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Abstract

In a power system there is asignificant difference between symmetrical conditions and
unsymmetrical conditions. Unsymmetrical conditions may occur during power system
faults caused by, e.g. lightning, switching surges, insulating contamination or by
unsymmetrical loads.

Estimation of symmetrical componentsis awidely used method in protective relays to
detect unsymmetrical conditionsin three phase power systems. Directional €l ements and
fault classifiersin line protections may, e.g. use negative sequence components. It is of
great importance to detect an unsymmetrical condition asfast as possible. Many
estimation methods use one cycle Fourier filtering which means an operating time of
more than one cycle. The aim for this project is to detect an unsymmetrical conditionin a
quarter of acycleor less. Thiswork proposes a method with afilter algorithm using least
squares method and variable window size to estimate the symmetrical components.

The aim of thisMSc work is not to make a real-time implementation of the filter, but to
investigate the feasibility of proposed methods by simulations. Therefore the
implementation is made in Matlab where the phase signals are known in advance.
Various test signals have been used to verify the filter, both basic signals created in
Matlab, signals from a simulated power system in Simulink and real measurements from
anetwork during unsymmetrical conditions.

The results from these simulations show that it would be possible to detect and estimate a
new state in less than a quarter of a50 Hz cycle. Some limitationsin the filter properties
are made: It is assumed that outliers and faults shorter than 5 ms are removed in prior
signal processing. The filter has been designed under the assumption that the system
frequency is known. Furthermore, it is probably necessary to HP-filter the signal to
reduce the influence of DC components.

Chapter 1 is an explanation to the notations used in the equations. Chapter 2 gives an
introduction to the subject. Chapter 3 is aliterature study describing what has previously
been done in thisfield. Chapter 4 gives the basic theory of symmetrical components and
other methods used in this work. Chapter 5 deals with the algorithms for the Matlab
programming and its implementation. Chapter 6 contains simulation results and analyses
of the results. Chapter 7 contains conclusions and aspects that have not been covered in
thiswork and finally suggestions for further work are given.
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1 Notation

S, sample of the a-phase signal

S, sample of the b-phase signal

S. sample of the c-phase signal

A y-coor dinate of positive sequence component
B, x-coor dinate of positive sequence component
A, y-coor dinate of negative sequence component
B, x-coor dinate of negative sequence component
A y-coor dinate of zero sequence component

B, x-coor dinate of zero sequence component

S absolute value of positive sequence component
S, absolute val ue of negative sequence component
S absolute val ue of zero sequence component
¢, argument of positive sequence component

o, argument of negative sequence component

?, argument of zero sequence component

S a-phase positive sequence component

Sy, b-phase positive sequence component

Si. c-phase positive sequence component

S. a-phase negative sequence component

Sy, b-phase negative sequence component

Soe c-phase negative sequence component

Soa a-phase zero sequence component

Sop b-phase zero sequence component

Soc c-phase zero sequence component

@, nominal angular frequency

w actual angular frequency

M window size

At sample period time

k sample number
e residual between actual sample and predicted sample
o standard deviation of residuals



2 I ntroduction

Traditionally, a complete relay protection system consists of different kind of relays: over current
relays, earth fault current relays, over voltage relays, differential relays and distance relays.
Common for all these are that they use instrument transformers to measure the conditions of the
power system.

The introduction of microprocessor protective relaysin the 1980s offered new possibilities and
benefits, such as: flexibility, lower costs, reliability with self-checking capability, and fault
location/event-recording capabilities with local and remote reporting. Samples are taken from the
protected object that then get processed in amicroprocessor. Thisled to the possibility to use
symmetrical components in distance relays.

The positive sequence component exists during all system conditions and is dominating during
symmetrical conditions, including three phase faults. The negative sequence component exists
during unsymmetrica conditions. The zero sequence component exists when ground isinvolved in
afault.

During symmetrical and stationary conditions the symmetrical components have stationary values,
the positive-sequence voltage equals the peak phase-to-earth voltage of the a-phase and the
negative and zero-sequences are close to zero. When afault occurs the symmetrical components
will change and reach new stationary values that indicate a new state in the power system.

To detect fault conditions as fast as possible is of great importance. The faster afault is detected,
the faster actions can be made to disconnect the faulted line. The risk for transient instability is
then reduced which in turn increases the transmission capacity. This means that the equipment can
be designed in amore efficient way, which in turn can reduce the overall cost for a power system.
Figure 2.1 shows the transmission capacity-fault clearing time relation for a symmetrical three-
phase fault where the negative and the zero-sequence components are very close to zero, and a
single-phase fault. A phase-to-phase-to-earth fault is amost as serious as a three-phase fault.

TRANSMISSION CAPACITY LIMITED BY
RISK FOR TRANSIENT INSTABILITY

AN

Single-phase Fault and
Single-phase Reclosing

Three-phase Fault and
Three-phase Reclosing

(MW]

Fault Clearing Time

Figure 2.1. The relationship between fault clearing time and transmission capacity.



Another application is to use the negative zero sequence current for generator protection.
Here the operating speed is, however, not asimportant as for line protection.

An advantage of the proposed method isthat it can be applied at frequencies that deviate from the
nominal frequency.

With these aspects kept in mind it is clear that fast estimation methods is of great importance. On
the market there is a demand for estimation methods faster than 10 ms. The aim of this study isto
detect an unsymmetrical condition within a quarter of a50 Hz cycle, i.e.5 ms.

Many fast estimation methods (please refer the literature study) use one cycle Fourier filtering
which means a computation time of at least one period. The approach used here uses variable
window size and statistical analysisto detect a new state.

This study is made using Matlab in order to investigate if it might be possible to implement the
method in areal microprocessor protective relay. In Matlab, the sample sequences have to be
known in advance and hence it does not work in real time, even though the algorithm treat the
samples as they appear in real time. As a consequence of that, the program cannot directly be
implemented in areal microprocessor protective relay. Main focus is to investigate whether this
new approach seemsto work or not in a simulation environment. Both sequences generated in
Matlab and Simulink as well asreal network measurements from Sydkraft AB have been used to
verify the program.

In the Matlab program, no considerations have been taken whether the samples represent voltages
or currents. The input samples are just referred to as signals. Frequency deviations have not been
considered, it is assumed that the frequency is known. The study is limited to the estimation of the
symmetrical components. Further steps in the relaying process, such astrip decisions, fault
location and fault classification, are not within the scope.

The sampling frequency used in the simulations is 1000 Hz. One might ask why not just simply
increase the sampling frequency to get faster estimations. The answer is that the 1000 Hz
frequency has along tradition in computer based relay protection systems and has become the
standard sampling rate for ABB protection systems. Other manufacturers use sampling rates
ranging from 600 to 1440 Hz. Attempts to use sampling rates up to about 4000 Hz have been
made.



3 Literature study

Much works have been done in this subject before and most of them use Fourier algorithmsin
different forms that need at |east one cycle to estimate the sequence components. Here follows a
short description of those who are of interest.

One of the earliest computer implementations was presented by Degensin 1982 [1], seelist of
references in chapter 8. The paper describes an implementation of adigital filter with constant
sampling window. Six samples per period are used. The estimation time is poor though, 33 ms, or
two cycles, a 60 Hz.

Kolla[2] uses amethod called block pulse functions. The fundamental frequency components are
first computed with block pulse functions and then transformed into symmetrical components. It is
stated that the sequence components can be detected within a cycle.

Lobos shows in [3] acomparison between a Fourier algorithm with constant sampling and a
Fourier algorithm with variable sampling window and finally a Kalman agorithm. The estimation
times are not mentioned, neither is the zero sequence component calculated by the algorithms.
Reference [4] uses atechnique based on stochastic estimation theory. Bad measurements have
effect on the fina accuracy of the estimation and the estimation timeis about 112 ms.

None of these methods have an estimation time less than at least % of afundamental period time.
An exception is reference [5] which claims to estimate the sequence components with only one
sample delay. It is only verified with fundamental frequencies without noise and with step changes
intheinput signals. A three-point median filter is utilized to remove the noise that appears during
the transient process. The results are confusing though, since the sequence components have the
shape of sinusoidal waves when they are supposed to be constant when the input signals are
stationary.

A description of how symmetrical components can be used in protection systemsis presented in

[6].



4 Theory

The basic ideawith thiswork is to implement afilter that transforms sampled vaues from the
phase signals to symmetrical components. During steady state conditions the order of the filter is
twenty that means that the twenty most recent samples are used in the estimation. The least-square
method is used to restrain noise and harmonics and to find the parameters defining the symmetrical
components. This gives alinear equation system with six equations and six unknown parameters
(A1, B1, Az, B2, Ao, By) that can be solved. By predicting the next samples and comparing them
with the actual samplesit ispossible to detect new states. If the next sample exceeds a certain
level, anew state is considered to have occurred. If anew state occurs the stored samples will be
erased and the window size will be minimized. By doing this the pre-fault samples do not affect
the new estimation. The window length is then built up again step-by-step until it reachesits full
size. The estimates become more accurate as the size increases. With variable window sizeitis
possible to make faster and better estimations of the symmetrical components compared to the use
of aconstant window size.

41 Basic Relations

The theory of symmetrical components was developed by C.L. Fortescuein 1918 [7] and has
become a very important tool for the analysis of power systems. Only the definition of
symmetrical components is given here, but more information in this topic can be found in [8] for
instance.

A set of three-phase signals, (voltage or current), can be resolved into the following three sets of
sequence components:

1. Zero-sequence components, consisting of three phasors with equal magnitudes and with
zero phase displacement.

4

Figure4.1

2. Positive-sequence components, consisting of three phasors with equal magnitudes, +120°
phase displacement, and positive phase sequence.

o
> a Figure 4.2.
b
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3. Negative-sequence components, consisting of three phasors with equal magnitudes, £120°
phase displacement, and negative phase sequence.

b

a Figure 4.3.

C
The phase signals can be expressed in discrete time as:

Sp (K) =Spsin(kwAt + ¢p) for k=012,.........

. 4.2)
Sc (K) =Scsin(kawAt + @)

This means that the signals are defined by the six parameters S, S, &, ¢, @and ¢

These phase signals can be expressed as a sum of the positive-, negative- and zero-sequence
components.

S, (K) = 81, (K) + S5, (K) + 55, (K)
S, (K) = Sy, (K) + 85, (K) + 55, (K) (4.2)
S: (K) = Sic (K) + 85 (K) + 84, ()

The positive-sequence components are defined as follows:

S1a(K) = S; - sin(kawAt + @)

Sip (k) = Sl~sin(ka)At +¢ —EJ
3 (43)

sgp(k)=Sl-sin(kwAt+¢1—4?ﬂj

11



The negative-sequence components are defined as follows:

S2a(k) = S - sin(kaAt + ¢7)
Sop(K) =S -sin(ka)At +¢o —4?”)

(4.4)
Sc(k) =S - sin(ka)At +¢o — %J
The zero-sequence components are defined as follows:
Spa (k) = Sp - sin(kwAt + ¢p)
sob(K) = Sp - sin(keoAt + gp ) 45)

soc(K) = So - sin(kaAt + gp)

This means that the original phase signals can be expressed by symmetrical components which are

defined by the six parameters S, S, S, @1, @2 and @o. In this way the symmetrical components are
represented in polar coordinates. Based on the sampled values of the phase signals we want to find

those six parameters.

4.2  Sequence Componentsin Rectangular Coordinates

In order to simplify the parameter estimation it is a good idea to use rectangular coordinates
instead of polar coordinates. From now on we assume that the angular frequency is equal to the
nominal angular frequency and the variable =kanAt is used to further smplify the notation. The
sequence components then become as follows:

The positive-sequence components:

S, (K) = A -cos(6, ) + B, -sin(6,)
Sp(K)=A - co'{ek —%} B, 'sin[ek —%] (4.6)

A . 4
S (K) = Al-co'{ek —?]+ B, ~sm[9k —?}

Therdations between S, ¢ and the new parameters A, B; are asfollows:

S =R+ B

4.7
¢ = arctan[%) @0

1
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The negative-sequence components:
Sza(k) =A, 'Cos(ek) + B, 'Sin(ek)

S,, (k) = A, -cos[ek —4?”} B, 'sin(ek —4?”) (4.8)
S,. (K) = A, -cos{ek —2?”} B, -sin(@k —2?”}

Thereations between S, ¢, and the new parameters A, B, are asfollows:

S, = V A22 + B'f
(Az ] (4.9)
¢, = arctan| —2

2
The zer o-sequence components:

SOa(k) =A 'Cos(ek) +B, 'Sin(ek)
Son (K) = A, - cos(6, ) + B, - sin(6, ) (4.10)
Soc (K) = A, - cos(6, )+ B, - sin(6)

The relations between &, ¢ and the new parameters Ao, By are asfollows:

So:\/’bbz"'Bg

411
Gy = arctan(%) @10

0

Findlly, by putting (4.6), (4.8) and (4.10) into (4.2) makes that the original sampled phase signals
can be expressed as follows:

(4.12)
Sa(K) = Ay -cosy ) + By -sin ) + Ao - cos ) + By - siny ) + Ay - cosiP ) + Bp - sinB )

S(K) = A1~co{9k —%} Bl-sir(ek —%}Az 'co{ek —4—§)+ B, -sir(ek —4—§)+A0 -cod6) )+ By-sin6y )

se(k) = A1~co{0k —4—;”)+ Bl~sir(9k —4—§}+A2 ~co{0k —%} B, ~sir(0k —%}Ao -cod6) )+ By -sindy )

13



4.3  Least Squares Method

The least squares method is used to estimate unknown parameters for a function based on
samples from adistribution, see [10]. In this case the six unknown parameters are: Aj, B1, Ao,
B2, Ap and By. The function that shall be minimized is then:

(4.13)

M-1
V(AL Br A9 Ba, Ag,Bo)= ) [ Ar-cos(6) + By Sn(6k) + Ap - cos{8) + By - sin(6) +

k=0
M 1

Ao - cos(6) + Bo - Sn(B1) - 52 () P+ > [ Ay cos(ek——le sn(ek_%"}
k=0
M 1

Ay - cos[ek —%}L B, - sm[&k —4%)+ Ag - cos(By )+ Bg - sin (6 ) - sp (k) J + [ A - cos(ek ——”J

k=0

+ Bl~sin[0k —4%)+ A ~cos[0k —%t]+ B, ~sin[0k _ZT”}L Ay - cos(8y )+ Bg - sin (0 ) - sc(k) P

To find the minimum of the function it is differentiated with respect to each parameter yielding six
equations. Each equation is then set equal to zero asfollows:

dV(A,By, A,B, A By _

dA
dV(A,By, A,B, A BY) _
dB,
dV(A,By, A,B, A BY) _
dA, (4.14)
dV (A, B, A, By A B) _
dB,
dV (A, B, A, By A B) _
dA,
dV(A, B, A, B, A B) _
dB,

14



Applying (4.13) on the function (4.14) gives following six equations:
(4.15)

M-1

g[ A, -cos(, )+ B, -sin(6,) + A, -cos(6, ) + B, -sin(6, ) +

A, -co8(6,) + B, -Sn(6,) ]-cos(@)ﬂg[ Al-co{ek -2;’)+ Bl-sin(ek _2;’}

Az-cos(ek—dg[} Bz-sin(ek—z[)+Ao-cos(9k)+ B, -sin(6,) ]-co{ek—zg}h:zj A, cos[ 4;[}
+Bl-gn(9k—‘Z’}+A2-cos{ek —2;’} Bz-sin(Qk—zg)+Ao-cos(0k)+ B, -sin(6,) |-co { _4;’}

hfsa(k) -C08(6, )+, (K)- COS(G’k —2§)+ 5. (K)- cos(ek —4;’)
_ (4.16)

§
N

)i A, -cos(6, )+ B, -sin(6,) + A, -cos(6, ) + B, -sin(6, ) +

A, -cos(, )+ B, -sin(@,) |-sin@, )+MZl Al-cos(ek —2§)+ Bl-sin(ek—z?i[}
AZ-CO{GK—LZT)+BZ-SM(0K—2)+AO-COS(9,<)+ B, -sin(6,) |- sm(e —)+le A - cos(e —)
+B, -sin(ek —4,;[)+A2 -cos(é'k —2§)+ B, -sin(ek —Zg}ﬂb -cos(6, )+ B, -sin(8, ) |- sin(é'k —4;[):

Mfsa(lo-sin(ek>+sb(k>-sm[ek —Zg}sc(k)-sin(t?k —4;’)

k=0

=
I

(4.17)

§
N

)i A, -cog(8, )+ B, -sin(8, )+ A, -cos(6, )+ B, -sin(8, ) +

Ay -Cos(0,)+ B, S0, J-cos(6,)+ 3. A -co ek—zgj+ Bl-sn(ek—zgl
A -of o, ). -s'n(ek —‘Z,’}Ao aodo, )8, 500, Jeafo, % ) Al.co{ek =
+B, -sin(ek —4§)+A2 -cos(é'k —Zg} B, -sin(ek —Zg}ﬂb -cos(@, )+ B, -sin(6, ) ]-cos(é’k —2”):

3
hfsa (k)-cos(6, ) +s,(K)- cos(é’k —4§)+ s.(K)- cos(é’k —Z;T)

=
I

15



(4.18)

M-1

g[ A, -cos(6, )+ B, -sin(6,) + A, -cos(6, ) + B, -sin(6, ) +

A, -Cos(6,)+ B, -sin(@,) ]-s:n<ek)+“g[ Al-co{ek—zg} Bl-sin(ek—z:f}
Az.cos(ek—ézz)+82.sin(6k—LZ[)+Ab.cos(9k)+ B, -sin(6,) | sm(e —) Mz: A co{e _4;’)
+Bl-sin(9k —4;’)+A2 -co{ek —2;’)+ B, -sin(ek —2;’)+A0 cos(6, )+ B, -sin(6, ) | gn(gk _2;’)=

M-1

sa(k)-sin(ek)+sb(k)-sin(¢9k —4;[)+ s (k) -sin(ek —2;[)

k=0

(4.19)

M-1

g[ A, -cos(6, )+ B, -sin(g,) + A, -cos(6, ) + B, -sin(, ) +

A, -c0(6,)+ B, -sn(@,) }cos(6,)+ 3| Al-co{ek —2;’)+ Bl-sin(ek ﬁg}
Az-cos(ek—zr} Bz-sin(ek —‘Z’”J+Ab-cos(9k)+ B, -sin(6,) ]-cos(ek)+h§[ Al.co{g _4;”)
+B,- sm(e —43)+A2 co{e —2;’)+B sm(e —Zg)wb -cos(f, )+ B, -sin(6, ) |-cos(6,) =

-1

s, (k)-cos(6,) + s, (k) -cos(6 ) + s, (k) -cos(6), )

0

§

=
I

(4.20)

i

l[A1 cos(8, ) + B, -sin(6,) + A, -cos(8, ) + B, -sin(6, ) +

0

A, -cos(6,) + B, -sin(8,) ]-sin(6k)+MZl[Al cos(e —2?)+B sm(e —2?”)+

k=0

A, -cos(@k —4?”]+ B, -sin(@k —4?”]+ A, -cos(6, )+ B, -sin(@,) |-sin(8,) + le[ A - cos(@ —4?”)

=
I

k=0

B, -sin (9 —4?”]+ A, - cos( 23 ]+ B, -sin(@k —%]+ A, -cos(@, )+ B, -sin(8,) |-sin(8,) =

-1
S
0

+

§

(k) -sin(8,) + s, (k) -sin(6,) + s, (k) -sin(8, )

a

=
Il

16



Now the six equations can be arranged in an equation system and solved to give the six unknown
parameters. In order to simplify the notation, the expressionsin (4.21) are introduced.

f1(k) = cos(6)
f2 (k) =sin(6k)

fa(k) = co{ek -

f4(K) =sin(0k -

f5(k) = cos(ek -

fe(K) =sin(0k -

(4.21)

Writing the equation system in the matrix form of A*X=B, whereit is understood that fy=fy(k),

yields:

[M-1

2 f1f1+ f3f3+ f5f5
k=0

M-1

2 fle + f3f4 + f5f6
k=0

M-1

2 f1f1+ f3f5 + f5f3
k=0

M-1

2 f1f2 + f3f6 + f5f4
k=0

M-1

2 f1f1+ f3f1+ f5f1
k=0

M-1
2 f1f2 + f3f2 + f5f2

k=0

M-1

Z f2f1+ f4f3+ f6f5
k=0

M-1
2 f2f2 + f4f4 + foG
k=0

M-1

z fofy + fafg+ fgfs
k=0

M-1

2 fzfz + f4f6 + f6f4
k=0

M-1
2 fofy+ fafy+ fofy
k=0

M-1
z f2f2 + f4f2 + f6f2
k=0

M-1

2 f1f1+ f5f3 + f3f5
k=0

M-1

2 fle + f5f4 + f3f6
k=0

M-1

2 f1f1+ f5f5+ f3f3
k=0

M-1

2 f1f2 + f5f6 + f3f4
k=0

M-1

2 f1f1+ f5f1+ f3f1
k=0

M-1

2 f1f2 + f5f2 + f3f2
k=0

(4.22)

M-1 M-1
2f2f1+ f6f3+ f4f5 2f1f1+ f1f3+ flf5
k=0 k=0

M-1 M-1

zf2f2+ f6f4+ f4f6 2f1f2+ flf4+ flfG
k=0 k=0

M-1 M-1

z fofy + fgfg + faf3
k=0

M-1

Z fofy + fofe + fats
k=0

M-1
2 fofy+ fofi+ fafy
k=0

M-1
2 f2f2 + f6f2 + f4f2
k=0
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2 f1f1+ f1f5 + f1f3
k=0

M-1

2 fle + f1f6 + f1f4
k=0

M-1

2 f1f1+ flfl + flfl
k=0

M-1

z f1f2 + flf2 + fle
k=0

M-1

2 f2f1+ f2f3 + f2f5
k=0

M-1
z f2f2 + f2f4 + f2f6
k=0

M-1

2 f2f1+ f2f5 + f2f3
k=0

M-1

2 fofy+ fofg+ fofy
k=0

M-1
2 fofy+ fofy + fofy
k=0

M-1
z f2f2 + f2f2 + f2f2
k=0




M-1

Y s fi+ M fa+sdfs
k=0

M-1

PR CLEENOLREN I
k=0

M-1

Y s fi+ s+
k=0

(4.23)

M-1

Y s o+ e+t
k=0

M-1

Y s®h+slh+s@h
k=0

M-1

Y s+ p0fH+0f
| k=0

And finally the estimation of the symmetrical componentsis solved by:

(4.24)
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4.4  Distortion detection
Next step is to detect an abrupt change in the phase signals. Thisis done by comparing the estimate

of the next sample with next observation and then determine if atransition from normal to an
abnormal state has occurred.

signd

k Figure 4.4
prediction

>
k+1

If next sample differ more than acertain level from the predicted value of next sample, anew state
is considered to have occurred. How to determine thislevel is described in chapter 4.5.

The prediction is very easily done once the symmetrical components are determined. The samples
are predicted by transforming the symmetrical components back to the input signals. Thisis done
by using equation (4.12) and increasing k one step.

45  Determination of deviation limit

An important aspect is to determine how much the actual sampleis allowed to deviate from the
predicted sample without being considered as an abnormal state. The input signals are supposed to
be corrupted with harmonics and random noise. Hence, the approach is to calcul ate the standard
deviation of the residuals between the actual sample and the predicted samples and then compare

next residual to the standard deviation.
The residuals are calculated as the difference between an observation and the expectation.

6 =x —E{x} (4.25)

The standard deviation of the residualsis then calculated as:

n
o= ﬁZ(a -ef (4.26)
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Maximum allowable deviation for next sample compared to the predicted value isthen set to a
multiple of the standard deviation, for instance 3c. The multiple has to be decided when
calibrating the filter to find the optimal bal ance between sensitivity and security to falsetrips. This

istreated in chapter 5.
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5 | mplementation, Matlab programming

In the previous chapter the principal theory for the filter implementation was described. Now the
aim isto transform the theory into a working Matlab-model.

The development of the program was divided into four steps.

1. Create amodel with constant window size that can handle fundamental sinusoidal
waveforms and make accurate estimates of the symmetrical components.

2. Make the program work with variable window size.
3. Create adistortion detector that can judge if afault has occurred.

4. Make the program work with signals looking like real signalsthat appear in a power
system.

The crucid part in the algorithm is the distortion detector and the variable window size. When a
new state occurs the window size will be minimized and then successive built up to full size again.
Asfull sizeisreached it will work as a moving window, pick up the most recent sample and
discard the oldest sample. A principal flow chart of the program is shown in figure 5.1.
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51 Flow chart

Input
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P Check if residual > limit yes .| Abnormal state detected!
Minimize window

no l (M=1)
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Create B-matrix transformation,
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v

Check if M = 2 no

A

Calculate symmetrical > Output, symmetrical
components, X=A"*B components:

l S S & 0, o, ¢

If M <20, increase M

=y

Predict next samples

'

Calculate o of the
residuals to determine
limit

Figure5.1
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52 Commentsto theflow chart

Here follows an explanation to the flow chart. Let’s start with the assumption that the power
system isin balance and suddenly afault occurs. Thisis detected because the residual between the
actual sample and the predicted sample is larger than the max alowable deviation limit.

Step one then is to interrupt the current estimation process and discard al samples stored in the
window, discard all residuals stored for standard deviation calculations and to minimize the
window size. Thefilter is now reset and contains no pre-fault observations.

At least two samples are needed to solve the equation system for the symmetrical components
estimate, so the first post-fault sampleisjust stored in the filter without any further calculations.
Meantime, the limit for max allowable residualsis set to a high value to avoid new fault detection
and window minimizing.

The second post-fault sample is now put into the filter and consequently the window sizeis
increased by one (M=2). Thefirst estimate of the symmetrical components is now made which
means that next sample can be predicted.

When the third post-fault sample is put into the filter it will be compared to the predicted value and
thefirst residua is achieved and stored in avector. The window size is now three (M=3) and the
second estimate is achieved and next sampleis of course predicted. One residual is now stored but
since the standard deviation of one sample equals zero, the limit is raised again to avoid fault
detection in next run.

The fourth post-fault run equals the third except that two residual values are stored which means
that the standard deviation and max allowable deviation limit can be calculated. The procedure for
the following runs are now identical until the window reaches its maximum size providing a new
fault is not detected. When the window has reached full size the oldest sample in the window and
the oldest value in the residua vector are discarded as a new sample enter the filter. This goes on
until anew fault is detected and the procedure described here starts al over again.

The actual Matlab program code is attached in the Appendix.

53 Considerations

Theoretically the algorithm presented above can be used to detect a fault and estimate new
symmetrical componentsin four samples, i.e. 4 ms at a sampling frequency of 1000 Hz.
Simulations, see chapter 6, shows that this works perfect if the input signals are undisturbed and
make a step change without any transient behavior. Under rea circumstances the signals will most
likely have atransient behavior during a certain time after afault. During this time the real samples
will of course differ alot from the predicted samples, causing thefilter to react as a new fault has
occurred. Thiswill go on-and-on until a new stationary condition in the power system is reached
and the result will be discontinuities in the output estimates. Discontinuities are of course
unwanted and have to be avoided. The solution to the problem chosen here is to increase the max
allowable deviation limit for the residuas for the first samples after afault. In practice this means
that the distortion detector is not in use for the first samples after afault incident. The accuracy of
the estimates will suffer during this period. A trade off between sensitiveness and accuracy hasto
be made.

Two factors are used to calibrate the filter; the number of samples the distortion detector is not in
use and the factor the standard deviation of the residualsis multiplied by. The settings of the filter
for different signals are investigated in chapter 6.

23



6 Tests, smulations, analysis, results

In this chapter the results from simulations for different signals and fault cases are presented and
analyzed. Three different origins for the input signals have been used. First basic signals created in
Matlab have been used, then more power system look-alike signals have been created in Simulink
with the Power System Blockset, and finally measurements from area power system have been
used to verify thefilter. The results are also presented in that order.

6.1 Simulationswith signalscreated in Matlab
These tests were performed to verify that the filter worked as expected.

Fundamental sinusoidal waves.

Fundamental sinusoidal waves with symmetrical fault (sag).
Fundamental sinusoidal waves with symmetrical fault (swell).
Fundamental sinusoidal waves with single phase-to-ground fault.
Fundamental sinusoidal waves with double phase-to-ground fault.
Fundamental sinusoidal waves with three phase-to-ground fault.
Noisy sinusoidal waves with single phase-to-ground fault.
Sinusoidal waves with third harmonic, single phase-to-ground fault.

N~ WDNE
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6.1.1 Fundamental sinusoidal waves

First the filter is verified by using fundamental sinusoidal waves with amplitudes of 0.5 p.u. and

120° phase displacement. The phase angleis 30°.
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Figure 6.1

The absolute value of the positive component is 0.5 p.u. and the negative and zero components are
zero. The argument of the positive component is 30° and the negative and zero components are

zero. These results equal the theoretically values and show that the filter gives accurate estimates.
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6.1.2 Fundamental sinusoidal waves with symmetrical fault (sag)

In next simulation we make a step change in the magnitudes of the input signals from 0.5 p.u. to

0.25 p.u. after 25 ms.
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Figure 6.2

discontinuity for 4 ms until the new estimates are available. Sinceit isasymmetrical fault the
arguments should not be affected, only the absolute value of the positive component. The post-
fault absolute value of the positive component equal's the magnitude of the post-fault input signals
and the argument of the positive component is still 30°, which shows that the filter works properly.

At 25 msthe new state is detected and the estimation is interrupted. The outputs have a
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6.1.3 Fundamental sinusoidal waves with symmetrical fault (swell)

In next simulation the magnitudes of the input signals increase with a step change instead.
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except that the post-fault value of the

The results should be identical to previous simulation

positive component should be 1 p.u. The results confirm this.
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6.1.4 Fundamental sinusoidal waves with single phase-to-ground fault
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In this test a one phase-to-ground fault occurring at 25 msis simulated. Thisis an unsymmetrical
fault with ground involved. From chapter 2 we know that the negative component should be
affected because the fault is unsymmetrical and the zero component should be affected because

ground is involved.
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Time[mg

The absolute value of the positive component has decreased to 0.333 p.u. and the negative and zero

sequences have increased to 0.167 p.u. The argument of the positive component is still 30° but the
argument of the negative and zero components have changed to -150°. These results also equal the

theoretica values.



unsymmetrical fault with ground involved. From chapter 2 we know that the negative component
should be affected because the fault is unsymmetrical and the zero component should be affected

In this test a two phase-to-ground fault occurring at 25 msis simulated. Thisisaso an

6.1.5 Fundamental sinusoidal waves with double phase-to-ground fault

because ground isinvolved.
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Time[mg

component is still 30° but the argument of the negative components has changed to -90° and the

The absolute value of all components has changed to 0.167 p.u. The argument of the positive
zero components have changed to 150°. These results aso equal the theoretical values.



6.1.6 Fundamental sinusoidal waves with three phase-to-ground fault

A three-phase fault is a symmetrical fault and since the magnitudes of the signals are zero the

components a so are expected to be zero. The results confirm this.
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The conclusion is that the filter works for ideal input signals and step change faults.



6.1.7 Noisy sinusoidal waves with single phase-to-ground fault

In thistest the input signals are disturbed with normally distributed white noise with a standard

deviation and variance of 0.05. Otherwise the test isidentical to 6.1.4.
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The outputs show some ripple due to the noisy input signals but otherwise the results are almost
31

identical to theresultsin 6.1.4.



6.1.8 Sinusoidal waveswith third har monic, single phase-to-ground fault

Findly, the filter was tested with a third harmonic added to the fundamental frequency.
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allowable deviation for the samples versus the predicted samples. This makes a new state hard to
32

detect. The highest alowable magnitude of the third harmonic with current filter settingsis 20% of
the fundamental frequency. It is hard to create more authentic power system signalsin Matlab. In

The harmonics make the standard deviation of the residual s increase and in turn increase the max
next part Simulink is used to create more authentic signals.



6.2  Simulationswith signalscreated in Simulink

Figure 6.9 shows the model of a power system used in the ssmulations. It consists of a power plant
with six 350 MV A synchronous machines, a 100 MW RLC load, six 350 MV A, 13.8/735 kV step
up-transformers, a 300 km three-phase transmission line, a300MVA, 735/230 kV step down-
transformer and finally a250 MW RLC load.
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Figure 6.9

To verify the function of the filter similar tests asin previous chapter are performed.
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6.2.1 Steady state

Firgt, thefilter is verified with steady state signals.
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0 causing the transient behavior of the input signalsin the

beginning. After approximately one cycle the transient has faded and the filter makes accurate

estimates asin example 6.1.1.

The circuit breaker switch on at t
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Figure 6.11
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available after 4 ms but the accuracy is poor initially. Thisis caused by the fact that large residuals

made within 4 ms. When the fault is cleared a new state is detected again. The first estimates are
are dlowed in the beginning.

The fault occurs at t = 80 ms and last until t
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A short circuit between a-phase and b-phase is simulated.
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Time[ng
Thefirst estimates of the arguments after the fault is detected show some inaccuracy, but otherwise

the filter behaves as expected.



6.24 Double phase-to-ground fault

Here, abolted double phase-to-ground fault is simulated.
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Figure 6.13

Two interrupts are present in the outputs after the fault is cleared. The reason is that the
b-phase is re-connected approximately one cycle after the a-phase and the distortion

detector then regard this occurrence as a new state.
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6.25 Threephase fault

In this case dl three phases are short-circuited.

Input Signds, aphess(red), b-phese(gren), cphese(blug)

AbsoiuteVaue d SRS it

] ] I I ] ] ]

I I I | I I I

| | I | | | |
N A I R R B N

| | | | ] | |

| | I | | | |

| | I I | | |
i it il i [l i Bl |

| | | | | | |

| | I I | | |
T N T T B M

| | % | | | |

| b | | | |

| | | | | | |
i et T i B

| | | | | | |

| | | | | |
\L\\Tm+ B .

| [N | | |

I I | I I I
I A R I R R

| | i i | |

| | | | | |

| | | | | |
I e S A M I e

| | | | | |

| | | | | |
T I (T B M

| | | | | |

| | | | | |

| | | | | |
L A

| | | | | |

| | | | | |
T T R

| | | | | |

| | | | | |

| | | | | |
L R A R R B

| | | | | |

| | | | | |
I e e e B

| | I | | |

| | I | | |
O N TS S T B

| | I | | |

| | I | | |

| | I | | |
i At et iy (el iy Bl |

| | I | | |

| | I | | |
T N T N T B B

| | I i | | |

| | | I | | |

| | I | | |
\J\\T\ww,\\ﬂwgwwﬂ\

| | h I | | |

| Co | | |
e e e (e

)

R Lo
(I A T I
| A | i | |

| ol | | |
| [ | | |
T e e e R
T I | | | |
T | | | | | |
I I I L I I I
{

[nd] Enia)os ‘(Eeib)zs (TS

80 9 10 110

Argjmd%rﬁ%d Componants

o

] ] ] ] ] ]
I I I I I
| | | | |
L _ g _t_r__|
| | | | |
| | | | |
| | | | |
it e Mt M Bt il s |
| | | | |
| | ) | |
T T A Y BRI
| | | I |
| | | I ;
i | | | |
7T 777 T T
i i T T 1
I I I I I
S O Sy B
I I —— T T
| | T l | |
Y O A
| | | | i
| | | | |
| | | | |
i A B B e e
| | | | |
| | | | |
T T N B R BRI
| | | | |
| | | | |
| | | | |
L e e A B
| | | | |
| | | | |
Ty R
| | | | |
| | | | |
| | | | |
T A E B
| | | | |
| | | | |
i A T B Bl el e |
| | | | |
| | | | |
I | A
| | | | |
| | | | |
| | | | |
it e Mt M Bt il s |
| | | | |
| | | | |
T T 0 A P BRI
| | ,4 | | |
| | ,4 | | |
| | ) | |
i e At e At et it e
| | | | |
| | | | |
=t -4 A== -+ -
| | v/ | | |
| | | | |
S Y O A O A
| | | | i
| | | | |
| | | I |
\\#\4\4&\\\7\7\#\\
| =T | T |
| | | f |
| | [N |
o
gE888°888 Y
[N ]

S

o

[s1p] BN |a)0s (UeIB)ZS (P))TS

Time[mg

Figure 6.14

Thefault is detected within 4 ms. The argument of the negative component vary alot after the fault
is cleared because it is close to 180° and when it gets more than 180° it is represented as a negative
angle in the picture. In other words, the domain of definition of the argument is: -7<arg z<. This

is caled the principal branch, see reference [13]. However, it isindicating unsymmetrical

conditionsin the power system.
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ground fault

6.26 Threephase-to

Thisexampleis similar to example 6.2.5 but with the fault connected to ground.
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Figure 6.15

The results are as expected, the negative component are present after the fault is cleared indicating

unsymmetrical conditions in the power system.
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Input Signls, axphesg(red), b-phase(grean), c-phase(blue)

Recordingsfrom areal power system
The data were obtained in Comtrade-format. Thirteen different sequences have been tested. During

the faults both voltages and currents have been registered. The samples are pre-filtered through a
500 Hz anti-aliasing filter. Many sequences are similar and therefore every case is not commented.
is detected. It can be discussed if this should be regarded as a new state. However, it can easily be

component is affected. The new state is detected in 4 ms and some milli-seconds later anew state
avoided by decreasing the sensitivity of the distortion detector.

In this part the filter is tested with signals taken from areal power system during fault conditions.
In this case a voltage sag has been registered. Thisis asymmetrical fault hence only the positive

6.3.1 Casel (voltage)
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6.3.2 Casel (current)

Simultaneous with the voltage sag, the magnitudes of the currents swell. The currents are not

symmetrical during the fault and therefore the negative component appears. At the end of the fault

period some zero sequence current appears. Again the big fluctuations of the arguments are due to

that the argument is defined on the principal branch, see example 6.2.5.
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6.3.3 Case2 (voltage)

This caseissimilar to 6.3.1. The voltage sag is symmetrical and only the positive component is

affected.
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6.34 Case?2 (current)

Consequently, this caseis similar to 6.3.2. The negative component appears during the fault and a

zero sequence current appears immediately after the fault period. Again the big fluctuation of the
argument is due to that the argument is defined on the principal branch, see example 6.2.5.
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6.3.5 Case3(voltage)

Thiscaseissimilar to 6.3.1, please refer that part for comments.

Inout Signdls, aphese(rer), b-phese(grean), cphese(dlug)
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Thiscaseissimilar to 6.3.2, please refer that part for comments.
Input Sigels aphese(red), bphess(gren), cpheseblug

6.3.6 Case 3 (current)
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Input Signds, aphess(red), b-phese(gren), cphese(blug)

In this case only the b and c-phases sag during the fault. Thisis an unsymmetrical fault that is

proved by the negative component occurring during the fault.

6.3.7 Case4 (voltage)
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an unsymmetrical condition. In the program the absolute value of a component has to exceed a
threshold value in order to calculate the argument of the same component. Otherwise the program
Inout Signdls, aphese(re), b-phese(grean), cphese(blug)

would calculate arguments even for infinite small absolute values of the components. In this case
maybe the threshold value was set too low. The absolute values of the components ook accurate

In this case the negative component is present amost all the timein the argument plot indicating
though.

6.3.8 Case4 (current)
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6.3.9 Case5 (voltage)

Thiscaseissimilar to 6.3.7, please refer that part for comments.

Inout Signdls, aphese(rer), b-phese(grean), cphese(dlug)

[—
L= S
, [—
[ S|
=
e e i e
, [—
T 1
e —— —

= —t=— - — ==
, N ——
T
— —t=— - ==
e —
[
= !

Le—_ —
T
[ b
=

['n-d] weunD 1o aberjoA

Amduevaue&igy%qugﬁca Componantts

320 340

20 40 60 8 100 120 140 160 180 200 220 240 260 280 30

0

I I
| |
1 1
| |
| |
| |
| |
I |
| |
| |
| |
| |
| |
| |
| |
.
320 340

rI]%!l(]ormor‘ﬂs
\ \

Time
[
|

Argument of
\

e |
| | |
| | |
e |
| | |
| | |
AN O O |
| | |
| | |
AN O O |
|

I
|
|
|
[
|
T
|
4o
?
20 40 60 8 10 120 140 160 180 200 220 240 260 280 300

0

['n'd] enia)os ‘(useib)zs ‘(pI)TS

SRR

[s=i6p] BN |a)0s (UeIB)ZS (PRI)TS

Time[mg

Figure 6.24



6.3.10 Case5 (current)

During the fault the negative component is present indicating unsymmetrical condition. After the

fault period the argument of the negative component varies alot, see 6.2.5.
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6.3.11 Case 6 (voltage)

In this case the a-phase sags during the fault making it look like a single line-to-ground fault.

Hence, both positive, negative and zero components are affected during the fault period.
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6.3.12 Case 7 (voltage)

Thiscaseissimilar to 6.3.1, please refer that part for comments.
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Inout Signdls, aphese(rer), b-phese(grean), cphese(dlug)

Thiscaseissimilar to 6.3.2, please refer that part for comments.

6.3.13 Case 8 (current)
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7 Conclusons and Suggestions for Future Work
Conclusions

Symmetrical components are widely used in relay protection systems to detect abnormal
conditionsin a power system. In the relay protection industry thereis ademand for an ultra fast
estimation method of symmetrical components. An estimation time of 5 msor lessis desirable.
Most methods used today utilize one cycle Fourier filtering algorithms, resulting in an estimation
time of at least one cycle. In thiswork a method based on variable window size, the least squares
method and sampl e prediction has been developed. The least squares method is used to suppress
noise and harmonics of the fundamental frequency. During steady state in the power system the
window sizeis equal to the number of samples per fundamental frequency cycle. If for instance the
fundamental frequency is 50 Hz, the twenty most recent samples are used for the estimation of the
symmetrical components. When afault is detected the window will be minimized and al pre-fault
samples will be discarded. After the fault is detected the window will be built up step by step until
it reaches full size again. The variable window size enables fast estimations after a fault has
occurred with better accuracy of the estimates as the window size grows.

Thefilter algorithm isimplemented and verified in Matlab. The sampling frequency of the input
signalsis 1000 Hz that is standard in ABB relay protection systems. It is assumed that the
frequency of the input signalsis known. Outliers in the input samples have not been considered
either sincein rea applications the input signals already are lowpass filtered. It is also assumed
that the fault timeislonger than the estimation time.

Simulations have been made with signals created in Matlab and Simulink and with real signals
measured from areal power system. The results show that it is possible to detect afault and
estimate new symmetrical components in 4 ms with exact results if the signals are undisturbed and
if they make a step change to a new stationary state. In reality the signals are disturbed with noise
and harmonics and after afault the signals contain alot of transients. In general noisy signals do
not affect the possibility to detect afault, but the post-fault transients affects the accuracy of the
estimates. If good accuracy is needed it might be needed to wait some samples before starting the
estimation. Thisincreases the estimation time of course. Here the filter has been adjusted to find a
good balance between sensitivity, security to false trips, speed and accuracy. Same settings have
been used both for signals representing currents and voltages. Thisis acompromise and in order to
increase the performance, the filter might be individual set for each application. It might also be
necessary to high-pass filter the input signals to eliminate possible DC-components since DC-
components most likely will disturb the estimates.

Suggestions for Future Work

These results are achieved with simulations in Matlab and might not be directly transferable to a
real-time implementation. It isfor instance hard to predict exactly how the input signals will look
like and all other problems that possibly will occur. A real-time implementation will require both
hardware design and probably new software design. This would be the natural continuation of this
study but that is beyond the scope of thiswork though. As mentioned before, high-pass pre-
filtering of the input signals might be necessary. It may most likely be possible to write the filter
algorithm in a more efficient way, especially the least-squares method. Now the summation starts
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all over each time anew sample entersthe filter, probably it is more efficient to store the last sum
and add the new sampleto it instead.
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format short

o\°

$%%%%%%%% Generating input signals $%%%%%%%%3%5%555%5%555%5%5%%5%5%%5%%%%%%%%%%%%%%%%%%%%
load safhtI; % Load input signals from Comtrade-files
load sbfhtI;

load scfhtI;

pu = max(safhtI(1:100));
sa = (safhtI’)/pu;

sb = (sbfhtI’)/pu;

sc = (scfhtI’)/pu;

o°

determine per unit base
convert input signals to p.u.

o°

$simugen2; % Load input signals from Simulink
$Ts = 50e-6;

$sim(’simugen2’) ;

%$load simc;

%$load sima;

%$load sima;

%$sa = simc(l:end,1);

%$sb = simc(1l:end,2);

%$sc = simc(l:end, 3);

t = 0:1/1000:0.7; % Create own input signals

fas = pi/6;

frek = 50;

$sa = 0.5*sin(2*pi*frek*t + fas)+0*sin(2*pi*2*frek*t + fas)+0.l*sin(2*pi*3*frek*t +
fas)+0*sin(2*pi*4*xfrek*t + fas);%$+0.108*sin (2*pi*4*frek*t + fas)+0.08*sin (2*pi*S*frek*t
+ fas) ;% + 0.0l*randn(size(t));%+ 0.2*sin(2*pi*150*t + fas);

$sb = 0.5*sin(2*pixfrek*t - 2*pi/3 + fas)+0*sin(2*pi*2*frek*t - 2*pi/3 +

fas)+0.1l*sin (2*pi*3*frek*t - 2*pi/3 + fas)+0*sin(2*pi*4*frek*t - 2%*pi/3 +
fas);%+0.108*sin(2*pi*4*frek*t - 2*pi/3 + fas)+0.08*sin(2*pi*5*frek*t - 2*pi/3 + fas);$%
+ 0.0l*randn(size(t)); %0.2*sin(2*pi*150*t - 2*pi/3 + fas);%

$sc = 0.5*sin(2*pi*frek*t - 4*pi/3 + fas)+0*sin(2*pi*2*frek*t - 4*pi/3 +

fas)+0.1*sin (2*pi*3*xfrek*t - 4*pi/3 + fas)+0*sin(2*pi*4*frek*t - 4*pi/3 +

fas) ;%+0.108*sin (2*pi*4*frek*t - 4*pi/3 + fas);+0.08*sin (2*pi*5S*frek*t - 4*pi/3 + fas);%
+ 0.0l*randn(size(t)) ;% + 0.2*sin(2*pi*150*t - 4*pi/3 + fas);

$%5%%%%%%% Estimation of symmetrical components $%5%35%%5%55%5%5%55%5%5%55%%555%%55%5%%%5%%5%5%5%5%%%5%%%%%
sap = sa(l); % Predicted sample of a-phase, initially

o\°

set to equal the first sample

Predicted sample of b-phase, initially
set to equal the first sample
Predicted sample of c-phase, initially
set to equal the first sample

k = current sample in the window

Gain factor for adjustment of deviation
limit for residuals

First sample in the window

Last sample in the window

Index for estimated components vector
Index for residual vector for standard
deviation calculation

Window size

Deviation limit for residuals of

sb (1) ;

o°

sbp

]
o°

o°

scp = sc(l);

== @
-
3 1
[V}
o ol
I~ ~.
w
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o°

limb = 3; %
lime = 3; ;
range = 1l.l*max (abs(sb)); ;
for 1 = 1:450 %

f1f1=0;f1£f2=0;f1£3=0;f1f4=0;f1f5=0;f1f6=0;

o°

f2£f1=0;f2f2=0;£f2£3=0;£f2f4=0;£2f5=0;£f2£f6=0;
£f3f1=0;£f3f2=0;£3£3=0;£3£f4=0;£3f5=0;£3£f6=0;
f4f1=0;f4£f2=0;£f4£f3=0;f4f4=0;£4£f5=0;£4£f6=0;
f5f1=0;£f5f2=0;£5£3=0;£f5f4=0;£f5f5=0;£f5f6=0;
f6f1=0;f6£2=0;£f6£3=0;f6£f4=0;£6£5=0;£f6£6=0;
F1F1=0;F1F2=0;F1F3=0;F1F4=0;F1F5=0;F1F6=0;
F2F1=0;F2F2=0;F2F3=0;F2F4=0;F2F5=0;F2F6=0;
F3F1=0;F3F2=0;F3F3=0;F3F4=0;F3F5=0;F3F6=0;
F4F1=0;F4F2=0;F4F3=0;F4F4=0;F4F5=0;F4F6=0;
F5F1=0;F5F2=0;F5F3=0;F5F4=0; F5F5=0;F5F6=0;
F6F1=0;F6F2=0;F6F3=0;F6F4=0;F6F5=0;F6F6=0;
F1Y=0;F2Y=0;F3Y=0;F4Y=0;F5Y=0;F6Y=0;

fly=0;f2y=0;£f3y=0;£f4y=0;£f5y=0;f6y=0;

o°

o°

a-phase, initially set to 3
Deviation limit for residuals of
b-phase, initially set to 3
Deviation limit for residuals of
c-phase, initially set to 3
Adjust plot window size

an infinite loop in reality

Reset the A-matrix before building up
the window size

Reset the B-matrix before building up
the window size

z = 0; % Help variable to count number of loop
% runs
p = p+l;
sadev = (sap-sa(n)); % Calculate a-phase residuals between
% predicted sample and actual sample
sbdev = (sbp-sb(n)); % Calculate b-phase residuals between
% predicted sample and actual sample
scdev = (scp-sc(n)); % Calculate c-phase residuals between
% predicted sample and actual sample
for k = h:n % Create A and B-matrix elements, least
% squares method
if abs(sadev)>lima | abs(sbdev)>limb | abs(scdev)>limc % Fault detector
h = n+l; % Start up new window at next sample
M = 0; % Minimize window size
sares = [sares(end:end)]; % Minimize a-phase residual vector to a
% 1x1 matrix
sares = 0; % Reset the element
sbres = [sbres(end:end)]; % Minimize b-phase residual vector to a
% 1x1 matrix
sbres = 0; % Reset the element
scres = [scres(end:end)]; % Minimize c-phase residual vector to a
% 1x1 matrix
scres = 0; % Reset the element
£ = 0;
break % Exit the loop
end
Ok = (k-1)*2*pi*frek*0.001; % Help variables to make the A-matrix
% more foreseeable
f1 = cos (0Ok) ;
f2 = sin (0Ok) ;
£3 = cos (0Ok-2*pi/3);
fa = gin (0Ok-2*pi/3);
f5 = cos (Ok-4*pi/3);
f6 = sin(Ok-4*pi/3);
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F1F1
f1f1l
F1F2
f1f2
F1F3
f1£3
F1F4
f1f4
F1F5
f1£f5
F1Fe6
fife

F2F1
f2f1
F2F2
f2f2
F2F3
f2£f3
F2F4
f2f4
F2F5
f2f5
F2F6
f2fe6

F3F1
£3f1
F3F2
£3f2
F3F3
£3£3
F3F4
£3f4
F3F5
£3£f5
F3F6
f3f6

F4F1
f4f1
F4F2
f4f2
F4F3
f4£3
F4F4
f4f4
F4F5
f4f5
F4F6
f4fe

F5F1
f5f1
F5F2
f5f2
F5F3
f5£3
F5F4
f5f4
F5F5
f5£f5
F5F6

f1*f1+£3*£34+£5*£5;
f1f1 + F1F1;
f2*f1+f4*£3+£f6*£5;
f1f2 + F1F2;
f1*f1+£5*£3+£3*£f5;
£f1£f3 + F1F3;
f2*fl1+f6*£3+£4*£f5;
f1f4 + F1F4;
f1*f1+£f1*£34+£1*£5;
f1f5 + F1F5;
f2*f1+£f2*£34+£2*£5;
f1f6 + F1F6;

f1*f2+f3*f4+£5%f6;
f2f1 + F2F1;
f2*f2+f4*Ff4+£6%£6;
£2f2 + F2F2;
f1*f2+F5*Ff4+£3%£6;
f2f3 + F2F3;
f2*f2+f6*f4+fa*f6;
f2f4 + F2F4;
F1*f2+Ff1*f4+£1%£6;
f2f5 + F2F5;
F2*f2+f2*Ff4+£2%£6;
f2f6 + F2F6;

f1*f1+E3*E5+F5*%£3;
£3f1 + F3F1;
F2*f1+f4*f5+£6%£3;
£3f2 + F3F2;
F1*f1+E5*E5+£3%£3;
£3f3 + F3F3;
f2*f1+F6*F5+F4*£3;
£3f4 + F3F4;
F1*f1+f1*f5+£1*£3;
f3f5 + F3F5;
F2*F1+f2*f5+£2%£3;
f3f6 + F3F6;

f1*f2+f3*f6+£5%f4;
f4fl + F4F1;
f2*f2+f4*f6+E6%f4;
fAf2 + FAF2;
f1*f2+f5*f6+E£3%f4;
f4f3 + FAF3;
f2*f2+f6*f6+f4*f4;
f4af4 + F4F4;
F1*f2+f1*f6+Ef1*f4;
f4f5 + F4F5;
f2*f2+f2*f6+E2%f4;
fAf6 + FAFG;

F1*Ff1+E3*f1+£5%£1;
f5f1 + F5F1;
F2*f1+F4*F1+£6%£1;
f5f2 + F5F2;
F1*F1+E5*F1+£3*%£1;
f5£3 + F5F3;
F2*F1+f6*F1+Ff4*£1;
f5f4 + F5F4;
F1*F1+f1*f1+£1%£1;
f5f5 + F5F5;
F2*F1+f2*%F1+£2%£1;
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f5fe

f5f6 + F5F6;

F6Fl = f1*f2+f3*f2+£5*£f2;
fefl = f6fl + F6F1;
FeF2 = f2*f2+f4*f2+f6*£2;
fef2 = f6f2 + F6F2;
F6F3 = f1*f2+f5*f2+£3*£f2;
f6f3 = f£6£f3 + F6F3;
F6F4 = f2*f2+f6*f2+f4*£2;
fef4d = f6f4 + F6F4;
F6F5 = f1*f2+f1*f2+£1*£2;
fefs5 = f6f5 + F6F5;
F6F6 = f2*f2+f2*f2+£f2*£f2;
fefe = f6f6 + F6F6;
F1Y = fl*sa(k)+f3*sb(k)+£f5*sc (k)
fily = fly + F1Y;
F2Y = f2*sa(k)+f4*sb(k)+f6*sc (k)
f2y = f2y + F2Y;
F3Y = fl*sa(k)+f5*sb(k)+£f3*sc (k)
f3y = f3y + F3Y;
F4Y = f2*sa(k)+f6*sb(k)+fa*sc (k)
fay = f4y + F4Y;
F5Y = fl*sa(k)+fl*sb(k)+fl*sc (k)
fs5y = f5y + F5Y;
FeY = f2*sa(k)+f2*sb(k)+f2*sc (k)
fey = fey + Fo6Y;
Z = z+1;
end
A = [f1f1 f1f2 f1f3 f1f4 f1f5 fife;
f2f1 f2f2 f2f3 f2f4 f2f5 f2f6;
£f3f1 £3f2 £3f3 £3f4 £3f5 f£3f6;
fafl f4f2 f4f3 f4f4 f4f5 f4afe;
f5f1 f5f2 f5f3 f5f4 f£5f5 f5f6;
fe6fl fef2 fe6f3 fef4 f6f5 fefe6];
B = [fly f2y f3y f4y f5y feyl’;
if z<=2
X = [NaN NaN NaN NaN NaN NaN] '’ ;
else
X = (A\B)’;
end
absS1l(p) = abs (X(2)+i*X(1));
absS2 (p) = abs (X(4)+i*X(3));
absS0 (p) = abs(X(6)+1i*X(5)) ;

if absSl(p) < le-1

argsSl (p) =

else

argSl (p) =

end

0;

if absS2(p) < 3e-1

args2 (p) =

0;

7
i
l
7
7

i

angle (X (2)+1i*X (1)) *180/pi;
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else
args2 (p)
end

angle (X (4)+1i*X(3))*180/pi;

if absS0(p) < le-1

o°

o°

argso (p)
else

argSo (p)
end

0;

angle (X (6)+1i*X (5))*180/pi;

if M < 20

o°

o°

n
end

n+l;

if M 20

o\

o\

19;
h+1;
n+l;

o0 o

o\

Okp = (k)*2*pi*frek*0.001;
sap = X (1) *cos (Okp) +X(2) *sin (Okp) + X (3) *cos (Okp) +X(4) *sin (Okp) +
X (5) *cos (Okp) +X (6) *sin (Okp) ; % Predict next a-phase sample
sapplot (p) = sap; % plot vector for predicted a-phase
% samples
sbp = X (1) *cos (Okp-2*pi/3)+X(2) *sin (Okp-2*pi/3) + X(3)*cos (Okp-4*pi/3)+X(4)*sin (Okp-
4*pi/3) + X(5)*cos (Okp)+X(6)*sin(Okp); % Predict next b-phase sample
sbpplot (p) = sbp; % plot vector for predicted b-phase
% samples
scp = X (1) *cos (Okp-4*pi/3)+X(2) *sin(Okp-4*pi/3) + X (3)*cos (Okp-2*pi/3)+X(4)*sin (Okp-
2*pi/3) + X(5)*cos(Okp)+X(6)*sin(Okp); % Predict next c-phase sample
scpplot (p) = scp; % plot vector for predicted c-phase
% samples
$%%%%%% Determination of deviation limit %%%%%%%%%%%%%5%%%%5%5%%%%525%%%%%%5%%%%%%%5%%%%
if M > 2
f = £+1;
sares (f) = sadev; % Create a residual vector for the a-phase
sbres (f) = sbdev; % Create a residual vector for the b-phase
scres (f) = scdev; % Create a residual vector for the c-phase
saresplot (p) = sadev; % Create a plot vector for the a-phase
% residuals
sbresplot (p) = sbdev; % Create a plot vector for the b-phase
% residuals
scresplot (p) = scdev; % Create a plot vector for the c-phase
% residuals
if size(sares) == [1 21] % When full window size, discard the
% oldest residual
sares = [sares(2:end)];
sbres = [sbres(2:end)];
scres = [scres(2:end)];
f = £-1;
end
sares = sares (find(~isnan(sares))) ; % Remove NaN’s from the vector
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When full window size,
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window

o\



if size(sares) > [0 0]
lima = G*std(sares) ;
if lima < le-3

o°

Determine deviation limit
Avoid too narrow limit to avoid false
trips

o°

o°

lima = 0.1;
end
end

Remove NaN'’s from the vector

o°

sbres = sbres(find(~isnan(sbres)));
if size(sbres) > [0 0]

limb = G*std (sbres) ;

if limb < 1le-3

Determine deviation limit
Avoid too narrow limit to avoid false

o\

o\

% trips
limb = 0.1;
end
end
scres = scres (find(~isnan(scres))) ; % Remove NaN’s from the vector

if size(scres) > [0 0]
limc = G*std(scres) ;
if limc < 1le-3

o\

Determine deviation limit
Avoid too narrow limit to avoid false

o\

% trips
lime = 0.1;
end
end
if M <6 % Increase the deviation limit for the
% first six samples following a fault
lima = 3; % to avoid a new fault detection during
% the transient period
limb = 3;
lime = 3;
end

end
end

o\°

200000000 ©90000000000000000090000000000000009909000000000000090990000000000009090029
5 %%%%%%% Plots $%%%%%%%%%55%5%5%5%55%5%55%55%55%5%5%%%5%55%5%5%%%%%55%5%%%%%%%5%5%5%5%%%%%%%%%

o\

figsize = [250, -350, 800, 1200];

figure (’Pos’,figsize); $ Plot of input signals

subplot (3,1,1)

plot(t(l:p),sa(l:p),'xr’,t(1l:p),sb(l:p),’'g’,t(l:p),sc(l:p),’'b")

title (' Input Signals, a-phase(red), b-phase(green), c-phase(blue)’,’'FontSize’,8);
xlabel (' Time [ms]’,’'FontSize’,8);

ylabel ('Voltage or Current [p.u.]’,’'FontSize’,8);

set (gca, 'FontSize’,8);

axis ([0 0.45 -range rangel) ;

set (gca, 'XTick’,0:0.02:0.45)
Set(gca,’XTiCkLabel’,{’O’,’20’,'40’,’60’,’80’,’lOO’,’120’,’140',’160’,’180’,’200’,’220’,
’240’,’260’,’280’,’300’,’320’,'340’,’360’,’380’,’400’,’420’,’440’,’460’})

grid on

subplot (3,1,2) % Plot absolute value of S1, S2, SO
plot(t(l:p),absS1(1l:p), 'xr’,t(l:p),absS2(1l:p),’g’,t(l:p),abssS0(l:p), 'b")

title ('Absolute Value of Symmetrical Components’,’FontSize’,8);

xlabel ('Time [ms]’,’'FontSize’,8);

ylabel ('Sl (red), S2(green), SO0(blue) [p.u.]’,’FontSize’,8);

set (gca, 'FontSize’,8) ;

axis ([0 0.45 -range rangel) ;

set (gca, 'XTick’,0:0.02:0.45)
set(gca,’XTickLabel’,{’O’,’20’,’40’,’60’,’80’,’lOO’,’120’,’140’,’160’,’180’,’200’,’220’,
’240’,’260','280’,’300',’320’,'340’,’360','380’,’400',’420’,’440’,’460’})

grid on
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subplot (3,1, 3) % Plot argument of S1, S2, SO
plot(t(1l:p),argSi(l:p),’'r’,t(1l:p),argS2(1l:p),’'g’,t(l:p),argsSo(1l:p),’'b’")

title ('Argument of Symmetrical Components’,’'FontSize’,8);

xlabel (' Time [ms]’,’'FontSize’,8);

ylabel (’S1(red),S2(green), S0 (blue) [degrees]’, 'FontSize’,8);

set (gca, 'FontSize’,8) ;

set (gca, 'YTick’,-200:50:200)

set (gca, 'YTickLabel’, {’-180’,’-150',’-100’,’-50',70’,’50’,/100’,'150",/180"})
axis ([0 0.45 -200 200]);

set (gca, 'XTick’,0:0.02:0.45)
Set(gca,’XTiCkLabel’,{’O’,’20’,’40’,’60’,’80’,’lOO’,’120’,’140’,’160’,’180’,’200’,’220’,
’240’,’260’,’280’,’300’,’320’,’340’,’360’,’380’,’400’,’420’,’440’,’460’})
grid on

figure (4) % Plot predicted input signals
plot (t(1l:p),sapplot(l:p),’'r’,t(1l:p),sbpplot(l:p),’'g’,t(l:p),scpplot(l:p),’'b’")
xlabel ('Time [s]’,’'FontSize’,10);

ylabel ('Predikterade fassignaler[a(rdd), b(bld), c(grdn)l');

axis ([0 0.45 -range rangel) ;

grid on

figure (5) % Plot residuals

plot (t(1l:p),saresplot(l:p),'r',t(1l:p),sbresplot(l:p),'g',t(l:p),scresplot(l:p),'b")
xlabel ('Time[s] ', 'FontSize',10) ;

ylabel ('Residualer[a(rdd), b(bld), c(grdén)l');

axis ([0 0.45 -0.15 0.15]);
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