remove. It is expected that the DOM implementation call removeNode right
before the actual DOM transformation. If not called by the DOM, the client
could call it before doing the removal.

At last the methods of the class DocumentImpl are exposed bellow (All information
about the methods of the org.apache.xerces.dom.DocumentImpl class expose here has
been extracted from http://xerces.apache.org/xerces-
j/apiDocs/org/apache/xerces/dom/DocumentImpl.html):

addEventListener(NodeImpl node, java.lang.String type,
EventListener listener, boolean useCapture)

cloneNode(boolean deep)
createEvent(java.lang.String type)
createNodeIterator(Node root, int whatToShow, NodeFilter filter,

boolean entityReferenceExpansion)
createNodeIterator(Node root, short whatToShow, NodeFilter filter)
createRange()
createTreeWalker(Node root, int whatToShow, NodeFilter filter,

boolean entityReferenceExpansion)
createTreeWalker(Node root, short whatToShow, NodeFilter filter)
dispatchAggregateEvents(NodeImpl node, AttrImpl enclosingAttr,

java.lang.String oldvalue, short change)
dispatchAggregateEvents(NodeImpl node,

org.apache.xerces.dom.DocumentImpl.EnclosingAttr
ea)

dispatchEvent(NodeImpl node, Event event)
dispatchEventToSubtree(NodeImpl node, Node n, Event e)
getEventListeners(NodeImpl n)
getImplementation()
getUserData(NodeImpl n)
removeEventListener(NodeImpl node, java.lang.String type,

EventListener listener, boolean useCapture)
saveEnclosingAttr(NodeImpl node)
setEventListeners(NodeImpl n, java.util.Vector listeners)
setUserData(NodeImpl n, java.lang.Object data)

http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#addEventListener(org.apache.xerces.dom.NodeImpl, java.lang.String, org.w3c.dom.events.EventListener, boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/events/EventListener.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#cloneNode(boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createEvent(java.lang.String)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createNodeIterator(org.w3c.dom.Node, int, org.w3c.dom.traversal.NodeFilter, boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/traversal/NodeFilter.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createNodeIterator(org.w3c.dom.Node, short, org.w3c.dom.traversal.NodeFilter)
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/traversal/NodeFilter.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createRange()
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createTreeWalker(org.w3c.dom.Node, int, org.w3c.dom.traversal.NodeFilter, boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/traversal/NodeFilter.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#createTreeWalker(org.w3c.dom.Node, short, org.w3c.dom.traversal.NodeFilter)
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/traversal/NodeFilter.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#dispatchAggregateEvents(org.apache.xerces.dom.NodeImpl, org.apache.xerces.dom.AttrImpl, java.lang.String, short)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/AttrImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#dispatchAggregateEvents(org.apache.xerces.dom.NodeImpl, org.apache.xerces.dom.DocumentImpl.EnclosingAttr)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#dispatchEvent(org.apache.xerces.dom.NodeImpl, org.w3c.dom.events.Event)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/events/Event.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#dispatchEventToSubtree(org.apache.xerces.dom.NodeImpl, org.w3c.dom.Node, org.w3c.dom.events.Event)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/Node.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/events/Event.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#getEventListeners(org.apache.xerces.dom.NodeImpl)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#getImplementation()
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#getUserData(org.apache.xerces.dom.NodeImpl)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#removeEventListener(org.apache.xerces.dom.NodeImpl, java.lang.String, org.w3c.dom.events.EventListener, boolean)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/w3c/dom/events/EventListener.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#saveEnclosingAttr(org.apache.xerces.dom.NodeImpl)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#setEventListeners(org.apache.xerces.dom.NodeImpl, java.util.Vector)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/DocumentImpl.html#setUserData(org.apache.xerces.dom.NodeImpl, java.lang.Object)
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/NodeImpl.html

APPENDIXES (included papers)

100

101

APPENDIX IV

Appendixes to CHAPTER 5 (Modelling Batch Processes with Matlab)

This appendix contains the full code of the functions not shown in chapter 5.
The main parts of the code were explained in chapter 5, so the reader does
not find any other information related with the S-functions and the model
implemented for modelling Batch Processes.
To go further with the researching it is recommended to check the
bibliography.

APPENDIXES (included papers)

102

IV.1 S-function “settlerB_batchM.c” code

In this point is exposed the code programmed in the S-function to model batch
processes with Matlab:

/*
 * settler1d_reac is a C-file S-function for defining a reactive 10 layer
sedimentation tank model
 * Compatibility: ASM1 model
 * The model is developed based on the settler1dv4.c model of Ulf Jeppsson
(IEA, LTH, Sweden)
 *
 * 25 October 2003
 * Krist V. Gernaey, CAPEC, Dept. of Chemical Engineering, DTU, Denmark
 *
 * Modified on 29 August 2006
 * by Josep Carrasco Martínez, Dept. of Industrial Electrical Engineering and
Automation, LTH, Sweden. Model modified to use in "batch processes"
 */

#define S_FUNCTION_NAME settlerB_batchM

#include "simstruc.h"
#include <math.h>

#define XINIT ssGetArg(S,0) /* initial values */
#define SEDPAR ssGetArg(S,1) /* parameters sedimentation model */
#define DIM ssGetArg(S,2) /* dimensions clarifier */
#define LAYER ssGetArg(S,3) /* Number of layers */
#define ASMPAR ssGetArg(S,4) /* parameters activated sludge model */
#define SOSAT ssGetArg(S,5)

/*
 * mdlInitializeSizes - initialize the sizes array
 */
static void mdlInitializeSizes(SimStruct *S)
{
 ssSetNumContStates(S, 141); /* number of continuous states, ASM1

components + TSS for each settler layer + total height for the
vessel*/

 ssSetNumDiscStates(S, 0); /* number of discrete states */
 ssSetNumInputs(S, 19); /* number of inputs, 13 ASM1 components + TSS

+ influent flow rate + Kla + J_down_up +
Q_output+ Q_u waste sludge flowrate */

 ssSetNumOutputs(S, 144); /* number of outputs: 141 states 13 ASM1
components + TSS (for each layer)+ + height
Q_e + Q_out + Q_u*/

 ssSetDirectFeedThrough(S, 1); /* direct feedthrough flag */
 ssSetNumSampleTimes(S, 1); /* number of sample times */
 ssSetNumSFcnParams(S, 6); /* number of input arguments */
 ssSetNumRWork(S, 0); /* number of real work vector elements */
 ssSetNumIWork(S, 0); /* number of integer work vector elements*/
 ssSetNumPWork(S, 0); /* number of pointer work vector elements*/
}

/*
 * mdlInitializeSampleTimes - initialize the sample times array
 */
static void mdlInitializeSampleTimes(SimStruct *S)
{
 ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
 ssSetOffsetTime(S, 0, 0.0);
}

Josep Carrasco Martínez

103

/*
 * mdlInitializeConditions - initialize the states
 */
static void mdlInitializeConditions(double *x0, SimStruct *S)
{
int i;

for (i = 0; i < 141; i++) {
 x0[i] = mxGetPr(XINIT)[i];
}
}

/*
 * mdlOutputs - compute the outputs
 */

static void mdlOutputs(double *y, double *x, double *u,

SimStruct *S, int tid)
{
int i;
int j;
 /* Clarifier state variables */
 for (i=0;i<10;i++){
 for (j=0;j<14;j++){
 y[(i*14)+j]=x[i+j*10]; //we have written 14 because now we have 15

states variables per each layer
 } //the order of outputs is from 1 to 14 layer

1, from 15 to 28 layer 2, etc
 } //the inputs is, from 1 to 10 the SI of all

layers, from 11 to 20 the Ss of all
layers, etc

 y[140] = x[140];

 /* Flow rates out of the vessel */
 if ((u[14]>0)&&(u[17]==0)){
 y[141]=u[14]-u[18]; /* Q_e */
 }
 if ((u[14]==0)&&(u[17]>0)){
 y[141]=u[17]-u[18]; /* Q_e */
 }
 else y[141]=0;

 y[142]=u[18]; /* Q_u */
 y[143]=u[17]; /* Q_out */
 }

/*
 * mdlUpdate - perform action at major integration time step
 */

static void mdlUpdate(double *x, double *u, SimStruct *S, int

tid)
{
}

/*
 * mdlDerivatives - compute the derivatives
 */
static void mdlDerivatives(double *dx, double *x, double *u,

SimStruct *S, int tid)
{

double v0_max, v0, r_h, r_p, f_ns, X_t, area, h, feedlayer, volume;
int n; //number of layers
double Q_f, Q_e, Q_u, v_up, v_dn, v_in, eps;

APPENDIXES (included papers)

104

int i;
double vs[10];
double Js[11];
double Jstemp[10];
double Jflow[11];
double mu_H, K_S, K_OH, K_NO, b_H, mu_A, K_NH, K_OA, b_A, ny_g, k_a, k_h, K_X,

ny_h;
double Y_H, Y_A, f_P, i_XB, i_XP, X_I2TSS, X_S2TSS, X_BH2TSS, X_BA2TSS,

X_P2TSS ;
double proc1[10], proc2[10], proc3[10], proc4[10], proc5[10], proc6[10],

proc7[10], proc8[10];
double reac1[10], reac2[10], reac3[10], reac4[10], reac5[10], reac6[10],

reac7[10], reac8[10];
double reac9[10], reac10[10], reac11[10], reac12[10], reac13[10], reac14[10];
double xtemp[150];
double SO_sat; //to calculate rSO
double KLa, a, b, J_d_u;

v0_max = mxGetPr(SEDPAR)[0];
v0 = mxGetPr(SEDPAR)[1];
r_h = mxGetPr(SEDPAR)[2];
r_p = mxGetPr(SEDPAR)[3];
f_ns = mxGetPr(SEDPAR)[4];
X_t = mxGetPr(SEDPAR)[5];
area = mxGetPr(DIM)[0];
// h = mxGetPr(DIM)[1]/mxGetPr(LAYER)[1]; /* now h is introduced as initial

conditions */

n = mxGetPr (LAYER)[1]; //number of layers
feedlayer = mxGetPr(LAYER)[0];
volume = area*mxGetPr(DIM)[1];

/* ASM1: Stoichiometric parameters */
mu_H = mxGetPr(ASMPAR)[0];
K_S = mxGetPr(ASMPAR)[1];
K_OH = mxGetPr(ASMPAR)[2];
K_NO = mxGetPr(ASMPAR)[3];
b_H = mxGetPr(ASMPAR)[4];
mu_A = mxGetPr(ASMPAR)[5];
K_NH = mxGetPr(ASMPAR)[6];
K_OA = mxGetPr(ASMPAR)[7];
b_A = mxGetPr(ASMPAR)[8];
ny_g = mxGetPr(ASMPAR)[9];
k_a = mxGetPr(ASMPAR)[10];
k_h = mxGetPr(ASMPAR)[11];
K_X = mxGetPr(ASMPAR)[12];
ny_h = mxGetPr(ASMPAR)[13];
Y_H = mxGetPr(ASMPAR)[14];
Y_A = mxGetPr(ASMPAR)[15];
f_P = mxGetPr(ASMPAR)[16];
i_XB = mxGetPr(ASMPAR)[17];
i_XP = mxGetPr(ASMPAR)[18];
X_I2TSS = mxGetPr(ASMPAR)[19];
X_S2TSS = mxGetPr(ASMPAR)[20];
X_BH2TSS = mxGetPr(ASMPAR)[21];
X_BA2TSS = mxGetPr(ASMPAR)[22];
X_P2TSS = mxGetPr(ASMPAR)[23];
SO_sat = mxGetPr(SOSAT)[0]; //to read SO_sat

eps = 0.01;
v_in = u[14]/area;
Q_f = u[14];
Q_u = u[18];
v_dn = Q_u/area;

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%% NEW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
// Equaction of effluent
 if ((u[14]>0)&&(u[17]==0)){

Josep Carrasco Martínez

105

 Q_e = u[14]-Q_u; /* Q_e */
 }
 if ((u[14]==0)&&(u[17]>0)){
 Q_e = u[17]-Q_u; /* Q_e */
 }
 else Q_e = 0;

// Equation of the velocity up
 if ((u[14]>0)||(u[17]>0)){
 v_up = Q_e/area;
 }
 else v_up = -v_dn;

// The flux for filling, mixing and reaction phase,
// where the wastewater is well mixed
J_d_u = u[16];
/* %% */

for (i = 0; i < 141; i++) {
 if (x[i] < 0.0)
 xtemp[i] = 0.0;
 else
 xtemp[i] = x[i];
}

/* calculation of the sedimentation velocity for each of the layers */
for (i = 0; i < 10; i++) {
 vs[i] = v0*(exp(-r_h*(xtemp[i+130]-f_ns*u[13]))-exp(-r_p*(xtemp[i+130]-

f_ns*u[13]))); /* u[13] = influent SS concentration */
 if (vs[i] > v0_max)
 vs[i] = v0_max;
 else if (vs[i] < 0.0)
 vs[i] = 0.0;
}

/* calculation of the sludge flux due to sedimentation for each layer (not
taking into account X limit) */
for (i = 0; i < 10; i++) {
 Jstemp[i] = vs[i]*xtemp[i+130];
}

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%% NEW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* calculation of the sludge flux due to the liquid flow (upflow or downflow,
depending on layer) */
for (i = 0; i < 11; i++) {
 //bulk movement up to the feed layer
 if (i < (feedlayer-eps)){
 if ((u[14]>0)||(u[17]>0)){
 Jflow[i] = v_up*xtemp[i+130];
 }
 else{
 Jflow[i] = v_dn*xtemp[i-1+130];
 }
 }
 //bulk movement down to the feed layer and in the feed layer
 else
 Jflow[i] = v_dn*xtemp[i-1+130];
}
/* %% */

/* calculation of the sludge flux due to sedimentation for each layer */
Js[0] = 0.0;
Js[10] = 0.0;
for (i = 0; i < 10; i++) {
 if ((i < (feedlayer-1-eps)) && (xtemp[i+1+130] <= X_t))
 Js[i+1] = Jstemp[i];
 else if (Jstemp[i] < Jstemp[i+1])
 Js[i+1] = Jstemp[i];

APPENDIXES (included papers)

106

 else
 Js[i+1] = Jstemp[i+1];
}

/* Reaction rates ASM1 model */

for (i = 0; i < 10; i++) {
proc1[i] = mu_H*(xtemp[i+10]/(K_S+xtemp[i+10]))*

(xtemp[i+70]/(K_OH+xtemp[i+70]))*xtemp[i+40];
proc2[i] = mu_H*(xtemp[i+10]/(K_S+xtemp[i+10]))*(K_OH/(K_OH+xtemp[i+70]))*

(xtemp[i+80]/(K_NO+xtemp[i+80]))*ny_g*xtemp[i+40];
proc3[i] = mu_A*(xtemp[i+90]/(K_NH+xtemp[i+90]))*

(xtemp[i+70]/(K_OA+xtemp[i+70]))*xtemp[i+50];
proc4[i] = b_H*xtemp[i+40];
proc5[i] = b_A*xtemp[i+50];
proc6[i] = k_a*xtemp[i+100]*xtemp[i+40];
proc7[i] = k_h*((xtemp[i+30]/xtemp[i+40])/(K_X+(xtemp[i+30]/xtemp[i+40])))*

((xtemp[i+70]/(K_OH+xtemp[i+70]))+ny_h*(K_OH/(K_OH+xtemp[i+70]))*(xt
emp[i+80]/(K_NO+xtemp[i+80])))*xtemp[i+40];

proc8[i] = proc7[i]*xtemp[i+110]/xtemp[i+30];

reac1[i] = 0.0;
reac2[i] = (-proc1[i]-proc2[i])/Y_H+proc7[i];
reac3[i] = 0.0;
reac4[i] = (1.0-f_P)*(proc4[i]+proc5[i])-proc7[i];
reac5[i] = proc1[i]+proc2[i]-proc4[i];
reac6[i] = proc3[i]-proc5[i];
reac7[i] = f_P*(proc4[i]+proc5[i]);
reac8[i] = -((1.0-Y_H)/Y_H)*proc1[i]-((4.57-Y_A)/Y_A)*proc3[i];
reac9[i] = -((1.0-Y_H)/(2.86*Y_H))*proc2[i]+proc3[i]/Y_A;
reac10[i] = -i_XB*(proc1[i]+proc2[i])-(i_XB+(1.0/Y_A))*proc3[i]+proc6[i];
reac11[i] = -proc6[i]+proc8[i];
reac12[i] = (i_XB-f_P*i_XP)*(proc4[i]+proc5[i])-proc8[i];
reac13[i] = -i_XB/14.0*proc1[i]+((1.0-Y_H)/(14.0*2.86*Y_H)-

(i_XB/14.0))*proc2[i]-
((i_XB/14.0)+1.0/(7.0*Y_A))*proc3[i]+proc6[i]/14.0;

reac14[i] = X_I2TSS*reac3[i]+X_S2TSS*reac4[i]+X_BH2TSS*reac5[i]+
X_BA2TSS*reac6[i]+X_P2TSS*reac7[i];

}

/* ASM1 model component balances over the layers */
/* ASM1: [Si Ss Xi Xs Xbh Xba Xp So Sno Snh Snd Xnd Salk TSS Q_in] */
/* New state variable => dH/dt*/

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%% NEW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* height of the tank: H*/

 dx[140] = (u[14]-u[17])/area; /*the heigth of the vessel*/
 h = x[140]/n; /*the heigth of each layer*/

/* %% */

/* soluble component S_I */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i] = (-v_up*xtemp[i] +v_up*xtemp[i+1])/h+reac1[i];
 else if (i > (feedlayer-eps))
 dx[i] = (v_dn*xtemp[i-1] -v_dn*xtemp[i])/h+reac1[i];
 else
 dx[i] = (v_in*u[0] -v_up*xtemp[i] -v_dn*xtemp[i])/h+reac1[i];
}

/* soluble component S_S */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+10] = (-v_up*xtemp[i+10] +v_up*xtemp[i+1+10])/h +reac2[i];
 else if (i > (feedlayer-eps))

Josep Carrasco Martínez

107

 dx[i+10] = (v_dn*xtemp[i-1+10] -v_dn*xtemp[i+10])/h +reac2[i];
 else
 dx[i+10] = (v_in*u[1] -v_up*xtemp[i+10] -v_dn*xtemp[i+10])/h +reac2[i];
}

/* particulate component X_I */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+20]/xtemp[i+1+130])*Jflow[i+1])/h +
(xtemp[i+1+20]/xtemp[i+1+130])*J_d_u + reac3[i];

 else if (i > (feedlayer-eps))
 dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h +
(xtemp[i-1+20]/xtemp[i-1+130])*J_d_u + reac3[i];

 else
 dx[i+20] = ((xtemp[i+20]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+20]/xtemp[i-1+130])*Js[i]+v_in*u[2])/h +
(xtemp[i-1+20]/xtemp[i-1+130])*J_d_u + reac3[i];

}

/* particulate component X_S */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+30] = ((xtemp[i+30]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+30]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+30]/xtemp[i+1+130])*Jflow[i+1])/h +
(xtemp[i+1+30]/xtemp[i+1+130])*J_d_u + reac4[i];

 else if (i > (feedlayer-eps))
 dx[i+30] = ((xtemp[i+30]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+30]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h +
(xtemp[i-1+30]/xtemp[i-1+130])*J_d_u + reac4[i];

 else
 dx[i+30] = ((xtemp[i+30]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+30]/xtemp[i-1+130])*Js[i]+v_in*u[3])/h +
(xtemp[i-1+30]/xtemp[i-1+130])*J_d_u + reac4[i];

}

/* particulate component X_BH */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+40] = ((xtemp[i+40]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+40]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+40]/xtemp[i+1+130])*Jflow[i+1])/h +
(xtemp[i+1+40]/xtemp[i+1+130])*J_d_u + reac5[i];

 else if (i > (feedlayer-eps))
 dx[i+40] = ((xtemp[i+40]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+40]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h +
(xtemp[i-1+40]/xtemp[i-1+130])*J_d_u + reac5[i];

 else
 dx[i+40] = ((xtemp[i+40]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+40]/xtemp[i-1+130])*Js[i]+v_in*u[4])/h +
(xtemp[i-1+40]/xtemp[i-1+130])*J_d_u + reac5[i];

}

/* particulate component X_BA */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+50] = ((xtemp[i+50]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+50]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+50]/xtemp[i+1+130])*Jflow[i+1])/h +
(xtemp[i+1+50]/xtemp[i+1+130])*J_d_u + reac6[i];

 else if (i > (feedlayer-eps))
 dx[i+50] = ((xtemp[i+50]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+50]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h +
(xtemp[i-1+50]/xtemp[i-1+130])*J_d_u + reac6[i];

 else

APPENDIXES (included papers)

108

 dx[i+50] = ((xtemp[i+50]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-
J_d_u)+(xtemp[i-1+50]/xtemp[i-1+130])*Js[i]+v_in*u[5])/h +
(xtemp[i-1+50]/xtemp[i-1+130])*J_d_u + reac6[i];

}

/* particulate component X_P */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+60] = ((xtemp[i+60]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+60]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+60]/xtemp[i+1+130])*Jflow[i+1])/h +
(xtemp[i+1+60]/xtemp[i+1+130])*J_d_u + reac7[i];

 else if (i > (feedlayer-eps))
 dx[i+60] = ((xtemp[i+60]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+60]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h +
(xtemp[i-1+60]/xtemp[i-1+130])*J_d_u + reac7[i];

 else
 dx[i+60] = ((xtemp[i+60]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+60]/xtemp[i-1+130])*Js[i]+v_in*u[6])/h +
(xtemp[i-1+60]/xtemp[i-1+130])*J_d_u + reac7[i];

}

/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%% NEW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */
/* soluble component S_O */

KLa = u[15];

for (i = 0; i < 10; i++) {
 if(v_up==-v_dn){
 a = xtemp[i-1+70];
 b = xtemp[i+70];
 }
 else{
 a = xtemp[i+70];
 b = xtemp[i+1+70];
 }

 if (i < (feedlayer-1-eps))
 dx[i+70] = (-v_up*a +v_up*b)/h +reac8[i] + KLa*(SO_sat-xtemp[i+70]);

//we have added rSO (Kla!=0)
 else if (i > (feedlayer-eps))
 dx[i+70] = (v_dn*xtemp[i-1+70] -v_dn*xtemp[i+70])/h +reac8[i] +

KLa*(SO_sat-xtemp[i+70]); //we have added rSO (Kla!=0)
 else
 dx[i+70] = ((v_in*u[7] -v_up*a -v_dn*xtemp[i+70])/h +reac8[i]) +

KLa*(SO_sat-xtemp[i+70]); //we have added rSO (Kla!=0)
}
/* %% */

/* soluble component S_NO */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+80] = (-v_up*xtemp[i+80] +v_up*xtemp[i+1+80])/h +reac9[i];
 else if (i > (feedlayer-eps))
 dx[i+80] = (v_dn*xtemp[i-1+80] -v_dn*xtemp[i+80])/h +reac9[i];
 else
 dx[i+80] = (v_in*u[8] -v_up*xtemp[i+80] -v_dn*xtemp[i+80])/h +reac9[i];
}

/* soluble component S_NH */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+90] = (-v_up*xtemp[i+90] +v_up*xtemp[i+1+90])/h +reac10[i];
 else if (i > (feedlayer-eps))
 dx[i+90] = (v_dn*xtemp[i-1+90] -v_dn*xtemp[i+90])/h +reac10[i];
 else
 dx[i+90] = (v_in*u[9] -v_up*xtemp[i+90] -v_dn*xtemp[i+90])/h

+reac10[i];

Josep Carrasco Martínez

109

}

/* soluble component S_ND */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+100] = (-v_up*xtemp[i+100] +v_up*xtemp[i+1+100])/h +reac11[i];
 else if (i > (feedlayer-eps))
 dx[i+100] = (v_dn*xtemp[i-1+100] -v_dn*xtemp[i+100])/h +reac11[i];
 else
 dx[i+100] = (v_in*u[10] -v_up*xtemp[i+100] -v_dn*xtemp[i+100])/h

+reac11[i];
}

/* particulate component X_ND */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+110] = ((xtemp[i+110]/xtemp[i+130])*(-Jflow[i]-Js[i+1]-

J_d_u)+(xtemp[i-1+110]/xtemp[i-
1+130])*Js[i]+(xtemp[i+1+110]/xtemp[i+1+130])*Jflow[i+1])/h
+ (xtemp[i+1+110]/xtemp[i+1+130])*J_d_u + reac12[i];

 else if (i > (feedlayer-eps))
 dx[i+110] = ((xtemp[i+110]/xtemp[i+130])*(-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+110]/xtemp[i-1+130])*(Jflow[i]+Js[i]))/h +
(xtemp[i-1+110]/xtemp[i-1+130])*J_d_u + reac12[i];

 else
 dx[i+110] = ((xtemp[i+110]/xtemp[i+130])*(-Jflow[i]-Jflow[i+1]-Js[i+1]-

J_d_u)+(xtemp[i-1+110]/xtemp[i-1+130])*Js[i]+v_in*u[11])/h +
(xtemp[i-1+110]/xtemp[i-1+130])*J_d_u + reac12[i];

}

/* soluble component S_ALK */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+120] = (-v_up*xtemp[i+120] +v_up*xtemp[i+1+120])/h +reac13[i];
 else if (i > (feedlayer-eps))
 dx[i+120] = (v_dn*xtemp[i-1+120] -v_dn*xtemp[i+120])/h +reac13[i];
 else
 dx[i+120] = (v_in*u[12] -v_up*xtemp[i+120] -v_dn*xtemp[i+120])/h

+reac13[i];
}

/* particulate component X_TSS */
for (i = 0; i < 10; i++) {
 if (i < (feedlayer-1-eps))
 dx[i+130] = ((-Jflow[i]-Js[i+1])+Js[i]+Jflow[i+1])/h +reac14[i];
 else if (i > (feedlayer-eps))
 dx[i+130] = ((-Jflow[i+1]-Js[i+1])+(Jflow[i]+Js[i]))/h +reac14[i];
 else
 dx[i+130] = ((-Jflow[i]-Jflow[i+1]-Js[i+1])+Js[i]+v_in*u[13])/h

+reac14[i];
}

}

/*
 * mdlTerminate - called when the simulation is terminated.
 */
static void mdlTerminate(SimStruct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

APPENDIXES (included papers)

110

111

PART IV

TITLE: Bibliography

112

113

BIBLIOGRAPHY

There is no bibliography referred to the “APPENDIX I”, “APPENDIX II” and
“APPENDIX III”, but it does not mean that it is inexistent. The bibliography is
organized so that the documents consulted (either books or web links) for one chapter
have been used for the chapter, the appendixes of the chapter or both.

CHAPTER 2: Wastewater Treatment Processes

[1] Gustaf Olsson & Bob Newel (1999). “Wastewater Treatment Systems.

Modelling, Diagnosis and Control”. IWA Publishing, chapters 2, 3 and 4.

[2] Ulf Jeppsson (1996). “Modelling Aspects of Wastewater Treatment

Processes”. IEA. LTH, pp. 191-228

[3] Mark J. Hummer (1986). “Water and Wastewater Treatment Technology”.

Prentice-Hall International Editions. (used in 2.1 in chapter 2 for process
description)

CHAPTER 4: Dataexchange

[4] James Snell, Doug Tidwell and Pavel Kulchenko (2001). “Programming web

services with SOAP”. O’reilly. (chapter 1, chapter 2 and chapter 3)

[5] Link about XML and SOAP protocol to program web services:

www.w3.org/2000/xp/Group, from the main page www.w3.org,

[6] Java API for XML: (http://java.sun.com/webservices/jaxp/dist/1.1/docs/api/)

[7] Methods of the class “org.apache.xerces.dom.DocumentImpl” used by the

functions “xmlread” and “xmlwrite”: (http://xerces.apache.org/xerces-
j/apiDocs/org/apache/xerces/dom/class-use/DocumentImpl.html

CHAPTER 5: Modelling batch processes with Matlab

[8] The MATH WORKS Inc. (2000). “SIMULINK. Dynamic System Simulation for

MATLAB®”. Using Simulink Version 4.

[9] The MATH WORKS Inc. (2000). “SIMULINK. Dynamic System Simulation for

MATLAB®”. Writing S-Functions Version 4.

[10] A product of COST Action 624 and COST Action 682 (2002). “The COST

simulation benchmark. Description and simulator manual”. EUROPEAN
COMISION, Directorate-General for Research, European research area:
structural aspects - COST, chapters 1, 2, 3, 8

http://www.w3.org/2000/xp/Group
http://www.w3.org/
http://java.sun.com/webservices/jaxp/dist/1.1/docs/api/
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/class-use/DocumentImpl.html
http://xerces.apache.org/xerces-j/apiDocs/org/apache/xerces/dom/class-use/DocumentImpl.html

	front_page_exjobb_josep_Carrasco.pdf
	5244_Benchmarking_the_STAR_Controller_using_Matlab.pdf
	Examiner: Dr Ulf Jeppsson

