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Abstract

The purpose of a standardisation and blending system is to produce milk
products after a certain recipe with a uniform composition, e.g. with a uniform
fat and/or protein content. To get high accuracy in the outgoing product, high
accuracy is needed in all parts of the process; i.e. sensors, actuators and calcula-
tions. During recent years more complex compositions with more ingredients are
wanted which puts further requirements on the control system.

The combination of high performance and low price of SoftPLCs make them
interesting. There is however some questions about the reliability of industrial PCs
and with that SoftPLCs. The standardisation and blending process requires high
performance but also high reliability. The SoftPLCs undoubtedly have higher
performance but it is the combination of sufficient performance and sufficient
reliability that is the optimal solution. To achieve higher reliability with SoftPLC
the industrial PC should not have any moving parts, e.g. hard drives or fans. An
UPS should also be used to maintain service even during short power failures.

Both PLCs and SoftPLCs were investigated to see if they could be used for the
standardisation and blending process. The investigation analysed each company’s
control system according to some specified criterions, e.g. performance, memory
capacity and I/O-possibilites. Larger companies who’s control systems already
were used within Tetra Pak were the main candidates; i.e. Rockwell, Siemens and
ABB (which was used for the current version of the standardisation machine).
The smaller companies B&R and Beckhoff was also investigated (though only
their SoftPLC alternatives). Here ABB was considered to have the best PLC
while Siemens considered to have the best SoftPLC.

Since the current machine has a limitation of the number of ingredients that
can be mixed in the program code, one task was to develop and implement a
program structure without this limitation. This was done with a decentralised
calculation principle where the calculations that involve a certain ingredient is
moved to the program controlling that ingredient instead of being centrally located
in the program. The program structure was also implemented together with a
process simulation in an ABB system.

Also, more complex controller structures was investigated. This was because
many ingredients may cause that the system becomes less robust. To increase
robustness an alternative controller structure was proposed, based on local com-
pensation in each ingredient.

The user interface of the current machine was analysed according to some
usability theories. Some suggestions for improvements were given.
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Chapter 1
Introduction

For most people milk is just a white liquid served chilled in a glass. Other examples
of milk products are whipped cream, yoghurt, chocolate milk and cheese. One
difference between the milk products is the percent of fat. Fat standardisation
is a useful operation in a dairy, guaranteeing an uniform product quality and
allowing surplus fat to be used for more fat needing products. In addition to this,
protein standardisation and blending with different flavours, such as chocolate or
strawberry, has become more important during recent years as the dairy product
range has grown and the amount of ingredients has increased. Together with future
requirements for additional ingredients, higher flexibility and performance of the
control system is demanded.

If the reader does not have experience within dairy processing, you are advised
to read through appendix A for a general dairy introduction. A number of technical
words and abbreviations will be used throughout the thesis. These are explained
in the glossary.

1.1 Aim

The main goal of this thesis is to give a foundation for the choice of a modern
control system for development of complex systems. To be able to apply the
investigation to a concrete application, the standardisation and blending task is
used because of its complex nature and its requirements on the control system.
Other goals are to show how a flexible program structure can be built, investigate
the use of more complex controller structures and review the operator interface.

A new trend in modern control systems that is discussed in this thesis is PC-
based control systems, also known as SoftPLC. This has become more and more
interesting because of the combination of increased reliability, high performance
and lower price of PCs.

The thesis tries to answer the following questions:
• SoftPLC – Is SoftPLC an option that could (and should) be used?
• Control system – What control system should be used?
• Flexible structure – How can a flexible program structure be built and how is it

implemented in the PLC?
• Complex controller structures – How can more complex controller structures be

used to get an optimised blending?
• User Interface – How is the current user interface design and what should be

different?

1



2 Introduction

1.2 Approach

To be able to choose one control system, many have to be investigated. A wide
base analysis of control systems is done, for both PLCs and SoftPLCs. However,
since SoftPLC only is a software, the hardware platform is only discussed in general
with industrial PCs versus conventional PLCs. The different PLCs are however
discussed in more detail.

A flexible structuring of the program is approached with the goal to get a more
decentralised calculation. This structure is then implemented in a single control
system.

Complex controller structures are investigated from the decentralised program
structure and how it could be used to increase controller robustness.

There are many different theories and procedures for design of user interfaces.
To get some knowledge about these, people within LTH are contacted for discussion
and the theories are studied. An evaluation of the current user interface is then
done with a critical eye and some suggestions on changes and improvements are
given.

1.3 Structure of the thesis

Chapter 2 Description of the standardisation and blending process.

Chapter 3 Comparison between PLC and SoftPLC with regard to reliability and
performance.

Chapter 4 Investigation of different control systems, both SoftPLC and PLC.

Chapter 5 A program structure allowing flexibility and easy multiplication of
functions is developed and implemented in one system.

Chapter 6 Complex controller structures and how they can increase controller
robustness are investigated.

Chapter 7 The user interface of the current application is analysed and some
suggestions on improvements are given.

Chapter 8 Summary and final discussions.



Chapter 2
Process description:

Standardisation and blending

This chapter describes the standardisation and blending process. In this thesis
the word standardisation is primarily meant as the concept of mixing together
skimmilk and cream to get an uniform fat content in the final product. The
word standardisation can also be used for protein and SNF standardisation but if
nothing else is said, standardisation is equal to fat standardisation. Common for
all standardisations is that the content of some substance in the final product is
interesting.

The word blending is meant as mixing with more ingredients like flavours or
vitamins. This is usually done by adding additional flows after the remix of cream.
Such an additional flow is commonly called an additive. These ingredients proba-
bly contain fat and/or protein and will influence the standardisation calculation.
They will however not be the active component in the standardisation. Instead,
they will be mixed into the flow after a certain recipe, most commonly written as
a ratio of the outgoing flow or a fix flow. However, additives can also be used for
standardisation purposes which are described in the chapter.

2.1 Standardisation

The process of standardising milk has its origin in separator sales. A separator
divides the raw milk into two main components, cream and skimmilk. To get
standardised milk with a lower fat content than the raw milk, a mix of cream and
skimmilk is needed. It is then possible to get a large variety of milk fat contents
without having to change anything in the separator. One way of doing this is by
manual mixing but it is more effective when done inline. Both ways are presented
here.

2.1.1 Manual standardisation

Manual mixing of cream and skimmilk is calculated by using fat and mass balances.
With this, the amount of cream and skimmilk needed to get a given amount of
standardised milk can be calculated. The mass of cream and skimmilk into the
system have to be equal to the mass of standardised milk out of the system.
Similarly, the mass of fat in has to be equal to the mass of fat out. This can be
illustrated in equation (2.1) and (2.2) where C is the mass of cream (in kg), S
the mass of skimmilk, M the mass of standardised milk, fC the fat content in

3



4 Process description: Standardisation and blending

the cream (between 0 and 1), fS the fat content in the skimmilk and fM the fat
content in the standardised milk.

CfC + SfS = MfM (2.1)

C + S = M (2.2)

If fC , fS , fM and M are known, the mass of needed skimmilk, S, is calculated
as (2.3) and the mass of needed cream, C, is then calculated as M −S or by using
Equation (2.4). An example of the calculations is given in Example 2.1.

S =
M(fC − fM )

fC − fS
(2.3)

C =
M(fM − fS)

fC − fS
(2.4)

Example 2.1: Manual mixing using equations
fC = 0.40, fS = 0.0005, fM = 0.03 and M = 100 kg. The amount
of skimmilk, S, and cream, C, needed are calculated by use of (2.3)
respectively (2.4):

S =
100(0.40 − 0.03)
0.40 − 0.0005

kg =
37

0.3995
kg = 92.616 kg

C =
100(0.03 − 0.0005)

0.40 − 0.0005
kg =

2.95
0.3995

kg = 7.384 kg

2.1.2 Inline standardisation and blending

Even though manual standardisation is an easy way of mixing together skimmilk
and cream it is not applicable when larger volumes or higher accuracy is wanted.
Since the fat content is not constant in raw milk, it has to be measured continuously
to get a more precise fat content in the final product. The actual mixing will then
have to be done in the tubes rather than in the tank.

A similar approach can be used for protein standardisation; all you need is
some way of measuring the protein content. One way to do this is to measure the
SNF content which can be done with a density meter. The protein is about 40%
of the SNF and 80% of all protein is casein (which often is the interesting protein).
The rest of the SNF consists of lactose and minerals (also called ashes). A more
accurate, and expensive, way to measure protein content is to use some sort of IR
sensor, most commonly based on NIR technology.

When standardising the fat content to a lower fat content than in the raw milk
there will be some surplus cream since the inflow of raw milk is continuous and
not all is remixed. The surplus cream can then be processed and stored for more
fat needy products like butter or whipping cream. This is the big advantage with
inline standardisation which quickly pays back the investment for a dairy.

Inline standardisation is almost always done directly after a separator, see
Figure 2.1. The cream fat content is then standardised by a cascade controller that
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combines measurements of flow and density. Why both flow and density meters
are used is because of the variations in fat content in the inflow raw milk. If a
density meter had not been used, these variations would not had been detected
which would had affected the fat content in the outgoing product. A standard
setup for an inline standardisation process can be seen in Figure 2.1. The normal
setting is to have the inflow to the separator controlled to a fixed value. The
amount of cream and skimmilk out from the separator can then be calculated
with equations (2.7) and (2.8). These are derived from the mass and flow balances
of the separation point, equations (2.5) and (2.6). φW is the flow (in kg/h) and fW

is the fat content of the whole milk. φC , φS are the flows of cream and skimmilk.
fC and fS are, as before, the fat contents of cream respectively skimmilk.

Raw milk

Standardised milk

Cream

Skimmilk

1
2

4

4

4

5
5 6

7

3

Figure 2.1: Flowscheme of the inline standardisation. 1 – separator, 2 – constant pressure valve, 3 –
density meter, 4 – flow meter, 5 – control valve, 6 – shut-off valve, 7 – check valve.

φW fW = φSfS + φCfC (2.5)

φW = φS + φC (2.6)

φC = φW
fW − fS

fC − fS
(2.7)

φS = φW
fC − fW

fC − fS
(2.8)

Control of fat content is actually a control of the remix flow, φR, of cream. To
calculate the controller’s set point another mass balance have to be used, Equation
(2.9). From this equation the set point for φR is calculated as Equation (2.11)
where φS is calculated with Equation (2.12) (φRPV is the currently measured
process value of the remix flow). Since the set point is dependent of the process
value there will be some time before it has converged, thus the PID-controller will
not change the valve setting instantly. Another way to calculate the same set point
can be seen in Equation (2.13). The only difference is that the flow balance (2.10)
has been used in the mass balance (2.9) to derive the equation instead of using a
calculated value for the skimmilk. The choice of equation to use is not important
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since both will give the same answer. See Example 2.2 for a calculation with some
standard values.

φMfM = φSfS + φRfC (2.9)

φM = φS + φR (2.10)

φR =
φMfM − φSfS

fC
(2.11)

φS = φM − φRPV (2.12)

φR = φM
fM − fS

fC − fS
(2.13)

Example 2.2: Fat standardisation by inline cream remix
fW = 0.04, fC = 0.40, fS = 0.0005, fM = 0.03 and φW = 1000 kg/h.
φC and φS are calculated with equations (2.7) and (2.8):

φC = 1000
0.04 − 0.0005
0.40 − 0.0005

kg/h = 1000
0.0395
0.3995

kg/h = 98.87 kg/h

φS = 1000
0.40 − 0.04

0.04 − 0.0005
kg/h = 1000

0.36
0.0395

kg/h = 901.13 kg/h

These calculations only show the function of the separator; the flows
φC and φS are actually measured respective calculated and used in
equation (2.11) to calculate the set point for the remix controller. If
the inflow of raw milk is considered completely constant both in flow
and composition (fat content) the flows of cream and skimmilk will also
be constant. If the above given values are used, the first calculation of
the set point with equation (2.11) will give:

φM = φS + 0

φR =
(φS + 0)fM − φSfS

fC
kg/h = φS

fM − fS

fC
kg/h =

= 901.13
0.03 − 0.0005

0.4
kg/h = 66.46 kg/h

This value is the set point for the controller which now will increase
the process value φRPV from 0 to a higher value. If it in the next set
point calculation is, for example, 30 kg/h the calculation will be:

φR =
(901.13 + 30) · 0.03 − 901.13 · 0.0005

0.4
kg/h = 68.71 kg/h
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The process described above is fairly straightforward compared to the following.
It has been mentioned earlier that protein standardisation sometimes is used. Then
the process will try to standardise both fat and protein at the same time. A setup
for such a process can be seen in Figure 2.2 where the earlier process has gotten
an additional inflow, additive, that will take care of the protein standardisation.
Since there seldom is a flow that only contains fat or protein, there will be some
influences between the controllers. Instead of only one mass balance there will be
two, one for fat and one for protein, as can be seen in Equations (2.14) and (2.15).
Here pM , pS , pC and pA are the protein contents for each flow. A is the additive.
The flow balance, Equation (2.16), will also include an additional inflow, φA.

Raw milk Additive

Standardised milk

Cream

Skimmilk

1
2

4

4

4

4

5

5
5 6

7 6

3

3

Figure 2.2: Flowscheme of the inline standardisation with one additive. 1 – separator, 2 – constant
pressure valve, 3 – density meter, 4 – flow meter, 5 – control valve, 6 – shut-off valve, 7 – check valve.

φMfM = φSfS + φRfC + φAfA (2.14)

φMpM = φSpS + φRpC + φApA (2.15)

φM = φS + φR + φA (2.16)

These equations are then used to derive the set point equations for the cream
remix flow, Equation (2.17), and the additive flow, Equation (2.18). (2.18) will
be valid except when the protein standardisation is done by diluting the flow with
water. Then the protein content in the additive, and with that the denominator in
the equation, will be zero. This will give an undefined set point calculation and is
of course not desired. Instead the equation can be derived using the flow balance,
Equation (2.16). This will give Equation (2.19) for the protein set point (φS is
as before calculated by knowing the other flows). A similar approach can be used
if all cream is remixed (called full remix) and the fat content is standardised by
adding appropriate amounts of water.

φR =
φMfM − φSfS − φAfA

fC
(2.17)
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φA =
φMpM − φSpS − φRpC

pA
(2.18)

φA =
φM (pM − pS) − φR(pC − pS)

pA − pS
(2.19)

A large system with many inflows does not only contain fat standardisation
and protein standardisation. There may as well be additional ingredients that are
added for taste and/or consistence. These are normally added with proportional
flow control, i.e. as a ratio of the outflow, or a fix flow. An equation for a
proportional flow can be seen in Equation (2.20), where k is the ratio. Since these
flows also contain fat and protein, their contents have to be taken into account by
the fat/protein standardisation. An example of a large scale system with many
additives can be seen in Figure 2.3.

There are also more complex control functions as fat/protein ratio control,
where a ratio between the fat and protein are controlled to a certain value by
adding an appropriate amount of either fat or protein. These functions are however
not discussed further in this thesis.

φB = kφM (2.20)

Raw milk

Additive 1

Additive 2

Additive 3

Standardised milk

Cream

Skimmilk

1 2

4

4

4

4

5

5
5 6

7 6

3

3

3

34

66

5

5

4

Figure 2.3: Flowscheme of a large scale system. 1 – separator, 2 – constant pressure valve, 3 – density
meter, 4 – flow meter, 5 – control valve, 6 – shut-off valve, 7 – check valve.

A blending process does not always contain a separator. It could just as well
take its products from a tank. Then all ingredients will function as additives
to a base flow (normally skimmilk, just as when having a separator). This will
however not affect the flow and mass balances. The set point equations for the
standardisation flows are still derived by solving the mass balances.
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2.2 Future requirements from the process

The most common setups for standardisation and blending do not need more
than cream remix and maybe one additional inflow (additive). But more and
more complex setups are wanted, thus more additives have to be handled. Since
one additive have influence on all other, the standardisation of fat and protein
content in the final product becomes more difficult with more calculations and
more simultaneous control tasks. The difficulty is not only to manage the control
task of a certain number of additives; it should also be easy to customize the
program code to the customers demand. It should also be possible to construct
additional functions, e.g. lactose standardisation, in a later stage of development.
For some suggestions on solutions for these problems, the reader is referred to
Chapter 5.
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Chapter 3
PLC – SoftPLC comparison

A PLC (Programmable Logic Controller) is a control system for machines and
processes. SoftPLC, also called PC-based automation, is the concept of a PLC-
program run on a PC platform, normally an industrial PC with high demands
on reliability. In the rest of this thesis it will always be mentioned as SoftPLC.
During recent years the market has become more and more interested in SoftPLC.
This interest depends on many factors including price, performance and increased
reliability. This chapter is an attempt to explain some of the questions that may
come to mind when deciding if an ordinary PLC or a SoftPLC should be used.
Some basic facts on PLCs are discussed for example in [Olsson & Rosén, 2000].

3.1 Operation reliability

Operation reliability is the most critical issue for control systems. If not enough
reliability can be accomplished, it has no significance that the performance is
outstanding. To get a sense of the factors that are included in operation reliability
and the difference between PLC and SoftPLC in this matter, it is discussed in the
following sections.

3.1.1 Real-time operation

In any ordinary control system, many different execution processes (also called
tasks or threads; threads are processes with less status information, so called
light-weight processes) run at the same time. In control systems, most processes
are periodic processes, i.e. they have specified timing intervals when they should
be executed, e.g. every 10 ms or every 200 ms, which is called the scan time or
cycle time. The difference between the ideal start time and the actual start time is
called the latency of the process and the execution time of the process is called the
service time. An illustration of the times can be seen in Figure 3.1. A real-time
operating system (RTOS) is deterministic and guarantees a worst case latency
time, contrary to ordinary operating systems where the average-case latency is
most important.

There are also non-periodic processes, interrupts, which can be called from
either internal or external events. An internal event, such as a clock interrupt,
comes from within the system while external events are called by an input signal,
e.g. a button push or an alarm signal.

A central role in real-time systems is priorities. The priority of the process tells
how important that process are. A high priority process is normally the control

11
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scan time/cycle time

service time/execution time

latency time

sleep time

call to process

Figure 3.1: Illustration of times for processes/tasks. The third execution block is delayed and has a
latency time.

calculation task. A low priority process is the updating of the graphical user
interface (GUI). If a low priority process is executing and a call to a high priority
process comes, the process with lower priority will be preempted and the system
will start executing the one with higher priority. This change of executing process
is called a context switch and involves storing the actual state of the process and
its variables in the memory. When the interrupting process is finished, there will
be another context switch where the states are restored and execution is continued
from the same place as it was stopped.

Some parts of the processes are very important, e.g. the calculation of the
control output signal. If the process is interrupted during this calculation there
could be an error in the calculation if the parameters or input signals are changed.
To prevent this, a critical part of the process can be protected against context
switches. This mechanism is called mutual exclusion. Generally, this should be
used when using common resources, using locks that prevent other processes from
executing if they want to access the locked resource. However, this introduces
another problem, deadlock. Deadlock can occur when two processes both want to
access the same resources. An illustration of the deadlock phenomenon is shown in
Figure 3.2. Process A locks resource 1 but is interrupted. Process B locks resource
2 and executes until it needs resource 1. Process A then resumes its execution until
it needs resource 2. Now both processes is in a state of waiting of each others locked
resources, thus a deadlock has occurred. To prevent deadlock the order of resource
allocation should be the same in all processes, i.e. first resource 1, then resource
2.

Another part of a real-time operating system is priority inheritance. If the low-
priority process A locks some common resource but is interrupted by the higher
priority process B. B is then interrupted by process C that also wants the resource
locked by A. The resource is however blocked by A and A is blocked by B. Then
C can not be executed and B has to finish before A and C can execute. This is
called priority inversion and is not a desired behaviour since a lower priority pro-
cess (B) is in fact blocking a higher priority process (C). To prevent this, priority
inheritance is used; A gets the priority of C when C tries to access the resource,
making A to finish the execution with the resource before C can interrupt. See
Figure 3.3 for an illustration of the execution without and with priority inheri-
tance. [Årzén, 2003]
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A

locks resource 1 wants resource 2

locks resource 2 wants resource 1

B

Execution without locking resources

Execution with locked resources

Figure 3.2: Illustration of the deadlock phenomenon. B has higher priority than A.

A

B

C

wait time for resource

Without priority inheritance

A

B

Execution without locking resources

Execution with locked resources

C

wait time for resource

With priority inheritance

Figure 3.3: Illustration of the effects of priority inversion. Above is the execution without priority
inheritance and below is the execution with priority inheritance. A has low priority, B has medium
priority and C has high priority.
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An ordinary PLC runs its processes in a real-time system. In a SoftPLC this is
not always ensured. A SoftPLC-application run on an ordinary PC with Microsoft
Windows operating system does not ensure real-time properties itself. Windows
lacks some of the principal components to be called a real-time operating system;
it has too few different priority settings, it has a non-deterministic scheduling and
priority inheritance is not permitted. [Venturecom, Inc., 2003], [Fischer, 2005]

If real-time operation is wanted, the SoftPLC either has to be run on a real-
time operating system (RTOS) or on a RTOS-kernel inside Windows. If a Win-
dows/RTOS symbiosis is used it will allow other applications to be run along with
the control application. This is an advantage if external programs such as HMI
(Human Machine Interface), database system, firewall or web-server is wanted.
It is also good if Windows standard components for communication can be used.
In a special made RTOS this could perhaps be a problem. There are however
manufacturers of control systems who choose to run their SoftPLC-application on
solely Microsoft Windows. This demands higher performance by the computer
to minimise latencies for processes. It is however not deterministic and is not
recommended for high demanding processes, see Figure 3.4 for motivation.

An advantage for the Windows/RTOS combination (e.g. RTX from Ardence)
is that if Windows crashes (blue screen) the RTOS will continue operation in a
limited way. It will allow a shutdown routine to be run, shutting down the control
system in an orderly fashion.

3.1.2 Moving parts

A major disadvantage of normal PC, and with that SoftPLC, compared to a PLC
is that it has moving parts, i.e. hard drives and cooling fans, and therefore is not
considered as robust as a PLC. Like all moving parts, these will eventually break,
causing a production stop if used as a control system. Because of this, specially
made PCs for industrial use have been developed by certain manufacturers, e.g.
B&R, Beckhoff and Siemens. These will however not be evaluated individually in
this thesis, only discussed generally with some information from the manufacturers.

The industrial PC has instead of hard drives some kind of flash memory, most
commonly a CompactFlash card (also known as CF card). CF cards are usually
used in digital cameras; these are however not enough for industrial use since they
have a limited amount of writes to the memory. To increase the number of writes,
industrial CF cards have to be used. These will however not allow an unlimited
number of writes, only an increase. So if Windows or some other operating system
is installed on the CF card it should not use a page file, as this will write data to
the card continuously. To overcome this in Windows, the embedded version has to
be used. If no page file is used it might require more hardware memory to operate.
[James-Damato, 2006]

Cooling fans are in industrial PCs replaced by extensive use of heat sinks
combined with low temperature parts, e.g. the processor is commonly made for
laptop or embedded use and is not as heat radiating as desktop processors.
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3.1.3 Power supply

A problem that resides in both PLCs and PCs, as well as in all other electronic
products, is their lack of resistance to power failure. If the power will shut down,
even if only for seconds, all operation will do so too. To prevent this, an unin-
terruptible power supply (UPS) should be used. An UPS is in general a battery
that kicks in when it detects a power failure. This will allow a short runtime until
the power gets back or, if the power is gone too long, an orderly shutdown of the
control system.

If the control system has been shut down, it has to be restarted. If no UPS is
used this will perhaps happen more frequently, depending on the local power grid.
The restart time then becomes a critical property of the control system. If the
flow through the pipes is still on when the system shuts down everything that is
produced meanwhile the shutdown will be uncontrolled and will affect the quality
of the product. A PLC has a very short restart time. A PC generally takes much
longer time, depending on the amount of drivers and applications that should be
loaded.

3.1.4 Redundancy

PLCs have, at least the larger and more expensive versions, different options of
redundancy, e.g. double controllers, double I/O cables, double fieldbus connec-
tions. A redundant controller is in a stand-by mode and is activated when the
first controller fails and takes over the control. This gives a more reliable system
as the probability that both connections and controllers should fail is very low.

For SoftPLC similar redundancy can be used. Double computers are the equiv-
alent to double controllers for ordinary PLCs. The stand-by feature must be sup-
ported by the software if it should have the same functionality as double controllers.
Double processors or a dual-core processor is another option for SoftPLCs. This is
however not so much a reliability issue as a performance issue. The main purpose
for having a dual-core processor is to get higher performance with simultaneous
execution of two processes at the same time.

Another redundancy that could be used, if not using CompactFlash cards as
described above, is a RAID-system of hard drives where the same content is stored
on two separate drives. Hard drives gives a higher storage capacity than CF cards
but does not remove the issue of moving parts and is not considered as a good
option in a control system that should be able to run continuously for several years.
It is more interesting when intensive data logging is needed and could perhaps be
used in conjunction with a CF-card.

3.2 Performance

Performance for control tasks are not so much an issue of speed as an issue of
enough speed. A slower computer can be better suited than a faster computer; the
vital part is instead how the performance is utilised. The real difference between
PLCs and SoftPLCs in performance is that much more powerful CPUs are used
for SoftPLCs. The important question, through this section, is if all this power
can be utilised?

One option for SoftPLC is to have double processors or a dual-core processor.
This allows two processes to be executed simultaneously. If many processes try
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to execute at the same time, the dual-core will give an increase in performance
and a decrease in latency times. An interesting idea would be to let one core
execute the control process and the other core the other processes. Double pro-
cessors increase performance but are not a necessity; it depends on the number of
processes and how long execution times they have. If only one process is executed
there will be no performance enhancement when going from one to two processors.

As discussed earlier, real-time operation is of great importance. A PLC is
always real-time which creates a deterministic and reliable system. Processes
could be event triggered (e.g. started by a push on a button) or periodic. Periodic
processes are executed at regular intervals. As said earlier, the time the process
takes to execute is called scan time. If a process is executed in a fast CPU, the
scan time is shorter than in a slow CPU. This would allow higher frequency of
executions.

An ordinary Windows system is not real-time, it is a multiprocessing kernel
where the mean latency time is minimised while a real-time environment min-
imises the worst-case latency. The difference can be seen in Figure 3.4, where
latencies for a Windows system with a RTOS-kernel is compared to an ordinary
Windows system. To get some real-time properties an external real-time kernel
has to be installed under Windows. This kernel will then run the PLC programs
while other applications will run directly under Windows. The real-time kernel
will have a dedicated share of the CPU time available for its needs, as an example
Siemens SoftPLC can be adjusted to have maximum 90%. If it does not need all
of the CPU time, Windows will be allowed to use it for other applications. The
remaining 10% will however not come all at the same time. The CPU availability
will instead be spread out over time, giving a jitter in operation for other applica-
tions. The same phenomenon can happen if some low-priority task is interrupted
often by a high-priority task. To prevent this, a guaranteed sleep time has to be
set for the interrupting task. It is however not realistic to run the real-time ker-
nel at 90% and at the same time have a number of Windows applications executing.

Finally, an example of how the performance could be compared can be seen in
Table 3.1. There the execution times of some PLCs are compared to a SoftPLC
(Siemens WinAC RTX, since this is the only one with indicated execution times).
If you compare the SoftPLC with the fastest of the PLC systems, there is a factor
10 between the times. The tested CPU, Intel Pentium 4 2.4 GHz, is however a
more powerful CPU than most industrial PCs use. A qualified guess is that the
SoftPLC in an industrial PC will be approximately five times faster than a PLC
of the same class as Siemens S7-319. The reason that only Siemens systems are
presented is that they are the only producer that has both types of systems (see
more in next chapter). Other manufacturers do not present their execution times
in the same way, making additional comparisons unfair. The important here is the
performance difference between the PLC and the SoftPLC. The CPU frequency is
unfortunately not known for the PLC systems.
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CPU Float operation (μs)

PLC
Siemens S7-319 n/a 0.04
Siemens S7-416 n/a 0.12

SoftPLC
Siemens WinAC RTX P4 2.4 GHz 0.004

Table 3.1: Execution times for PLC and SoftPLC systems. All are from Siemens to get a fair comparison.

3.3 Summary

As a small conclusion, some criterions that a SoftPLC should fulfill if it should be
chosen are presented:
• A real-time kernel, either a RTOS or a real-time kernel inside Windows.
• No moving parts, i.e. no hard drives or fans.
• The embedded version of Windows has to be used to prolong the lifetime of

CompactFlash-cards.
• An UPS has to be used, to prevent long restart times for short power failures.

A SoftPLC has both its advantages and disadvantages versus a PLC. The PLC
is more industry tested and even if an industrial PC with all the above criterions
are fulfilled it is not considered as reliable as a PLC. However, the SoftPLC gives
more performance and flexibility. It is also better when heavy data logging is
needed.

The important when looking at the choice is to not concentrate solely on the
performance and price. The performance is not as much better as one can first
think. If a PLC has a CPU of 50-100 MHz and a SoftPLC has 2.4 GHz, one
can easily think that the SoftPLC is 24-48 times faster. This is however not the
case, as can be seen in Table 3.1. The difference between the PLC and SoftPLC
is instead about a factor 5-10 in execution time. Of course, the performance will
increase with faster processors, but a industrial PC can not have a processor with
too much power consumption since this will need fans or other cooling devices to
not overheat.



18 PLC – SoftPLC comparison

Time (µs)

Time (µs)

Figure 3.4: Timer-interrupt latencies for a Windows system (above) and a Windows system with a
real-time kernel (below). In both cases the same workload of disk searches, network activity and more
is present. [Venturecom, Inc., 2003]



Chapter 4
Investigation of control systems

One of the main tasks of the thesis is to investigate different control systems and
find out what system that is most suitable for the needs. To be able to do this,
some criterions are set that a system should be able to fulfill, at least in some way,
to be a candidate. The number of candidates is then reduced by some comparison
and discussion. Left are the systems that could be possible to use.

4.1 Choosing criterions

Performance
• Be able to have lower scan times than today.
• Enough program memory for both the system as it is today and future additions.
• Ability to calculate (fast) with floating point numbers.

Reliability
• No moving parts.
• Hardware should be tested for industrial use.
• Software should be tested for long term use.
• Different levels of redundancy, e.g. multiple CPU, sensors and cables.

Communication
• Communication with sensors and actuators. For I/O-specification see Section

4.3.
• Possibility to communicate with other brands of I/O.
• Have some of the most common communication standards: PROFIBUS DP/PA,

DeviceNet, ControlNet, PROFINET, EtherNet/IP.

Development
• Development environment with a good overview and structure.
• Advanced features for automatic control (PID with gain-scheduling and auto-

tuning, fuzzy logic, freezing).
• Module-based programming. (Modules are self-made complex function blocks

that can contain other function blocks and code.)
• Code safety. Ability to protect and hide some parts of the code. Hide different

routines for different users.
• Simulation.
• Ability to reuse the code from previous system. (only applicable for ABB).

19
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Service
• Documentation and online help for operator.
• Fault diagnosis.
• Remote access (i.e. Internet, mobile).
• Software upgrades by remote access or local installation (complete upgrades and

single module/library upgrades).

Operation and operator interface (HMI)
• User levels, i.e. different levels of access for different users.
• Logging of data (database).
• Trend diagrams.

Market
• Market share and goodwill. Not a too small company or a company with bad

references.
• Future of the system. The control system should be a product that the manu-

facturer will continue to develop and maintain for many years.
• Experience and use within Tetra Pak.
• What do Tetra Pak competitors use?
• Price.

Existing installed systems
• Use of the system world-wide.
• How many installed systems?
• What environments/processes are the systems used in? (Machine control or

process control?)

4.2 Priority analysis

Since most control systems fulfills the criterions mentioned above, some prioritising
is done. Below are the most important features listed in a falling scale of priority:

1. An absolute requirement is of course the performance and memory require-
ments. Since this is closely connected to the development environment and
the amount of code there is no way to exactly decide the requirements in
absolute numbers.

2. Because of the demands of flexibility in the code there has to be some kind
of scalability in the code. This is done with modules, self-made function
blocks, and therefore this is also an absolute requirement.

3. Availability of I/O-modules for sensors and actuators. Alternative commu-
nication with fieldbuses (mainly PROFIBUS) could be used for some I/O.

4. Since the system is time critical, a real-time control system should be used.
Ordinary PLCs are always real-time but for SoftPLCs this is not always
the case. Because of that a SoftPLC should have a real-time kernel. Also
for SoftPLC, the hardware have to be developed for industrial use. No
investigation of different industrial PCs is done but a general discussion can
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be read in Chapter 3, giving some background information when looking at
PCs.

5. Price.

6. Experience and use within Tetra Pak.

7. Manufacturer market share and use of their control systems world wide.

4.3 I/O specification

I/Os needed:
• Digital inputs and outputs.
• Temperature inputs (analog inputs). Used for input from PT100. Preferably

with 4-wire technology.
• Analog outputs. Used for sending signals to control valves and external

recorder.
• Pulse counter module. Should be able to measure the time between pulses

(period time) continuously. Used for both density meters and flow meters.
The density meter gives a signal of about 700 Hz (1400 μs) and an accuracy
of about 1 ns is wanted. Today, this is accomplished by calculating a mean
period time over several periods measured with a 10 MHz internal clock.
The flow meter does not need the same high accuracy but instead both the
period time and the number of pulses are necessary. This might require two
counters for a single flow meter.

The I/Os described above are the required module types. Normally, when
attaching I/Os these are connected at the same backplane. An alternative way
is to instead use distributed I/Os (also called point I/Os). These are connected
to the controller with a fieldbus connection. Distributed I/Os often have smaller
modules and is cheaper but requires a fieldbus module for the controller (a master)
and a fieldbus slave that the I/Os are connected to.

As seen below in Section 4.4, not all systems will have good enough I/Os
available. Since more and more systems require fieldbus communication, this could
be used for connecting sensors as well. If all flow meters, density meters and
PT100 is connected via a fieldbus (often PROFIBUS DP) all I/Os that are needed
are digital inputs and outputs and analog outputs. The important thing is that
the advanced pulse counter module is not needed anymore. However, fieldbus
connections for all sensors do not come free. The sensors have to have a fieldbus
device and a corresponding fieldbus master is required for the controller.

4.4 Investigated systems

With the criterions mentioned above in mind, an investigation of available systems
is done. It is concentrated on large suppliers, but some smaller alternatives are
also considered. Common for all companies is that Tetra Pak already has some
experience and/or business relations with them.

The investigation consists of first a performance/memory investigation of the
different CPUs. Then different options for I/Os are investigated, i.e. ordinary
I/Os, distributed I/Os (point I/Os) and fieldbus alternatives. These are compiled
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into standard packages where the prices also are compared. This information is
however confidential and will not be mentioned here. Specifications for the I/Os
can be seen above in section 4.3. The last part is a roughly investigation of the
development environment and other tools to the system.

4.4.1 Rockwell Automation

[Rockwell Automation, 2006]

PLC – ControlLogix

There are three interesting types of Rockwell’s PLC ControlLogix: 1756-L61, 1756-
L62 and 1756-L63. The difference is mainly memory capacity where L61 has 2048
kB user memory while L62 has 4096 kB and L63 has 8192 kB (this is where the
program routines are stored). All have the option of a removable CompactFlash
card to store information. There are no known performance values for Control-
Logix.

The ordinary I/Os does not provide a 4-wire module for temperature measuring
but there is a 3-wire module called 1756-IR6I. For pulse counting there are some
different options. The one chosen seems to be specially made for flow meters and
is called 1756-CFM. It has a 16 or 20 MHz internal clock and 2 channels which
allows connection of one flow meter or two density meters per module.

The distributed I/O also only has a 3-wire temperature module (1734-IR2).
There also is a pulse counter (1734-IK) with one channel but the specification
does not give any information about the resolution. To connect the distributed
I/Os a ControlNet module is also needed.

To directly connect to the sensors a fieldbus module (PROFIBUS DP, since
this is what the sensors have) is needed.

The development environment does not permit creation of own functions blocks
(AOI). This will however be implemented in a soon to come version. Program
languages supported are LD, FBD, ST and SFC. There are ready-made functions
blocks with PID controllers and such.

SoftPLC – SoftLogix

Rockwell also has a SoftPLC solution, SoftLogix. This uses the same development
environment as ControlLogix with addition of using libraries made in C/C++.
SoftLogix is run under Windows XP with real-time priority, without a real-time
kernel. See more in chapter 3 for further explanation.This is however not a hard
real-time environment. Since one of the criterions for choosing a SoftPLC-solution
is that it should be real-time, SoftLogix is disqualified from further analysis.
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4.4.2 Siemens

[Siemens, 2006]

PLC – S7

There are two series that could be interesting: the 300 and the 400 series. In the
300-series there is a PLC, S7-319-3, that has high performance (float operation in
0.04 μs) but it has not very much memory (1.4 MB total user memory that have to
be used for both program and data). To get more memory capacity the 400-series
have to be used, where the interesting PLCs are the S7-416-3 and S7-417-4. These
are Siemens’ largest PLCs with 5.6 respective 20 MB user memory where half is
used for program code (i.e. 2.8 and 10 MB program memory). These are however
slower than the 319 (float operation in 0.12 μs for 416 and 0.09 μs for 417). Both
the 300-series and the 400-series can have an optional flash card for storing other
project information.

The ordinary I/Os (the 300 and 400-series have different I/Os) have a temper-
ature module with 4-wire technology. The pulse counter module (FM350-1 for 300
and FM450-1 for 400) counts period times by using a 16 MHz internal clock and
taking an average over all pulses that comes within a specified time window. The
time window is set by the user and can be changed during execution. FM350-1
has 1 channel and FM450-1 has 2 channels.

The distributed I/Os (ET200S) have all the same functions as the ordinary
I/Os but with smaller and more flexible modules.

All Siemens PLCs have integrated PROFIBUS DP interface. This can be used
for connecting directly to sensors and for connecting to distributed I/Os.

The development environment for Siemens is called Step 7. This provides
creation of own function blocks and supports the following program languages
(in the complete version): LD, FBD, ST, IL, SFC and S7-SCL (Pascal), CFC,
S7-Graph, S7-HiGraph (state diagrams).

SoftPLC – WinAC

WinAC RTX is Siemens real-time enabled SoftPLC. RTX is a real-time kernel by
Ardence that is used inside Windows. There are some built-in limitations in the
system but after referring with experts on Siemens system, these are not considered
relevant. A big advantage with the WinAC is that it uses the same development
environment as the S7-systems (Step 7). This gives the possibility to use a S7-
system as an alternative to the SoftPLC. Since there also is knowledge in-house of
Siemens systems this is also an advantage. For WinAC, the most common I/Os are
the distributed I/Os (ET200S) and PROFIBUS DP to sensors when possible. If
an industrial PC from Siemens is used with WinAC there is a built-in PROFIBUS
DP interface, else a PCI-card have to be used.
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4.4.3 ABB

[ABB, 2006a]

PLC – AC 800M

There are three interesting PLCs in the AC 800M-series: PM861A, PM864A and
PM865. These differs both in performance and memory capacity. Today an ABB
SattLine 200 CPU40/80 system is used. CPU40 has a processor with 28.8 MHz.
PM861A has 48 MHz while PM864A and PM865 has 96 MHz. PM861A has 8 MB
program memory while PM864A and PM865 have 24 MB. To get a feeling about
the performance difference between the different processors the execution times
for a PID-function (PIDAdvancedCC) can be compared. CPU40 (is equivalent
with PM254) takes 2982 us, PM861A takes 1153 us and PM864A takes 577 us
(approximately half of PM861A). [ABB, 2006b]

There are two I/O-systems available for AC 800M: S200 and S800. S200 is
what is used today while S800 is a newer I/O-system. S200 can only be used
with AC 800M over a PROFIBUS DP connection. S200 has all the features that
is needed, including 4-wire temperature module (200-IR8R) and a pulse counter
module (200-IP4) with 4 channels, that either can be set to do high accuracy period
time measurements (taking the mean over several pulses) or simultaneous period
time/number pulses measurements. This means that either 4 density meters or
4 flow meters can be connected to a single module. The S800 however have no
4-wire temperature module, only one with 3-wire. Furthermore, the pulse counter
in S800 (DP820) only has 2 channels and only provides one of the measurements.

ABB have no special distributed I/O but all I/O-modules can be connected by
using a fieldbus. The sensors can be connected with PROFIBUS DP by using an
interface module (CI801).

The development environment for AC 800M is called Control Builder. It pro-
vides the IEC languages IL, ST, LD, FBD and SFC together with creating own
function blocks. It also has a control module language which can be seen as op-
timised function blocks where the code is sorted at compilation according to the
data flow. This is an influence from the older ABB Sattline system. More about
this can be read in Section 5.4.1.

SoftPLC – SoftController

ABB also have a SoftPLC, SoftController. This is however not a product they are
promoting and is mainly used for simulation. Besides, it does not have a real-time
kernel. Because of that it is disqualified from further analysis.
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4.4.4 B&R

[B&R Automation, 2006]

SoftPLC – Automation Runtime

B&R has a SoftPLC called Automation Runtime that is run with a real-time
kernel under Windows. As all SoftPLCs the performance and memory capacity is
dependent on the computer that is used.

To get a temperature model with 4-wire technology the X67 I/O-system has
to be used which is an IP67 class system. To get a pulse counter module (CM211)
the 2003 I/O-system has to be used. This means that two or more different I/O
systems have to be used at the same time.

Automation Studio is the development environment for the SoftPLC. It pro-
vides the following languages: IL, ST, LD, SFC, C-code and AB (B&R’s own
Automation Basic). There is the possibility to create own function blocks but
these have to be created using IL, ST, AB or C. One type of function block can
then be accessed in another function block.

4.4.5 Beckhoff

[Beckhoff, 2006]

SoftPLC – TwinCAT

Beckhoff has a similar product as B&R, i.e. a SoftPLC with a real-time kernel.
Beckhoff’s I/O-system is however not very convincing; there is no 4-wire temper-
ature module or any appropriate pulse counter module.

The software provides the following languages: IL, ST, LD, FBD, SFC and
CFC (similar to FBD). It also provides function block creation.

4.5 Choice of system

Since there is a time limit until the thesis has to be finished, not all systems can
be analysed in full detail. During the investigation it has also been obvious that
some systems are less suitable than others to control the blending process.

Beginning with the SoftPLC systems, only the ones with a real-time kernel are
qualified for further analysis (see Chapter 3 for explanation). Since both Rockwell’s
SoftLogix and ABB’s SoftController lacks this feature, they are not discussed fur-
ther. The remaining three systems (Siemens WinAC, B&R Automation Runtime
and Beckhoff TwinCAT) are similar in many ways. However, Siemens is consid-
ered superior in several areas, i.e. size of the company, experience within Tetra
Pak, available I/Os and besides has the possibility to use the same code on a PLC
system as on the SoftPLC. Without saying if a SoftPLC system should be used
or not this means that if a SoftPLC system is wanted it should be Siemens WinAC.

When comparing the PLC systems, an important feature is of course the per-
formance and memory capacity. Since the manufacturers does not provide com-
parable performance values in form of execution times there is no simple way to
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do this. Depending on the program code, there may also be differences both in
execution times and memory demands. For instance, a function block with a PID
controller may take longer time to execute in one system than in another. There
may also be different memory demands depending on what function blocks are
used and how the program is structured.

Since a fair comparison between the systems can not be made, a qualified
guess about the systems performance is done. ABB’s PLCs (AC 800M) can be
compared to the SattLine system, that is used today, with the execution times in
[ABB, 2006b]. This gives an estimate that the PM864A (AC800M) is about five
times faster than the CPU40 (SattLine). This is considered as fast enough. The
PM864A has 24 MB, three times as much as the CPU40 that is used today. The
other systems, i.e. Siemens S7 and Rockwell ControlLogix, are also considered as
fast enough. For Siemens, the S7-319-3 is the fastest PLC but it does not have
very much memory (only 1.4 MB). Instead the S7-416-3 is considered a better
choice with its 2.8 MB memory even though it has execution times that are three
times longer for float operations. The S7-400-series is however not usually used for
control of a single machine. It is more often used to control a full-scale industry
which also can be seen by the physical size of the controller, it is rather large
and may not even fit inside an ordinary machine panel. For ControlLogix, no
performance values are available and because of that the performance difference
between the different PLCs are not known. The memory capacity is however
known and by this knowledge the 1756-L62 seems as an appropriate choice with
its 4 MB.

Since the system is dependent on high accuracy sensors, corresponding I/O-
modules are needed to make use of the sensors accuracy. This is especially impor-
tant for the pulse counter module. To overcome the demands on the I/O-modules,
fieldbus connections to the sensors could be used. This will make the price for the
sensor higher, since the signal processing has to be moved from the I/O-module to
the sensor. The accuracy demand is also moved from the I/O-module to the sensor
electronics. In return no expensive pulse counter module is needed. It also allows
systems that do not have an adequate I/O-module to still be under consideration.
Even though fieldbus connections could be used with new systems, there is one
advantage with the ABB system: it will allow reuse of the old I/O-modules and
sensors. The only thing that then has to be replaced is the PLC. ABB’s S200 is
also one of few I/O-systems that completely fulfills the specification. The only
other system that does this is Siemens. There is however some questions if ABB’s
S200 will stay in the market as long as needed. Siemens controllers also have the
advantage with having a built-in PROFIBUS DP interface.

Even though many aspects when choosing a control system are hardware-
related, a very important matter is the development environment and the tools
that comes with it. This is also where the experience within Tetra Pak comes
in. Siemens, Rockwell and ABB are all used today at Tetra Pak. Many systems
do however not require as heavy calculations as the blending process. This is the
reason why a real-time kernel has to be used for a SoftPLC system.

The nature of the blending process requires that it is easy to make changes and
setting up a system according to the customers needs, i.e. specifying the number
of additives and functions. In Chapter 5 a program structure will be discussed
that tries to solve this. The program structure is however dependent on the abil-
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ity to create own function blocks. Since this feature is not available in Rockwell’s
development environment RSLogix at the moment, Rockwell is not chosen for the
further analysis and implementation. With this it is not meant that Rockwell
should not be chosen at a later stage of development. Both Siemens and ABB
have the possibility to create own function blocks using any of the IEC 61131-3
languages.

Another aspect is the price of the control system. When comparing prices a
standard system setup (without any additives) containing three flow meters and
one density meter is used. This requires different amounts of I/O-modules de-
pending on the amount of inputs and channels on the different modules. If using
distributed I/Os and/or fieldbus connections, there will be a decrease in price.
When connecting sensors through fieldbus there is however a higher cost for the
sensor. The cheapest alternative is to use a SoftPLC with distributed I/O and
fieldbus but this will require an industrial PC and perhaps some PCI-cards for
communication. More detailed price information has been produced for internal
use within Tetra Pak and will not be published here.

As a summary it can be said that ABB, Siemens and Rockwell all are possible
to use for the blending process. All have their strengths and weaknesses, e.g.
I/O-possibilites, price, SoftPLC-option etc. The two main alternatives are ABB
and Siemens.; ABB mainly because the development environment and that it is
the system used today. Siemens mainly because of the superior SoftPLC-option
and that it is used in other Tetra Pak machines. Rockwell is considered to have a
SoftPLC that is equal to ABB’s with regard to real-time performance. Rockwell
does not have the possibility to create own function blocks at the moment. This
will be possible in a near future but disqualifies Rockwell from being a candidate
for our implementation.

The best would be to develop a prototype-program in all systems and choose
the best out of that. Since this is not possible for a time-limited study like this
thesis, a single system is chosen together with Tetra Pak. To decide between
using ABB or Siemens a large matter is the use of an ABB system today. This
makes the use of some of the current solutions possible also in the new system.
Since the authors do not have very much PLC-programming experience, ABB’s
development environment also feels easier to use than Siemens’. All together this
means that ABB is chosen for the implementation. It is important to state that
the choice of control system in this thesis is not the same as Tetra Pak’s choice
of control system. This is a decision that is beyond the scope of the thesis. This
investigation instead tries to give a technical basis for the choice.
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Chapter 5
Program structure and implementation

To get a flexible system with easy configuring of additional flows, additives, and
functions a flexible program structure is needed. The purpose for this chapter is
to present an idea for a basic structure, containing the most important parts of
the system; i.e. the recipe management and the control calculation.

Today, there is a limitation of three additives. If one more should be added,
extensive recoding is necessary in all the previously mentioned sections of the
program. The goal with the program structure in this chapter is to overcome this
problem and allow easy setup of an unlimited number of additives.

5.1 Decentralised calculation principle

Since the main goal of the program structure is to allow easy addition of additives
the calculation of set points for each controller can not be made centrally in the
program. Instead it is moved inside the additive. The problem with this is that
the addititve then has to have information from all other additives to be able to
calculate the set point. To overcome this problem, the additive does not calculate
with fat contents in the same way as mentioned earlier in Chapter 2; instead it
will calculate with fat mass flows.

An illustration of the calculation for a fat standardisation can be seen in Figure
5.1, which shows the process line with skimmilk, cream remix, two additives, a
flow meter and a target. The central unit here is the target which knows the
total flow and the current fat content set point (as it is set in the recipe). It then
calculates the wanted fat mass flow by multiplying the total flow and the wanted
fat content. This is the set point value for the fat mass flow (called SP) and is the
signal sent to the left in the figure. From the left a process value for the fat mass
flow (called PV) is calculated in the skimmilk unit (by multiplying the skimmilk
flow and fat content) and is sent to the right. For each controller (cream remix
and additives) that is not set to do fat standardisation, in the figure the additive,
the SP and PV values are recalculated by subtracting respective adding the fat
mass flow that is supplied by the current controller, see Equations (5.1) and (5.2).
The SP will then decrease on its way towards the left while the PV will in increase
towards the right.

SPleft = SP − Flow ∗ Fat content (5.1)

PVright = PV − Flow ∗ Fat content (5.2)
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Figure 5.1: Illustration of the decentralised calculation principle. The top line is the SP value and the
bottom line is the PV value. In this example the Remix is set to do fat standardisation and uses the SP
and PV values to calculate a set point for the PID. The SP and PV values are sent as fat mass flows.

When it reaches a controller that is set to perform a fat standardisation, the
cream remix in the figure, it will calculate a set point for its own flow controller us-
ing the SP and PV values and the fat content of the added flow. This is illustrated
in Equation (5.3). A pleasant feature with this structure is that one controller
never has to know how many other controllers there are. This simplifies the set
point calculation to its simplest form; notice the resemblance between (5.3) and
(2.11). In fact, the only thing the structure does is to divide the numerator in
(2.17) so that every controller calculates a part of it. It is done in the same way
for each standardisation type, i.e. fat, protein, SNF etc. All that is needed are
the SP and PV values and some calculation code.

Flow =
SP − PV

Fat content
(5.3)

5.1.1 Flow calculations

Every controller has its own flow meter but there is only one flow meter in the
mixing line. This is normally placed after the last additive, directly measuring the
total milk flow out. It could however also be placed before some of the additives
requiring some calculation to get the total flow. The flow value measured by the
flow meter is simply sent to the right and every controller will take the value from
its left and add its own flow before forwarding the new value. When the value
reaches the target box it will be the total flow.

The same principle is also used to calculate the skimmilk flow, the flow meters
value is sent to the left and every controller will take the value from the right and
subtract its own flow before forwarding the value. When the value reaches the
skimmilk box it will be the skimmilk flow.

Both these values are used for the calculations described above and have to be
calculated before the actual calculation for every scan. An illustration of the flow
calculations can be seen in Figure 5.2.
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Figure 5.2: Illustration of the flow calculation. The upper left value is the skimmilk flow and the lower
right is the total outflow. All values are in kg/h.

5.2 Recipe management

Since there should not be an upper limit for the amount of additives, the actual
recipe storage is distributed to the controllers itself, i.e. the controllers have a
number of recipes that store recipe number, function number and function set
point. They will also have a number of ingredients, stored in the same way. In the
recipe management the recipes are paired together with a certain set of ingredients,
by storing the recipe number and the ingredient number together. If the ingredient
number is changed for the running recipe, this will be forwarded to the controllers
that will change their current settings.

5.3 Overview of the program structure

To get an overview of the program structure, the structure is outlined in Figure 5.3.
The main parts are the control calculation and the recipe management. Behind
these lies the process simulation. These three parts are executed in individual
tasks, with different scan times. This is because the control calculation is more
vital for the process than the recipe management that is not altered very often.
The simulation will have the shortest scan time since it is supposed to simulate a
continuous system. Between the control calculation and the recipe management
there is some communication. The control modules are described briefly here:
• Skimmilk – gives a start value for the PV and takes care of termination of some

signals.
• Remix – take care of everything with cream remix, e.g. set point calculation

and control signal calculation. Also stores all recipe and ingredient settings for
this controller. Needs connection to a flow meter and a valve.

• Additive – very similar to the Remix module, but gives different possibilities
of functions. All additives are independent of each other and to add another
additive a simple copy/paste is required together with connection to flow meters
and valves.

• Flowmeter – used to calculate skimmilk flow and total flow. Independent of
where it is placed along the flow line, the calculation will still be correct without
any code changes.

• Target – this module keep track on what standardisation values that are wanted
(e.g. fat content) and use this to calculate a wanted mass flow for each compo-
nent (e.g. fat). This is forwarded to the controllers as a SP value. The Target
module also takes care of the communication with the recipe management.
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• RecipeManagement – keep track of what recipe that is running at the moment.
Also stores recipe numbers and ingredient numbers, to know what ingredient
group that should be used with a certain recipe. There are also some sub-
modules that contain logic to take care of recipe changes and also some graphical
elements that is used in this test-implementation.

• ProcessSimulation – simulation of the separation and mixing process.

TargetFlowmeterAdditiveRemixSkimmilk

RecipeManagement

Normal

Slow

ProcessSimulation

Fast

Figure 5.3: Overview of the program structure. The lines between the boxes represents information flow
in both directions. The dashed line boxes are tasks with different scan times.

5.4 ABB information

Since ABB was chosen for the implementation, there have been some use of ABB
specific features. Here the most important are mentioned, i.e. control modules
and how to connect to an user interface.

5.4.1 Control modules – optimised function blocks

As has been mentioned earlier in the thesis, the possibility to use modules (self-
made function blocks) is vital to be able to develop a scalable system. The func-
tionality of a function block can then be expanded by placing it inside another
function block with additional code around it. For more conventional object ori-
ented programmers this can be compared to inheritance of classes.

As said in the previous chapter, ABB has been chosen for the final implementa-
tion. In ABB’s Control Builder another option is available when a scalable system
is wanted, i.e. control modules. Control modules can have the same code as func-
tion blocks but the code is sorted after data flow rather than program flow, which
is the normal case. The sorting will then try to make an optimised code sorting
according to the parameters and variables that are read and written in each code
block. To get a correct sorting the code has to be divided into a number of code
blocks, each taking care of the signals in one direction. An example of this is the
calculation principle above where the SP values are forwarded to the left and the
PV values are forwarded to the right. The code for updating and forwarding the
variables will then be divided into two code blocks, e.g. named left and right. If
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two control modules are connected to different tasks, these are not sorted together.
Every task has its own sorting.

Control modules can also be graphical and have graphical connections to other
control modules. They can also display graphical elements as buttons, texts and
diagrams. If these elements are used, the system is very similar to ABB’s older
Sattline system. When the structure was implemented, these graphical elements
were used to get a graphical overview of the system and to be able to show some
results of the process simulation. This is however normally not used as a user
interface, instead it is connected to the user interface using special variables which
is described further in Section 5.4.2.

5.4.2 Connection to user interface

An AC800M can be connected to a user interface in some different ways, depending
on what is wanted. There is the 800xA way, which is a fully integrated system
that could be used as a supervisory system. It could also be connected with an
OPC-server and in that way be used together with any OPC-compatible client.
However, the way that has mainly been studied is how to connect the control
system to a panel.

To allow a user interface to gain access to variables they have to be added to
the Access Variables list. Any variable, except arrays and queues, can be used
as Access Variables. These can then be used in the user interface that is built
with Panel Builder. As mentioned earlier, the implemented user interface is not
connected this way. This was considered to be outside the scope of the thesis since
it is not a part of the actual program structure.
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Chapter 6
More complex controller structures

Today, all automatic control in the system is done with PID controllers (commonly
used as PI controllers). This means that every additive has its own PID controller.
The set points for the controllers are calculated centrally every scan. Another way
to do this is to distribute the calculation, as can be seen in Chapter 5. But, if one
controller standardises fat content and another one standardises protein content,
they will still unavoidably affect each other. This is perhaps not a very big issue
if there only are 2-3 controllers but if there are 10 controllers this will become
somewhat of a stability problem. There is however some different setups of the
system where different control strategies are more or less interesting. This chapter
will divide these setups into some groups and give an approach on how to choose
suitable control strategies.

6.1 Control of the total flow rate

A central issue in the control is how the total flow rate is controlled. There are
some different setups where the total flow rate is controlled at different points in
the system:

• Pasteuriser controls flow rate before the mixing point
Here is the flow rate into the separator controlled to a constant value. Since
the fat content of the raw milk is not constant, this will give a varying
skimmilk flow and thus a varying outflow.

• Pasteuriser controls flow rate after the mixing point
Here the outflow is controlled to guarantee a fix flow through the pasteuriser.
If the additives change their flow rates, the pressure in the mixing point will
change which is used to control the inflow into the separation. This will in
return change the skimmilk and cream flow.

• Blending system controls the flow rate
This final option is normally only used when no separator is used and the
flow rates instead come from tanks. Then all inflows can be controlled totally
by the blending machine.
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6.2 Control strategies

The process has three main properties that a control system can be optimised
after. The first one is the composition of the ingredients, the second one is the
controller robustness and the third one is the total flow rate.

If the mixing composition is of the utmost importance the additives should
always react as fast as possible to adjust the mixing. This is perhaps more im-
portant when smaller volumes are used as the target since there is less space for
compensation. To optimise the controller robustness all additives should not react
on all changes. The last property is the total flow. In cheese production a con-
stant flow out of the system is often used. This is however often controlled by an
external controller (as described above), at least if a separator is used.

The strategies described below are focused on two of these three properties,
i.e. the mixing composition and the controller robustness. The robustness strategy
is perhaps more interesting if systems with many additives is used and will only
function if no external flow controller of the outflow is used.

6.2.1 Focus on mixing composition

This is the strategy that has been described earlier in the thesis where it has always
been of the outmost importance that the mixing proportions become right all the
time. This means that all controllers (additives) react on all changes without any
communication between each other. If one additive suddenly has a drop in the
flow rate it will make all controllers to take action to prevent this. This is perhaps
not a big problem with a few controllers (it could sometimes give better accuracy
in the outgoing product) but in large systems it will make the system less robust.

6.2.2 Focus on robustness

An alternative is to use local compensation in every additive, i.e. if one controller
has a decrease or increase of a flow rate it will take care of this itself. For example,
if an additive for some reason has a drop of its flow rate there will be a difference
between the set point and process value. The difference will then be added to an
accumulated error (AE). When the AE increases, this will increase the calculated
set point. This could be seen as an integrator that keeps track of exactly how
much of the additive that has been mixed in. One way to implement it is to have
a PID with its point set to 0 and the AE as process value. The output from this
PID is then added to the set point for the main PID controller.

The important in this strategy is that if one additive has some kind of dis-
turbance or variation it will not be forwarded to the other additives. The only
controller that is allowed to react is the one where the error has appeared. This
will give an error in the outgoing product for the moment but this will be com-
pensated for over time. Since no other controller should react on the error the
additive with the error still have to report that it mixes the correct volume which
in fact means that the set point for the flow is forwarded instead of the measured
value. The total flow/skimmilk flow calculation also has to be changed.

A downside with this strategy is that it allows variations in the total flow rate.
If this method is used in a system where the outflow is controlled by the pasteuriser
the skimmilk flow rate will increase because of the pressure drop. This will affect
all controllers and destroys the idea of the method.



Chapter 7
User interface

An important part for the operator of the machine is of course the user interface.
This is sometimes called HMI (Human-Machine Interface), MMI (Man-Machine
Interface) or for computers GUI (Graphical User Interface). Henceforth, it is
always referred to as user interface or HMI.

To design a good user interface some guidelines and rules of thumb should be
followed. These will however not guarantee some sort of perfect interface, only a
basis for evaluation and further development. This procedure is called iterative
design and the goal for each iteration is to get a better interface than before. In
this thesis the design process itself is not discussed, only the analysis method.

Some theory behind evaluation and analysis is presented in this chapter along
with some guidelines and rules of thumb. These are then applied to the currently
used interface. The presented methods are heuristic evaluation and cognitive walk-
through. One commonly used analysis method, that is not discussed at all, is user
tests. For later stages in the design process this should however be used in some
way. Especially interesting could be to see how easy users of an older model of the
system can adapt to the new model.

7.1 Theory

Since design of interfaces is not really a science there is no right and wrong.
Many different (and sometimes conflicting) theories exist. Here, some of the most
accepted ones are presented.

7.1.1 Usability

One term often used for good user interfaces is user friendly. This should however
not be used as there is no widely accepted definition of it. A better term is instead
usability that is defined by ISO 9241-11 as:

”The extent to which a product can be used by specific users to
achieve specified goals with effectiveness, efficiency and satisfaction in
a specified context of use.”

This definition includes three key words: effectiveness, efficiency and satisfac-
tion. Effectiveness is defined as to what extent a goal or task is fulfilled. Efficiency
is the amount of effort that has to be used to accomplish the task; less effort gives
higher efficiency. Satisfaction is the amount of positive feelings that the use of the
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system generates.

Usability can also be used as a part of the wider definition of usefulness which
is defined by Jakob Nielsen, [Nielsen, 1994], as the sum of the utility and the
usability. Utility is defined as to what extent the functions needed to achieve
the specified goal are implemented. Usability is how well the user can use these
functions. Nielsen defines usability with the following points [Nielsen, 1994]:
• Easy to learn – New users can quickly make use of the system.
• Efficient to use – Experienced users can complete tasks fast.
• Easy to remember – If a user already has done something in the system; it is

easy to do it again, without starting from scratch.
• Few errors – Errors are prevented from occurring but if an error occurs it is easy

to recover from the error.
• Subjectively pleasing – The user is subjectively pleased when using the system.

There is nothing disturbing.

7.1.2 Heuristic evaluation

One way of evaluating the usability of a system is heuristic evaluation. This
involves investigating the system according to some broadly principals, so called
heuristics. These can be seen as guidelines or rules of thumb. Some of the most
common sets of heuristics are presented here.

Nielsen’s rules of thumb

Jakob Nielsen has presented ten rules of thumb that can be used when evaluating
an user interface [Nielsen, 1994]:
• Simple and natural dialogue. Simplify if possible, every additional feature

or item gives the user one more thing to learn and one more thing to possibly
misunderstand. The information on the screen should be enough for the user to
accomplish the task but not more. Of course there should be a possibility to get
more information if wanted, but not before. Less is more; too much information
does not only risk confusing the novice user, it also slows down experienced
users. Graphic design and colours should be limited; there should not be more
than 5 to 7 different colours and colour blindness (7% of all males and <1% of
all females [Capio Medocular AB, 2006]) should be taken into account.

• Speak the user’s language. Terminology used in the system should be based
on the targeted users’ language and not the system itself. As far as possible com-
mon non-technical language should be used. Abbreviations should be avoided
if they are not widely known and accepted.

• Minimize user memory load. Humans easier recognise things that are shown
to them than things they have to recall from memory. For that reason the
system should give options to choose from rather than expect a keyboard input
or similar. One way is by having menus.

• Consistency. A command or action should always do the same thing. All dia-
logues, messages, menus etc. should be the same throughout the whole system.
Consistency can involve colours, terminology, layout, display of data and input
of data.

• Feedback. All actions should give some sort of informative feedback. If a
parameter is changed this should be shown in some way, e.g. by changing
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colour of the value. Buttons that are pushed must inform that something has
happened; it can be anything from opening a window to shutting down the
system. Common actions do not need very much feedback but more unusual
and serious actions should give much feedback, allowing the user to understand
the operation. Irreversible actions should also include a confirmation question
before they are performed. When operations take some time to complete there
should be some indication that the system is working; it could be an hour-glass
for relative short operations and a percentage indicator for longer operations (A
rule of thumb is that operations taking longer than 10 s should have a percentage
indicator).

• Clearly marked exits. Always give the user a clearly marked exit from a
dialogue, allowing the user to feel in control of the system and not the other
way around. A common way is to have an abort button.

• Effective use. Experienced users should have the possibility to use shortcuts
to accomplish tasks fast.

• Good error messages. An error message should be clear and precise. The user
should not have to refer to manuals to understand the error message. If error
codes of some sort are used, these should be accompanied by an explanation of
the error. The error message should also give some help in solving the error.
Some sort of More information-button can be used when the user is interested
in more detailed information. The system should also give the possibility to
reverse the last action.

• Prevent errors. The user should be given some choices instead of having to
use raw input, i.e. keyboard input. Serious actions should be confirmed by a
dialogue. This should however not be used too often as it will only make the
user to automatically press OK or Yes.

• Help and documentation. User manuals are not used by many users. There
should be some sort of online help in the system, allowing the user to search
and understand certain functions and errors. A help button for dialogues also
allows users to get more information about the function.

Schneiderman’s golden rules

Ben Schneiderman has presented eight rules for interface design [Schneiderman, 2004]:
• Strive for consistency. Dialogues and screens should look the same through-

out the system. Use of terminology, colours and fonts should be consistent.
• Enable frequent user to use shortcuts. Decrease the amount of interactions

to accomplish a task for experienced users.
• Offer informative feedback. All actions should give some feedback. The dis-

tinctness and information of the feedback should reflect how serious and frequent
the action is. Minor and frequent actions should only give modest feedback while
major and infrequent actions should give more information.

• Design dialogues to yield closure. All tasks should be organised into groups,
giving a beginning, middle and end for the dialogue. It is important that the
user knows when a task is at its end, allowing the user to go on with the next
task.

• Offer simple error handling and prevent errors. Design the system such
that serious errors can not be done. If an error is made, offer concise and clear
information about the error and be give some instructions on how to proceed.

• Permit easy reversal of actions. An action should always be possible to
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undo, independent if an error has occurred or not.
• Support internal locus of control. The user should always feel in control of

the system. Unexpected events and lack of information makes the user anxious
and feeling out of control.

• Reduce short-term memory load. A human has a limited short-term mem-
ory; a rule of thumb is that a maximum of 7±2 discrete objects should be used
at the same time.

Norman’s features

Donald Norman has some further points that should be taken into account. He
has also defined the concept of user-centered design. Some of his points, the ones
that are not covered by Nielsen and Schneiderman, are presented here as wanted
features of system [Norman, 1998]:
• Visibility. The most important parts of the interface should be the most visible.

The user should be able to determine the functions available and the state of the
system. An experienced user can handle more information on the screen than a
novice user, allowing faster access to interesting information and actions.

• Affordance. Affordance is what an object offers the user to do with it, i.e.
what signals or clues the object gives to the functionality.

• Mapping. The appearance of the object should have some connection to the
real world. It could be an appearance that has resemblance to a physical object
or a cultural standard, e.g. red implies a warning. It could also be as simple as
a button should look like a button if users can click on it.

7.1.3 Cognitive walkthrough

Since much of what is normally included in a cognitive walkthrough already has
been mentioned in the heuristic methods above, only some of the parts of the
cognitive walkthrough are mentioned here. [Hellström, 2005]

Perception

The human brain always tries to make out structures and patterns. By thinking of
some principals of grouping [Mullet & Sano, 2004], illustrated in Figure 7.1, this
can be applied when designing a user interface:
• Proximity. Objects that are close to each other are more likely to be grouped

together than objects that are not as close.
• Similarity. Objects that are similar are more likely to be grouped together

than objects that are not similar.
• Continuity. The brain rather sees a continuous object than a fragmented. In

the figure you are more likely to see two lines crossing each other than four lines
meeting in the middle.

• Closure. Even though an object is not completed, the brain tries to close
the object. In the figure a triangle is perceived even though the lines are not
completed.

• Area. When two objects overlap, the smaller object is interpreted as being on
top of the larger object.

• Symmetry. The mind prefers objects with symmetry, making the example in
the figure two overlapping squares rather than three polygons.
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Figure 7.1: Perception examples.

Other ways of grouping together objects are by colour, frames and lines. Frames
and lines should however be used with care, since they can take some of the
attention away from the important parts of the interface.

Text

When reading a text on the screen it is important to have some lines for the eye
to follow. This could be accomplished with spacings between the text lines. The
text should also be aligned to the left side and be read from top to bottom and
from left to right. The text should not be to thick, i.e. not to long sections or
sentences. It should not either be too small, making it hard to read. When data
is presented on the screen it is important that the user can control the display in
some way, e.g. by sorting.

Attention

There are numerous ways to get the users attention. Some are mentioned here:
• Emphasise of text (bold/italic).
• Markings of text (underline).
• Size of text (not more than four different sizes).
• Fonts for text (not more than three).
• Colours (not more than four).
• Sounds.
• Blinking or flashing (only for very serious and infrequent events).

Colours

When using colours it is very important to not use too many colours at the same
time. As mentioned above, not more than four colours should be used in the same
window. It is also important that the colour corresponds to the user’s real-life
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colour perception; i.e. red for errors, yellow for warnings, green for OK and so on.
There should however not be an over-reliance on colours; symbols should be able
to work in gray-scale as well.

7.2 Analysis of current system

The user interface for a blending system includes many functions and menus. The
most frequently used are the graphical system overview, the recipe management
and the alarm handling. The graphical system overview gives the operator a re-
alistic overview of the physical system, with components like valves and sensors
illustrated with possible error signals. The recipe management makes changes of
products and allows setup of the production. The alarm handling consists of an
event list with warnings and alarms with different levels of risk. This analysis will
specialise on these three functions. With the heuristic evaluation methods and the
cognitive walkthrough in mind, a usability analysis is done.

Figure 7.2: The user interface overview.

The system overview shows the different valves, flow meters, density meters
and tubes. It also shows the separator, giving the operator an idea of where the
blending system is placed in the larger dairy system. As can be seen in Figure
7.2, the large buttons at the bottom makes some impression of being important.
This is also the case since the configuration menu, alarm list and information can
be accessed through them. If the i -button is clicked, more information about
the different objects will be shown to the user, see Figure 7.3. This is a good
way of hiding information that is not needed very often. An even simpler mode
can be accessed through the button in top right corner. This mode only shows
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the production output, see Figure 7.4. These different modes give some sort of
information levels where different users can access the information needed.

Figure 7.3: The user interface overview with more information showing.

An important feature for a user interface is consistency, giving the user a hint
of what different buttons and objects do in different views. Generally, different
windows are built the same way. One example of this is the recipe and ingredients
management, shown in Figures 7.5 and 7.6, where the layout is similar in both
windows. There is also a similar layout when editing the recipe and the ingredients,
see Figures 7.7 and 7.6.

How to come from the recipe management to the ingredient management or
list is not clear. The clickable area for this is shown in Figure 7.9, with marked
out areas for what different clicks will do. Since the border between these areas is
placed in the middle of the word Ingredients, it is not very intuitive to know what
will show up. It would be better to have some kind of marking or even a button
to better show the different actions. This is an example of bad mapping. Under
the word Ingredients the ingredient number and name is displayed. These are also
clickable and it is actually here one is supposed to click. If these were made into
buttons it would be better.

Another example of bad mapping is apparent in the overview window. Almost
all functions have an icon or button, but the short cut to come to the recipe list
and management is not as clear. In the top of the overview window, Figure 7.2,
it is the number and recipe name with borders around it. It would be better to
either make two buttons out of these or to have two separate buttons next to the
borders.

Both these bad mappings have actually been fixed in a later version of the user
interface.
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Figure 7.4: Simple product value presentation.

The objects are, in general, grouped good and used consistently. However, the
icons (the appearance) of some objects are not very self-explanatory. For a new
user, it can be confusing when searching for a certain function. Some examples of
confusing use of icons can be seen in Figures 7.10 and 7.11. The On/Off-button
shows Off when it is off and On when it is on. To switch the button from off to
on, you have to click on a button that shows Off, which feels wrong. It would
be better to have a button without the On/Off text and instead have this status
displayed next to the button. The other example is the Save/Cancel-buttons,
which have the same icons. It would be better to have different icons or the actual
text (Save/Cancel) in the button. All objects should also have some kind of hint
or description appearing when holding the pointer over the object. This could
however be a problem when using a touch screen without a pointer.

A touch screen gives some limitations on how small objects can be. In the
current system, this problem is especially detected when closing a window with
the close button (the X in the top right corner). Sometimes it can be a little tricky
to click the button. An alternative to the Save/Cancel-button functionality that
is used today (the buttons appears when a change is made) is to have them visible
all the time. If one of the buttons is pushed in the current system, the window will
close. This is not very intuitive since they do not appear until a change has been
made. If they would always be visible, perhaps as the OK/Cancel-buttons that is
used in Microsoft Windows, this would help. The Cancel-button would then also
provide a solution to the close-button problem mentioned earlier.
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Figure 7.5: The recipe list.

Figure 7.6: The ingredient list.
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Figure 7.7: Edit window for a recipe.

Figure 7.8: Edit window for ingredients.

Figure 7.9: The clickable area for the ingredient management where the left marked area leads to the
choice of ingredient group while the right area leads to the ingredient editing.

Figure 7.10: On/Off-button.
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Figure 7.11: Save/Cancel-buttons.

A user interface should always provide some kind of feedback for every action,
giving the user a sense of being in control. Feedback can be as simple as opening
a window or switching a status indicator. More long-time actions should always
provide an operation progress indication, e.g. showing an hour-glass or some
percent bar. In this system there are not a lot of long-time actions but one is the
alarm acknowledgement feature. When this button is pushed it will be in the down
position for some seconds, while acknowledging all alarms. It would be better to
change the pointer to an hour-glass or showing something like ”Acknowledged 1/3
alarms.”, counting up.

To get efficient usage out of an interface, some regard to a human’s memory
capacity has to be taken. If possible, a human should never have to write in raw
data, e.g. a function number. This should always be controlled by some kind of
choice. In the current system this is done very easy but some things could be
better. When changing a value, a keyboard has to be used. For touch screen a
virtual keyboard can be used if no keyboard is present. Another way of solving
this is to use some kind of up/down arrows to increase or decrease the value.

One part of the interface that is often used is the alarm handling. Alarms
can come from all parts of the system and theories behind alarm management are
numerous. An important part is of course the presentation of alarms for the user.
An example of how the alarm list can look like is shown in Figure 7.12. As can
be seen there is some kind of text describing the alarm. There is however not
any way to get more information if wanted. When clicking an alarm, there could
be some extra information and perhaps some suggestion on how to proceed. The
alarm list itself is not very pretty, since the columns in the alarms are not aligned
properly. An option could also be to have some kind of Undo-button, undoing the
last made change.
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Figure 7.12: The alarm list.



Chapter 8
Summary and conclusions

During the latest years the number of additives wanted in a blending process has
increased. This gives two main problems. The first is that different additives are
dependent of each other which make the control task more difficult to handle. The
second problem is that when developing a new system it should also be easy to
add another additive which requires a flexible program structure.

In Chapter 5 a flexible program structure has been developed which takes care
of the control calculation and the recipe management. This program structure
simplifies the calculation by using fat mass flows instead of fat contents when
calculating set points. The storage of recipes and ingredients are distributed to
the additives, allowing a dynamic recipe handling.

Since an additive is dependent of all other additives there will be some sta-
bility problems when set point changes are made, at least for systems with many
additives. An approach on how to use a different control strategy that has focus
on control robustness is presented in Chapter 6.

The program structure and control calculation mentioned above might be im-
plemented in any PLC-system. But to be able to use a PLC-system it also has
to fulfill specifications for performance, memory capacity and I/O-connectivity.
Because of the high performance demands, the concept of SoftPLC has been in-
vestigated and some basic requirements that a SoftPLC-system (including the
industrial PC) should fulfill have been worked out in Chapter 3. Regarding if
SoftPLC could and should be used, the answer is yes respective maybe. SoftPLC
gives more performance and memory capacity for less money. It is however not
extremely much faster, only 5-10 times, and there are still some questions about
the reliability of the industrial PCs. A great advantage is if the SoftPLC manufac-
turer also provides PLC hardware, making it possible to easy go from a SoftPLC
solution to a PLC solution if the reliability will prove to be less than satisfactory.

In Chapter 4, an investigation is done of PLC- and SoftPLC-systems. This
is mainly focused on large-scale manufacturers like Rockwell, Siemens and ABB
but some alternative systems are also discussed. The investigation is based on
a requirement specification that has its origin in the system used today and its
performance and accuracy. The two main alternatives are ABB and Siemens.
ABB because of the development environment and that it is the system used to-
day. Siemens because of the real-time kernel in the SoftPLC and the use among
other Tetra Pak machines. Since an implementation should be done in one sys-
tem, ABB is chosen mainly because of the easy-to-use development environment
and the simulation possibilities. It should be stated that our choice is not Tetra
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Pak’s choice and our investigation is only a technical basis for the choice of system.

As a final part of the thesis, the user interface was analysed using some standard
review methods. Some things were found that could be done better. Some of these
have however already been fixed in a later version.

8.1 Future work

An investigation of how more complex automatic control, e.g. multivariable con-
trollers, could be used to get a more optimised mixing.

If SoftPLC should be a realistic option, there have to be extensive testing of
the industrial PCs. An investigation of how Windows XP Embedded should be
setup for best performance together with the SoftPLC should also be done.
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Glossary

Additive An additional inflow, normally all inflows except
the skimmilk and cream flow.

GUI Graphical User Interface.

HMI Human-Machine Interface.

I/O Inputs/Outputs. I/O-modules consist of some
kind of inputs or outputs that are connected to
instruments like sensors and actuators.

MMI Man-Machine Interface.

NIR Near Infra Red. An imaging method used for
measuring protein contents in milk.

PLC Programmable Logic Controller.
PT100 A standardised temperature sensor.

RTOS Real-Time Operating System.

SNF Solids Non Fat; the solids in milk except the fat.
SNF consists of proteins, lactose and ash (miner-
als). SNF is about 9% of cow milk.

SoftPLC Software PLC. Also called PC based automation
or PCbA.
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Appendix A
Dairy introduction:

From raw milk to packaged product

This appendix is primarily written for those who do not have experience of a mod-
ern dairy production line. A brief overview of the dairy is given. An illustration of
the product flow in the dairy can be viewed in Figure A.1. The largest information
source for this appendix is [Bylund, 1995].

Reception

Packaging
Heat treatment

Separation

Homogenisation

Standardisation and blending

Figure A.1: Overview of the different parts of the dairy.

A.1 Composition of milk

Milk directly from the cow, called raw milk, consists of water, fat, proteins, lactose,
ash (minerals) and some solid particles like hair and cow cells. The solid particles
are disposed of when going through the separator. The milk contents can then be
divided into three main components:
• Water. (87% of milk)
• Fat. (4% of milk)
• Solids Non Fat (SNF) (9% of milk) - Proteins, lactose and minerals.

Water and fat are fairly self-explaining. SNF is however more complex. Pro-
teins are mainly casein (80%) and whey protein (19%). Lactose, milk sugar, is
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about 5% of the milk and minerals is about 1% (also called ash since it will be the
remaining part if milk is incinerated).

A.2 Reception

After milking, the milk is cooled to a temperature of about 4℃ to prevent growth
of micro-organisms. Under transport to the dairy it is increased slightly above
4◦C. Incoming milk is because of that re-cooled before storage in silos.

A.3 Heat treatment

Most micro-organisms found in milk have growth temperatures between approxi-
mately 10℃ and 60℃. There are also some heat-loving bacteria that endure tem-
peratures above 70℃. When cooled the growth is prevented, but the organisms
are not terminated. For this a high temperature treatment is needed, normally a
pasteurisation. Pasteurisation (HTST - High Temperature Short Time) consists
of a rapid heating of the milk to about 72-75℃ for a time of 15-20 s. This com-
bination of temperature and time destroys the tubercle bacillus (T.B.) which is
the most resistant pathogenic organism normally occurring in milk. One way of
checking if milk has been properly pasteurised is to measure the activity of the
phosphatase enzyme. If no activity can be detected the milk is considered to be
adequately heated.

There are also other heat treatments available, e.g. LTLT (Low Temperature
Long Time) pasteurisation which uses a lower temperature during a longer time
(this is however not used in continuous processes because of the long heating times)
and UHT (Ultra High Temperature) which uses a very high temperature of about
140℃ for only a few seconds.

The heating and cooling process is actually done in several steps; see Figure
A.1, consisting of heat exchanger segments. A heat exchanger conist of a number
of plates with tight spaces in between. Every second of these spaces is fed with a
hot medium and the other is fed with the substance you want to heat. The heat
will then be transferred to the cooler substance with conduction through the plate.

The first step is the heating of the incoming milk to about 55-65℃. This is
done by some of the finished product. When the milk has gone through the
separator, standardisation, blending and homogenisation (see following sections
for more detailed information) it is heated to 72-75℃. It then goes through a
delay pipe which will hold the temperature for the desired time, normally 15-20 s.
After this heating the milk is rapidly cooled again to about 4℃, first by cooling
with the incoming milk and then by ice-water. The regenerative heating and
cooling that is used saves as much as 90% of the heat energy.

A.4 Separation

Raw milk consists of two main components; cream and skimmilk. One important
difference between these is their density. If whole milk is poured into a glass
and this stands for a while, the cream will travel to the top of the glass while
the skimmilk will reside on the bottom. This process depends on that cream is
lighter than skimmilk and is called sedimentation. Sedimentation uses gravity as
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its force of separation. One way of making artificial gravity is by rotation which
is used in modern separators. The centrifugal force pulls the heavier skimmilk to
the peripheral of the separator and the cream is forced into the middle. Figure
A.2 shows the flows inside the separator. Since the milk is not purified before
separation some particles from the cow still exist in the milk, e.g. hair. Since
these have the higher density than both skimmilk and cream, they will be forced
into the peripheral of the separator. There they will remain while the separator is
rotating. To get rid of this litter the separator either has to be opened and cleaned
or an in-production cleaning system is used. This system allows the bottom part
of the separator to be lowered, creating a small opening along the side where the
particles exit. After a fraction of a second it is then forced up to its original
position again, leaving the litter particles outside the separator. This is called a
discharge.

Cream

Skimmilk

Raw milk

Figure A.2: Flows inside the separator. The inflow is raw milk and out comes cream and skimmilk.

A.5 Standardisation and blending

After the separation, the milk is divided into two main components; cream and
skimmilk. Cream has normally a fat content of about 40% and skimmilk of about
0.05%. If milk with 3% is wanted, some of the cream has to be remixed with
the skimmilk in order to get a final product with standardised fat content. This
could be done manually without inline mixing by calculating how much cream
and skimmilk that should be mixed together. More common, at least in large
scale dairies, is to mix the components while flowing. To do this accurate, many
properties has to be measured and taken into account; i.e. flows in different tubes,
temperatures and density of the liquid. Also infrared sensors can be used to
measure fat and protein content. Using feedback control, the flow is regulated to
obtain a uniform fat content throughout the production.

For more complex products, additional ingredients are needed. This could be
extra cream, flavours or proteins. These are added to the product flow according
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to predetermined recipes. The fat contents of these additional flows have to be
compensated for, to obtain a consistent fat content in the final product.

Besides from fat content, milk can also be standardised according to protein.
This is done with the same mechanisms as for fat content but requires precise
measurements of either density (really SNF standardisation) or by NIR-technology.

For more detailed technical process description, see chapter 2. There are also
some predictions on future process requirements.

A.6 Homogenisation

To prevent large clusters of fat globules in the milk and to get a more appetizing
colour a homogeniser is used. It disrupts large fat globules by forcing them through
a narrow gap under high pressure (100-250 bar, normal pressure in the tubes is
about 3 bar). One disadvantage with homogenisation is that homogenised milk
can not easily be separated. This could be a problem if milk is going through the
separator a second time, which is sometimes the case.

A.7 Packaging

The package of the final product has some important functions, where the most
important is to preserve product quality. This allows transportation of the product
from the dairy to shelves around the country. A normal package for milk consists of
paperboard with a thin layer plastic on both sides. The paperboard gives stiffness,
resistance to mechanical shocks and light while the plastic (polyethylene) makes
the package leakproof. It also protects against condensation. For products with
long shelf-lives a thin layer of aluminium foil is used to further the protection
against light and oxygen.


