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Abstract 
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Purpose  The purpose is to create an algorithm that will make it possible to control 

induction motors without sensors. The idea is based on former research 
that consists of a method where the author of a doctoral thesis uses 
estimation instead of measuring to find out the speed of the rotor. Certain 
delimitations will be used in order to save memory and simplify the 
Matlab code. 

 
Method  After interpretation of the doctoral thesis a program for the algorithm is 

written in the Matlab language. This algorithm is later to be implemented 
in Simulink via a so called S-function to be able to simulate and evaluate 
the results. 

 
Conclusion  The filters turn out to show unstable results with a rotor speed that keeps 

on growing instead of stabilize when reaching its expected value. Since 
the theory shows that this filter set-up should be stable, it is interesting to 
keep on working on the algorithm in order to improve the performance of 
the filters.  
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1 Introduction 
 

1.1 Background 
 
Induction motors are electromechanical systems suitable for a large spectrum of 
industrial applications. It is necessary to be able to control the speed of these motor 
drives and the most common way of doing this is by using vector control. This method 
requires a speed sensor which is usually placed on the rotor shaft of the machine. The 
speed sensor has some disadvantages though, since it - besides from being costly - also 
reduces the robustness and reliability of the induction motor.  
 
Consequently this has opened a new interesting area for research and during the last few 
years a variety of different solutions has reached the market and sensorless control has 
become industrial standard for medium and low performance applications. Artificial 
intelligence and neural networks are two examples of this new technology but they both 
show weak performance under speed changes and they also need offline calculations to 
work correctly. Since the induction motor is represented by a fifth order, nonlinear 
model with unknown state variables and external inputs, sensorless control is a 
challenging theoretical problem1. 
 
One of the results of all the research that has been made within this area is a doctoral 
thesis called “Motor speed estimation with sensorless vector control, employing an 
extended Kalman filter with estimation of the covariance of the noises”, written by 
Jaime Antonio Gonzalez Castellanos2. In this thesis the author presents a solution of 
control of an induction motor without sensors where he uses an extended Kalman filter 
together with a quadratic filter in order to estimate the noise covariance matrices. These 
matrices are necessary for the calculations in the Kalman filter. 
 

1.2 Purpose 
 
Good results were obtained in the doctoral thesis and the aim of this master thesis is to 
take that work a little bit further. The main change is that the rotor speed will no longer 
be considered constant, which is a pretty rough approximation, but will instead be 
estimated in a completely closed system. 
 

1.3 Method 
 
After spending time on understanding the theory of the doctoral thesis, the work 
basically consists in creating an algorithm based on this theory but with modifications to 
suit the new idea. The algorithm is to be written in Matlab language and then 
implemented, with help of an S-function, in Simulink for simulations. 
 

                                                 
1 http://www-lar.deis.unibo.it/woda/spider/af74.htm
2 Gonzalez Castellanos J. A., (2004) 
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1.4 Delimitations 
 
When writing the program in Matlab it is necessary to make some modifications in 
order not to occupy too much memory. Otherwise the memory would keep on growing 
and in the end require very much space, which partly would be very costly but at the 
same time it would also take a lot of time to execute the program. 
 

1.5 Results 
 
The filters do not manage to give desired results. It turns out to be difficult to control the 
system and the speed keeps on growing instead of stabilize in one expected value. In 
other words the filters act like they were unstable and apparently there is something in 
the algorithm that does not work satisfactory. 
 

1.6 Thesis contents 
 
The report starts with a theoretic part, explaining the background and former research. 
Then follows a part of algorithm creation, simulations and evaluations and finally a 
discussion with sum up, conclusions and proposals on further research. 
 
Chapter 2: Controlling the induction machine gives a presentation of the induction 
machine and sensorless control in general and in Chapter 3: Specification of the actual 
problem a short explanation of the specific problem being handled in this thesis is 
presented. Chapter 4: Filtering treats filter theory, especially talking about the Kalman 
filter and its extended version, followed by an explanation of the secondary filter in 
Chapter 5: The quadratic filter. Further on, in Chapter 6: Building the algorithm, the 
actual algorithm is shown before reaching the simulations in Chapter 7: Simulations and 
results where some simulation issues are discussed before presenting the results. Finally 
in Chapter 8: Conclusions the thesis is wounded up with a discussion around the results. 
 
In the end an appendix containing the algorithm written in Matlab code is to be find. 
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2 Controlling the induction machine 
 

2.1 The induction machine 
 
As mentioned in the introduction the induction machine, also known as asynchronous 
machine, is the most common type of electrical machine seen today in practice. It is 
used in high power as well as low power applications and obviously being so popular 
because of its cheap and simple construction1.  
 

2.1.1 The motor model 
 
To understand the basic theory of this work it is necessary to have some knowledge of 
the induction motor itself. The dynamic model of the induction motor can be described 
in stator coordinates by the following equations: 
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where the first vector is the state x(k), the last vector is the input u(k) and the output 

y(k) is given by C·x(k), where . The output consists in other words 

of the currents i
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sd and isq. In this description the original motor model has been 
discretized and is to be sampled with an interval denoted by D. There has also been 
added a new state, ωr, which is the state wished to be estimated. As a consequence of 
adding this new state, the motor model is no longer linear. Further on: 
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1 Alaküla M., (2001) 

 6



where . 
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2.2 Sensorless control 
 
The aim is to apply sensorless control to this machine and to do so by using two filters. 
An extended Kalman filter will work together with a quadratic filter in order to first 
linearize the non-linear system of this motor drive, then use the Kalman filter itself and 
eventually calculate the noise covariance matrices which are needed for the Kalman 
filter calculations.  
 
The equation above can be written as x(k) = A(k-1, )·x(k-1) + B·u(k-1) with k 
representing a new iteration, the time. Then, as we wish to apply Kalman filter theory, 
the noises are simply added to the equations as follows: 

1-k
rω

 
x(k) = A(k-1, )·x(k-1) + B·u(k-1) + G·v(k-1) 1-k

rω
y(k) = C·x(k) + w(k) 
 
Knowing that G is a weighting matrix for the noise of the system and can be chosen 
easily, these equations give us two unknowns: v(k-1) and w(k). They are noise 
sequences which can be represented by their covariance matrices Q and R and 
consequently need to be calculated or estimated. In this case a secondary filter, the 
quadratic filter, will be used to estimate the optimal values of the noise covariance 
matrices. Observing the order of performance, the initial values of the unknown 
covariance matrices are obviously important1. 
 
The purpose of the sensorless control is to estimate the motor speed, ω r, instead of 
measuring it. Thus, an extended Kalman filter will after each iteration, for every new k, 
give a new value of ω r – the rotor speed. The value of the rotor speed is needed in order 
to perform vector control. Vector control is the name of a group of methods that are 
based on the motor model. The methods consist in controlling the torque without being 
dependent on the currents that produce the flux and the torque. A Simulink model gives 
a better picture of how the induction machine works without sensorless control: 

                                                 
1 Gonzalez Castellanos J. A., (2004) 
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Figure 1. Simulink model of an induction motor with vector control. 
 
 
To sum up the ideas of this general problem, the goal is to estimate the rotor speed with 
the help of two filters – an extended Kalman filter and a quadratic filter. The quadratic 
filter, also referred to as the secondary filter, is used in order to estimate optimal values 
of the noise covariance matrices Q and R which are needed for the performance of the 
Kalman filter calculations. 
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3 Specification of the actual problem 
 
 
The ideas presented in the previous chapter underlie the doctoral thesis, “Motor speed 
estimation with sensorless vector control, employing an extended Kalman filter with 
estimation of the covariance of the noises”, by Jaime Antonio Gonzalez Castellanos, 
mentioned in the introduction. In this work the author managed to obtain very good 
estimates of the rotor speed.  
 
First of all it will therefore be necessary to create a program (which will be written in 
Matlab) for the algorithm that will give these estimates. Thus, the estimation of the rotor 
speed will be made in a way similar to the method used in the doctoral thesis. Then, in 
order to proceed with the research made in this doctoral thesis, the aim is to make the 
whole system work as a completely closed system. This idea is explained in Figure 2: 
 

 
Figure 2. Simulink model of an induction motor with vector control and sensorless control. 
 
Observe the important difference in the “INDUCTION MOTOR”-box and the output 
“om” that refers to omega, ωr, in other words the rotor speed. This parameter is no 
longer the input to the omega in the “AC-DC CONVENTION”-box where it has been 
replaced with the ωr estimated in “THE ESTIMATOR”, the box that performs the 
sensorless control. 
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4 Filtering 
 
 
There exist many methods for speed estimation in induction machines. One category 
that shows good performance is the kind of methods based on vector control where the 
motor model makes it possible to estimate the speed. Among these methods the 
extended Kalman filter is one of the more successful. To be able to understand the 
implementation of the methods used in this project will in this chapter be given a more 
detailed filter theory description. 
 

4.1 The Kalman filter 
 
The Kalman filter and its extended version are efficient and robust speed estimators for 
linear and non-linear systems respectively. The filters use knowledge of the dynamic 
system, its statistic characteristics and noise sources in order to produce an optimal 
estimate of the state and at the same time minimize the covariance error. 
 
The filter is formed in terms of the state variables of the system and its solution is 
recursively computed. This means that every time an estimated state is updated, the only 
information that is needed in order to compute this new state is the previously estimated 
values and the new information given from the system at the current time. It is therefore 
necessary to store only the information of the value estimated most recently because at 
every new instant the new estimation is a projection on the former estimations1. 
  
But the Kalman filter needs certain information to be able to work in this way. First of 
all the filter has to have some knowledge of the basic parameters of the system. Then it 
is also necessary to know the values of the noise covariance matrices – of the system as 
well as of the observations. There are special methods to obtain the optimal values of 
these matrices. If there is lacking information about one or more of these matrices, the 
filter will be called sub-optimal. 
 
The purpose of the Kalman filter is to produce an algorithm that makes it possible to 
compute an optimal estimate and the error of the covariance (which in this report will be 
referred to as P). The non-linear system on which this is applied can be described by the 
following equation: 
 
x(k) = A(k-1, )·x(k-1) + B·u(k-1) + G·v(k-1) 1k

rω
−

 
where: 
x(k) = the state vector of length n at time k, 
A = a non-singular matrix for state transition of size n x n, depending on and 
therefore non-linear. 

1k
rω
−

u(k-1) = the input vector at time k-1, 
G = a weighting matrix for the noise of the system of size n x n, 
v = a vector to describe the noise sequence of length r. 
 

                                                 
1 Luenberger D. G., (1969) 
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The noise is of so called white Gaussian type, or normal distributed in other words, 
which means that its values are random, Gaussian (normal distributed) variables, 
uncorrelated and with zero mean when time goes towards infinity. When this is the case 
the noise can be totally represented by its covariance. Consequently the expected value  
 

⎩
⎨
⎧ =

=
k≠mfor          0
kmfor         Q

 }vE{v mk  

  
The observation system, or the output, is represented by: 
 
y(k) = C·x(k) + w(k) 
 

and its noise characteristics given by  
⎩
⎨
⎧ =

=
k≠mfor          0
kmfor         R

 }wE{w mk

  

4.1.1 The Kalman filter algorithm 
 
As described above the Kalman filter uses a recursive way to solve the problem. This 
can be seen clearly in the algorithm which is performed in the following steps: 
 
 · Prediction of the state 
   

xf(k) = A(k-1, )·x1-k
rω

a(k-1) + B·u(k-1) 
 
 · Estimation of the matrix of the covariance error 

 
PP

f(k) = Ψ(k-1)·Pa(k-1)·ΨT(k-1) + G·Q(k-1)·GT

 
 · Calculation of the gain of the Kalman filter 
   

KKB(k) = Pf(k)·CT [C·Pf·(k)·CT + R(k-1)]-1

 
 · Estimation of the state 

 
xa(k) = xf(k) + KKB(k) [y(k) – C·xf(k)] 

 
 · Updating the matrix of the estimation covariance error 
   

PP

a(k) = [I – KKB(k)·C] Pf(k) 
 
 
where Ψ(k-1) is the derivative of the matrix A(k-1, ) with respect to x(k-1). 1-k

rω
 
Observe that when calculating xa(k) (the new state value) the Kalman filter gain is 
multiplied with the error of the output – the innovation. The innovation process has an 
important part of the solution in this work and the innovations are defined by: 
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η(k) = y(k) – C·xf(k) 
 
where xf(k) equals the predicted x at time k, knowing the value of x(k-1). 
 
The innovation process consists in creating a quadratic output, using estimators for the 
second order innovation moments E{η(k)·ηT(k-m)}, where 0≤m≤k. In other words the 
new innovation, at time k, is multiplied with the old innovations, at time k – m. One 
important quality of the innovations is that when m = 0, they are orthogonal one to 
another, from which follows that E{η(k)·ηT(k)} = 01. 
 

4.2 The extended Kalman filter 
 
Since we are working with a system that is non-linear, the ordinary Kalman filter is not 
a filter that will solve our problems. But it is possible, through a process of linearization, 
to extend the Kalman filter in order to use it on a non-linear system. This extended 
Kalman filter first linearizes the non-linear state from time k-1 and then in its next step, 
at time k it uses this linearized state in the normal Kalman filter. Here, it is this extended 
Kalman filter that is called the primary filter and is represented by the formulas given 
above in the algorithm. 
 
As mentioned in the beginning of this chapter it is necessary to know some of the basic 
parameters and to have knowledge of the noise covariance matrices. In this case the 
noise covariance matrices of the system and of the observation, Q and R respectively, 
are unknown and the filter will in other words be sub-optimal.  
 

4.3 The sub-optimal filter 
 
When one or more matrices are not fully known they will be replaced with a 
corresponding matrix and the filter will be called sub-optimal. In this case the S-
matrices will represent the optimal P-matrices from the extended Kalman filter, 
principally in order to create the observation matrix F. The S-matrices are defined by: 
 

f
iS (k) = A(k-1)· (k-1)·Aa

iS T(k-1) + G·Qi·GT

a
iS (k) = [I – KKB(k)·C]· (k)·[I-Kf

iS KB(k)·C]T + KKB(k)·Ri·KKB T(k) 
 
and 
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f
ii
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where α is a vector of length N and will be treated more in detail in Chapter 5. 
 
The F-matrices are then constructed in the following way: 
 

                                                 
1 Dee D. P., (1983) 
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Fi(k,0) = C· (k)·Cf
iS T + Ri(k) 

Fi(k,1) = C·Ψ(k-1)· [I - KKB(k-1)·C]· (k)·Cf
iS T - KKB·Ri(k) 

Fi(k,m) = C·Ψ(k-1)· [I - KKB(k-1)·C]· (k) ·Cf
iS T   for m>1 

 
Since the matrices used in this sub-optimal filter are not exact, the estimated state will 
differ slightly from the real state and the estimation will obviously not be optimal. It has 
been shown though that Pf(k) = Sf(k) + error(k) and that the error exponentially 
converges to zero1. Therefore, with a k that is big enough, the filter will give optimal 
results after a sufficient time. 

                                                 
1 Dee D. P., (1983) 
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5 The quadratic filter 
 
 
The purpose of the quadratic filter is to obtain the optimal values of the noise 
covariance matrices Q and R. To estimate these values, an algorithm will be proposed 
that is based on the innovation process of the primary filter. 
 

5.1 The filter algorithm 
 
First the noise covariance matrices are described as linear combinations of already 
known matrices, Qi and Ri, according to a method presented by Bélanger in 19741. 
 

∑
N

1i
ii Q(k)αQ(k)

=

⋅=  and  ∑
N

1i
ii R(k)αR(k)

=

⋅=

 
where α is a vector of length N. It is necessary to find an observation model for this 
vector and in order to do so the estimator of α will be formed as a secondary filter of the 
sub-optimal extended Kalman filter. The equation that describes the observation model 
can be written as:2

 

m)ξ(k,m)(k,F(k)α(k)ηη(k) ∑
N

1i
ii

T +⋅=⋅
=

 

 
where η(k), as mentioned in chapter 4.1 is the innovation y(k) – C·xf(k). 
 
ξ(k,m) is a double sequence of random variables. In the same way as in the case of the 
noise sequences, these variables are considered uncorrelated, Gaussian and of zero 
mean why in other words they can be totally represented by their covariance matrix 
W(k,m). Since ξ(k,m) is a double sequence, W(k,m) will be a matrix of forth order 
moments. 
 
Fi(k,m) is a matrix, recursively calculated from the sub-optimal matrices (k) and 

(k) and used as an observation matrix, thus corresponding to the C-matrix when 
comparing with the extended Kalman filter. 

a
iS

f
iS

 
Further on the gain of the extended Kalman filter KKB will be represented by K and the 
actual covariance error matrix (in the Kalman filter referred to as P) is in the secondary 
filter named θ. 
 
Next step is to form the observations, consisting of the innovations η(k)·ηT(k-m) and the 
Fi-matrices, in a special way in order to be coherent with the vector α, (that is to be 
observed). The idea is to stack the columns of the matrices and in this way create a 
vector (vec). If the matrix is symmetric the repeated terms are ignored (Tvec): 
 

                                                 
1 Bélanger P. and Carrew B., (1973) 
2 Dee D. P., (1983) 
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The Fi(k,m)- and the W(k,m)-matrices are constructed in the same way as the 
observations, η(k)·ηT(k-m), in the sense that they are all multiplied with their former 
values at time k-m. The same technique of stacking the matrix columns is therefore used 
to form the F- and the W-matrices and the quadratic filter can then be described with the 
following formulas: 
 
K(p) = θ(p-1)·FT(p)·[F(p)·θ(p-1)·FT(p) + W(p)]-1

θ(p) = [I – K(p)·F(p)]·θ(p-1) 
α(p) = α(p-1) + K(p)·[z(p) – F(p)·α(p-1)]  
 
A new index, p, is introduced here specially for the quadratic filter and each p simply 
corresponds to each couple (k,m) in the primary filter. Thus, at every time k, the 
quadratic filter will make k iterations, since m runs from 0 to k. The quadratic filter 
passes on the values given from the last of these iteration, that is to say when m = k. 
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6 Building the algorithm  
 
 
After obtaining enough knowledge of the theory presented in the previous chapters it is 
possible to start working on the algorithm. This one is supposed to be written in Matlab 
language and created based on the following formulas:  
 
The states 
 
x(k) = [isd isq λrd λrq ωr]T

u(k) = [usd usq]T

y(k) = C·x(k) where .  ⎥
⎦

⎤
⎢
⎣

⎡
=

0   0   0   1   0
0   0   0   0   1

C

 
The primary filter 
 
xf(k) = A(k-1)·xa(k-1) + B·u(k-1) 
PP

f(k) = Ψ(k-1)·Pa(k-1)·ΨT(k-1) + G·Q(k-1)·GT

KKB(k) = Pf(k)·CT [C·Pf·(k)·CT + R(k-1)]-1

xa(k) = xf(k) + KKB(k) [y(k) – C·xf(k)] 
PP

                                                

a(k) = [I – KKB(k)·C] Pf(k) 
 
where Q and R are the noise covariance matrices which can be described as a linear 
combination of simpler matrices: 
 

∑
N

1i
ii Q(k)αQ(k)

=

⋅=  and  ∑
N

1i
ii R(k)αR(k)

=

⋅=

 
The secondary filter  
 
K(p) = θ(p-1)·FT(p) [F(p)·θ(p-1)·FT(p) + W(p)]-1

θ(p) = [I – K(p)·F(p)] θ(p-1) 
α(p) = α(p-1) + K(p) [z(p) – F(p)·α(p-1)] 
 
where p is a new index representing all (k,m)-couples in each iteration k. 
 

6.1 Initial values 
 
In the beginning, for the very first rotation of the program in Matlab, there are various 
values that are unknown in the algorithm. Assuming for example that the iteration will 
start at time k = 1, the following parameters will have to be initialized with a 
trustworthy value: 
 
xa(0), Pa(0), α(0), Sa(0) (which is used to calculate the F-matrix) and θ(0). The matrix G 
also has to be set but this is a constant matrix and its values are taken from the ones 
used in former research1. 

 
1 Gonzalez Castellanos J. A., (2004) 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

3-

6-

6-

6-

6

10      0         0        0         0 
0   10        0        0         0 
0       0     10       0         0 
0       0        0     10        0 
0       0        0         0     10

G  

 
In the other cases different values are tested and xa(0), Pa(0), α(0), θ(0) work perfectly 
fine with simple initializations such as: 
 
xa(0) = a vector of zeros,  
PP

                                                

a(0) and θ(0) = the identity matrix, I, 
α(0) = a vector of ones, 
while Sa(0) turns out to be more difficult though, since in a lot of literature Sa(0) is said 
to be a matrix of zeros1. However, this did not work in a pleasant way in this algorithm 
and after trying out some different values, Sa(0) is set to the identity matrix with two 
extra values in order two facilitate the calculations. 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1          0            0             0             0    
0          1            0             0             0    
0          0            1             0             0    
0          0           0             1         0.0001
0          0           0         0.0001         1    

 Sa(0)  

 

6.2 The p-index 
 
The p-index is introduced for the quadratic filter and serves in order to make this 
secondary filter perform k iterations for each iteration of the primary filter. Thus, for 
every step k+1 the secondary filter has to make one more iteration than the time before 
and it is easy to understand that this amount of iterations after a certain time will occupy 
a lot of memory and a lot of execution time. It is therefore convenient to program the 
algorithm in a way to limit this growth.  
 
The assumption can be made that it is sufficient to look at ten (k,m)-couples at each 
iteration k and this means that p in other words runs from 0 to 9. Since it is interesting to 
include only the ten most recent observations in the calculations, p corresponds in this 
case to m from which follows that p = 0 is equivalent to (k,0) and p = 9 to (k,9). 
Consequently when using this system for the algorithm, p can be replaced by m. 
 
In the initialization of the program, it has to be taken into consideration that when k<10 
the program does not work as in the general case, when more time has passed and 
k>=10.  

 
1 Dee D. P., (1983) 
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7 Simulations and results 
 
 
When the program for the algorithm works satisfactory in Matlab, it needs to be 
implemented in Simulink in order to make simulations of the program. Only by 
simulating it is possible to see how the program for the algorithm works together with 
the actual induction motor. This is evident since the only inputs to the algorithm, u(k-1) 
and y(k), are the stator voltages (u = [usd usq]) and the stator currents (y = [isd isq]) of the 
motor. The implementation is made through a so called S-function which constitutes a 
part of Simulink that makes it possible to add your own blocks in a Simulink model. 
These blocks can be created for example in Matlab.  
 
The S-function block is hidden inside the block called THE ESTIMATOR (see figure 2, 
chapter 3). This is, as mentioned in the text, the box that represents the algorithm that 
performs the sensorless control and inside it looks like this: 
 

 
Figure 3. A Simulink model of the part that concludes the S-function. 
 
When first executing the simulation it is necessary to look at the signal ômega coming 
from the estimation box and compare this signal with the one produced from the actual 
induction motor, om. In this way it is possible to see if the algorithm works satisfactory 
before trying to replace the real measured omega, om, with our new estimated omega, 
ômega. 
 
One important thing to consider before starting the simulations is the mix of analog and 
digital signals appearing in the motor model and the estimator. Since the estimator is 
working in discreet time the inputs need to be digital signals and are therefore taken 
from appropriate places in the motor model (see figure 2, chapter 3). It is also important 
that the sample times in different blocks, as well as between the estimator and the motor 
model, are coherent. 
 

7.1 Results 
 
In the beginning it was difficult to make the program rotate and it stopped almost 
immediately with the message that the vector α had obtained values that were not 
considered values, (the error code is NaN in Matlab language which has the 
signification Not a Number). The reason of this turned out to be a numerical problem 
since the matrix that was to be inverted in the secondary filter became so small that the 
result of the inversion gave infinite numbers. Changing the order of the formulas and 
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using new ideas for how to better create the matrices W and F, made the program 
advance slowly.  
 
Later occurred new problems when the F-matrices started to grow too fast and θ at the 
same time was going very fast towards 0. When observing the algorithm and the 
formulas in the secondary filter it is understood that with a θ that equals 0 the secondary 
filter is not using any new information when performing its calculations. A θ that equals 
0 means that the covariance error is 0 and the filter would with other words be perfect 
and stop making corrections. Therefore a temporary solution was introduced and θ was 
given a new value, bigger than 0, in the end of every iteration.  
 
With this correction the filter started to show better performance and the rotor speed, 
omega, started to grow with an acceptable velocity towards its desired value. Once 
reaching this value the rotor speed did not decline as expected but kept on growing. It is 
observed that the problem with fast growing F-matrices still remained which results in 
the gain of the filter, K, becoming very big. The gains of the two filters, K and KKB, are 
supposed to grow a lot in the beginning and then, after some time, slowly decrease and 
become smaller. If this growth is very big, as will be the case in the secondary filter if 
the F-matrices become too big, it is likely that the numbers reach a size that is not 
within the Matlab limit. Then the problem is a numerical question and it would be 
necessary to use a calculation program that can handle numbers of this size.  
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8 Conclusions 
 
 
The system turns out to be pretty difficult to control. The method being used when 
creating the S-function consists in saving all the conditions in one long vector and it is 
therefore difficult to get an overview of what is happening with each state at every 
iteration. A better method would probably be to create some kind of library where it is 
possible to get and store each one of the conditions and in this way get a better overview 
and more control of how the situation is developing. 
 
Another, or an additional, suggestion is to rewrite the formulas, maybe in another order, 
but there is also the possibility of writing them in a different way in order to more likely 
avoid the numerical problems that we have seen here. 
 
During the last month the solution was getting closer and closer for each week and with 
more time it would certainly be possible to solve this problem and obtain a lot better 
results. The time dedicated to this job still has its value since it will be passed on to 
another student to keep on working on the solution. There are a lot of things that are 
interesting to continue working on, not only with the program presented here in this 
thesis but also with alternative solutions in order to realize and develop this idea. 
Perhaps it is possible for example to use another set of filters that has a more simple 
construction and doesn’t use forth order moments. 
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Appendix 
 
 
1. The algorithm written in Matlab: 
 
function x = TheEstimator(t,x,Vsd,Vsq,Isd,Isq) 
 
% The motor 
 
Lr = 252.00e-3;      %rotor inductivity 
Ls = 252.0e-3;     %stator inductivity 
Rr = 1.87;     %rotor resistance  
Rs = 3.88;                          %stator resistance  
M = 236.3e-3;     %main inductivity  
Tr = Lr/Rr;  
sig1 = 1-(M^2)/(Ls*Lr); 
 
a = (Rs/(sig1*Ls)+(1-sig1)/(sig1*Tr)); 
b = M/(Tr*sig1*Ls*Lr); 
c = M/(sig1*Ls*Lr); 
d = M/Tr; 
e = 1/Tr; 
f = 1/(sig1*Ls); 
 
delta = 0.0001;                     % sampling interval 
 
 
% The states 
 
xa = [x(1) x(2) x(3) x(4) x(5)]'; 
Pa = [x(6) x(7) x(8) x(9) x(10); x(11) x(12) x(13) x(14) x(15); x(16) x(17) x(18) x(19) x(20); x(21) x(22) 
x(23) x(24) x(25); x(26) x(27) x(28) x(29) x(30)]; 
Sa = [x(31) x(32) x(33) x(34) x(35); x(36) x(37) x(38) x(39) x(40); x(41) x(42) x(43) x(44) x(45); x(46) 
x(47) x(48) x(49) x(50); x(51) x(52) x(53) x(54) x(55); x(56) x(57) x(58) x(59) x(60); x(61) x(62) x(63) 
x(64) x(65); x(66) x(67) x(68) x(69) x(70); x(71) x(72) x(73) x(74) x(75); x(76) x(77) x(78) x(79) x(80); 
x(81) x(82) x(83) x(84) x(85); x(86) x(87) x(88) x(89) x(90); x(91) x(92) x(93) x(94) x(95); x(96) x(97) 
x(98) x(99) x(100); x(101) x(102) x(103) x(104) x(105); x(106) x(107) x(108) x(109) x(110); x(111) 
x(112) x(113) x(114) x(115); x(116) x(117) x(118) x(119) x(120); x(121) x(122) x(123) x(124) x(125); 
x(126) x(127) x(128) x(129) x(130); x(131) x(132) x(133) x(134) x(135); x(136) x(137) x(138) x(139) 
x(140); x(141) x(142) x(143) x(144) x(145); x(146) x(147) x(148) x(149) x(150); x(151) x(152) x(153) 
x(154) x(155); x(156) x(157) x(158) x(159) x(160); x(161) x(162) x(163) x(164) x(165); x(166) x(167) 
x(168) x(169) x(170); x(171) x(172) x(173) x(174) x(175); x(176) x(177) x(178) x(179) x(180); x(181) 
x(182) x(183) x(184) x(185); x(186) x(187) x(188) x(189) x(190); x(191) x(192) x(193) x(194) x(195); 
x(196) x(197) x(198) x(199) x(200); x(201) x(202) x(203) x(204) x(205)]; 
Inov = [x(206) x(207) x(208) x(209) x(210) x(211) x(212) x(213) x(214) x(215); x(216) x(217) x(218) 
x(219) x(220) x(221) x(222) x(223) x(224) x(225)]; 
Kkb = [x(226) x(227); x(228) x(229); x(230) x(231); x(232) x(233); x(234) x(235)]; 
U = [x(236) x(237)]'; 
Theta = [x(238) x(239) x(240) x(241) x(242) x(243) x(244); x(245) x(246) x(247) x(248) x(249) x(250) 
x(251); x(252) x(253) x(254) x(255) x(256) x(257) x(258); x(259) x(260) x(261) x(262) x(263) x(264) 
x(265); x(266) x(267) x(268) x(269) x(270) x(271) x(272); x(273) x(274) x(275) x(276) x(277) x(278) 
x(279); x(280) x(281) x(282) x(283) x(284) x(285) x(286)]; 
alfa = [x(287) x(288) x(289) x(290) x(291) x(292) x(293)]'; 
M = [x(294) x(295) x(304) x(305) x(314) x(315) x(324) x(325)...; 
         x(296) x(297) x(306) x(307) x(316) x(317) x(326) x(327)...; 
         x(298) x(299) x(308) x(309) x(318) x(319) x(328) x(329)...; 
         x(300) x(301) x(310) x(311) x(320) x(321) x(330) x(331)...;  
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         x(302) x(303) x(312) x(313) x(322) x(323) x(332) x(333)...]; 
V = [x(994) x(995) x(996) x(997) x(998) x(999) x(1000) x(1001) x(1002) x(1003) x(1004) x(1005) 
x(1006)      x(1007) x(1008) x(1009) x(1010) x(1011) x(1012) x(1013); x(1014) x(1015) x(1016) x(1017) 
x(1018) x(1019) x(1020) x(1021) x(1022) x(1023) x(1024) x(1025) x(1026) x(1027) x(1028) x(1029) 
x(1030) x(1031) x(1032) x(1033)]; 
k = x(1034); 
 
 
% Constant values and matrices 
 
L = 10;                                                     % Iterations in the secundary filter 
B = [f*delta 0;0 f*delta;0 0;0 0;0 0]; 
C = [1 0 0 0 0;0 1 0 0 0]; 
G = [10e-6 0 0 0 0;0 10e-6 0 0 0;0 0 10e-6 0 0;0 0 0 10e-6 0;0 0 0 0 10e-3]; 
Pro5 = spdiags(ones(5,1),0,5,7);          % Creates a 5x7-matrix with 5 ones in the first "diagonal" 
Pro2 = spdiags(ones(2,1),5,2,7);                   % Creates a 2x7-matrix with 2 ones in the 6th "diagonal" 
eps = zeros(5,5); 
mu = zeros(2,2); 
SF = zeros(5,5); 
MA = zeros(5,16); 
 
 
% Inputs 
 
u = [Vsd,Vsq,Isd,Isq]'; 
U = [u(1) u(2)]'; 
y = [u(3) u(4)]'; 
 
 
% The primary filter: 
 
omega = x(5); 
A = [1-a*delta 0 b*delta c*delta*omega 0;0 1-a*delta -c*delta*omega b*delta 0;d*delta 0 1-e*delta - 
delta*omega 0;0 d*delta delta*omega 1-e*delta 0;0 0 0 0 1]; 
Psi = [1-a*delta 0 b*delta c*delta*omega c*delta*xa(4);0 1-a*delta -c*delta*omega b*delta -
c*delta*xa(3);d*delta 0 1-e*delta -delta*omega -delta*xa(4);0 d*delta delta*omega 1-e*delta 
delta*xa(3);0 0 0 0 1];     
 
    xf = A*xa + B*U; 
    Pf = ((Psi*Pa*Psi' + G*diag(Pro5*alfa)*G')+((Psi*Pa*Psi' + G*diag(Pro5*alfa)*G')'))/2; 
    Kkb = Pf*C'*((((C*Pf*C' + diag(Pro2*alfa))^-1)+((C*Pf*C' + diag(Pro2*alfa))^-1)')/2); 
    inov = y - C*xf; 
    xa = xf + Kkb*inov; 
    Pa = (((eye(5) - Kkb*C)*Pf)+((eye(5) - Kkb*C)*Pf)')/2; 
     
    U = [Vsd Vsq]'; 
 
     
% Modification for the first ten iterations 
 
    if k<10 
        L=k; 
    end 
 
 
% Calculating the Fi-matrices  
 
    for i=1:7 
        j=8; 
        r=1; 
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        if i<6 
            eps(i,i)=1; 
        else 
            mu(i-5,i-5)=1; 
        end 
        Sai = Sa((1+(i-1)*5):(5+(i-1)*5),1:5); 
        Sf = ((Psi*Sai*Psi'+G*eps*G')+(Psi*Sai*Psi'+G*eps*G')')/2;  

Sai = (((eye(5)-Kkb*C)*Sf*(eye(5)-Kkb*C)'+Kkb*mu*Kkb')+((eye(5)-Kkb*C)*Sf*(eye(5)-
Kkb*C)'+Kkb*mu*Kkb')')/2; 
x(31+25*(i-1):35+25*(i-1)) = Sai(1,:); x(36+25*(i-1):40+25*(i-1)) = Sai(2,:);x(41+25*(i-
1):45+25*(i-1)) = Sai(3,:);x(46+25*(i-1):50+25*(i-1)) = Sai(4,:);x(51+25*(i-1):55+25*(i-1)) = 
Sai(5,:); 

        SF = SF + Sf;  
        for m=1:L 
            if m==1 
                Ma1 = Sf*C'; 
                F = C*Ma1 + mu; 
                F1 = F(1,1); F2 = F(2,1); F4 = F(2,2); 
                vecF(1,i) = F1; vecF(2,i) = F2; vecF(3,i) = F4; 
            elseif m==2          
                KKB = [x(226) x(227); x(228) x(229); x(230) x(231); x(232) x(233); x(234) x(235)]; 
                Mi = M(1:5,(1+(i-1)*20):(2+(i-1)*20)); 
                Ma2 = Psi*(eye(5)-KKB*C)*Mi-KKB*mu; 
                F = C*Ma2; 
                F1 = F(1,1); F2 = F(1,2); F3 = F(2,1); F4 = F(2,2); 
                vecF(4,i) = F1; vecF(5,i) = F3; vecF(6,i) = F2; vecF(7,i) = F4; 
            else 
                KKB = [x(226) x(227); x(228) x(229); x(230) x(231); x(232) x(233); x(234) x(235)]; 
                Mi = M(1:5,(3+(i-1)*20+(m-3)*2):(4+(i-1)*20+(m-3)*2)); 
                Ma = Psi*(eye(5)-KKB*C)*Mi; 
                MA(1:5,r:r+1) = Ma; 
                F = C*Ma; 
                F1 = F(1,1); F2 = F(1,2); F3 = F(2,1); F4 = F(2,2); 
                vecF(j,i) = F1; vecF(j+1,i) = F3; vecF(j+2,i) = F2; vecF(j+3,i) = F4; 
                j = j+4; 
                r=r+2; 
            end 
        end 
        if k==1 
              x(294+100*(i-1)) = Ma1(1,1); x(295+100*(i-1)) = Ma1(1,2);  
              x(296+100*(i-1)) = Ma1(2,1); x(297+100*(i-1)) = Ma1(2,2);  

x(298+100*(i-1)) = Ma1(3,1); x(299+100*(i-1)) = Ma1(3,2);  
x(300+100*(i-1)) = Ma1(4,1); x(301+100*(i-1)) = Ma1(4,2);  
x(302+100*(i-1)) = Ma1(5,1); x(303+100*(i-1)) = Ma1(5,2); 

        elseif k==2 
              x(294+100*(i-1)) = Ma1(1,1); x(295+100*(i-1)) = Ma1(1,2);  

x(296+100*(i-1)) = Ma1(2,1); x(297+100*(i-1)) = Ma1(2,2);  
x(298+100*(i-1)) = Ma1(3,1); x(299+100*(i-1)) = Ma1(3,2);  
x(300+100*(i-1)) = Ma1(4,1); x(301+100*(i-1)) = Ma1(4,2);  
x(302+100*(i-1)) = Ma1(5,1); x(303+100*(i-1)) = Ma1(5,2); 

              x(304+100*(i-1)) = Ma2(1,1); x(305+100*(i-1)) = Ma2(1,2);  
x(306+100*(i-1)) = Ma2(2,1); x(307+100*(i-1)) = Ma2(2,2);  
x(308+100*(i-1)) = Ma2(3,1); x(309+100*(i-1)) = Ma2(3,2);  
x(310+100*(i-1)) = Ma2(4,1); x(311+100*(i-1)) = Ma2(4,2);  
x(312+100*(i-1)) = Ma2(5,1); x(313+100*(i-1)) = Ma2(5,2); 

        else 
            x(294+100*(i-1)) = Ma1(1,1); x(295+100*(i-1)) = Ma1(1,2);  

x(296+100*(i-1)) = Ma1(2,1); x(297+100*(i-1)) = Ma1(2,2);  
x(298+100*(i-1)) = Ma1(3,1); x(299+100*(i-1)) = Ma1(3,2);  
x(300+100*(i-1)) = Ma1(4,1); x(301+100*(i-1)) = Ma1(4,2);  

 24



x(302+100*(i-1)) = Ma1(5,1); x(303+100*(i-1)) = Ma1(5,2); 
              x(304+100*(i-1)) = Ma2(1,1); x(305+100*(i-1)) = Ma2(1,2);  

x(306+100*(i-1)) = Ma2(2,1); x(307+100*(i-1)) = Ma2(2,2);  
x(308+100*(i-1)) = Ma2(3,1); x(309+100*(i-1)) = Ma2(3,2);  
x(310+100*(i-1)) = Ma2(4,1); x(311+100*(i-1)) = Ma2(4,2);  
x(312+100*(i-1)) = Ma2(5,1); x(313+100*(i-1)) = Ma2(5,2); 

            o=0; 
            for s=1:8 
                  x(314+100*(i-1)+(s-1)*10) = MA(1,1+o);  

    x(315+100*(i-1)+(s-1)*10) = MA(1,2+o);  
    x(316+100*(i-1)+(s-1)*10) = MA(2,1+o);  
    x(317+100*(i-1)+(s-1)*10) = MA(2,2+o);  
    x(318+100*(i-1)+(s-1)*10) = MA(3,1+o);   
    x(319+100*(i-1)+(s-1)*10) = MA(3,2+o);  
    x(320+100*(i-1)+(s-1)*10) = MA(4,1+o);   
    x(321+100*(i-1)+(s-1)*10) = MA(4,2+o);  
    x(322+100*(i-1)+(s-1)*10) = MA(5,1+o);  
    x(323+100*(i-1)+(s-1)*10) = MA(5,2+o); 

                o=o+2; 
            end 
        end 
        if i<6 
            eps(i,i)=0; 
        else 
            mu(i-5,i-5)=0; 
        end 
    end 
     
     
% Creating the innovations 
     
    if k<10 
        p=k; 
        for m=2:L 
            Inov(1:2,p)=Inov(1:2,p-1); 
            p=p-1; 
        end 
        Inov(1:2,1)=inov 
    else 
        p=10; 
        for m=2:L 
            Inov(1:2,p)=Inov(1:2,p-1); 
            p=p-1; 
        end 
        Inov(1:2,1)=inov; 
    end 
         
 
% Creating the V:s (the moments of the W-matrices) 
 
    v = C*SF*C'+diag(Pro2*alfa); 
 
    if k<10 
        p=2*k-1; 
        for m=2:L 
            V(1:2,p:p+1)=V(1:2,p-2:p-1); 
            p = p-2; 
        end         
        V(1:2,1:2) = v; 
    else 
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        p=19; 
        for m=2:L 
            V(1:2,p:p+1)=V(1:2,p-2:p-1); 
            p = p-2; 
        end         
        V(1:2,1:2) = v; 
    end 
    a = V(1,1); 
    b = (V(1,2)+V(2,1))/2; 
    c = V(2,2); 
    if a<1e-3 
        a = 1e-3; 
    elseif c<1e-3 
        c = 1e-3; 
    end 
     
 
% Creating the z:s and the F:s   
 
    s = 3;                  % index for W 
    j = 4; 
    for m=1:L 
        z = inov*Inov(1:2,m)';  
        z1 = z(1,1); 
        z2 = z(1,2); 
        z3 = z(2,1); 
        z4 = z(2,2); 
        if m==1 
            z = [z1 z2 z4]'; 
            F = vecF(1:3,1:7); 
        else 
            z = [z1 z2 z3 z4]'; 
            F = vecF(j:j+3,1:7); 
            j=j+4; 
        end 
 
         
%  Creating the W:s         
         
        if m==1 
            W = [2*a*a 2*a*b 2*b*b;2*a*b b*b+a*c 2*b*c;2*b*b 2*b*c 2*c*c]; 
        else 
        A = V(1,s); 
        B = (V(1,s+1)+V(2,s))/2; 
        C = V(2,s+1); 
        if A<1e-3 
            A = 1e-3; 
        elseif C<1e-3 
            C = 1e-3; 
        end 
        W = [a*A b*A a*B b*B;b*A c*A b*B c*B;a*B b*B a*C b*C;b*B c*B b*C c*C]; 
        s = s+2; 
        end 
 
 
%  The secundary filter 
 
        Mat = F*Theta*F' + W; 
        MatI = ((Mat^-1)+(Mat^-1)')/2 
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        K = Theta*F'*MatI; 
        %Theta = (((eye(7) - K*F)*Theta)+(((eye(7) - K*F)*Theta)'))/2; Theta 
        alfa = alfa + K*(z - F*alfa); alfa 
    end 
     
    k=k+1; 
 
 
% New values and matrices 
 
    Theta = 100*(eye(7));   
    x = [xa(1) xa(2) xa(3) xa(4) xa(5) Pa(1,1) Pa(1,2) Pa(1,3) Pa(1,4) Pa(1,5) Pa(2,1)….k]; 
 
 
2. The S-function written in Matlab 
 
function [sys,x0,str,ts] = The_Estimator_sf(t,x,u,flag) 
 
switch flag,    
     
% Initialization  
  case 0,                                                 
    [sys,x0,str,ts] = mdlInitializeSizes;         
 
% Update 
  case 2,                                                
    sys = mdlUpdate(t,x,u); 
 
% Output 
  case 3,                                                
    sys = mdlOutputs(t,x,u);     
 
% Terminate 
  case 9,                                                
    sys = []; 
 
  otherwise 
    error(['unhandled flag = ',num2str(flag)]); 
end 
 
 
% Return the sizes, initial conditions, and sample times for the S-function. 
 
function [sys,x0,str,ts]=mdlInitializeSizes 
 
sizes = simsizes; 
 
sizes.NumContStates  = 0; 
sizes.NumDiscStates  = 1034; 
sizes.NumOutputs     = 1; 
sizes.NumInputs      = 4; 
sizes.DirFeedthrough = 0; 
sizes.NumSampleTimes = 1; 
 
sys = simsizes(sizes); 
 
t = 100; 
ny = 0.0001/7; 
my = 1/7; 
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x0  = 
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0
,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,
0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0
,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,
ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,1,1,1,1,1,1,1,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,1]; 
 
str = []; 
 
ts  = [0.0001 0];                   % Sample period of 0.0001 seconds (10 kHz) 
 
 
% Handle discrete state updates, sample time hits, and major time step requirements. 
 
function sys = mdlUpdate(t,x,u) 
 
    Vsd = u(1); 
    Vsq = u(2); 
    Isd = u(3); 
    Isq = u(4); 
 
    sys = The_Estimator(t,x,Vsd,Vsq,Isd,Isq);    
 
 
% Return the output vector for the S-function 
 
function sys = mdlOutputs(t,x,u) 
q = x(5) 
sys = q; 
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