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Abstract 
 
The hybrid car is today one of the most favorable solutions to decrease the fuel 
consumption and the emissions, including the CO2, to be able to design more 
environmental friendly vehicles. As the development progress the hybrids will 
probably be equipped with stronger electric machines and larger batteries which 
enable pure electric drive for longer distances. 
This constitutes a problem in the exhaust gas after treatment in the three way catalyst 
which has to be over a certain temperature to reduce the emissions if the internal 
combustion engine is started by the hybrid control system.  
 
To guarantee drive ability, a hybrid car operating in pure electrical drive, will start 
the internal combustion engine when the state of charge becomes too low and in 
addition to this the internal combustion engine may very well start at any time to 
respond to increased traction power, like in a heavy acceleration. 
This may result in higher emission levels than a regular car which somehow 
diminish the whole idea of hybrid cars. 
 
In this thesis it is investigated what the effect the three way catalyst has in a hybrid 
car and what is needed to assure that the environmental hybrid car does not become 
a environmental disaster due to deactivation of the catalyst.  
 
A number of different possible solutions to this problem is presented and evaluated 
in this thesis. A final conclusion is then drawn of what to be done in the case of a 
mild hybrid and in the case of a full hybrid respectively. 
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Notation 
 
Ai  [ m2 ] The inner area of one part  of the exhaust pipe or catalyst channel 
Ao  [ m2 ] The outer area of one part of the exhaust pipe or catalyst channel 
C  [ - ] Constant 
b  [ - ] Constant 
Di  [ m ] The inner diameter of the exhaust pipe or catalyst channel 
Do  [ m ] The outer diameter of the exhaust pipe or catalyst channel 
f  [ - ] Darcy’s friction factor 
hi  [ W/(m2 K) ] The heat transfer coefficient inside the exhaust pipe or catalyst 

channel 
ho  [ W/(m2 K) ] The heat transfer coefficient outside the exhaust pipe or catalyst 

wall 
L  [ m ] The length of one part of the exhaust pipe or catalyst channel 
m&  [ kg/s ] The mass flow ratio of the exhaust gas 
Nui  [ - ] Nusselt number inside the exhaust pipe or catalyst channel 
Nuo  [ - ] Nusselt number outside the exhaust pipe or catalyst wall 
Pri  [ - ] Prandtl number inside the exhaust pipe or catalyst channel 
Pro  [ - ] Prandtl number outside the exhaust pipe or catalyst wall 
Qcon  [ J ] The energy transferred from the exhaust pipe or catalyst wall to 

the surrounding ambient by convection 
Qins  [ J ] The energy transferred from the exhaust pipe or catalyst wall to 

the surrounding ambient when insulated 
Qrad  [ J ] The energy transferred from the exhaust pipe or catalyst wall to 

the surrounding ambient by radiation 
Qt  [ J ] The energy transferred from the exhaust gas to the exhaust pipe 

or catalyst wall or vice versa 
Recon  [ - ] Reynolds number outside the exhaust pipe or catalyst wall 
Rei  [ - ] Reynolds number inside the exhaust pipe or catalyst channel 
rcrit  [ m ] The critical radius of the insulation 
ri  [ m ] The inner radius of the insulation 
ro  [ m ] The outer radius of the insulation 
Tamb  [ K ] The ambient temperature 
Tin  [ K ] The temperature of the exhaust gas when entering each part 
Twall  [ K ] The temperature of the exhaust pipe or catalyst wall of the part 
vcar  [ m/s ] The speed of the car 
veg  [ m/s ] The speed of the exhaust gas 
∆t  [ s ] The time step 
λamb  [ W/(m K) ] The thermal conductivity for the surrounding air 
λeg  [ W/(m K) ] The thermal conductivity for the exhaust gas 
λins  [ W/(m K) ] The thermal conductivity for the insulation 

ambν   [ m2/s ] The kinematic viscosity for the surrounding air 

egν   [ m2/s ] The kinematic viscosity for the exhaust gas 
ρeg  [ kg/m3 ] The density of the exhaust gas 
σ   [ W/(m2 K4) ] Stefan-Boltzmann’s constant 
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1 Introduction 

1.1 Background 
Hybrid cars have been on the market for a number of years, beginning with Toyota 
Prius in 1997 [1] followed by Honda Insight in 1999 [2] and then many more. Today 
most large car manufacturers have realized that at least one of their models has to be 
a hybrid. This has resulted in cars such as GM´s hybrid trucks which have been on 
the market since 2004 [3] and Lexus 400h which has been available since 2005 [4]. 
In the opinion of the author however, all these cars are mild hybrids and the 
prediction is that in a near future, with the development of better batteries, full 
hybrids, or plug-in hybrids, will be a must. These are full hybrids that have large 
enough batteries to make it meaningful to charge via the power grid. The plug-in 
hybrid has large enough batteries and strong enough electrical machine which enable 
pure electrical drive, at least for shorter distances to work etcetera. The internal 
combustion engine is used at heavy accelerations, at high speed and in hybrid drive 
when the state of charge is low. In such a case it is possible to encounter the problem 
that the three way catalyst is deactivated due to too low temperature due to cooling, 
by convection and radiation, when the internal combustion engine is turned off. This 
means that every time the internal combustion engine starts is potentially equal to a 
cold start, with the high amount of emission this brings, in a conventional vehicle. 
This would completely contradict and demolish the purpose of the development of 
hybrid vehicles as an environmentally friendly alternative to conventional vehicles. 

1.2 Purpose of the project 
In this rapport the problem with deactivation of the catalyst due to too low 
temperatures is investigated, this includes how long time it takes to deactivate the 
catalyst and how to prevent it from happening.  
This can be done by: 

• Controlling the internal combustion engine to start when the catalyst is 
reaching its deactivation temperature. 

• Maintaining high enough temperature, to prevent deactivation, in the catalyst 
by electrical heating. 

• Instantaneously heating the catalyst when the internal combustion engine is 
about to start to a catalyst temperature higher than the catalysts lightoff 
temperature. 

The investigation will also look into how location and insulation influences the 
temperature of the catalyst. 
In this project two types of hybrids are used, a mild parallel hybrid with similar 
properties to the hybrids available on the market today and a full hybrid. In the full 
hybrid case a plug-in parallel hybrid with strong enough electric machine to drive 
the car alone and large enough batteries to drive for about 40-50 km is used. 

1.3 Content 
To be able to investigate the problems that occur in hybrid vehicles when the 
catalyst is deactivated due to cooling a quite simple thermodynamic model of the 
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exhaust system is implemented in a parallel hybrid model where a set of control 
algorithms also are implemented, this is presented in chapter 2. Simulations of 
different scenarios are made, presented in chapter 3, and an analysis of the problem 
is presented in chapter 4 and 5. 
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2 The Model 
The model consists of an exhaust system model made in Matlab®, presented in 
chapter 2.1, and a model of a parallel hybrid made in Simulink®, presented in 
chapter 2.2. The exhaust system model is implemented in the parallel hybrid model 
and a control algorithm, presented in chapter 2.3, is also written to be able to 
investigate which of the methods presented in chapter 1.2 that is the most 
appropriate. 

2.1 Exhaust system model 
The exhaust system model consist of an exhaust pipe and a catalyst and is primarily 
a thermodynamic model, this because the main parameter of interest in this project is 
the temperature. This means that some simplifications have been done in the model.  
The model works discretely which means that the exhaust pipe and the catalyst are 
divided into a number of parts, n, and the heat transmission is calculated in each and 
one of the parts separately. 
The principle of the discrete system is shown in Figure 1 where the exhaust pipe is to 
the left and the catalyst is to the right. In the catalyst a characteristic channel is 
chosen, the blue-grey channel in Figure 1, and the other channels, the white channels 
in Figure 1, are approximated to function in the same way in terms of heat 
transmission. This results in that in a vertical cross-section of the catalyst all the 
channels will have the same temperature. This because the exhaust gas entering the 
catalyst from the exhaust pipe is assumed to be equally divided between the catalyst 
channels. Further on it is assumed that all the catalyst channels share the heat losses, 
due to radiation and convection, that occur at the outer catalyst wall. This results in 
that all the channels in a vertical cross-section have the same temperature which 
actually is the cross-section mean temperature in a physical catalyst where the outer 
channels are a bit cooler than the inner channels. 
An approximation that is made is that there is no heat conduction between the parts, 
this should however not be a major approximation because of the fact that both the 
exhaust pipe and the catalyst is divided in such a large number of parts, n=50 for the 
exhaust pipe and n=100 for the catalyst. The large number of parts results in that the 
temperature difference between two parts beside one and another is small, and 
thereby is the heat conduction almost non-existent. Technical data for the exhaust 
pipe and catalyst used is presented in Appendix 1. 
 

 
Figure 1, the principle of the discrete system. 

 
Figure 2 shows in a schematic way how the heat transmission in each part works, the 
grey arrows represent the exhaust gas, with a higher internal energy when ingoing 
comparing to outgoing, and the red arrows represent the energy dissipated to the 
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pipe or catalyst wall from the exhaust gas. The blue arrows represent energy 
dissipated from the wall to the surroundings through convection and radiation. 
 

 
Figure 2, a schematic image of the heat transition in one part of the discrete model. 

 
The reasoning above is valid when the exhaust gas has a higher temperature than the 
pipe or catalyst wall, in the case when the exhaust gas has a lower temperature than 
the pipe or catalyst wall the red arrows in Figure 2 will be pointing the other way 
and the pipe or catalyst wall will dissipate energy to the exhaust gas. This results in 
that the grey arrows in Figure 2 will change places, that is the exhaust gas has a 
higher internal energy when outgoing comparing to ingoing. 
 
The red arrows in Figure 2 are modelled by Equation 1, where Qt is the energy 
transferred from the exhaust gas to the pipe or catalyst wall.  
 

( ) tAhTTQ iiwallint Δ⋅⋅⋅−=  Equation 1 [5] 

 
Where Tin is the temperature of the exhaust gas when it goes into the part, compare 
to the bigger grey arrow to the left in Figure 2. Twall is the temperature of the pipe or 
catalyst wall, Ai is the inner area of the pipe or catalyst channel for one part and Δt is 
the time step used in the model. The heat transfer coefficient inside the pipe or 
catalyst channel, hi, is calculated by Equation 2. 
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The Darcy´s friction factor, f, is calculated by Equation 4 and Rei, Reynolds number 
inside the pipe or catalyst channel, is calculated by Equation 5 and Pri  is the Prandtl 
number inside the pipe or catalyst channel. Equation 3 is valid for turbulent flow, for 
laminar flow Nui is set to 2.98 [8]. 
 

( )( ) 264.1Reln79.0 −−⋅= if  Equation 4 [7] 

 

eg

ieg
i

Dv
ν
⋅

=Re  Equation 5 [9] 

 
Where egν  is the kinematic viscosity for the exhaust gas and veg is the speed of the 
exhaust gas and is calculated by Equation 6. 
 

eg

i
eg
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m

v
ρ

&

=  Equation 6 

 
Where m  is the mass flow ratio of the exhaust gas and ρ& eg  is the density of the 
exhaust gas. 
 
The blue arrows in Figure 2 are the sum of the heat losses to the surroundings 
through radiation and convection. The radiation losses, Qrad, is modelled by Equation 
7 and the convection losses, Qcon, is modelled by Equation 8 when no insulation is 
present. When insulation is added, Equation 12 models the energy losses due to 
convection, Qins.  
In the model there are no axial heat losses, only radial for both the catalyst and 
exhaust pipe. The largest approximation with this is in the catalyst inlet between the 
exhaust pipe and the catalyst, this transition is supposed to be smoothened out to a 
streamlined inlet, see the red lines in Figure 3, and is not a sharp edge as in the 
schematic picture in Figure 1. 
 

 
Figure 3, a schematic image of the streamlined catalyst inlet. 

 
A less important approximation is that the sheet metal casing around the honeycomb 
structured catalyst is assumed to have the same temperature as the honeycomb at all 
times which results in that the casing is cancelled from the equations for simpler 
calculation. If the casing would be accounted for in the model, Equation 8 would 
resemble Equation 12 and Equation 12 would have another term in the denominator. 
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When calculating the heat losses through radiation the surrounding temperature is 
approximated to Tamb, the air temperature outside the car. This temperature should in 
reality be higher because the internal combustion engine warms up the area 
surrounding the exhaust pipe and the catalyst but due to the complexity to 
approximate this temperature the ambient temperature is used. 
 

( ) tATTQ oambwallrad Δ⋅⋅⋅−= σ44  Equation 7 [10] 

 
Where σ  is the Stefan-Boltzmann’s constant and Ao is the outer area of the pipe or 
catalyst channel for one part. 
 
When calculating the heat losses through convection two important approximations 
are made. The first is that each and one of the channels in the catalyst in Figure 1 
share the heat losses equal among them, this means that a whole vertical cross 
section of the catalyst will have the same temperature. The second approximation is 
that the outer cooling air flow is perpendicular to the exhaust pipe and catalyst. This 
is of course not entirely true but this approximation is made because this represent a 
worst case scenario, the cooling will not be larger than this when the exhaust pipe or 
catalyst is parallel, or at an angle less than 90°, with the air flow. Besides the air flow 
under a car is complex and not easy to model. The same reasoning is used when 
approximating the exhaust pipe to a completely straight pipe as in Figure 1. 
 

( ) tAhTTQ ooambwallcon Δ⋅⋅⋅−=  Equation 8 [5] 

 
The heat transfer coefficient outside the pipe or catalyst wall, ho, is calculated by 
Equation 9. 
 

o

ambo
o D

Nuh λ⋅
=  Equation 9 [6] 

 
Where λamb is the thermal conductivity for the surrounding air and Do is the outer 
diameter of the pipe or catalyst channel. The Nusselt number outside the pipe or 
catalyst wall, Nuo is calculated by Equation 10, where C and b are taken from Table 1. 
 

3
1

PrRe o
b
cono CNu ⋅⋅=  Equation 10 [11] 

 
Recon <4000  C = 0.683 b = 0.466 
4000 < Recon < 40000 C = 0.193 b = 0.618 
Recon > 4000 C = 0.0.0266 b = 0.805 

Table 1, constants in Equation 10 [ [12]. 

 
Where Recon is Reynolds number outside the pipe or catalyst channel, calculated by 
Equation 11, and Pro  is Prandtl number outside the pipe or catalyst wall. 
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=Re  Equation 11 [9] 

 
Where ambν  is the kinematic viscosity for the surrounding air and vcar is the speed of 
the car. 
 
When calculating the heat losses through convection when insulation is present one 
more approximation is made, that all the heat that goes out to the environment from 
the insulation is coming into the insulation from the exhaust pipe or catalyst. This not 
only make the calculations easier but it is also highly reasonable that this is the case. 
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Equation 12 [5] 

 
Where λins is the thermal conductivity for the insulation, ri is the inner radius of the 
insulation, ro is the outer radius of the insulation and L is the length of each part in 
the exhaust pipe or the catalyst. 
 
To decide the ultimate insulation thickness the critical insulation thickness, rcrit , is 
calculated by Equation 13. If rcrit becomes smaller than ri the insulation will always 
have the desired effect, that is a insulating effect. If rcrit becomes larger than ri this is 
the optimal outer radius of the insulation. If the insulation is thinner the insulation 
does not have full effect and if the insulation is thicker the cooling becomes so large, 
due to the fact that the outer area increases in square with the insulation thickness, 
that the increased heat losses trough convection is larger than the savings due to 
increased insulation which results in poorer insulation properties. 
 

o

ins
crit h

r λ
=  Equation 13 [13] 

 
Besides the heat transmissions from the exhaust gas to the pipe and catalyst walls 
and the losses to the surrounding there are three major exothermic catalytic reactions 
when reducing the emissions. The energy release for each of them is presented in 
Table 2. 
 

CH4 + 2O2 → CO2 + 2H2O 801 kJ/mol CH4

2CO + O2 → 2CO2 283 kJ/mol CO 
2NO → N2 + O2 91 kJ/mol NO 

Table 2, exothermic catalytic reactions [14]. 

 
In reality 2NO → N2 + O2 does not happen by itself, only in combination with 
2CO + O2 → 2CO2 which results in 2NO +2CO → N2 +2CO2. This is however not a 
problem in the model because it is the same amount of energy that is released by this 
reaction as the sum of the heat released by the original two reactions listed in Table 2. 
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The energy released from these reactions is added to the catalyst wall following the 
graph in Figure 4. This due to the fact that the reaction speed has a direct dependence 
of the emission concentration and the temperature, which both reduces along the 
catalyst horizontal axis in Figure 1. This result in that most of the reactions will take 
place in the beginning of the catalyst as can be interpreted from Figure 4 [15]. 
 

 
Figure 4, the emission concentration in the catalyst. 

 
As can be seen in Figure 4 the total conversion ratio is set to about 90% [16] when the 
catalyst has reached the lightoff temperature for the different reactions. The lightoff 
temperatures used in the model is shown in Table 3. 
 

CH4 + 2O2 → CO2 + 2H2O 550 K 
2CO + O2 → 2CO2 600 K 
2NO → N2 + O2 500 K 

Table 3, lightoff temperatures [17]. 

 
The two major approximations that are made when the exothermic reaction is 
considered is that the curve in Figure 4 is constructed and that the conversion of 
emissions goes from zero to full conversion when the lightoff temperature is reached. 
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2.2 Hybrid model 
The hybrid model that is used in this project is a research and educational tool 
developed by Mats Alaküla et al. and is available at LTH for virtual studies on 
hybrid cars.  
To be able to implement the exhaust system model, presented in chapter 2.1, in the 
hybrid model additional maps over the internal combustion engine have to be 
implemented. This results in that, in addition to the existing map over the efficiency, 
maps over mass flow, exhaust gas temperature when leaving the engine and HC, CO 
and NOx mass flow maps are implemented in the hybrid models internal 
combustion engine block. The result after the implementation of the exhaust system 
model, which is made by using an embedded Matlab function, in the hybrid model is 
shown in Figure 5. 
 

 
Figure 5, an overview of the parallel hybrid model with the catalyst implemented. 

 
The type of hybrid that is used in this project is a parallel hybrid due to the fact that 
this system, in the opinion of the author, has the highest potential to have the lowest 
conversion losses. The parallel hybrid system is also the most cost efficient and has 
the highest adaptability to existing car platforms of the different hybrid systems on 
the market today [18]. 
 
A parallel hybrid has one internal combustion engine and at least one electrical 
machine, see Figure 6 that shows a schematic picture of how a parallel hybrid with 
one electrical machine positioned next to the clutch. It is however possible to have 
two electrical, or four, machines in the wheels for example. In this project Figure 6 
gives a good description of the hybrid model used. 
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Figure 6, a schematic picture of parallel hybrid [19]. 

 
The parallel hybrid works after the principle of always running the internal 
combustion engine at near optimum efficiency, this means when the power needed 
to drive the car cannot be delivered with high enough efficiency the internal 
combustion engine is turned off and the electrical machine fills in. If the state of 
charge is too low the electrical machine works as a generator either by the internal 
combustion engine operating at higher power than needed to drive the vehicle or by 
the dynamic energy of the vehicle when decelerating. The electrical machine also fills 
in dynamic changes of the traction power to limit the dynamic requirements of the 
internal combustion engine, thus contributing to lower fuel consumption and lower 
emissions [20]. 

 - 10 -



2.3 Control algorithm 
To be able to investigate the different scenarios presented in chapter 1.2 a set of 
control algorithms are implemented, an electrical heater for the catalyst is also 
implemented. 
All the control algorithms are hysteresis regulators which regulates on the state of 
charge in the batteries and the mean temperature in the catalyst. 
The implemented control algorithms are: 

• The original control algorithm, which starts the internal combustion engine 
when the state of charge reaches 20% and charge the batteries until the state of 
charge reaches 70%. This algorithm is designed without any consideration to 
the catalyst temperature or operation. The original control algorithm is kept 
for comparison. 

• The control algorithm which heats the catalyst, with an electrical heater, 
continuously which means that when the catalyst gets close to extinction 
temperature the electrical heater turns on and heats the catalyst. 

• The control algorithm which heats the catalyst, with an electrical heater of 
5 kW, to its lightoff temperature right before the internal combustion engine 
starts. This is done by predicting when the state of charge in the batteries 
reaches its minimum level which means that the internal combustion engine 
has to be started. This control algorithm does not account for the need of have 
to start the internal combustion engine before the state of charge in the 
batteries reaches its minimum, for example due to high power needed at 
heavy acceleration. 

• The control algorithm which keeps the catalyst over its extinction temperature 
by starting the internal combustion engine when the catalyst gets close to the 
extinction temperature which heats the catalyst. When the internal 
combustion engine is started it will be run in the same way as in the original 
control algorithm, that is in normal hybrid drive mode. If the temperature 
does not get low enough the internal combustion engine will start when the 
state of charge reaches 20% anyway just as in the original control algorithm. 

• The last control algorithm works just as the third with the exception that when 
the internal combustion engine is on, it keep on running until the state of 
charge has reached 70%. 
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3 Simulations 
Two types of simulations are performed, the first, presented in chapter 3.1, is 
performed to show the characteristics of the exhaust system model and the second, 
presented in chapter 3.2, are showing how the system works when inserted in two 
types of hybrid vehicles. 

3.1 Exhaust system model characteristics 
To be able to show the characteristics of the exhaust system model a simple drive 
cycle is designed, the vehicle accelerate the first 120 seconds to 108 km/h then 
maintain this speed, using only the internal combustion engine. After 240 seconds, 
that is 120 seconds after the acceleration stops, the internal combustion engine is 
turned off to simulate electrical drive in a hybrid vehicle. The driving cycle is showed 
in Figure 7. 
 

 
Figure 7, the speed of the drive cycle used when showing the characteristics of the exhaust system model. 

 
The simulation is done with, see Figure 8, and without insulation, see Figure 9. 
Technical data for the insulation of the exhaust pipe and catalyst is presented in 
Appendix 1. Due to the fact that the critical insulation thickness calculated according 
Equation 13 becomes smaller than the inner diameter of the exhaust pipe and catalyst 
channel respectively the insulation can be chosen to a certain thickness according to 
chapter 2.1, in this case 10 mm. 
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Figure 8, Exhaust system with insulation characteristics. 

 

 
Figure 9, Exhaust system without insulation characteristics. 

 
In Figure 8 and Figure 9 the 50 first parts is the exhaust pipe and the following 
100 parts is the catalyst as mentioned in chapter 2.1 and illustrated in Figure 1. 
The little notch that is visible right before the temperature becomes constant appear 
because the mass flow is higher when the car accelerate comparing to when it keeps 
the final constant velocity, see Figure 7. 
What is an interesting phenomenon that can be seen in Figure 8 and Figure 9 is that 
the maximum heat is not at the edge in the beginning of the catalyst but a little bit in. 
This is because of the exothermic catalytic reactions which actually heats the exhaust 
gas resulting in that the walls gets warmer than the exhaust gas where the reactions 
occurs, or slightly after, which is mainly in the beginning of the catalyst as mentioned 
in chapter 2.1. 
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3.1.1 Results 
Evidently the insulated exhaust system cools off in a slower pace which is better in 
this case, at least if the catalyst is to be kept warm electrically, because then the 
catalyst does not have to be heated so much. 

3.2 Hybrid vehicle simulations 
Two types of vehicles are simulated, the full hybrid where it is anticipated that the 
deactivation of the catalyst is a problem, see chapter 1, and the mild hybrid where it 
is expected that the deactivation of the catalyst is not a significant problem since the 
internal combustion engine is not turned off for any longer periods of time due to the 
very short periods of pure electric drive due to the relatively small batteries installed 
in the mild hybrid. 
Here it is important to realize that even though both the full and the mild hybrid are 
driven in depletion mode here, usually the mild hybrid is not driven in depletion 
mode. The reason why the mild hybrid is driven in depletion mode here is to 
simulate a worst case scenario. This because the mild hybrid can not drive pure 
electrical for a longer distance in ordinary mode than in depletion mode, which 
means that the catalyst will always have a higher temperature in ordinary hybrid 
mode comparing to depletion mode. 
The simulation parameters for the hybrid cars is chosen in respect to the most cost 
efficient way to design a hybrid car [18], the parameters is shown in Table 4. 
 

 Mild Hybrid Full Hybrid 
ICE Power 66 kW 66 kW 
EM Power 15 kW 40 kW 
Battery 20 kg 125 kg 

Table 4, simulation parameter for the two vehicles simulated [18]. 

 
The internal combustion engine used to create the maps, see chapter 2.2, is a 2.3 l 
turbo Otto engine which seems a bit big, especially for the full hybrid. This was 
however the only engine available with complete maps, besides the internal 
combustion engine power is limited as shown in Table 4 anyway. This can also be 
seen in the third plot from the left in Figure 10 where the upper red line is the 
maximum torque and the blue lower line is the optimum torque work point for the 
internal combustion engine.  
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The properties of the internal combustion engine used are illustrated in Figure 10. 
 

 
Figure 10, internal combustion engine properties. 

 
The properties of the electrical machines used, the 15 kW to the left and the 40 kW to 
the right, are illustrated in Figure 11. 
 

       
Figure 11, electrical machines properties. 

 
To be able to get a repetitive behavior in the simulation data longer driving cycles is 
constructed by adding ten eudc, which simulate urban driving, respectively ten us06, 
which simulate highway driving, to create ten times longer driving cycles, see  
Figure 12. These two will further on only be referred to as eudc respectively us06 
because the ordinary single driving cycles will not be used henceforth. 
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Figure 12, the driving cycles used when simulating vehicles. 

 
In Figure 12 the speed is plotted as a function of both time and distance to be able to 
do an easy translation between distance covered and elapsed time henceforth. 
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3.2.1 Mild Hybrid 
An overview of the simulations done with the mild hybrid vehicle is shown in  
Table 5 which also show the average fuel consumption in the different simulations. 
Each and one of the simulations will be explained more closely in connection with 
the plots, see Figure 13 to Figure 22. 
 

Driving cycle 
Control algorithm 

eudc, no 
insulation 

eudc, with 
insulation 

us06, no 
insulation 

us06, with 
insulation 

Original 6.524 6.524 7.083 7.083 
Continuously  
electrically heated 7.180 6.567 7.160 7.110 

Instantaneously 
electrically heated 6.725 6.692 7.178 7.093 

Continuously heated by 
the ICE 7.042 6.623 7.102 7.089 

Continuously heated by 
the ICE up to 70% SOC  5.371 6.137 7.123 7.075 

Table 5, fuel consumption (l/100 km) in the different simulations of a mild hybrid. 

 
Because the simulation graphs when the exhaust system is insulated and when it is 
not looks very similar only the plots with insulation will be presented here, see 
Figure 13 to Figure 22.  
In each simulation five graphs is presented;  

• The amount of emissions converted. 
• If the electrical heating is on or off (on=1 and off=0). 
• If the internal combustion engine is on or off (on=1 and off=0). 
• The state of charge of the batteries. 
• The mean temperature in the catalyst.  
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Figure 13 and Figure 14 show graphs from the simulation with the original control 
algorithm. The most important thing to realize in this simulation is that in the 
conversion graph dips are shown every time the internal combustion engine starts, at 
least in the eudc case. This means that deactivation due to too low temperature in the 
catalyst occurs. 
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Figure 13, simulation of a mild hybrid with insulation tested with eudc and the original control algorithm. 

 

 
Figure 14, simulation of a mild hybrid with insulation tested with us06 and the original control algorithm. 
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Figure 15 and Figure 16 show graphs from simulations with the algorithm where the 
electrical heater continuously heating the catalyst to prevent deactivation due to too 
low temperature. The most important thing to notice in these graphs is that the 
temperature always stays over the lightoff temperature and that the electrical heater 
turns on at even intervals. 
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Figure 15, simulation of a mild hybrid with insulation tested with eudc and the continuously electrically 

heated catalyst control algorithm. 

 

 
Figure 16, simulation of a mild hybrid with insulation tested with us06 and the continuously electrically 

heated catalyst control algorithm. 
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Figure 17 and Figure 18 show graphs from simulations with the algorithm where the 
electrical heater heats the catalyst to its lightoff temperature right before the internal 
combustion engine starts. It can be noticed that some dips are present in the 
conversion graph but is not a problem because they are so small. In a real car this 
could simply be fixed by saying that the internal combustion engine is not allowed to 
start before the catalyst have reached its lightoff temperature, which would delay the 
start a couple of seconds in the cases where a dip in the conversion graph is shown 
and maybe bring the start forward a couple of second in the case where the dips is 
not present. An important thing to notice in this simulation is that the electrical 
heater is only on right before the start of the internal combustion engine and in 
between, when the internal combustion engine is off, the catalyst is allowed to cool 
off below its lightoff temperature. 
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Figure 17, simulation of a mild hybrid with insulation tested with eudc and the instantaneously electrically 

heated catalyst control algorithm. 

 

 
Figure 18, simulation of a mild hybrid with insulation tested with us06 and the instantaneously electrically 

heated catalyst control algorithm. 
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Figure 19 and Figure 20 show graphs from simulations with the algorithm where the 
internal combustion engine continuously heating the catalyst to prevent deactivation 
due to too low temperature. The most important thing to notice in these graphs is 
that the temperature always stays over the lightoff temperature and that the internal 
combustion engine turns on at even intervals. 
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Figure 19, simulation of a mild hybrid with insulation tested with eudc and the continuously heated 

catalyst by the internal combustion engine control algorithm. 

 

 
Figure 20, simulation of a mild hybrid with insulation tested with us06 and the continuously heated 

catalyst by the internal combustion engine control algorithm. 
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Figure 21 and Figure 22 show graphs from simulations with the algorithm where the 
internal combustion engine continuously heating the catalyst to prevent deactivation 
due to too low temperature. The difference from the previous control algorithm is 
that when the internal combustion engine starts it keeps on running until the state of 
charge is 70 % which can be seen in the SOC graphs when comparing Figure 19 and 
Figure 20 with Figure 21 and Figure 22. Also in this simulation the temperature 
always stays over the lightoff temperature. The internal combustion engine get a 
behavior intermediary the previous control algorithm and the original control 
algorithm. 
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Figure 21, simulation of a mild hybrid with insulation tested with eudc and the continuously heated 

catalyst by the internal combustion engine up to 70% state of charge control algorithm. 

 

 
Figure 22, simulation of a mild hybrid with insulation tested with us06 and the continuously heated  
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3.2.1.1 Results 
Figure 13 and Figure 14 clearly show that deactivation due to too low temperature in 
the catalyst is a problem in a mild hybrid. Table 5 clearly shows that the best control 
algorithm is when the internal combustion engine starts when the temperature get 
close to extinction temperature and then run until the state of charge of the batteries 
is 70%. From Figure 21 and Figure 22 the interpretation is that the function of the 
hybrid in untouched when this control algorithm is used. The reason why the fuel 
consumption is lower for the eudc cycle with no insulation in this case is because the 
efficiency in the driveline becomes higher when the mean value of the state of charge 
is higher. This effect however the distance the hybrid can travel in electrical drive 
only and therefore it is better to have insulation present anyway. 
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3.2.2 Full Hybrid 
An overview of the simulations done with the full hybrid vehicle is shown in Table 6 
which also show the average fuel consumption in the different simulations. Each and 
one of the simulations will be explained more closely in connection with the plots, 
see Figure 23 to Figure 32. 
 

Driving cycle 
Control algorithm 

eudc, no 
insulation 

eudc, with 
insulation 

us06, no 
insulation 

us06, with 
insulation 

Original 6.657 6.657 7.894 7.894 
Continuously  
electrically heated 8.723 7.638 8.759 8.282 

Instantaneously 
electrically heated 7.033 7.015 8.197 8.185 

Continuously heated by 
the ICE 6.465 6.796 7.931 7.895 

Continuously heated by 
the ICE up to 70% SOC  6.452 6.422 7.785 7.905 

Table 6, fuel consumption (l/100 km) in the different simulations of a full hybrid. 

 
Because the simulation graphs when the exhaust system is insulated and when it is 
not looks very similar only the plots with insulation will be presented here, see 
Figure 23 to Figure 32.  
In each simulation five graphs is presented;  

• The amount of emissions converted. 
• If the electrical heating is on or off (on=1 and off=0). 
• If the internal combustion engine is on or off (on=1 and off=0). 
• The state of charge of the batteries. 
• The mean temperature in the catalyst.  
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Figure 23 and Figure 24 show graphs from the simulation with the original control 
algorithm. The most important thing to realize in this simulation is that in the 
conversion graph dips are shown every time the internal combustion engine starts. 
This means that deactivation due to too low temperature in the catalyst occurs. 

 - 30 -



 
Figure 23, simulation of a full hybrid with insulation tested with eudc and the original control algorithm. 

 

 
Figure 24, simulation of a full hybrid with insulation tested with us06 and the original control algorithm. 
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Figure 25 and Figure 26 show graphs from simulations with the algorithm where the 
electrical heater continuously heating the catalyst to prevent deactivation due to too 
low temperature. The most important thing to notice in these graphs is that the 
temperature always stays over the lightoff temperature and that the electrical heater 
turns on at even intervals. 
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Figure 25, simulation of a full hybrid with insulation tested with eudc and the continuously electrically 

heated catalyst control algorithm. 

 

 
Figure 26, simulation of a full hybrid with insulation tested with us06 and the continuously electrically 

heated catalyst control algorithm. 
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Figure 27 and Figure 28 show graphs from simulations with the algorithm where the 
electrical heater heats the catalyst to its lightoff temperature right before the internal 
combustion engine starts. The most important thing to notice in this simulation is 
that the electrical heater is only on right before the start of the internal combustion 
engine and in between, when the internal combustion engine is off, the catalyst is 
allowed to cool off below its lightoff temperature. 
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Figure 27, simulation of a full hybrid with insulation tested with eudc and the instantaneously electrically 

heated catalyst control algorithm. 

 

 
Figure 28, simulation of a full hybrid with insulation tested with us06 and the instantaneously electrically 

heated catalyst control algorithm. 
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Figure 29 and Figure 30 show graphs from simulations with the algorithm where the 
internal combustion engine continuously heating the catalyst to prevent deactivation 
due to too low temperature. The most important thing to notice in these graphs is 
that the temperature always stays over the lightoff temperature and that the internal 
combustion engine turns on at even intervals. 
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Figure 29, simulation of a full hybrid with insulation tested with eudc and the continuously heated catalyst 

by the internal combustion engine control algorithm. 

 

 
Figure 30, simulation of a full hybrid with insulation tested with us06 and the continuously heated catalyst 

by the internal combustion engine control algorithm. 
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Figure 31 and Figure 32 show graphs from simulations with the algorithm where the 
internal combustion engine continuously heating the catalyst to prevent deactivation 
due to too low temperature. The difference from the previous control algorithm is 
that when the internal combustion engine starts it keeps on running until the state of 
charge is 70 % which can be seen in the SOC graphs when comparing Figure 29 and 
Figure 30 with Figure 31 and Figure 32. Also in this simulation the temperature 
always stays over the lightoff temperature. The internal combustion engine get a 
behavior intermediary the previous control algorithm and the original control 
algorithm. 
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Figure 31, simulation of a full hybrid with insulation tested with eudc and the continuously heated catalyst 

by the internal combustion engine up to 70% state of charge control algorithm. 

 

 
Figure 32, simulation of a full hybrid with insulation tested with us06 and the continuously heated catalyst 

by the internal combustion engine up to 70% state of charge control algorithm. 
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3.2.2.1 Results 
As for the mild hybrid also Table 6 clearly shows that for the full hybrid the best 
control algorithm is when the internal combustion engine starts when the 
temperature get close to extinction temperature and then run until the state of charge 
of the batteries is 70%. However from Figure 31 and Figure 32 the interpretation that 
the function of the hybrid is untouched when this control algorithm is used is not 
true because of the fact that in a full hybrid, especially a plug-in hybrid, it is desirable 
to drive as much as possible in electrical drive only, so if this control algorithm is 
used the hole idea with the plug-in hybrid is destroyed. The reason why some 
driving cycles with control algorithms involving the internal combustion engine have 
lower fuel consumption when not insulated is because the efficiency in the driveline 
becomes higher when the mean value of the state of charge is higher. 
It is more reasonable to use the instantaneously electrically heated catalyst control 
algorithm and Table 6 clearly shows that this control algorithm is the most 
favourable when the internal combustion engine should be turned off as much as 
possible. From Figure 27 and Figure 28 the interpretation that the functionality of the 
full hybrid is untouched is made for this control algorithm.  
The result of the simulation lean however at that it does not matter if insulation is 
present or not which is not a surprise since the control algorithm allow the catalyst to 
cool down below its lightoff temperature and since both the catalyst with insulation 
and the catalyst without insulation is cooled to ambient temperature in between 
when the internal combustion engine is off the insulation does not make a great 
difference. The recommendation is however to have some insulation present due to 
the fact that the driving cycles used is rather kind to the hybrids car and does not 
have any heavy accelerations where the internal combustion engine goes in and 
helps the electrical machine. In such a case the insulation can make a bigger 
difference due to the fact that it takes longer to cool the catalyst, see chapter 3.1, 
which results in that the catalyst does not have to be heated as much to reach its 
lightoff temperature. 
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4 Discussion  
The position of the catalyst, that is the length of the exhaust pipe, was also 
investigated but the conclusion was drawn quite early that this mainly influenced the 
lightoff time when starting the internal combustion engine and because the desire in 
this project is to never be under the lightoff temperature when starting the internal 
combustion engine this was not investigated further. 
 
In the simulations the exhaust pipe were insulated but further simulations showed 
that this does not do any significant different for the result so the insulation of the 
exhaust pipe can be omitted due to economical factors. 
 
An important aspect to mention is that the control algorithms used in this project is 
stock examples and is only representative which means that in a real hybrid a 
combination and clarification of the control algorithms is to needed.  
An example is that when using the instantaneously electrically heated catalyst it can 
be controlled so that the heating begin at a certain state of charge and then when the 
temperature is high enough the internal combustion engine starts never mind the 
state of charge, this will save energy.  
Another example is if the continuously heated catalyst is used, then an adjustable 
heater, that only heats the catalyst with the amount of heat that is lost through 
convection and radiation, can be used instead of the hysteresis regulator 
implemented in this project, this will save energy. 
 
If the control algorithm that use the internal combustion engine to heat the catalyst is 
used an consideration should be done if the battery can be synchronized so that the 
batteries need to be charged and the catalyst need to be heated coincide with each 
other. 
 
In this project the control algorithms regulate regarding to the highest lightoff 
temperature in Table 3 which is not necessary because the extinction temperature is 
lower than the lightoff temperature due to hysteresis properties of the catalyst [21]. 
This hysteresis is however very dependent on the catalyst properties and is not very 
well known as far as the author could find out. Lowering the temperature on which 
the control algorithms regulate would of course lower the energy consumption 
needed to avoid extinction of the catalyst. 
 
Even though the control algorithm with the instantaneously electrically heated 
catalyst does not account for the need of have to start the internal combustion engine 
before the state of charge in the batteries reaches its minimum, for example due to 
high power needed at heavy acceleration, it is a great help to decrease the lightoff 
time essentially when the internal combustion engine is started. 
 
An interesting idea is that if the control algorithm with the instantaneously 
electrically heated catalyst is used it may be enough to heat the first 20-30% of the 
catalyst and let the exothermic reactions heat the rest of the catalyst, because it is in 
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the first 20-30% most of the reactions occur which is shown in Figure 4, in this way 
70-80% energy can be saved when heating the catalyst. 
 
Something that is very important not only in this project but also for the whole 
development of hybrid vehicles is the batteries. In this project the batteries is 
assumed to have an energy content of 0.1 kWh/kg and to be able to deliver power of 
1-2 kW/kg but in pace with continuously developing of better batteries the quality of 
the hybrid vehicles will improve dramatically. 

4.1 Future work 
There are several opportunities to future work on this area, a few examples are: 

• Optimize insulation thickness of the catalyst due to cooling properties and 
economics. 

• Optimize an advanced control algorithm that work in all types of hybrid cars 
for all types of driving. 

• Investigate the hysteresis between lightoff temperature and extinction 
temperature in a three way catalyst for the major reactions including HC, CO 
and NOx. 

• Investigate how the smartest heating of a catalyst should be done. Should only 
the first 20 % be heated or should the ingoing air be heated instead or can 
waste heat from for example the power electronics be used to heat the 
catalyst? 

• An investigation of the batteries is always interesting in this area and how to 
optimize the drive range of especially a plug-in hybrid without ignoring the 
economical aspects is a highly relevant question. 

• The most optimal further work would be to be able to do simulation and 
measuring on a real vehicle to test the conclusions in this thesis. 
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5 Conclusions 
The main, and most important, conclusion that can be drawn from this project is that 
this is a real problem, not only for the full hybrids but it is also for the mild hybrids. 
This is of course a major concern if the car manufactures have ignored this potential 
environmental disaster which means that the hybrid cars is potentially even more 
damaging for the environment than the conventional cars. 
 
Furthermore the conclusion that different kinds of hybrid cars demands different 
kinds of control algorithms is of course important to think of when designing hybrid 
cars in the future.  
 
In a mild hybrid the best way to avoid catalyst extinction is to start the internal 
combustion engine when the temperature in the catalyst gets close to extinction 
temperature or if the state of charge in the batteries gets to low and then charge the 
batteries at the same time as the catalyst heats up until the batteries are full.  
 
In a full hybrid it is better to let the catalyst extinguish and then electrically heat the 
catalyst to its lightoff temperature right before the internal combustion engine starts. 
One of the best things with this method is that this can be done before all cold starts 
of the internal combustion engine which completely takes away the high emissions 
when cold starting before the catalyst reach its lightoff temperature in conventional 
vehicles. 
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Appendix 1 
 

Exhaust pipe 
Length 0.6 m 
n, the number  of parts the exhaust pipe is 
divided into in the discrete model 

50 

Outer diameter 0.055 m 
Wall thickness 0.001 m 
Specific heat capacity 460 J/(Kg K) [22] 
Density 7800 Kg/m3 [22] 
 

Catalyst 
Length 0.3 m 
n, the number  of parts the catalyst channel 
is divided into in the discrete model 

100 

Diameter 0.1 m 
Cell density 620000 cells/m2 [23] 
Channel diameter 0.0014 m [23] 
Channel wall thickness 13.6 % of the channel diameter [24] 
Specific heat capacity 1200 J/(Kg K) [23] 
Density 2000 Kg/m3 [23] 
 

Insulation 
Thickness 0.01 m 
Thermal conductivity 0.104 W/(m K) [25] 
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