
In
d
u
st

ri
a
l
 E

le
c
tr

ic
a
l
E
n
g
in

e
e
ri
n
g
 a

n
d

A

u
to

m
a
ti
o
n

 CODEN:LUTEDX/(TEIE-5227)/1-36/(2006)

Sensorless control of induction
motors
Simulating the application of an extended Kalman
filter together with a quadratic filter

Mari Lord

Dept. of Industrial Electrical Engineering and Automation

Lund University

Pontifícia Universidade Católica do Rio de Janeiro
Department of Electrical Engineering

Lund Institute of Technology
Industrial Electrical Engineering

Sensorless control of
induction motors

-

Simulating the application of an extended
Kalman filter together with a quadratic filter

Mari Lord
Rio de Janeiro, 2006

Abstract

Title Sensorless control of induction motors – Simulating the application of an

extended Kalman filter together with a quadratic filter.

Author Mari Lord, electrical engineering, Lund’s Institute of Technology,

Sweden.

Supervisors Marcos Azevedo da Silveira, Department of Electrical Engineering,

PUC-Rio, Rio de Janeiro, Brazil.
Mats Alaküla, Department of Industrial Electrical Engineering and
Automation, Lund’s Institute of Technology, Sweden.

Report Master thesis at the department of Industrial Electrical Engineering and

Automation, Lund’s Institute of Technology. Performed at university
PUC-Rio, Rio de Janeiro, Brazil, from December 2005 to April 2006.

Purpose The purpose is to create an algorithm that will make it possible to control

induction motors without sensors. The idea is based on former research
that consists of a method where the author of a doctoral thesis uses
estimation instead of measuring to find out the speed of the rotor. Certain
delimitations will be used in order to save memory and simplify the
Matlab code.

Method After interpretation of the doctoral thesis a program for the algorithm is

written in the Matlab language. This algorithm is later to be implemented
in Simulink via a so called S-function to be able to simulate and evaluate
the results.

Conclusion The filters turn out to show unstable results with a rotor speed that keeps

on growing instead of stabilize when reaching its expected value. Since
the theory shows that this filter set-up should be stable, it is interesting to
keep on working on the algorithm in order to improve the performance of
the filters.

Keywords Induction motor, sensorless control, extended Kalman filter, rotor speed

 2

Contents

Abstract... 2
Contents .. 3
1 Introduction ... 4

1.1 Background... 4
1.2 Purpose.. 4
1.3 Method.. 4
1.4 Delimitations... 5
1.5 Results... 5
1.6 Thesis contents.. 5

2 Controlling the induction machine .. 6
2.1 The induction machine.. 6

2.1.1 The motor model ... 6
2.2 Sensorless control ... 7

3 Specification of the actual problem... 9
4 Filtering ... 10

4.1 The Kalman filter..10
4.1.1 The Kalman filter algorithm..11

4.2 The extended Kalman filter ..12
4.3 The sub-optimal filter ...12

5 The quadratic filter .. 14
5.1 The filter algorithm...14

6 Building the algorithm... 16
6.1 Initial values.. 16
6.2 The p-index ...17

7 Simulations and results.. 18
7.1 Results...18

8 Conclusions ... 20
References .. 21
Appendix .. 22

 3

1 Introduction

1.1 Background

Induction motors are electromechanical systems suitable for a large spectrum of
industrial applications. It is necessary to be able to control the speed of these motor
drives and the most common way of doing this is by using vector control. This method
requires a speed sensor which is usually placed on the rotor shaft of the machine. The
speed sensor has some disadvantages though, since it - besides from being costly - also
reduces the robustness and reliability of the induction motor.

Consequently this has opened a new interesting area for research and during the last few
years a variety of different solutions has reached the market and sensorless control has
become industrial standard for medium and low performance applications. Artificial
intelligence and neural networks are two examples of this new technology but they both
show weak performance under speed changes and they also need offline calculations to
work correctly. Since the induction motor is represented by a fifth order, nonlinear
model with unknown state variables and external inputs, sensorless control is a
challenging theoretical problem1.

One of the results of all the research that has been made within this area is a doctoral
thesis called “Motor speed estimation with sensorless vector control, employing an
extended Kalman filter with estimation of the covariance of the noises”, written by
Jaime Antonio Gonzalez Castellanos2. In this thesis the author presents a solution of
control of an induction motor without sensors where he uses an extended Kalman filter
together with a quadratic filter in order to estimate the noise covariance matrices. These
matrices are necessary for the calculations in the Kalman filter.

1.2 Purpose

Good results were obtained in the doctoral thesis and the aim of this master thesis is to
take that work a little bit further. The main change is that the rotor speed will no longer
be considered constant, which is a pretty rough approximation, but will instead be
estimated in a completely closed system.

1.3 Method

After spending time on understanding the theory of the doctoral thesis, the work
basically consists in creating an algorithm based on this theory but with modifications to
suit the new idea. The algorithm is to be written in Matlab language and then
implemented, with help of an S-function, in Simulink for simulations.

1 http://www-lar.deis.unibo.it/woda/spider/af74.htm
2 Gonzalez Castellanos J. A., (2004)

 4

http://www-lar.deis.unibo.it/woda/spider/af74.htm

1.4 Delimitations

When writing the program in Matlab it is necessary to make some modifications in
order not to occupy too much memory. Otherwise the memory would keep on growing
and in the end require very much space, which partly would be very costly but at the
same time it would also take a lot of time to execute the program.

1.5 Results

The filters do not manage to give desired results. It turns out to be difficult to control the
system and the speed keeps on growing instead of stabilize in one expected value. In
other words the filters act like they were unstable and apparently there is something in
the algorithm that does not work satisfactory.

1.6 Thesis contents

The report starts with a theoretic part, explaining the background and former research.
Then follows a part of algorithm creation, simulations and evaluations and finally a
discussion with sum up, conclusions and proposals on further research.

Chapter 2: Controlling the induction machine gives a presentation of the induction
machine and sensorless control in general and in Chapter 3: Specification of the actual
problem a short explanation of the specific problem being handled in this thesis is
presented. Chapter 4: Filtering treats filter theory, especially talking about the Kalman
filter and its extended version, followed by an explanation of the secondary filter in
Chapter 5: The quadratic filter. Further on, in Chapter 6: Building the algorithm, the
actual algorithm is shown before reaching the simulations in Chapter 7: Simulations and
results where some simulation issues are discussed before presenting the results. Finally
in Chapter 8: Conclusions the thesis is wounded up with a discussion around the results.

In the end an appendix containing the algorithm written in Matlab code is to be find.

 5

2 Controlling the induction machine

2.1 The induction machine

As mentioned in the introduction the induction machine, also known as asynchronous
machine, is the most common type of electrical machine seen today in practice. It is
used in high power as well as low power applications and obviously being so popular
because of its cheap and simple construction1.

2.1.1 The motor model

To understand the basic theory of this work it is necessary to have some knowledge of
the induction motor itself. The dynamic model of the induction motor can be described
in stator coordinates by the following equations:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1-k
sq

1-k
sd

1-k
r

1-k
rq

1-k
rd

1-k
sq

1-k
sd

1-k
r

1-k
r

1-k
r

1-k
r

r

rq

rd

sq

sd

u

u

0 0
0 0
0 0

fD 0
0 fD

ω

λ

λ

i

i

1 0 0 0 0
0 eD -1 Dω dD 0

0 Dω- eD-1 0 dD

0 bD Dcω- aD-1 0

0 Dcω bD 0 aD1

ω

λ
λ

i
i

where the first vector is the state x(k), the last vector is the input u(k) and the output

y(k) is given by C·x(k), where . The output consists in other words

of the currents i

⎥
⎦

⎤
⎢
⎣

⎡
=

0 0 0 1 0
0 0 0 0 1

C

sd and isq. In this description the original motor model has been
discretized and is to be sampled with an interval denoted by D. There has also been
added a new state, ωr, which is the state wished to be estimated. As a consequence of
adding this new state, the motor model is no longer linear. Further on:

 ,
LLσ

Mc ,
LLσT

Mb ,
Tσ
σ1

Lσ
R

a
rsrsrrs

s

⋅⋅
=

⋅⋅⋅
=

⋅
−

+
⋅

=

r

r
r

rs

2

srr R
LT ,

LL
M-1σ ,

Lσ
1f ,

T
1e ,

T
Md =

⋅
=

⋅
===

1 Alaküla M., (2001)

 6

where .

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
=
=
=
=
=

factor linkage total the σ
resistancestator the R

constant rotor time the T
inductance mutual the M

inductancerotor theL
resistancerotor the R

s

r

s

s

2.2 Sensorless control

The aim is to apply sensorless control to this machine and to do so by using two filters.
An extended Kalman filter will work together with a quadratic filter in order to first
linearize the non-linear system of this motor drive, then use the Kalman filter itself and
eventually calculate the noise covariance matrices which are needed for the Kalman
filter calculations.

The equation above can be written as x(k) = A(k-1,)·x(k-1) + B·u(k-1) with k
representing a new iteration, the time. Then, as we wish to apply Kalman filter theory,
the noises are simply added to the equations as follows:

1-k
rω

x(k) = A(k-1,)·x(k-1) + B·u(k-1) + G·v(k-1) 1-k

rω
y(k) = C·x(k) + w(k)

Knowing that G is a weighting matrix for the noise of the system and can be chosen
easily, these equations give us two unknowns: v(k-1) and w(k). They are noise
sequences which can be represented by their covariance matrices Q and R and
consequently need to be calculated or estimated. In this case a secondary filter, the
quadratic filter, will be used to estimate the optimal values of the noise covariance
matrices. Observing the order of performance, the initial values of the unknown
covariance matrices are obviously important1.

The purpose of the sensorless control is to estimate the motor speed, ω r, instead of
measuring it. Thus, an extended Kalman filter will after each iteration, for every new k,
give a new value of ω r – the rotor speed. The value of the rotor speed is needed in order
to perform vector control. Vector control is the name of a group of methods that are
based on the motor model. The methods consist in controlling the torque without being
dependent on the currents that produce the flux and the torque. A Simulink model gives
a better picture of how the induction machine works without sensorless control:

1 Gonzalez Castellanos J. A., (2004)

 7

Figure 1. Simulink model of an induction motor with vector control.

To sum up the ideas of this general problem, the goal is to estimate the rotor speed with
the help of two filters – an extended Kalman filter and a quadratic filter. The quadratic
filter, also referred to as the secondary filter, is used in order to estimate optimal values
of the noise covariance matrices Q and R which are needed for the performance of the
Kalman filter calculations.

 8

3 Specification of the actual problem

The ideas presented in the previous chapter underlie the doctoral thesis, “Motor speed
estimation with sensorless vector control, employing an extended Kalman filter with
estimation of the covariance of the noises”, by Jaime Antonio Gonzalez Castellanos,
mentioned in the introduction. In this work the author managed to obtain very good
estimates of the rotor speed.

First of all it will therefore be necessary to create a program (which will be written in
Matlab) for the algorithm that will give these estimates. Thus, the estimation of the rotor
speed will be made in a way similar to the method used in the doctoral thesis. Then, in
order to proceed with the research made in this doctoral thesis, the aim is to make the
whole system work as a completely closed system. This idea is explained in Figure 2:

Figure 2. Simulink model of an induction motor with vector control and sensorless control.

Observe the important difference in the “INDUCTION MOTOR”-box and the output
“om” that refers to omega, ωr, in other words the rotor speed. This parameter is no
longer the input to the omega in the “AC-DC CONVENTION”-box where it has been
replaced with the ωr estimated in “THE ESTIMATOR”, the box that performs the
sensorless control.

 9

4 Filtering

There exist many methods for speed estimation in induction machines. One category
that shows good performance is the kind of methods based on vector control where the
motor model makes it possible to estimate the speed. Among these methods the
extended Kalman filter is one of the more successful. To be able to understand the
implementation of the methods used in this project will in this chapter be given a more
detailed filter theory description.

4.1 The Kalman filter

The Kalman filter and its extended version are efficient and robust speed estimators for
linear and non-linear systems respectively. The filters use knowledge of the dynamic
system, its statistic characteristics and noise sources in order to produce an optimal
estimate of the state and at the same time minimize the covariance error.

The filter is formed in terms of the state variables of the system and its solution is
recursively computed. This means that every time an estimated state is updated, the only
information that is needed in order to compute this new state is the previously estimated
values and the new information given from the system at the current time. It is therefore
necessary to store only the information of the value estimated most recently because at
every new instant the new estimation is a projection on the former estimations1.

But the Kalman filter needs certain information to be able to work in this way. First of
all the filter has to have some knowledge of the basic parameters of the system. Then it
is also necessary to know the values of the noise covariance matrices – of the system as
well as of the observations. There are special methods to obtain the optimal values of
these matrices. If there is lacking information about one or more of these matrices, the
filter will be called sub-optimal.

The purpose of the Kalman filter is to produce an algorithm that makes it possible to
compute an optimal estimate and the error of the covariance (which in this report will be
referred to as P). The non-linear system on which this is applied can be described by the
following equation:

x(k) = A(k-1,)·x(k-1) + B·u(k-1) + G·v(k-1) 1k

rω
−

where:
x(k) = the state vector of length n at time k,
A = a non-singular matrix for state transition of size n x n, depending on and
therefore non-linear.

1k
rω
−

u(k-1) = the input vector at time k-1,
G = a weighting matrix for the noise of the system of size n x n,
v = a vector to describe the noise sequence of length r.

1 Luenberger D. G., (1969)

 10

The noise is of so called white Gaussian type, or normal distributed in other words,
which means that its values are random, Gaussian (normal distributed) variables,
uncorrelated and with zero mean when time goes towards infinity. When this is the case
the noise can be totally represented by its covariance. Consequently the expected value

⎩
⎨
⎧ =

=
k≠mfor 0
kmfor Q

 }vE{v mk

The observation system, or the output, is represented by:

y(k) = C·x(k) + w(k)

and its noise characteristics given by
⎩
⎨
⎧ =

=
k≠mfor 0
kmfor R

 }wE{w mk

4.1.1 The Kalman filter algorithm

As described above the Kalman filter uses a recursive way to solve the problem. This
can be seen clearly in the algorithm which is performed in the following steps:

 · Prediction of the state

xf(k) = A(k-1,)·x1-k
rω

a(k-1) + B·u(k-1)

 · Estimation of the matrix of the covariance error

PP

f(k) = Ψ(k-1)·Pa(k-1)·ΨT(k-1) + G·Q(k-1)·GT

 · Calculation of the gain of the Kalman filter

KKB(k) = Pf(k)·CT [C·Pf·(k)·CT + R(k-1)]-1

 · Estimation of the state

xa(k) = xf(k) + KKB(k) [y(k) – C·xf(k)]

 · Updating the matrix of the estimation covariance error

PP

a(k) = [I – KKB(k)·C] Pf(k)

where Ψ(k-1) is the derivative of the matrix A(k-1,) with respect to x(k-1). 1-k

rω

Observe that when calculating xa(k) (the new state value) the Kalman filter gain is
multiplied with the error of the output – the innovation. The innovation process has an
important part of the solution in this work and the innovations are defined by:

 11

η(k) = y(k) – C·xf(k)

where xf(k) equals the predicted x at time k, knowing the value of x(k-1).

The innovation process consists in creating a quadratic output, using estimators for the
second order innovation moments E{η(k)·ηT(k-m)}, where 0≤m≤k. In other words the
new innovation, at time k, is multiplied with the old innovations, at time k – m. One
important quality of the innovations is that when m = 0, they are orthogonal one to
another, from which follows that E{η(k)·ηT(k)} = 01.

4.2 The extended Kalman filter

Since we are working with a system that is non-linear, the ordinary Kalman filter is not
a filter that will solve our problems. But it is possible, through a process of linearization,
to extend the Kalman filter in order to use it on a non-linear system. This extended
Kalman filter first linearizes the non-linear state from time k-1 and then in its next step,
at time k it uses this linearized state in the normal Kalman filter. Here, it is this extended
Kalman filter that is called the primary filter and is represented by the formulas given
above in the algorithm.

As mentioned in the beginning of this chapter it is necessary to know some of the basic
parameters and to have knowledge of the noise covariance matrices. In this case the
noise covariance matrices of the system and of the observation, Q and R respectively,
are unknown and the filter will in other words be sub-optimal.

4.3 The sub-optimal filter

When one or more matrices are not fully known they will be replaced with a
corresponding matrix and the filter will be called sub-optimal. In this case the S-
matrices will represent the optimal P-matrices from the extended Kalman filter,
principally in order to create the observation matrix F. The S-matrices are defined by:

f
iS (k) = A(k-1)· (k-1)·Aa

iS T(k-1) + G·Qi·GT

a
iS (k) = [I – KKB(k)·C]· (k)·[I-Kf

iS KB(k)·C]T + KKB(k)·Ri·KKB T(k)

and

∑
N

1i

a
ii

a (k)Sα(k)S
=

= , ∑
N

1i

f
ii

f (k)Sα(k)S
=

=

where α is a vector of length N and will be treated more in detail in Chapter 5.

The F-matrices are then constructed in the following way:

1 Dee D. P., (1983)

 12

Fi(k,0) = C· (k)·Cf
iS T + Ri(k)

Fi(k,1) = C·Ψ(k-1)· [I - KKB(k-1)·C]· (k)·Cf
iS T - KKB·Ri(k)

Fi(k,m) = C·Ψ(k-1)· [I - KKB(k-1)·C]· (k) ·Cf
iS T for m>1

Since the matrices used in this sub-optimal filter are not exact, the estimated state will
differ slightly from the real state and the estimation will obviously not be optimal. It has
been shown though that Pf(k) = Sf(k) + error(k) and that the error exponentially
converges to zero1. Therefore, with a k that is big enough, the filter will give optimal
results after a sufficient time.

1 Dee D. P., (1983)

 13

5 The quadratic filter

The purpose of the quadratic filter is to obtain the optimal values of the noise
covariance matrices Q and R. To estimate these values, an algorithm will be proposed
that is based on the innovation process of the primary filter.

5.1 The filter algorithm

First the noise covariance matrices are described as linear combinations of already
known matrices, Qi and Ri, according to a method presented by Bélanger in 19741.

∑
N

1i
ii Q(k)αQ(k)

=

⋅= and ∑
N

1i
ii R(k)αR(k)

=

⋅=

where α is a vector of length N. It is necessary to find an observation model for this
vector and in order to do so the estimator of α will be formed as a secondary filter of the
sub-optimal extended Kalman filter. The equation that describes the observation model
can be written as:2

m)ξ(k,m)(k,F(k)α(k)ηη(k) ∑
N

1i
ii

T +⋅=⋅
=

where η(k), as mentioned in chapter 4.1 is the innovation y(k) – C·xf(k).

ξ(k,m) is a double sequence of random variables. In the same way as in the case of the
noise sequences, these variables are considered uncorrelated, Gaussian and of zero
mean why in other words they can be totally represented by their covariance matrix
W(k,m). Since ξ(k,m) is a double sequence, W(k,m) will be a matrix of forth order
moments.

Fi(k,m) is a matrix, recursively calculated from the sub-optimal matrices (k) and

(k) and used as an observation matrix, thus corresponding to the C-matrix when
comparing with the extended Kalman filter.

a
iS

f
iS

Further on the gain of the extended Kalman filter KKB will be represented by K and the
actual covariance error matrix (in the Kalman filter referred to as P) is in the secondary
filter named θ.

Next step is to form the observations, consisting of the innovations η(k)·ηT(k-m) and the
Fi-matrices, in a special way in order to be coherent with the vector α, (that is to be
observed). The idea is to stack the columns of the matrices and in this way create a
vector (vec). If the matrix is symmetric the repeated terms are ignored (Tvec):

1 Bélanger P. and Carrew B., (1973)
2 Dee D. P., (1983)

 14

[⎪⎩

⎪
⎨
⎧

>+−⋅

=+⋅
=

0 m if m)ξ(k,m)](kηvecvec
0m if ξ(k,0)(k)]ηTvec[ηvec

z
T

T

η

The Fi(k,m)- and the W(k,m)-matrices are constructed in the same way as the
observations, η(k)·ηT(k-m), in the sense that they are all multiplied with their former
values at time k-m. The same technique of stacking the matrix columns is therefore used
to form the F- and the W-matrices and the quadratic filter can then be described with the
following formulas:

K(p) = θ(p-1)·FT(p)·[F(p)·θ(p-1)·FT(p) + W(p)]-1

θ(p) = [I – K(p)·F(p)]·θ(p-1)
α(p) = α(p-1) + K(p)·[z(p) – F(p)·α(p-1)]

A new index, p, is introduced here specially for the quadratic filter and each p simply
corresponds to each couple (k,m) in the primary filter. Thus, at every time k, the
quadratic filter will make k iterations, since m runs from 0 to k. The quadratic filter
passes on the values given from the last of these iteration, that is to say when m = k.

 15

6 Building the algorithm

After obtaining enough knowledge of the theory presented in the previous chapters it is
possible to start working on the algorithm. This one is supposed to be written in Matlab
language and created based on the following formulas:

The states

x(k) = [isd isq λrd λrq ωr]T

u(k) = [usd usq]T

y(k) = C·x(k) where . ⎥
⎦

⎤
⎢
⎣

⎡
=

0 0 0 1 0
0 0 0 0 1

C

The primary filter

xf(k) = A(k-1)·xa(k-1) + B·u(k-1)
PP

f(k) = Ψ(k-1)·Pa(k-1)·ΨT(k-1) + G·Q(k-1)·GT

KKB(k) = Pf(k)·CT [C·Pf·(k)·CT + R(k-1)]-1

xa(k) = xf(k) + KKB(k) [y(k) – C·xf(k)]
PP

a(k) = [I – KKB(k)·C] Pf(k)

where Q and R are the noise covariance matrices which can be described as a linear
combination of simpler matrices:

∑
N

1i
ii Q(k)αQ(k)

=

⋅= and ∑
N

1i
ii R(k)αR(k)

=

⋅=

The secondary filter

K(p) = θ(p-1)·FT(p) [F(p)·θ(p-1)·FT(p) + W(p)]-1

θ(p) = [I – K(p)·F(p)] θ(p-1)
α(p) = α(p-1) + K(p) [z(p) – F(p)·α(p-1)]

where p is a new index representing all (k,m)-couples in each iteration k.

6.1 Initial values

In the beginning, for the very first rotation of the program in Matlab, there are various
values that are unknown in the algorithm. Assuming for example that the iteration will
start at time k = 1, the following parameters will have to be initialized with a
trustworthy value:

xa(0), Pa(0), α(0), Sa(0) (which is used to calculate the F-matrix) and θ(0). The matrix G
also has to be set but this is a constant matrix and its values are taken from the ones
used in former research1.

1 Gonzalez Castellanos J. A., (2004)

 16

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

3-

6-

6-

6-

6

10 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 10 0
0 0 0 0 10

G

In the other cases different values are tested and xa(0), Pa(0), α(0), θ(0) work perfectly
fine with simple initializations such as:

xa(0) = a vector of zeros,
PP

a(0) and θ(0) = the identity matrix, I,
α(0) = a vector of ones,
while Sa(0) turns out to be more difficult though, since in a lot of literature Sa(0) is said
to be a matrix of zeros1. However, this did not work in a pleasant way in this algorithm
and after trying out some different values, Sa(0) is set to the identity matrix with two
extra values in order two facilitate the calculations.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0.0001
0 0 0 0.0001 1

 Sa(0)

6.2 The p-index

The p-index is introduced for the quadratic filter and serves in order to make this
secondary filter perform k iterations for each iteration of the primary filter. Thus, for
every step k+1 the secondary filter has to make one more iteration than the time before
and it is easy to understand that this amount of iterations after a certain time will occupy
a lot of memory and a lot of execution time. It is therefore convenient to program the
algorithm in a way to limit this growth.

The assumption can be made that it is sufficient to look at ten (k,m)-couples at each
iteration k and this means that p in other words runs from 0 to 9. Since it is interesting to
include only the ten most recent observations in the calculations, p corresponds in this
case to m from which follows that p = 0 is equivalent to (k,0) and p = 9 to (k,9).
Consequently when using this system for the algorithm, p can be replaced by m.

In the initialization of the program, it has to be taken into consideration that when k<10
the program does not work as in the general case, when more time has passed and
k>=10.

1 Dee D. P., (1983)

 17

7 Simulations and results

When the program for the algorithm works satisfactory in Matlab, it needs to be
implemented in Simulink in order to make simulations of the program. Only by
simulating it is possible to see how the program for the algorithm works together with
the actual induction motor. This is evident since the only inputs to the algorithm, u(k-1)
and y(k), are the stator voltages (u = [usd usq]) and the stator currents (y = [isd isq]) of the
motor. The implementation is made through a so called S-function which constitutes a
part of Simulink that makes it possible to add your own blocks in a Simulink model.
These blocks can be created for example in Matlab.

The S-function block is hidden inside the block called THE ESTIMATOR (see figure 2,
chapter 3). This is, as mentioned in the text, the box that represents the algorithm that
performs the sensorless control and inside it looks like this:

Figure 3. A Simulink model of the part that concludes the S-function.

When first executing the simulation it is necessary to look at the signal ômega coming
from the estimation box and compare this signal with the one produced from the actual
induction motor, om. In this way it is possible to see if the algorithm works satisfactory
before trying to replace the real measured omega, om, with our new estimated omega,
ômega.

One important thing to consider before starting the simulations is the mix of analog and
digital signals appearing in the motor model and the estimator. Since the estimator is
working in discreet time the inputs need to be digital signals and are therefore taken
from appropriate places in the motor model (see figure 2, chapter 3). It is also important
that the sample times in different blocks, as well as between the estimator and the motor
model, are coherent.

7.1 Results

In the beginning it was difficult to make the program rotate and it stopped almost
immediately with the message that the vector α had obtained values that were not
considered values, (the error code is NaN in Matlab language which has the
signification Not a Number). The reason of this turned out to be a numerical problem
since the matrix that was to be inverted in the secondary filter became so small that the
result of the inversion gave infinite numbers. Changing the order of the formulas and

 18

using new ideas for how to better create the matrices W and F, made the program
advance slowly.

Later occurred new problems when the F-matrices started to grow too fast and θ at the
same time was going very fast towards 0. When observing the algorithm and the
formulas in the secondary filter it is understood that with a θ that equals 0 the secondary
filter is not using any new information when performing its calculations. A θ that equals
0 means that the covariance error is 0 and the filter would with other words be perfect
and stop making corrections. Therefore a temporary solution was introduced and θ was
given a new value, bigger than 0, in the end of every iteration.

With this correction the filter started to show better performance and the rotor speed,
omega, started to grow with an acceptable velocity towards its desired value. Once
reaching this value the rotor speed did not decline as expected but kept on growing. It is
observed that the problem with fast growing F-matrices still remained which results in
the gain of the filter, K, becoming very big. The gains of the two filters, K and KKB, are
supposed to grow a lot in the beginning and then, after some time, slowly decrease and
become smaller. If this growth is very big, as will be the case in the secondary filter if
the F-matrices become too big, it is likely that the numbers reach a size that is not
within the Matlab limit. Then the problem is a numerical question and it would be
necessary to use a calculation program that can handle numbers of this size.

 19

8 Conclusions

The system turns out to be pretty difficult to control. The method being used when
creating the S-function consists in saving all the conditions in one long vector and it is
therefore difficult to get an overview of what is happening with each state at every
iteration. A better method would probably be to create some kind of library where it is
possible to get and store each one of the conditions and in this way get a better overview
and more control of how the situation is developing.

Another, or an additional, suggestion is to rewrite the formulas, maybe in another order,
but there is also the possibility of writing them in a different way in order to more likely
avoid the numerical problems that we have seen here.

During the last month the solution was getting closer and closer for each week and with
more time it would certainly be possible to solve this problem and obtain a lot better
results. The time dedicated to this job still has its value since it will be passed on to
another student to keep on working on the solution. There are a lot of things that are
interesting to continue working on, not only with the program presented here in this
thesis but also with alternative solutions in order to realize and develop this idea.
Perhaps it is possible for example to use another set of filters that has a more simple
construction and doesn’t use forth order moments.

 20

References

Alaküla M., (2001) Power electronic control, Lund’s university, Lund

Alaküla M., Gertmar L., Samuelsson O.(2002) Elenergiteknik, KFS, Lund

Bélanger P. and Carrew B., (1973) Identification of optimum filter steady–state gain for
systems with unknown noise covariances, IEEE Trans. on automatic control, Vol.
AC18, N 6, page 582 – 588

Dee D. P., (1983) Computational aspects of adaptive filtering and applications to
numerical weather prediction, Doctoral thesis CI-6-83, Courant institute of
mathematics, New York university, New York

Gonzalez Castellanos J. A., (2004) Estimação de velocidade do motor com controle
vetorial sem sensor, utilizando filtro estendido de Kalman com estimação da
covariância dos ruídos, Doctoral thesis (5716), PUC-Rio, Rio de Janeiro

Hanselman D., Littlefield B., (2003) MATLAB 6® – Curso completo, Pearson Education
Inc., São Paulo. (Brazilian version)

Luenberger D. G., (1969) Optimization by vector space methods, John Wiley and Sons
Inc., Stanford university, California

Peterson B., (1996) Induction machine speed estimation, observation on observers,
Department of Industrial Electrical Engineering and Automation, Lund’s Institute of
Technology, Lund

Internet sources

Montanari M. (2003) "Sensorless Control of Induction Motors: Nonlinear and Adaptive
Techniques", found on http://www-lar.deis.unibo.it/woda/spider/af74.htm, 28 feb 2006

 21

http://www-lar.deis.unibo.it/woda/spider/af74.htm

Appendix

1. The algorithm written in Matlab:

function x = TheEstimator(t,x,Vsd,Vsq,Isd,Isq)

% The motor

Lr = 252.00e-3; %rotor inductivity
Ls = 252.0e-3; %stator inductivity
Rr = 1.87; %rotor resistance
Rs = 3.88; %stator resistance
M = 236.3e-3; %main inductivity
Tr = Lr/Rr;
sig1 = 1-(M^2)/(Ls*Lr);

a = (Rs/(sig1*Ls)+(1-sig1)/(sig1*Tr));
b = M/(Tr*sig1*Ls*Lr);
c = M/(sig1*Ls*Lr);
d = M/Tr;
e = 1/Tr;
f = 1/(sig1*Ls);

delta = 0.0001; % sampling interval

% The states

xa = [x(1) x(2) x(3) x(4) x(5)]';
Pa = [x(6) x(7) x(8) x(9) x(10); x(11) x(12) x(13) x(14) x(15); x(16) x(17) x(18) x(19) x(20); x(21) x(22)
x(23) x(24) x(25); x(26) x(27) x(28) x(29) x(30)];
Sa = [x(31) x(32) x(33) x(34) x(35); x(36) x(37) x(38) x(39) x(40); x(41) x(42) x(43) x(44) x(45); x(46)
x(47) x(48) x(49) x(50); x(51) x(52) x(53) x(54) x(55); x(56) x(57) x(58) x(59) x(60); x(61) x(62) x(63)
x(64) x(65); x(66) x(67) x(68) x(69) x(70); x(71) x(72) x(73) x(74) x(75); x(76) x(77) x(78) x(79) x(80);
x(81) x(82) x(83) x(84) x(85); x(86) x(87) x(88) x(89) x(90); x(91) x(92) x(93) x(94) x(95); x(96) x(97)
x(98) x(99) x(100); x(101) x(102) x(103) x(104) x(105); x(106) x(107) x(108) x(109) x(110); x(111)
x(112) x(113) x(114) x(115); x(116) x(117) x(118) x(119) x(120); x(121) x(122) x(123) x(124) x(125);
x(126) x(127) x(128) x(129) x(130); x(131) x(132) x(133) x(134) x(135); x(136) x(137) x(138) x(139)
x(140); x(141) x(142) x(143) x(144) x(145); x(146) x(147) x(148) x(149) x(150); x(151) x(152) x(153)
x(154) x(155); x(156) x(157) x(158) x(159) x(160); x(161) x(162) x(163) x(164) x(165); x(166) x(167)
x(168) x(169) x(170); x(171) x(172) x(173) x(174) x(175); x(176) x(177) x(178) x(179) x(180); x(181)
x(182) x(183) x(184) x(185); x(186) x(187) x(188) x(189) x(190); x(191) x(192) x(193) x(194) x(195);
x(196) x(197) x(198) x(199) x(200); x(201) x(202) x(203) x(204) x(205)];
Inov = [x(206) x(207) x(208) x(209) x(210) x(211) x(212) x(213) x(214) x(215); x(216) x(217) x(218)
x(219) x(220) x(221) x(222) x(223) x(224) x(225)];
Kkb = [x(226) x(227); x(228) x(229); x(230) x(231); x(232) x(233); x(234) x(235)];
U = [x(236) x(237)]';
Theta = [x(238) x(239) x(240) x(241) x(242) x(243) x(244); x(245) x(246) x(247) x(248) x(249) x(250)
x(251); x(252) x(253) x(254) x(255) x(256) x(257) x(258); x(259) x(260) x(261) x(262) x(263) x(264)
x(265); x(266) x(267) x(268) x(269) x(270) x(271) x(272); x(273) x(274) x(275) x(276) x(277) x(278)
x(279); x(280) x(281) x(282) x(283) x(284) x(285) x(286)];
alfa = [x(287) x(288) x(289) x(290) x(291) x(292) x(293)]';
M = [x(294) x(295) x(304) x(305) x(314) x(315) x(324) x(325)...;
 x(296) x(297) x(306) x(307) x(316) x(317) x(326) x(327)...;
 x(298) x(299) x(308) x(309) x(318) x(319) x(328) x(329)...;
 x(300) x(301) x(310) x(311) x(320) x(321) x(330) x(331)...;

 22

 x(302) x(303) x(312) x(313) x(322) x(323) x(332) x(333)...];
V = [x(994) x(995) x(996) x(997) x(998) x(999) x(1000) x(1001) x(1002) x(1003) x(1004) x(1005)
x(1006) x(1007) x(1008) x(1009) x(1010) x(1011) x(1012) x(1013); x(1014) x(1015) x(1016) x(1017)
x(1018) x(1019) x(1020) x(1021) x(1022) x(1023) x(1024) x(1025) x(1026) x(1027) x(1028) x(1029)
x(1030) x(1031) x(1032) x(1033)];
k = x(1034);

% Constant values and matrices

L = 10; % Iterations in the secundary filter
B = [f*delta 0;0 f*delta;0 0;0 0;0 0];
C = [1 0 0 0 0;0 1 0 0 0];
G = [10e-6 0 0 0 0;0 10e-6 0 0 0;0 0 10e-6 0 0;0 0 0 10e-6 0;0 0 0 0 10e-3];
Pro5 = spdiags(ones(5,1),0,5,7); % Creates a 5x7-matrix with 5 ones in the first "diagonal"
Pro2 = spdiags(ones(2,1),5,2,7); % Creates a 2x7-matrix with 2 ones in the 6th "diagonal"
eps = zeros(5,5);
mu = zeros(2,2);
SF = zeros(5,5);
MA = zeros(5,16);

% Inputs

u = [Vsd,Vsq,Isd,Isq]';
U = [u(1) u(2)]';
y = [u(3) u(4)]';

% The primary filter:

omega = x(5);
A = [1-a*delta 0 b*delta c*delta*omega 0;0 1-a*delta -c*delta*omega b*delta 0;d*delta 0 1-e*delta -
delta*omega 0;0 d*delta delta*omega 1-e*delta 0;0 0 0 0 1];
Psi = [1-a*delta 0 b*delta c*delta*omega c*delta*xa(4);0 1-a*delta -c*delta*omega b*delta -
c*delta*xa(3);d*delta 0 1-e*delta -delta*omega -delta*xa(4);0 d*delta delta*omega 1-e*delta
delta*xa(3);0 0 0 0 1];

 xf = A*xa + B*U;
 Pf = ((Psi*Pa*Psi' + G*diag(Pro5*alfa)*G')+((Psi*Pa*Psi' + G*diag(Pro5*alfa)*G')'))/2;
 Kkb = Pf*C'*((((C*Pf*C' + diag(Pro2*alfa))^-1)+((C*Pf*C' + diag(Pro2*alfa))^-1)')/2);
 inov = y - C*xf;
 xa = xf + Kkb*inov;
 Pa = (((eye(5) - Kkb*C)*Pf)+((eye(5) - Kkb*C)*Pf)')/2;

 U = [Vsd Vsq]';

% Modification for the first ten iterations

 if k<10
 L=k;
 end

% Calculating the Fi-matrices

 for i=1:7
 j=8;
 r=1;

 23

 if i<6
 eps(i,i)=1;
 else
 mu(i-5,i-5)=1;
 end
 Sai = Sa((1+(i-1)*5):(5+(i-1)*5),1:5);
 Sf = ((Psi*Sai*Psi'+G*eps*G')+(Psi*Sai*Psi'+G*eps*G')')/2;

Sai = (((eye(5)-Kkb*C)*Sf*(eye(5)-Kkb*C)'+Kkb*mu*Kkb')+((eye(5)-Kkb*C)*Sf*(eye(5)-
Kkb*C)'+Kkb*mu*Kkb')')/2;
x(31+25*(i-1):35+25*(i-1)) = Sai(1,:); x(36+25*(i-1):40+25*(i-1)) = Sai(2,:);x(41+25*(i-
1):45+25*(i-1)) = Sai(3,:);x(46+25*(i-1):50+25*(i-1)) = Sai(4,:);x(51+25*(i-1):55+25*(i-1)) =
Sai(5,:);

 SF = SF + Sf;
 for m=1:L
 if m==1
 Ma1 = Sf*C';
 F = C*Ma1 + mu;
 F1 = F(1,1); F2 = F(2,1); F4 = F(2,2);
 vecF(1,i) = F1; vecF(2,i) = F2; vecF(3,i) = F4;
 elseif m==2
 KKB = [x(226) x(227); x(228) x(229); x(230) x(231); x(232) x(233); x(234) x(235)];
 Mi = M(1:5,(1+(i-1)*20):(2+(i-1)*20));
 Ma2 = Psi*(eye(5)-KKB*C)*Mi-KKB*mu;
 F = C*Ma2;
 F1 = F(1,1); F2 = F(1,2); F3 = F(2,1); F4 = F(2,2);
 vecF(4,i) = F1; vecF(5,i) = F3; vecF(6,i) = F2; vecF(7,i) = F4;
 else
 KKB = [x(226) x(227); x(228) x(229); x(230) x(231); x(232) x(233); x(234) x(235)];
 Mi = M(1:5,(3+(i-1)*20+(m-3)*2):(4+(i-1)*20+(m-3)*2));
 Ma = Psi*(eye(5)-KKB*C)*Mi;
 MA(1:5,r:r+1) = Ma;
 F = C*Ma;
 F1 = F(1,1); F2 = F(1,2); F3 = F(2,1); F4 = F(2,2);
 vecF(j,i) = F1; vecF(j+1,i) = F3; vecF(j+2,i) = F2; vecF(j+3,i) = F4;
 j = j+4;
 r=r+2;
 end
 end
 if k==1
 x(294+100*(i-1)) = Ma1(1,1); x(295+100*(i-1)) = Ma1(1,2);
 x(296+100*(i-1)) = Ma1(2,1); x(297+100*(i-1)) = Ma1(2,2);

x(298+100*(i-1)) = Ma1(3,1); x(299+100*(i-1)) = Ma1(3,2);
x(300+100*(i-1)) = Ma1(4,1); x(301+100*(i-1)) = Ma1(4,2);
x(302+100*(i-1)) = Ma1(5,1); x(303+100*(i-1)) = Ma1(5,2);

 elseif k==2
 x(294+100*(i-1)) = Ma1(1,1); x(295+100*(i-1)) = Ma1(1,2);

x(296+100*(i-1)) = Ma1(2,1); x(297+100*(i-1)) = Ma1(2,2);
x(298+100*(i-1)) = Ma1(3,1); x(299+100*(i-1)) = Ma1(3,2);
x(300+100*(i-1)) = Ma1(4,1); x(301+100*(i-1)) = Ma1(4,2);
x(302+100*(i-1)) = Ma1(5,1); x(303+100*(i-1)) = Ma1(5,2);

 x(304+100*(i-1)) = Ma2(1,1); x(305+100*(i-1)) = Ma2(1,2);
x(306+100*(i-1)) = Ma2(2,1); x(307+100*(i-1)) = Ma2(2,2);
x(308+100*(i-1)) = Ma2(3,1); x(309+100*(i-1)) = Ma2(3,2);
x(310+100*(i-1)) = Ma2(4,1); x(311+100*(i-1)) = Ma2(4,2);
x(312+100*(i-1)) = Ma2(5,1); x(313+100*(i-1)) = Ma2(5,2);

 else
 x(294+100*(i-1)) = Ma1(1,1); x(295+100*(i-1)) = Ma1(1,2);

x(296+100*(i-1)) = Ma1(2,1); x(297+100*(i-1)) = Ma1(2,2);
x(298+100*(i-1)) = Ma1(3,1); x(299+100*(i-1)) = Ma1(3,2);
x(300+100*(i-1)) = Ma1(4,1); x(301+100*(i-1)) = Ma1(4,2);

 24

x(302+100*(i-1)) = Ma1(5,1); x(303+100*(i-1)) = Ma1(5,2);
 x(304+100*(i-1)) = Ma2(1,1); x(305+100*(i-1)) = Ma2(1,2);

x(306+100*(i-1)) = Ma2(2,1); x(307+100*(i-1)) = Ma2(2,2);
x(308+100*(i-1)) = Ma2(3,1); x(309+100*(i-1)) = Ma2(3,2);
x(310+100*(i-1)) = Ma2(4,1); x(311+100*(i-1)) = Ma2(4,2);
x(312+100*(i-1)) = Ma2(5,1); x(313+100*(i-1)) = Ma2(5,2);

 o=0;
 for s=1:8
 x(314+100*(i-1)+(s-1)*10) = MA(1,1+o);

 x(315+100*(i-1)+(s-1)*10) = MA(1,2+o);
 x(316+100*(i-1)+(s-1)*10) = MA(2,1+o);
 x(317+100*(i-1)+(s-1)*10) = MA(2,2+o);
 x(318+100*(i-1)+(s-1)*10) = MA(3,1+o);
 x(319+100*(i-1)+(s-1)*10) = MA(3,2+o);
 x(320+100*(i-1)+(s-1)*10) = MA(4,1+o);
 x(321+100*(i-1)+(s-1)*10) = MA(4,2+o);
 x(322+100*(i-1)+(s-1)*10) = MA(5,1+o);
 x(323+100*(i-1)+(s-1)*10) = MA(5,2+o);

 o=o+2;
 end
 end
 if i<6
 eps(i,i)=0;
 else
 mu(i-5,i-5)=0;
 end
 end

% Creating the innovations

 if k<10
 p=k;
 for m=2:L
 Inov(1:2,p)=Inov(1:2,p-1);
 p=p-1;
 end
 Inov(1:2,1)=inov
 else
 p=10;
 for m=2:L
 Inov(1:2,p)=Inov(1:2,p-1);
 p=p-1;
 end
 Inov(1:2,1)=inov;
 end

% Creating the V:s (the moments of the W-matrices)

 v = C*SF*C'+diag(Pro2*alfa);

 if k<10
 p=2*k-1;
 for m=2:L
 V(1:2,p:p+1)=V(1:2,p-2:p-1);
 p = p-2;
 end
 V(1:2,1:2) = v;
 else

 25

 p=19;
 for m=2:L
 V(1:2,p:p+1)=V(1:2,p-2:p-1);
 p = p-2;
 end
 V(1:2,1:2) = v;
 end
 a = V(1,1);
 b = (V(1,2)+V(2,1))/2;
 c = V(2,2);
 if a<1e-3
 a = 1e-3;
 elseif c<1e-3
 c = 1e-3;
 end

% Creating the z:s and the F:s

 s = 3; % index for W
 j = 4;
 for m=1:L
 z = inov*Inov(1:2,m)';
 z1 = z(1,1);
 z2 = z(1,2);
 z3 = z(2,1);
 z4 = z(2,2);
 if m==1
 z = [z1 z2 z4]';
 F = vecF(1:3,1:7);
 else
 z = [z1 z2 z3 z4]';
 F = vecF(j:j+3,1:7);
 j=j+4;
 end

% Creating the W:s

 if m==1
 W = [2*a*a 2*a*b 2*b*b;2*a*b b*b+a*c 2*b*c;2*b*b 2*b*c 2*c*c];
 else
 A = V(1,s);
 B = (V(1,s+1)+V(2,s))/2;
 C = V(2,s+1);
 if A<1e-3
 A = 1e-3;
 elseif C<1e-3
 C = 1e-3;
 end
 W = [a*A b*A a*B b*B;b*A c*A b*B c*B;a*B b*B a*C b*C;b*B c*B b*C c*C];
 s = s+2;
 end

% The secundary filter

 Mat = F*Theta*F' + W;
 MatI = ((Mat^-1)+(Mat^-1)')/2

 26

 K = Theta*F'*MatI;
 %Theta = (((eye(7) - K*F)*Theta)+(((eye(7) - K*F)*Theta)'))/2; Theta
 alfa = alfa + K*(z - F*alfa); alfa
 end

 k=k+1;

% New values and matrices

 Theta = 100*(eye(7));
 x = [xa(1) xa(2) xa(3) xa(4) xa(5) Pa(1,1) Pa(1,2) Pa(1,3) Pa(1,4) Pa(1,5) Pa(2,1)….k];

2. The S-function written in Matlab

function [sys,x0,str,ts] = The_Estimator_sf(t,x,u,flag)

switch flag,

% Initialization
 case 0,
 [sys,x0,str,ts] = mdlInitializeSizes;

% Update
 case 2,
 sys = mdlUpdate(t,x,u);

% Output
 case 3,
 sys = mdlOutputs(t,x,u);

% Terminate
 case 9,
 sys = [];

 otherwise
 error(['unhandled flag = ',num2str(flag)]);
end

% Return the sizes, initial conditions, and sample times for the S-function.

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;
sizes.NumDiscStates = 1034;
sizes.NumOutputs = 1;
sizes.NumInputs = 4;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

t = 100;
ny = 0.0001/7;
my = 1/7;

 27

x0 =
[0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0
,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,
0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0
,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,my,ny,0,0,0,
ny,my,0,0,0,0,0,my,0,0,0,0,0,my,0,0,0,0,0,my,0
,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,0,0,0,0,0,0,0,t,1,1,1,1,1,1,1,0,0,
0,0
,0,
0,0
,0,
0,0
,0,
0,0
,0,
0,0
,0,
0,0
,0,
0,0
,0,0,0,1];

str = [];

ts = [0.0001 0]; % Sample period of 0.0001 seconds (10 kHz)

% Handle discrete state updates, sample time hits, and major time step requirements.

function sys = mdlUpdate(t,x,u)

 Vsd = u(1);
 Vsq = u(2);
 Isd = u(3);
 Isq = u(4);

 sys = The_Estimator(t,x,Vsd,Vsq,Isd,Isq);

% Return the output vector for the S-function

function sys = mdlOutputs(t,x,u)
q = x(5)
sys = q;

 28

	 Abstract
	 Contents
	 1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Method
	1.4 Delimitations
	1.5 Results
	1.6 Thesis contents

	 2 Controlling the induction machine
	2.1 The induction machine
	2.1.1 The motor model

	2.2 Sensorless control

	 3 Specification of the actual problem
	4.1 The Kalman filter
	4.1.1 The Kalman filter algorithm

	4.2 The extended Kalman filter
	4.3 The sub-optimal filter
	5.1 The filter algorithm
	6.1 Initial values
	6.2 The p-index
	7.1 Results

	 References
	 Appendix

