
A masters thesis

Department of Industrial Electrical Engineering and Automation

Lund Institute of Technology

Design Of A Current Controlled
Defibrillator

By
Magnus Jonsson, e99
Filip Jörgensen, e99

Supervised by:
Per Karlsson

Abstract
This report describes the design procedures and underlying theory needed in or-
der to engineer a current controlled defibrillator. Electric circuits are presented
and explained together with the theory for some of the more important com-
ponents like the transformer and the IGBT. The need for protective circuitry
regarding overvoltage is investigated and safety issues are discussed.

The high voltage is achieved by using a flyback converter to charge a capac-
itor. This capacitor is discharged via an H-bridge and the current is controlled
using a hardware tolerance band controller. Three types of discharge are avail-
able, monophasic, biphasic and triphasic.

The entire system is controlled by an ATMega8 processor monitoring the
charging and creating the necessary PWM.

Aknowledgement
During this masters thesis much help has been recieved from several people and
companies. The following is an alphabetical list of the people and companies
we would like to thank.

• Mats Alaküla, professor at the department of industrial electrical engineer-
ing and automation, LTH

• Coilcraft, manufacturer of coils and transformers, supplying us with free
samples

• Getaschew Darge, engineer and technichian at the department of industrial
electronics and automation, LTH

• Fairchild semiconductors, manufacturer of semiconductors, supplying us
with free samples

• Eilert Johansson, engineer at Profec AB, manufacturer of custom made
transformers

• Per Karlsson, our supervisor at the department of industrial electrical
engineering and automation, LTH

• Maxim IC, manufacturer of semiconductors, supplying us with free sam-
ples

• Audrius Paskevicius, our supervisor at Xenodenice AB

• Johan Åkesson, tech. lic. at the department of automatic control provid-
ing us with knowledge of discrete digital controllers.

Contents

1 Introduction 1

2 Scope and purpose 2

3 Defibrillators and LUCAS 3
3.1 Different types of defibrillators 3
3.2 The defibrillator in LUCAS . 4

3.2.1 Energy efficiency . 4
3.2.2 Weight, size and cost . 4
3.2.3 Variable variables . 5

4 Voltage transformation 6
4.1 Energy and voltage levels . 6
4.2 The IGBT and the MOSFET . 6
4.3 Converter topologies . 7
4.4 The flyback converter . 7

4.4.1 Primary side of the flyback converter 7
4.4.2 The transformer . 10
4.4.3 Secondary side of the flyback converter 13

4.5 Controlling the charging . 15
4.6 Safety . 19

4.6.1 Automatic discharge . 19
4.6.2 Over voltage shutdown . 21

5 Discharge 25
5.1 The four quadrant converter . 25
5.2 Controlling the discharge . 26

6 Software 32
6.1 ATMega8 . 32
6.2 Overview . 33
6.3 Menu system . 34

6.3.1 Charge voltage . 34
6.3.2 Discharge type . 34
6.3.3 Current control . 34
6.3.4 Phase length . 34
6.3.5 Safety time . 34
6.3.6 Idle time . 34
6.3.7 Discharge current . 35
6.3.8 User banks . 35

6.4 Defibrillation system . 35

7 Result 37
7.1 Charging . 37
7.2 Discharging and current control 38
7.3 Meeting the standards . 41
7.4 Future improvements . 41

IV

A Technical specifications i
A.1 Ports . i
A.2 Buttons . i
A.3 Current consumption . i

B Hardware ii
B.1 Discharging plots . ii

B.1.1 No current control . ii
B.1.2 Current control . iii

B.2 Charging . v
B.2.1 Schematic . v
B.2.2 PCB . vi

B.3 Discharge . vii
B.3.1 Schematic . vii
B.3.2 PCB . viii

B.4 ATMega8 and control . ix
B.4.1 Schematic . ix
B.4.2 PCB . x

C Software xi
C.1 Graphical User Interface . xi
C.2 Program listing . xii

V

Page 1 of 43 Design of a Current Controlled Defibrillator

1 Introduction
Today, very few people survive a cardiac arrest (about 3 %) [8]. The problem
with cardiac arrests will most likely escalate since the western lifestyle increases
the risk of heart and vascular diseases.

In order for the survival rate of people suffering from cardiac arrest to in-
crease, extensive and often immediate cardiac massage is vital. At present,
this represents a problem since any normal person has trouble supplying suffi-
cient cardiac massage for more than two minutes due to the excessive stamina
required.

A machine called LUCAS (Figure 1) has been developed to provide the
necessary cardiac massage. If a patient suffering from cardiac arrest receives
immediate treatment with LUCAS, the survival rate from cardiac arrests could
increase as much as 30%.

Figure 1: LUCAS

The commercial version of LUCAS is currently powered by compressed air
and is clamped around the patient. LUCAS has been tested in some ambulances
in Skåne läns andsting, Sweden, and has worked very well.

The emergency personnel working with LUCAS are very satisfied, but has
requested more functionality in the machine. Today, emergency personnel have
to carry both LUCAS and a portable defibrillator. This is rather heavy since
LUCAS, being powered by compressed air, has to be accompanied by an air
tank. A new and improved version of the LUCAS should contain a defibrillator,
a pacemaker and an ECG1. Of these three the defibrillator is the most desired
enhancement.

1Electro CardioGram

Section 2 Page 2 of 43

2 Scope and purpose
The purpose of this master thesis is to investigate the possibility of integrating a
fully functional medical defibrillator into LUCAS. As previously described this
is a requested functionality from a user point of view and therefore an important
step forward in the development process for LUCAS.

There are a number of activities that has been conducted in order to reach
the desired goal. First of all, there are a number of medical requirements that
has to be taken into account. These requirements are not carved into stone since
this is an area of intensive development and discussions on how to achieve the
best clinical results. This leads to the fact that the defibrillation unit initially
has to have an extensive set of adjustable parameters. These parameters will
later be fixed when elaborative tests show what settings seems to give the best
results.

The next step is to investigate component selection and different circuit
layouts that will meet the maximum ratings for the previously defined require-
ments. This is a difficult area since cost, weight and electrical specifications has
to be taken into account. Simulations and calculations are needed to determine
which solutions that are feasible.

A coarse schematics has been developed and a number of prototype boards
have been built. These prototypes serve as a guide to which theoretical presump-
tions that meet specifications and which have to be reworked. After thorough
tests in a power laboratory the prototype is now ready for some clinical tests.
At this point medical expertise is required in order to evaluate acquired results.

If the results are satisfactory the development process moves forward to a
different route which unfortunately is out of the scope for this master thesis.
This route includes cost and weight reduction, medical certification, further
clinical studies among other things.

Page 3 of 43 Design of a Current Controlled Defibrillator

3 Defibrillators and LUCAS
A defibrillator is a medical device that, in layman terms, resets the heart of a
person with ventricular fibrillation2. This is done by sending large amounts of
electrical energy through the heart.

Defibrillation is normally carried out by placing two pads on the chest of
the patient, thus allowing a path for the current leading through the heart. In
LUCAS, one of the defibrillation pads will most likely be placed in the moving
coil and the other on the backplate. This provide a direct path through the
heart and very small amounts of current will go around the heart. This should
be compared with commercial stand alone defibrillators, where much of the
current flows on the skin and small amounts of the totally applied current flows
through the heart.

3.1 Different types of defibrillators
Defibrillators today use a large capacitor (around 200 µF) which is charged to
high voltages (around 2 kV). This energy is applied across the patients heart
as described in the previous section. Depending of how the discharge of the
capacitor is done, different types of defibrillation are achieved:

• Monophasic defibrillation - the current never changes directions during
discharge.

• Biphasic defibrillation - the current changes directions after approximately
half the time of discharge.

• Triphasic defibrillation - the current changes directions twice after usually
one third and two thirds of the time of discharge.

The second, biphasic defibrillation, is becoming increasingly common since clin-
ical studies has showed that the total amount of energy needed to defibrillate
is lower in this case [3]. A lower amount of energy means that the defibrillators
can be smaller since the size of the capacitor and the power supply (battery)
can be greatly reduced. Since LUCAS is supposed to be portable, it is essential
that the increase in weight due to an added defibrillator is kept at a minimum;
thus choosing the biphasic defibrillator is a natural step. Triphasic defibrillation
is still a field of research, but studies has shown that it should be possible to
further lower the required energy without a decrease in success rate when using
triphasic defibrillation compared to biphasic defibrillation [11].

There are different ways of controlling the discharge in biphasic defibrilla-
tors. All methods described below are assumed to be biphasic, even if it is
not mentioned, i.e. the current changes directions after about half the time of
discharge. For a discharge, there are three main parameters that can be con-
trolled, voltage (V), current (I) and time (T). It is also possible to control
the total energy discharged, but since this is limited by the charging voltage
and capacitance of the capacitor this is rarely an option — complete discharge
of the capacitor is most common. However, in many commercial defibrillators
the energy is the only parameter the user can set, but this just means that the
defibrillator controls one or several of the parameters above.

2Irregular heartbeats

Section 3 Page 4 of 43

The easiest way to control the defibrillation is to control the time. This is
done by simply charging the capacitor to the desired voltage and then discharg-
ing it directly through the patient creating an RC-circuit with its characteristic
discharging behavior. One problem with this method is that the resistance of
the patient has to be measured prior to defibrillation, however this is not a ma-
jor problem since most defibrillators usually have some kind of protection from
short circuit and open air discharge which means that measuring the resistance
prior to defibrillation in most cases is a must. The major problem is instead the
high current at the start of the defibrillation since high currents might result in
burn-marks on the patient.

Voltage controlled defibrillation is not considered a good idea. If the volt-
age was to be controlled, one has to charge the capacitor to a voltage much
higher than the one desired in the discharge since the voltage delivered from the
capacitor will decrease as the discharge commences. This could be solved by
constantly charging the capacitor from the power source, but this would result
in a transformer that is capable of delivering large amounts of current on the
secondary side which in turn would render the capacitance obsolete leaving the
defibrillator very large and heavy due to the overly dimensioned transformer
and power source.

Current controlled defibrillation is becoming increasingly common. The cur-
rent is allowed to swing between preset values and if the amount of energy
stored in the capacitor is sufficient, both phases of the biphasic defibrillation
can be made current controlled. Current controlled defibrillation is an area
under research and is believed to be the future choice.[9]

3.2 The defibrillator in LUCAS

The defibrillator to be placed in LUCAS has to be very energy efficient and has
to have low weight, small size and low cost. Factors like ease of use and the
possibility to alter currents, voltages and discharge times has to be considered.

3.2.1 Energy efficiency

The energy efficiency of the defibrillator is essential since this will reduce the
size of the required battery. With low energy efficiency it is likely that power
dissipation in the device will cause the device to heat up and overly dimensioned
heat sinks might be needed.

The entire design of the LUCAS defibrillator need to be imbued with energy
efficient thoughts. The switching losses need to be kept at a minimum and
great care has to be taken regarding energy consumption when choosing the
components.

3.2.2 Weight, size and cost

As mentioned, the weight of LUCAS must not be significantly increased by the
integration of a defibrillator. This means that the final product must be opti-
mized when it comes to weight and size. However, the weight issue is somewhat
out of the scope of this masters thesis since the battery and capacitor are the
main contributers to the increased weight.

Page 5 of 43 Design of a Current Controlled Defibrillator

The size of the defibrillator can, and should, be optimized as early as possible
in the design process. This is accomplished by minimizing the footprint3 of the
defibrillator. Components need to be chosen as small as possible and a tight
schematic layout is of great importance. However, at this stage, trade-offs have
to be considered, small and tight components are (usually) more expensive than
larger ones and a certain amount of common sense need be used in order to
optimize size/cost. Additionally, the voltage level is rather high so isolation
distances need to be considered in order to achieve reliable and safe operation.

3.2.3 Variable variables

Since the concept of defibrillation through the human body (chest to back) is
not as well documented as normal defibrillation (chest to chest) much research
is needed before a suitable configuration can be found. This means that the
discharging and charging options should be maximized. The defibrillator in
LUCAS should be a biphasic defibrillator, but should it be possible to defibrillate
with monophasic and triphasic waveforms? Current controlled defibrillation
should be considered, but how much current is needed when defibrillation is
performed through the body? These parameters and many more need to be
investigated before the device is taken into production. For this reason the
outcome of this masters thesis need to be a prototype providing freedom to set
these variables so that medical personnel can perform clinical tests and decide
the features of the final product.

The possibility to vary the following parameters should be considered in a
prototype:

• Monophasic-/biphasic-/triphasic defibrillation

• Discharge current/-voltage

• Current control on/off

• Time of discharge

• Idle time4

3Size on PCB
4Time between the positive and negative defibrillation pulse

Section 4 Page 6 of 43

4 Voltage transformation

4.1 Energy and voltage levels

A crucial part of the defibrillating system is that a high voltage source is needed.
Since LUCAS is a portable unit, the highest voltage available is 12 volts from the
built-in battery. This voltage level is not sufficient to drive any larger currents
into the human body since clinical measurements show that 95% of the human
population have a body resistance in the range of 30 to 90 Ω [9].

Hence, the idea is to use a transforming circuit boosting the battery voltage
to a defined voltage level which is then stored in a high voltage capacitor. The
capacitor, which acts like a fuel tank during the defibrillation sequence, has a
stored energy level which can be calculated using the formula

W =
C · U2

2
Joule (1)

In many commercial defibrillation systems the energy level is the predom-
inant, and sometimes the only setting, that the user can alter. These energy
levels are usually predefined in the range of 200 to 360 Joule. In order to store
this kind of energy, the market for high voltage capacitors was investigated.
There are a few capacitors that are specifically intended for use in defibrillation
systems, and a capacitor with the electrical characteristics 196 µF and 3 kV
was selected. If a maximum energy level of 360 Joule is desired, the capacitors
maximum voltage should at least exceed 1.9 kV according to (1).

Creating this voltage is possible, but care has to be taken that the compo-
nents of the charging and discharging circuits can cope with such high voltage
levels.

4.2 The IGBT and the MOSFET

High power switching applications has not always been easy to perform without
high losses in switching. Until recently, (1980’s) BJT’s5 where used since they
have lower power dissipation compared with the faster MOSFET6. In 1984 [6]
the IGBT7 was introduced combining the best of two worlds. The IGBT has
the fast switching of the MOSFET and the lower on state losses of the BJT.
The IGBT allows high current, high voltage switching with low losses.

The IGBT, just like the MOSFET, is voltage controlled, i.e. there is a
capacitive coupling between the gate and the emitter (Cge) and between gate
and collector (Cgc) of the transistor. The total gate capacitance is the sum of
Cgc and Cge and will hereafter be refered to as the gate capacitance Cg. This
means that the switching time is proportional to the equivalent capacitance of
the gate (Cg = Cgc + Cgc) and the resistance connected to the gate (RG). The
schematic symbol of the IGBT is shown in Figure 2 [10].

Since high speed switching may cause voltage and current spikes through
the transistor the feature with Rg is very useful. The same problem with spikes
arise when the transistor is turned off, which is solved by the same resistor. The

5Bipolar Junction Transistor
6Metal Oxide Semi Conductor
7Insulated Gate Bipolar Transistor

Page 7 of 43 Design of a Current Controlled Defibrillator

Rg

G
E

C

Figure 2: Schematic symbol of the IGBT with gate resistor Rg

rise time of the voltage over the gate-emitter capacitor is calculated as:

τ = Rg · (Cgc + Cgc) = Rg · Cg (2)

Equation 2 shows that a larger Rg will increase the rise time of the gate-emitter
voltage and thus lowering the voltage and current spikes due to switching. How-
ever, Rg need to be chosen carefully since a long rise time causes the transistor to
pass through its active region slowly, which will cause higher switching losses.

4.3 Converter topologies
Considering the voltage transformation there are a vast number of available
converter topologies. The application that the converter is going to be used in
determines which topology that is most suited in the design. In this case the
flyback converter, which is derived from the buck converter, is examined.

The flyback converter is attractive due to the fact that it provides current
control and isolation in one conversion stage. The galvanic isolation is a key
factor by itself since the voltage used to perform a defibrillation, as shown
above, well exceeds 1kV and thus it is important to protect the low voltage
control electronics from damages related to over-voltage.

The current control feature also plays an important role. First of all it is
vital not to saturate the transformer core (more in Section 4.4.2) since this
will degrade the performance or even worse, damage the windings. Secondly it
is necessary not to draw energy from the battery too quickly since this could
shorten the battery life time or even damage the battery cells.

4.4 The flyback converter
This section gives a brief introduction to the flyback converter starting with an
analysis of the primary side.

4.4.1 Primary side of the flyback converter

Considering Figure 3, it is possible to determine the voltage drop across, and the
current through the primary winding of the transformer (when the transistor is
on).

The voltage drop across the primary winding of the transformer is easily
described by Equation 3.

L
di

dt
= Vbat − Vds −RLi, (3)

Section 4 Page 8 of 43

RL

Vbat L pri

Tswitch Vds

+

-

i

Figure 3: Primary side of the flyback converter

where RL is the parasitic resistance of the coil and Vds is the voltage drop across
the transistor. From Equation 3 the current i can be calculated:

{
i(0) = 0,

L di
dt + RLi = Vbat − Vds ⇔ d

dt

(
ie

RL
L t

)
= Vbat−Vds

L e
RL
L t ⇔

i(t) = Vbat−Vds

RL

(
1− e−

RL
L t

) (4)

In (4) it is evident that the current through the winding increases exponen-
tially until it reaches it’s maximum value calculated from:

imax = lim
t→∞

(
Vbat − Vds

RL

(
1− e−

RL
L t

))
=

Vbat − Vds

RL
(5)

The transformer specifications limit the maximum peak current to 5 A. Us-
ing (5) with a voltage drop Vds across the transistor of 2 V and an inductance
of the primary winding equal to 10 µH gives a maximum current of 1 kA
(RL = 0.2 Ω). This is of course if a duty cycle of 100% is applied. However, the
equations give a clue of what duty cycle to use. Using (4) to calculate t results
in

i(t) =
Vbat − Vds

RL

(
1− e−

RL
L t

)
⇔ t = − L

RL
ln

(
1− RLi(t)

Vbat − Vds

)
(6)

With values from the transformer and transistor data sheets (L = 24.5 µH,
RL = 0.2 Ω and Rds = Vds/I = 0.4 Ω) the maximum time that the transistor
should be on is calculated to 12.9 µs. With a switching frequency of 16 kHz this
would correspond to a duty cycle of about 20 %. This is an estimate of what
duty cycle to use but the modell used to derive the duty cycle is insufficient.
Firstly, the primary winding has been considered to be an almost ideal coil.
The resistance of the coil has been considered but the fact that the secondary
side will be the load of the primary side has been ignored. Furthermore, it
was assumed that there were no parasitic inductances (stray inductances) in
the circuit, i.e. all wires were ideal. But one of the most incorrect assumptions
made, when this modell was derived, was the switching of the transistor. The
transistor is assumed to have ideal switching behaviour, that is, the rise and fall
times are zero. The assumptions above are considered to be common practice.

Page 9 of 43 Design of a Current Controlled Defibrillator

With this brief discussion it is clear that one factor is essential when it comes
to driving a current through the primary side of the transformer, short rise and
fall times of the transistor (di/dt large). Furthermore, leakage inductances from
the transformer (Lλ) and stray inductances from the wires (Lδ) will cause the
current through the winding to rise more slowly. Hence two factors need to be
considered:

• Short rise and fall times of the transistor (di/dt large).

• Minimize leakage inductances in the circuit.

These two factors control different parts of the current pulse. In Figure 4 below
the basic behavior of the current pulse can be seen.

t

i
imax

t1 t2 t3

Figure 4: Current pulse

The different times in Figure 4, t1, t2 and t3, are finite due to the factors
mentioned above. The times t1 and t3 are due to the switching time of the
transistor and t2 is due to the inductances of the circuit, Lδ, Lλ but mainly the
main inductor Lpri.

When it comes to minimizing the switching times of the current (t1 and t3)
there are not many factors that can be altered. The main thing that can be
controlled is the gate resistance of the switching transistor (see Section 4.2).

The PWM8 signal controlling the switching of the switching transformer has
its origin in a ATMega8 processor from Atmel. This means that the PWM signal
is TTL logic (alternating between 0 and 5 V). The output of the ATMega8 is
not strong enough to deliver sufficient amounts of energy to charge the gate of
the MOSFET. This is solved by placing a small driver circuit between the TTL
signal and the MOSFET, Figure 5. The driver circuit is a push-pull circuit
where a combination of PNP and NPN BJT transistors is used. When the
PWM signal is set (5 V), the NPN transistor (T1) saturates and provides a
current path allowing the gate of the MOSFET (T3) to be charged via the
resistor Rg. If the voltage drop across the NPN is neglected, the gate of the
MOSFET will be equivalent to a RC-circuit with Rg and the gate capacitance
(Cg) of the MOSFET. Therefore, the MOSFET gate is charged directly from
the 12 V supply according to Figure 2. When the PWM signal is low (0 V) the
NPN transistor is turned off and the PNP transistor ((T2) is turned on since the
voltage of the gate of the PNP is lower than that of the emitter (Vbe,PNP < 0 due
to the charged capacitor Cgs). This allows the gate to discharge in a controlled
manner via Rg to ground.

8Pulse Width Modulation

Section 4 Page 10 of 43

+12V

T3

T2

T1

R1 Rg

TTL PWM

Figure 5: MOSFET driver circuit

The resistor R1 in Figure 5 provides the PWM output of ATMega8 with a
resistive load reducing the power consumption of the processor. If this resistor
is neglected the ATMega8 would have to cope with the complete voltage drop
(VTTL−Vbe) directly on the PWM output. This is an important factor since this
is a common problem when a signal is transformed from TTL levels to analogue
voltages.

4.4.2 The transformer

The initial thought regarding this project was to manufacture the transformer
for voltage transformation by hand. However this became a bit too much to
handle since the transformer is extremely sensitive and complex. This section
intends to describe why.

Figure 6 below describes a simplified schematic view of a transformer. For

O

+

-

+

-

V
p Vs

isip

e ppN e ssN

Figure 6: Ideal iron core transformer

a start, assume that the transformer in Figure 6 is supplied with an ideal si-
nusoidal input voltage Vp and that there are no losses in the transformer core.
Furthermore, the permeability of the core (µ) is infinite, and all windings are
lossless. If this is true, then the magnetic flux (φ) in the core will be the same
both on the primary and on the secondary side of the transformer. Faraday’s law
states that an alternating magnetic flux induces an EMF9, (ep and es) according
to (7)[4].

ep = Np
dφ
dt

es = Ns
dφ
dt

(7)

9Electro Motive Force

Page 11 of 43 Design of a Current Controlled Defibrillator

Since the magnetic flux is the same on both sides, the time derivative of the
magnetic flux has to be the same too. Additionally the induced EMF should,
ideally, be equal on both sides of the transformer. This makes it possible to
rewrite Equation 7.

ep

Np
=

es

Ns
⇔ Vp

Vs
=

Np

Ns
=

ep

es
⇔ Vs = Vp

Ns

Np
(8)

Sadly, real transformers are not ideal. In a real transformer there are leakage
inductances, losses in the core, parasitic resistors and the magnetic permeability,
µ, is far from infinity. A more accurate way to describe the transformer behavior
with a non ideal transformer (µ < ∞) is using Equation 9,

Npip −Nsis =
l

µS
φ, (9)

where l is the length of the ferromagnetic core and S is the cross-sectional area
of the core [4].

When developing a transformer one has to take several factors into account:

• Core material, reducing eddy currents

• Size of the core

• Wire thickness

• Isolation voltage

• Efficiency of the transformer

One of the most important losses in a transformer core are the losses due to eddy
currents or Focault10 currents. Eddy currents are local currents induced by the
magnetizing flux and flow in the normal direction of the flux. These currents
produce ohmic power loss and cause local heating of the core. The losses due
to eddy currents can be reduced by using core materials with high permeability
(µ) but low conductivity (σ). For low-frequency applications the most common
way to reduce the currents is by using laminated cores. The laminated cores are
put together with an electrically isolating compound forcing the eddy currents
to propagate in each ’sheet’ of the core. As the frequency of the eddy currents
rise, the laminated cores behaves more and more like a solid core. For high
frequency applications a ferrite core is a better solution. The ferrite material
can be described as made up of very small balls, where each ball is electrically
and magnetically isolated from its neighbors minimizing the area for the eddy
currents to propagate in.

The size of the core is essential since this determines the amount of magnetic
flux the core can hold without saturation. When a magnetic field intensity H is
applied to a ferromagnetic material a resulting magnetic field density, B, arises
in the material according to Equation 10.

B = µH (10)

Section 4 Page 12 of 43

B

H

Figure 7: Hysteresis loop in the B-H plane for a ferromagnetic material

However, Equation 10 is not linear due to the fact that µ changes with the field
intensity. This is due to remanent flux and saturation of the core, illustrated in
Figure 7.

As seen in Figure 7 the magnetic flux density does not return to zero when
the applied magnetic field intensity is zero. The remaining flux density in the
material is called the residual or remanent flux density. It is also evident that
a large applied magnetic field intensity will drive the core into saturation. If
the core is saturated, its magnetization does not increase with an increase in
applied magnetic field intensity.

Wire thickness of the primary and secondary windings of the transformer
need to be considered in order for the transformer to work as intended. If the
thickness of the wires is too thin, the parasitic resistance and inductance of
the wires will increase. If the wires are much too thin they might not be able
to withstand the necessary currents. If, on the other hand, the wires where
to be chosen too large, the efficiency of the transformer will decrease (if the
transformer is not chosen unnecessarily large). This is due too the decrease of
the effective winding area, (Equation 11).

Effective winding area =
∑

Ie

Ae
≤ 1 (11)

The variables Ie and Ae are illustrated in Figure 8 below.

IeIe Ae

Figure 8: Cross section of a transformer, illustrating Ie and Ae

Using Equation 11 and Figure 8, one can see that a thicker wire will leave
larger air gaps between the windings, causing the effective copper fill factor to

10Jean Benard Leon Focault, 1819-1868, French Scientist who proved the existence of eddy
currents

Page 13 of 43 Design of a Current Controlled Defibrillator

decrease since the number of turns has to be decreased in order for the windings
to fit in the available winding window Ae. This could be solved by using Litz
wire or polarized wires (square wires). The inductance of a winding n of a
transformer can be written as:

L = N2
n

∑
Ie

Ae
µ0µr (12)

The voltage drop over a coil with inductance L can be written as:

VL = L
diL
dt

(13)

Combining Equation 12 with Equation 13 result in Equation 14 [5].

VL = N2
n

∑
Ie

Ae
µ0µr

diL
dt

(14)

The voltage drop across the transformer should be maximized, which means
that the effective winding quota,

∑
Ie/Ae, should be as close to one as possible.

This also clarifies the need of accurate winding if the winding is done by hand.
The wires should be as closely packed as possible and ideally no empty space
should be available in the winding window.

A good transformer also provides galvanic isolation between the primary and
the secondary winding. This isolation has to be taken into account when choos-
ing wires. Since many cores have both the secondary and primary winding in the
same winding window it might be necessary to add an isolating sheet between
the windings, even though this will reduce the effective winding quota. The
isolation voltage also need to be experimentally verified before the transformer
can be used in good faith.

All the parameters above affect the efficiency of the transformer. Neglect-
ing to optimize any of them will result in increased leakage inductances and
resistance, thus making the transformer ill fit for medical applications. Like
mentioned in the beginning of this section, the initial thought of the project
was to engineer the transformer by hand. However, this resulted in very poor
performance due to high leakage inductance and many headaches due to the
breaking of the thin secondary winding wire. The process of manufacturing a
transformer can be seen in Figure 9.

In Figure 9 the roll of wire and the bobbin (circled) of the transformer is
connected to a turning lathe providing a reasonable rotation of approximately
30 rpm. One person had to gently steer the wire correctly whilst the other
counted the number of windings. All the effort resulted in the ordering of a
custom made transformer from Profec AB. It should be mentioned that the hand
made transformer might have been more successful today when the knowledge
and know-how regarding transformer design has increased.

4.4.3 Secondary side of the flyback converter

Since the voltage transfered from the primary side has the same frequency as
the PWM signal (there might be differences in harmonics), the output voltage
of the transformer, Vs, has to be rectified, Figure 10.

The secondary side of the flyback transformer is fairly simple. As explained
in Section 4.4.2 the secondary side of the transformer will, ideally, only induce

Section 4 Page 14 of 43

Figure 9: Manufacturing a transformer by hand.

V

D

C
+

-
s

Figure 10: Simplified secondary side of the flyback transformer

current during the time the primary side of the transformer is off. What happens
is that the magnetically charged core of the transformer induces a current in the
secondary winding. This current is used to charge the main capacitor C. When
the voltage of the capacitor C rises, the diode D will block the current, forcing
the voltage Vs to build up (Lentz’ law) until it is larger than that of the main
capacitor plus the voltage drop across the diode, thus increasing the voltage of
the main capacitor additionally. The higher the voltage of the main capacitor
becomes, the more energy needs to be transfered via the transformer in order
for the voltage to build up. This means that the PWM signal, switching the
transistor of the primary side, needs to be changed as the voltage rises. When
the voltage of the main capacitor is low, very little energy is needed to increase
the voltage significantly, this means that a very short duty cycle of the PWM
is sufficient at the start of the charging but as the voltage rises, the duty cycle
needs to be increased.

The most important component on the secondary side is the diode D. This
diode has to be fast enough in order to follow the switching frequency of the
PWM on the primary side and it has to be able to block very high voltages,
since the entire voltage of the capacitor must be blocked by the reverse biased
diode.

Another important characteristic of the diode is the reverse recovery current.

Page 15 of 43 Design of a Current Controlled Defibrillator

The reverse recovery current is the current that flows through the diode during
the time it takes for the diode to switch from conducting to blocking. The faster
the diode, the higher (but shorter) the peak of the reverse recovery. This very
high current will give rise to a voltage drop across the diode which might, if it
is high enough, cause the diode to break. However, there are solutions to the
problem, a snubber circuit could limit the effect of the reverse recovery current,
Figure 11.

V

V

D C

+

+

-

-

V

+

-
s c

cs

Rs
Cs

Ds

L

Figure 11: A turn off RCD snubber

The snubber in Figure 11 is a RCD (Resistor, Capacitor and Diode) snubber.
It works during the turning off of the diode D. When Vs has dropped below
Vc, D will, for a short period of time, conduct in its reverse direction (reverse
recovery current). When the diode D blocks, the leakage and stray inductances
on the secondary side will give rise to a voltage, VLλδ

, that is proportional to
the time derivative of the diode current. Without a snubber circuit, this voltage
will rise to infinity and eventually break D since both the capacitor and the
secondary side of the transformer are inert to sudden voltage changes. With the
snubber circuit the alternative path is through Cs and Rs where Rs will limit
the maximum peak current and thus the voltage across D. [6]. It is essential
that the values of Rs and Cs are chosen carefully. The snubber should only be
active during the switching on / switching off time of the diode D. [6] Another
important thing to remember is the fact that the snubber capacitance must be
able to hold the entire voltage of the main capacitor C plus the voltage of the
primary side multiplied by the winding quota, Equation 15. This makes the
selection of possible capacitors fairly limited.

VCs
= VC + Vcc,primary ·

Ns

Np
(15)

4.5 Controlling the charging

In order for the charging to work satisfactory, certain factors need to be con-
trolled. The most important factor is the voltage on the secondary side i.e. the
voltage of the capacitor. This voltage needs to be measured by the ATMega8
processor and compared to the reference value. If the voltage level is sufficient,
the charging should seize. Since the high voltage of the secondary side of the
transformer is galvanically isolated from the primary side and control electron-
ics, the voltage of the main capacitor needs to be measured galvanically isolated.
The voltage is measured like shown in Figure 12.

There are some important features to remember when studying Figure 12.
The resistor Rvm need to be chosen very large in order for the capacitor C not

Section 4 Page 16 of 43

+5V

Rvm Dvm
D

Vout

Rout

Tvm
C

+ +

- -
Vc Vdvm

Id

Figure 12: Measuring the voltage of the capacitor

to discharge via this resistor. But, if Rvm is chosen too large, the current Id

will not be able to drive the diode Dvm. The optocoupler, consisting of Dvm

and Tvm, should have a linear transfer function. If it has, the voltage on the
output, Vout can be written as Equation 16.

Vout = IdβRout =
Vc − VDvm

Rvm
βRout ≈

Vc

Rvm
βRout, (16)

where β (<< 1) is the transfer factor of the optocoupler. The output voltage,
Vout, need to be in the range 0 < Vout < 5 V in order for the ATMega8 to be
able to A/D convert it properly. The A/D converter of the ATMega8 needs an
input impedance of less than 10 kΩ in order to successfully perform an A/D
conversion within reasonable time. This is due to the RC circuit on the input
of the A/D converter working as a sample and hold circuit. The resistor Rout is
much larger than 10 kΩ, meaning that the A/D conversion will take unnecessary
long time. Since it is very difficult to get the voltage Vout in the proper voltage
range; an amplifier in series with Vout solves both the amplitude problem and
the impedance problem. In Figure 13 the complete circuit for measuring the
voltage is shown.

+5V

Rvm
D

Vout 1
Vout

To ATMega8
Rout

R1
R2

Tvm
C

+ +

- -

Vc Vdvm

Id

+

-

D
vm

Figure 13: Voltage measurement with amplifier

In Figure 13, Vout is amplified according to Equation 17.

V 1
out =

(
1 +

R2

R1

)
Vout (17)

This means that the voltage to be A/D converted, V 1
out, can, using Equation 16

Page 17 of 43 Design of a Current Controlled Defibrillator

and Equation 17, be written as:

V 1
out ≈

(
1 +

R2

R1

)
Vc

Rvm
βRout (18)

The factor between V 1
out and Vc can be controlled by changing the factor R2/R1.

It was mentioned in Section 4.4.1 that the peak current through the trans-
former must not be larger than 5 A. The highest current is on the primary side
of the transformer which means that this is where problems might occur. The
current on the primary side is most easily determined using a very small (< 1 Ω)
in series resistor and measuring the voltage drop over this. The resistor can be
fitted in two places, either before the switching transistor (Figure 14 a) or after
(Figure 14 b).

(a) (b)

+12V

Rs
Vrs

T

+

-

L

I l

+12V

R
s

V
rs

T

+

-

L

I
l

Figure 14: Different placements of the current measurement resistor

If the resistor is positioned like shown in Figure 14 a, the voltage drop over
the resistor will be in the interval RsIL < VRs

< 12. This means that the voltage
drop over Rs needs to be measured with a differential amplifier or instrument
amplifier. The other placement of Rs, Figure 14 b, will result in a voltage VRs

in the range of 0 < VRs < RsIL. This voltage can be directly A/D converted
meaning that no extra components need to be added, resulting in a smaller
footprint.

There are some problems when it comes to measuring the current in a circuit
like this. There will only be a current flowing during the time when the PWM
pulse is high and since the PWM pulse is very short the ATMega8 can not
trigger on this pulse to start the A/D conversion. This problem could be solved
by using a stand alone hold circuit, see Figure 15.

An important problem with the circuit in Figure 15 is the switching tran-
sistor Ts. This transistor needs to be fully conducting and blocking in order
for this circuit to work, hence the push pull circuit connected to the gate of Ts.
Another factor that disrupts the use of the circuit in (15) is the capacitor. The
capacitor will present a mean value of the current flowing through the primary
side during the time the main swithing transistor is on. This is not the desired

Section 4 Page 18 of 43

+12V

TsTTL PWM

To A/D

R
l

C
meas

Figure 15: Voltage hold circuit

behavior, much uncertainty will be introduced when estimating the peak value
of the current from the mean value.

Another approach is to measure the current using a simple peak hold circuit
shown in Figure 16.

Ts

Rs

Dmeas

Cmeas

Figure 16: Peak hold circuit

The peak hold circuit has one crucial component, the diode, Dmeas. This
diode has to be fast in order for it to block the negative spikes that arise due to
stray inductances in the main circuit. Furthermore, the forward voltage drop
across the diode has to be much smaller than the voltage to be measured. The
latter problem can be solved by using the circuit in Figure 17.

The output voltage across Cmeas in Figure 17 should be the same as the volt-
age over Rs since the OP will compensate for the voltage drop across Dmeas. In
order for the output voltage to be less fluctuating, a low pass filter is introduced
to filter the voltage across Rs with an RC-circuit, Figure 18.

This approach proved to be somewhat useful since the filter capacitor Cf

removes the spikes in the measured voltage. Nevertheless, the output voltage
across Cmeas still could not be directly associated with the current through the
transformer.

Page 19 of 43 Design of a Current Controlled Defibrillator

T
s

Rs

Dmeas
+

-
Cmeas

Figure 17: Peak hold circuit with amplifier

TS

Rs

Rf

C f

Dmeas
+

-
Cmeas

Figure 18: Peak hold circuit with amplifier and filter

4.6 Safety
When doing a voltage transformation like the one in this project it is always
important to consider the safety of the circuit designed. In previous sections the
galvanic and optical isolation is motivated by means of protecting the control
electronics, however extra precautions need to be taken in order to protect the
surrounding environment and the user. Important features are:

• Automatic discharge

• High voltage automatic shutdown

4.6.1 Automatic discharge

The automatic discharge is needed to avoid the main capacitor being left at
high voltages when not operated. For instance, if the capacitor is charged and
the medical personnel finds it unnecessary to complete the defibrillation, the
capacitor should be discharged without connecting the load (the patient). This
protection is most easily achieved by letting the ATMega8 monitor the time
passed since the charging stopped. When the maximum idle time is achieved, the
ATMega8 produces a control signal that is used to discharge the main capacitor.
However, this raises some new problems. The idea is to use the control signal to
drive a transistor, forcing the main capacitor to discharge via a large resistor,
Figure 19. Since the circuit in Figure 19 disrupts the whole idea of electric
isolation between high voltage and control electronics, the control signal needs

Section 4 Page 20 of 43

Ts

R
l

C
main

Control

Figure 19: Basic circuit for the safety discharge

to be transfered to the high voltage side without electrical connections. As
described in previous sections, this can be done either by an optocoupler or a
transformer. The first alternative, the optocoupler, transfers DC signals in a
straight forward manner, but it requires power supply on the secondary side.
This makes it complicated to use since the voltage level on the secondary side
is varying. The latter alternative, the transformer, can not transfer DC signals
but does not require any power supply on the secondary side. The problem
with DC signals can be solved by modulating the control signal with a high
frequency signal (carrier). This is achieved by using a fast AND gate with the
control signal and the high frequency signal as inputs, Figure 20.

Driver

Carrier

On

Figure 20: Simplified galvanic isolation between discharge transistor and control
electronics

The output of the AND gate is too weak to be able to deliver the necessary
amount of current to drive the coil. Consequently, a driver circuit is connected
in series with the AND gate. The capacitor in series with the driver and the
transformer removes the DC component of the signal avoiding saturation of
the transformer. However, the carrier is still present on the secondary side of
the transformer and needs to be removed. If it is not removed, the discharge
transistor will try to switch with the carrier frequency. The carrier signal is
removed by rectifying the signal on the secondary side, Figure 21.

As shown in Figure 21, the transformer chosen for the task has a center
tapping that creates the reference voltage on the secondary side. If a transformer
without center tapping is to be used, a complete rectifying bridge could be used
instead of the two diodes D1 and D2. The third diode, D3, is used in order for
the PNP transistor T1 to start conducting when the control signal is turned off.
One important thing to keep in mind is that the voltage drop across D3 has to
be larger than the voltage drop Vbe of the transistor. If this is not considered,
the PNP transistor will not start conducting when the control signal is turned
off. However, the PNP transistor gives the ability to choose the gate resistors,
Roff and Ron, individually (see Section 4.2). The load resistor, Rpd, is needed

Page 21 of 43 Design of a Current Controlled Defibrillator

D1

R
on

T1

R
off

D
2

D
3

R
pd

Figure 21: Rectifying the current

to create a well defined voltage on the base of the PNP transistor.

4.6.2 Over voltage shutdown

The second safety issued that need to be addressed is the overvoltage automatic
shutdown. This is implemented in order to protect the user and electronics if
the voltage on the secondary side becomes too high. The voltage on the sec-
ondary side could keep rising if, for instance, the ATMega8 hangs up and does
not stop the PWM or if the voltage measurement circuit is faulty. This means
that the voltage protection circuit needs to be made completely in hardware (if
the ATMega8 hangs up). The idea is to measure the voltage on the secondary
side and then, if the voltage is too high, transfer a signal to the primary side.
The voltage measurement should not be done using the same hardware as de-
scribed in Section 4.5, since this would make the entire design dependent on this
single optocoupler. Another optocoupler needs to be introduced in the circuit,
but some of the hardware from the normal voltage measurement can be used,
Figure 22.

C main

+
+Vz

VRs
-

-

D
vm

Rvm

R
v

Rd

Th

R
s

D
z

D
c

Figure 22: Circuit for over voltage protection

As seen in Figure 22, the resistor Rvm and the optocoupler diode Dvm are
the components that make up the voltage measurement circuit. The voltage of
the capacitor Cmain will be divided between the resistors Rs and Rvm according
to Equation 19.

VRs
=

Rs

Rs + Rvm
(VCmain

− VDvm
), VRs

< Vz (19)

If this voltage VRs
is higher than the zener voltage, Vz, the diode will open in

its reverse direction, allowing a current to create a voltage across the resistor

Section 4 Page 22 of 43

Rv. This voltage is the same as the driving voltage of the thyristor, TH , which
will cause this to open and discharging the capacitor Cmain via Rd. Since the
diode of the high voltage protection control signal optocoupler, Dc, is current
driven, the current through Dc will not be linear but dependent on the voltage
of the main capacitor according to Equation 20.

IDc
= Is

(
e

VDc
VT − 1

)
, VDc

= VRs
− Vz, VRs

> Vz (20)

In Equation 20, VT is the threshold voltage of Dc and Is is the saturation
current [1]. The voltage drop over the diode, VDc

, is determined by the voltage
drop over the resistor Rs which in turn is determined by the current through
the diode when VRs

> Vz, Equation 21.

VRs
= IRvm

− IDc
= IRvm

− Is

(
e

VRs
−Vz

VT − 1
)

(21)

Where IRvm
is a function of the voltage drop across Dvm:

IRvm
=

VCmain − VRs − VDvm

Rvm
(22)

Equation 21 is not very easy to solve since the voltage drop over Dvm is
dependent of the current through the resistor Rvm. This makes it hard to de-
termine what value of Rs to use, hence experimental verification will be needed.

The high voltage shutdown should have discrete levels, either on or off, and
stay that way until the appropriate actions have been completed by the user.
This will be a problem since the voltage of the main capacitor will drop, due
to the discharging via Rd, causing the voltage over Rs to be lower than the
zener voltage. Consequently, the current IDc falls to zero and Dz will block,
thus returning the control signal to it’s normal state. This can be solved by
using a S/R latch on the secondary side, Figure 23. The S/R latch sets the

S

R
out

Figure 23: S/R latch

output, out, depending on the levels of S and R combined with the previous
state of the latch. For instance, if the latch is powered up with [S,R] equal to
[1,1] the output is low (0 V). If this is followed by setting S low the output
becomes high. Now the output remains high regardless of the signal level on
S. This is the sought for behavior needed to solve the problem with declining
IDc

and is illustrated in Figure 24. In Figure 24, the R port is constantly
high and the S port is controlled from the optocoupler. This means that when
the optocoupler starts conducting, the S port is low, producing the inverse of
the S port (high) on the output. The resistor Rpu

(Figure 24) is used as a

Page 23 of 43 Design of a Current Controlled Defibrillator

S

R
R

HVSD

pu

Figure 24: S/R latch connected to output of optocoupler

pull up resistor to ensure a known voltage level on the collector of the output
transistor. It should also be mentioned that the output side of this specific
optocoupler (Figure 24) consists of two transistors (Darlington connection) in
order to provide extra gain, making it able to switch the output at very low
input currents. The optocoupler also has a pin connected to the base of the
output transistor, allowing the user to bias the transistor if it should work in
its active region. However, the circuit in Figure 24 has one great disadvantage;
once the output is set it is not to be lowered until the power of the circuit is
toggled. This is not a good solution since the user should have the ability to
reset the system without rebooting after a high voltage safety shutdown. If a
reset switch is introduced in the schematic the problem is solved by the circuit
in Figure 25, since the S/R latch returns to its original state if S is low at the
same time as R is low. The switch SW in Figure 25 is connected to the base

+5V

T1

Rpu
2

Rpu
1

R
pd1

+5V

SW
D1

HVSD

S

R

Figure 25: S/R latch with user reset

of T1 and the base of the internal output transistor of the optocoupler. This
means that when SW is closed, T1 starts to conduct, setting the R port low.
Simultaneously, the output transistor in the optocoupler will open, setting the
S port low. The resistors Rpu1,2 and Rpd1 are pull up / pull down resistors to
ensure a well defined voltage level on the nodes they are connected to. The
diode D1 is used to avoid the base current of the output transistor from flowing
via the pull down resistor Rpd1 . The circuit in Figure 25 produces an output
signal, HV SD (High Voltage Safety Discharge), that is high from the moment
the voltage on the secondary side exceeds its maximum level, and stays high

Section 4 Page 24 of 43

until the user toggles the switch SW .
When the voltage on the secondary side becomes too high, there are three

things that need to be done on the primary side:

• Turn off the PWM

• Start the safety discharge

• Send interrupt to the ATMega8

The first item, turning off the PWM is achieved by adding a pull down
transistor after the PWM series resistor, Figure 26. The resistor R1 in Figure 26

+12V

TTL PWM

HVSD

R1
Rg

Figure 26: High voltage safety turn off of the PWM signal

was originally (Figure 5) chosen rather small (< 200 Ω) since it in the original
circuit was used to allow the voltage level to drop, not to limit the current
because the transistors themselves limit the base currents. This means that the
resistor need to be increased in order for the PWM to have a reasonable load.

Starting the high voltage safety discharge on the primary side is rather sim-
ple, Figure 27, and is achieved by adding a pull up transistor to the ON signal
from the ATMega8.

DriverCarrier

On

HVSD

+5V

Figure 27: High voltage safety discharge on the primary side

The final task, sending an interrupt to the ATMega8, is simply a matter of
connecting the HV SD signal to an interrupt port of the ATMega8, allowing
the software to handle the interrupt (if the processor is still running).

Page 25 of 43 Design of a Current Controlled Defibrillator

5 Discharge
As mentioned numerous times before the behavior of the defibrillator should
during discharge (defibrillation) be biphasic. Applying the whole voltage of the
main capacitor directly to the load (patient) would result in a current flowing
constantly from anode to cathode of the capacitor until it was completely dis-
charged. In this section it is described how the development of the discharging
module was conducted and the underlying theory.

5.1 The four quadrant converter
The four quadrant converter (sometimes called H-bridge), Figure 28, is the main
building block of the discharge module.

The converter allows the current to flow in both directions through the load
depending on which transistors that are conducting. This means that the tran-
sistors should conduct according to the following list:

1. T1 and T3 are on

2. All transistors off

3. T2 and T4 are on

4. All transistors off

In the first stage the current il flows in its positive direction according to the
definition in Figure 28. However this will lead to the charging of the inductive
parts of the load (including wires and such) making it hard to change the di-
rection of the current immediately. This explains the need of stage two where
the current is presented with a path back to the capacitor via the freewheeling
diodes mounted across T2 and T4 thus allowing the inductive load to discharge.
This time is called idle time. Stage three means conducting the current in the
opposite way compared to stage one, meaning that il < 0. The fourth and final
stage is the same as stage two to avoid leaving the load inductively charged.

T1

il

R
C

L

T3T4

T2

Figure 28: Four quadrant converter with RL load

One important detail regarding the converter is that the emitter potentials of
T1 and T2 are dependent on the switch states of the transistors. This implies that
the power supplies for the driver circuits of both transistors T1 and T2 must be
galvanically separated from the one used for driving T3 and T4 [2]. The galvanic
isolation is achieved in the same way as for the safety discharge, described in

Section 5 Page 26 of 43

Section 4.6.2. Since all transistors need to be controlled independently, four
different circuits like the ones described in Figure 21 are needed.

5.2 Controlling the discharge

The need for some kind of controller for the discharge is evident. If one is not
used (old defibrillators) the entire voltage of the capacitor will be applied across
the load and the resistive and inductive parts of the load will be the only factors
limiting the current. It was mentioned in earlier sections that current control is
an important feature that should be implemented in the device.

In order to simplify the description of the current control circuit, the discus-
sion will start assuming that monophasic behavior of the defibrillator is desired,
Figure 29. In order for any current control to work properly the current through
the load needs to be measured. Measuring the voltage drop across a series resis-
tor would not be a good solution since the resistor would disspipate energy and
the need for an extremely fast and accurate optocoupler would introduce much
uncertainty in the measurement. Instead, a LEM module is used. The LEM
module consist of a ferrite core coil with a Hall element, measuring the mag-
netic flux of the core, producing a voltage on the secondary side corresponding
(linearly) to the current through the coil. The starting point is to turn T1 and

T1

il

R
C

L
E

M

-

+

Vmeas

Vcap

Vcap

L

T3D4

D
2

Figure 29: Circuit for monophasic discharge

T3 on in Figure 29 charging the inductance L. When the current, il reaches
the highest value allowed, the transistors are turned off allowing the current to
flow via the diode D4, through the load and through D2. As the current flows
through the diodes, the energy stored in the inductance will decrease, thus re-
ducing the current il until it reaches its minimum value allowing the turning on
of T1 and T3 to restart the cycle. This type of controller is called a tolerance
band controller since the current is allowed to vary in a band around the cur-
rent reference, Figure 30. In Figure 30, the value irv is the reference value. The
difference between the maximum value, imax, and the minimum value imin is
referred to as the current ripple. The bandwidth of the controller is dependent
on the size of the inductance L. A large coil would reduce the needed bandwidth
but add to the size and weight of the device, whereas a small coil would increase
the needed bandwidth with little increase in weight and size. It is evident that
the size of the inductance is of great importance since the driver circuits and the
IGBT’s used in the discharging circuits have a limited bandwidth (≈ 30 kHz),
and one of the most important sought after features of the defibrillator is low

Page 27 of 43 Design of a Current Controlled Defibrillator

t

il

imax

imin

t1 t2

irv

Figure 30: Current through the load when using tolerance band current control

weight.
The initial thought was to use the ATMega8 to A/D convert the measured

voltage, Vmeas, but the bandwidth of the current control loop needs to be much
higher than that achievable using the ATMega8. The ATMega8 can be used
to A/D convert at approximately 50 kHz, but this figure get radically reduced
when actions are to be performed between the conversions. Knowing these
limitations of the ATMega8 it was decided to implement a hardware tolerance
band controller.

The hardware controller is made up of two building blocks, an adder and a
comparator with a hysteresis that determine the current ripple, Figure 31. In

il

irv

e

-

Figure 31: Block diagram of the tolerance band current controller

Figure 31, the signal il is the current through the load measured using the LEM
module and the signal irv is the reference value. The error e is calculated as
il − irv and is sent to the comparator.

The adder is designed using an OP-amplifier with negative feedback, Fig-
ure 32. Note that the notations Vl and Vrv refer to voltages corresponding to
the actual current through the load and the current reference value.

R1
Vl

e
Vrv

R2

R3

+

-

Figure 32: OP-amplifier adder

Section 5 Page 28 of 43

Applying Kirchoffs current law in node (1) the signal e can be described as:

0− Vl

R1
+

0− Vrv

R2
+

0− e

R3
= 0 ⇔ e = −R3

(
Vl

R1
+

Vrv

R2

)
(23)

Choosing the resistors R1,2,3 equal gives:

e = − (Vl + Vrv) (24)

From (24) it is clear that the reference value must be of opposite polarity
compared to that of the current through the load. The adder produces the error
e which is connected to the tolerance band controller.

The tolerance band controller is made up of an OP-amplifier with positive
feedback, Figure 33. The feedback is positive since the output should be an
alternating signal with the discrete levels −Vcc and +Vcc. In order to derive

R1

out
e

R2

+

-

Figure 33: OP-amplifier tolerance band controller

an expression for the hysteresis of the controller a node analysis using Kirchoffs
current law is performed in node (1):

e− 0
R2

+
e− out

R1
= 0 ⇔ e =

R2

R1 + R2
· out (25)

Knowing that the positive feedback will produce an output equal to ±Vcc makes
it possible to rewrite (25) as:

e =

{
R2

R1+R2
· Vcc, e > 0

− R2
R1+R2

· Vcc, e < 0
(26)

From (26) it can be seen that the output is of opposite polarity compared to
the wanted. When the error is positive, i.e. the current through the load is
too high, the output from the controller is high (+Vcc) and vice versa. This
means that the output needs to be inverted before it is allowed to control the
transistors. Another problem is that the output is ±Vcc (±12 V) when it should
be TTL levels (0 or +5 V). This is solved by simply inserting a diode in series
with the output and placing two resistors as a voltage divider in order to lower
the voltage, Figure 34.

When it comes to actually creating the reference value this is done simply by
connecting the ATMega8 to a digital potentiometer with I2C communication,
Figure 35. By connecting the digital potentiometer in Figure 35 between GND
and −Vcc, a negative reference value is created. Using the ATMega8 to control
the digital potentiometer gives the ability to set the reference value in software,
which allows the user the freedom to choose this value.

Page 29 of 43 Design of a Current Controlled Defibrillator

R

out TTLout'12v+-
R7

5

Figure 34: Conversion from ±12 V to TTL levels

ATMega8

Vrv

+5V

DS1803

1
0

k

Figure 35: Creating the reference value

During the discussions above it has been assumed that monophasic defib-
rillation should be used. However, this is not the case in the final device; it
should be possible to use both biphasic and triphasic defibrillation if the energy
of the capacitor is high enough. Consequently, the current control should work
for both positive and negative load currents. The controller above needs some
minor modifications before this task can be fulfilled:

• Ability to change the sign of the reference value

• Switch between inverted and non-inverted output

The ability to change the sign of the reference value could be achieved by con-
necting the digital potentiometer between +Vcc and −Vcc, which allows the
ATMega8 to change the reference to its positive equivalent. This is not a good
solution since this would set a lower limit of the idle time equal to the time it
would take to change the reference value. Another, and better way is to use two
reference values and using an analogue switch to select the desired value. This
would introduce an extra digital potentiometer and add an expensive compo-
nent, the analogue switch, to the schematic. The simplest, and perhaps most
efficient way is by using three simple OP-amps and a MOSFET, Figure 36. The
circuit in (36) is actually rather simple, it is just two adders (B and C) where
the lower adder, B, is switched in by setting Sign. The first OP, A, is just
a voltage follower which makes the impedance of the digital potentiometer of
little importance since the ideal input impedance of the follower is infinite. The
final OP, C, is an adder, just like the one described using Equation 23, with
the inputs of the voltages in (1) and (2) (V(1), V(2)). V(1) is, due to the voltage
follower, equal to Vrv regardless of the Sign input. This means that the output,
V ′rv, will be the inverse of Vrv if Sign is low (V(2) = 0 V), Equation 24. If Sign is
set, the lower OP, B, will have an input voltage equal to Vrv. With the resistor
relations according to Figure 36 this means that the output from B, V(2), will

Section 5 Page 30 of 43

R

2R

+

-

R

R

Sign

A

B

C

R

+

-

Vrv

V'rv

+

-

Figure 36: Changing signs of the reference value

be −2Vrv. Adding this to the voltage of node (1) produces an output, V ′rv, of
+Vrv. Or written in a more comprehensive manner:

V ′rv =
{
−Vrv, Sign ≤ 0
Vrv, Sign > 0 (27)

The only real problem with the circuit in (36) is that the resistor values need
to be chosen carefully if the absolute values of the output should be exactly the
same regardless of Sign.

The ability to switch between inverted and non inverted output might need
further explanation before presentation. If the current should change directions,
so should the reference value. This means that the error (e) will be calculated
using two different formulas depending on the value of Sign:

e =
{
|Vl| − |Vrv|, Sign ≤ 0 (a)
|Vrv| − |Vl|, Sign > 0 (b) (28)

It was described earlier that the first expression, (28 a), leads to the need of
inverting the output. But the second expression, (28 b), leads to a positive
error if the current through the load is lower than the reference value. This
is the opposite behaviour compared to that of Equation 28 a, leading to the
need of inverting the output compared to that of the monophasic case, i.e. no
inverting should be performed when Sign is set. In summary, the output should
be inverted when Sign is low and not inverted when Sign is set. This behavior
is achieved by inverting the Sign signal and then making a modulus 2 addition
with the output signal, Figure 37.

The Sign signal is the signal controlling the direction of the current through
the load, and in order for the system to work this signal needs to be connected
to the correct transistors in the H-bridge. The solution described above makes
it possible to control the H-bridge leg-wise instead of controlling each transistor
individually. This reduces the needed control signals from the ATMega8. Two
AND gates are needed to control the bridge, one for each leg, Figure 38. In
(38), the boxes DC1..4 are the driver circuits and transformer for each transistor.
These circuits were described in detail in Section 4.6.2. The two new signals
in (38), Leg1 and Leg2, are the control signals from the ATMega8 that decide
whether the H-bridge leg should be active or not. Note that these signals are not

Page 31 of 43 Design of a Current Controlled Defibrillator

+5V

sign

out out'

Figure 37: Inverting the output

T1

T4

R

Leg1

Leg2

L

T3

T2

D
4

D
1

D
2

D
3

out'

LEM

Figure 38: H-bridge connected to control signals

the same as Sign and Sign since this would cause one of the legs to be constantly
active, thus spoiling the possibility to set the idle time. A better solution would
be to replace the Leg1 and Leg2 signals with the Sign and Sign signals. This
would require two three-inputs AND gates and an additional signal, Discharge,
where the Discharge signal would decide whether the H-bridge should be active
or not and the Sign would decide in which direction the current should flow.
The final solution described would only require two ports of the ATMega8 whilst
the previous solution requires three ports.

Section 6 Page 32 of 43

6 Software
The operational software running on the defibrillation system has been devel-
oped from scratch. No libraries or other 3rd party tools have been used to
finalize the code. A development environment from ImageCraft has been used
to edit, compile and finally to download the defibrillation program to the sys-
tem.

6.1 ATMega8
Many products today contain some kind of central processing unit in order to
provide the user with a specified functionality. Depending on factors such as pro-
cessing power, cost, physical package, power consumption, electrical interfaces,
etc, there are a number of different product lines that could be considered. Two
different paths appear, microprocessors and microcontrollers. The difference
between the two is that the microprocessor is dependent on peripheral circuits
in order to work, whereas the microcontroller has the necessary subsystems such
as memory etc. integrated on the chip.

When considering the design of a defibrillation system for LUCAS it was
quite apparent that extreme processing power was not a key factor. This quickly
led to the conclusion that a DSP11, which is part of the microprocessor fam-
ily, would not be a wise selection since they provide far too much arithmetic
processing power. Programmable logic on the other hand, is more geared to-
ward lightweight designs that require minimum processing power and thus pro-
grammable logic would not fit the bill either. As a parenthesis, it could be
mentioned that this picture is about to change, since there are products on the
market that combines programmable logic with a DSP core.

The next step was to examine the microcontroller market. Microcontrollers
are convenient to work with since they usually contain many features, apart
from onboard memory, such as ADCs12, PWMs and digital input and output
ports. There are many vendors of microcontrollers on the market, each having a
number of different models, which can make the selection process rather difficult.

It was decided that a good idea would be to investigate microcontrollers from
well known vendors such as Atmel, Philips, Microchip and Motorola. Another
important part to consider was the software support available. Since a develop-
ment tool for the AVR family of microcontrollers from Atmel was available it
was decided to look closer at what Atmel had to offer.

The AVR product family is a RISC13 microcontroller, which implies that
it has a reduced number of instructions. Most of these 130 instructions are
executed in just one clock cycle, which effectively means that the microcontroller
can execute almost 4 MIPS14 with a 4 MHz core clock. Among the 40 different
versions of AVR that Atmel has for sale, the choice fell on the part called
ATMega8 since it has an attractive package (28 pin DIL capsule) combined
with the features that were anticipated to be needed. The main features of the
ATMega8 are:

• 8 kBytes of flash (for program storage)
11Digital Signal Processor
12Analogue to Digital Converter
13Reduced Instruction Set Computer
14Million Instructions Per Second

Page 33 of 43 Design of a Current Controlled Defibrillator

• 512 bytes of EEPROM15 (for permanent data storage)

• 1024 bytes of SRAM16 (for program variables)

• 23 IO17 pins (used for digital input and output)

• 2 external interrupts (used for trigging on external events)

• I2C bus (for communicating with external circuits)

• 8 channel 10-bit ADC (used for measuring analogue signals)

• 2 timers (used for accurate timing needs)

• 3 PWM channels (used for controlling motors etc)

6.2 Overview

Since ATMega8 has a limited memory and the final size of the defibrillation
program was difficult to foresee, it was decided that an RTOS18 was going to
be difficult to fit into the 8 kBytes of available flash memory. It would also
have led to an increased complexity and thus the project was designed using
state machines instead. A state machine is basically a global variable that keeps
track of the state that the software is currently in. An example of a simple state
machine is illustrated in Figure 39.

State 1

State 3State 2

Figure 39: Example of a state machine

Transitions between different states are results of either external triggers or
internal events. The defibrillation program has two state machines, one for the
menu system and one for the defibrillation sequence. Both state machines react
to external stimuli, but the defibrillation state machine is more autonomous in
the sense that it runs through a predefined sequence once it has been started.

15Electrical Erasable Programmable Read Only Memory
16Static Random Access Memory
17Input Output
18Real Time Operating System

Section 6 Page 34 of 43

6.3 Menu system
The menu system is handled by a menu state machine which present a UI19 on
a small 2 by 16 character display, connected to the defibrillation system via a
serial interface. The UI, shown in C.1, enables the user to change important
defibrillation parameters as well as initiate a defibrillation. This is done by using
the four menu buttons +, -, Enter and a Cancel which together mimics a menu
behavior similar to that of early mobile phones.

The parameters and their functions are described using an example of a
triphasic discharge shown in Figure 40.

6.3.1 Charge voltage

This is the voltage that the main capacitor is charged to. This gives the user an
idea of how much energy that is available for defibrillation. The voltage level is
selectable from 100 to 1350 V in steps of 50 V .

6.3.2 Discharge type

This menu option enables the user to determine which kind of defibrillation
that should take place. The options are monophasic, biphasic and triphasic
defibrillation. Depending on the selected discharge type, the menu options Phase
length and Idle time have different number of submenus.

6.3.3 Current control

This menu option determines if the defibrillation should be current controlled
or not. If the user selects Yes the current setting in menu Discharge curr. is
used. If No is selected, the menu option Discharge curr. is not visible and a
maximum discharge current of 25 A is used.

6.3.4 Phase length

This menu has different submenus depending on the selected Discharge type. If
a triphasic defibrillation has been selected as in Figure 40, this submenu will
enable the user to specify the length of A1, A2 and A3 in quarters of milliseconds.

6.3.5 Safety time

When the user initiates a charge of the main capacitor and the specified voltage
selected by Charge voltage is reached, the Safety time value determines the
number of seconds that this voltage will be maintained before an automatic
safety discharge will take place.

6.3.6 Idle time

This menu option contains a submenu where the user can edit the time interval
between a positive and a negative discharge. If a triphasic defibrillation is
performed, as done in (40), this sub menu enables the user to edit B1 and B2

in milliseconds. If a monophasic defibrillation is selected, this menu has no
editable parameters.

19User Interface

Page 35 of 43 Design of a Current Controlled Defibrillator

6.3.7 Discharge current

The menu option enables the user to select the mean value of the discharge
current, shown as C in (40).

3->

A1

B1 B
2

A3

A2

C

Figure 40: A triphasic defibrillation with editable time parameters

6.3.8 User banks

In order to aid the user to evaluate results of different parameter settings, the
UI contains six complete parameter banks. These banks are stored to (using the
save option) and retrieved (using the recall option) from the EEPROM which
means that the user can quickly recall previously stored setups even if power is
cycled. If the user wants to have a specific setting which is always loaded at
power up, bank 1 should be selected since it is loaded automatically when the
system is initiated.

6.4 Defibrillation system

The defibrillation system is handled by the defibrillation state machine. This
state machine makes sure that charging, maintenance charging, discharging,
safety discharging and other events takes place in a logical order to prevent
hazardous conditions to occur for the defibrillation hardware as well as the
user.

Figure 41 shows the major states of the defibrillation state machine. In order
to describe the internal operation of this state machine a defibrillation scenario
is described. References to the numbers in the figure are shown in brackets.

When the defibrillation system is powered, the Startup state is entered during
which initialization of variables and display is performed. When done, the
state advances to the Idle state where the user menu is shown. If the user
selects to charge the capacitor, PWM is initialized and the state transition
(1) is performed. If the user presses Cancel during the charging process, the
charging is stopped and the energy in the capacitor is safely discharged (8).
When the requested voltage has been reached, the Maintenance Charging state

Section 6 Page 36 of 43

is entered (2). This state makes sure that the voltage across the capacitor is
kept constant. A timer is also started and before this timer expires the user
could choose to defibrillate (5) by pressing Enter or by applying an external
trigger interrupt to defibrillate (4). The Waiting to discharge states waits an
extra second before performing the actual defibrillation (7). If there is remanent
energy in the capacitor after the defibrillation has taken place, this energy is
automatically safely discharged through a resistor (6). If however, the timer
expires before an external trigger or a user interaction has occured, the system
automatically safety discharges the energy in the capacitor (3) so that the user
is not exposed to hazardous conditions. When either a discharge or a safety
discharge has been performed the state machine reverts back to an idle state
via (9) or (10).

Startup

Idle

Discharge

WaitingTo
Discharge

Charge

Maintenace
Charge

Safety
Discharge

1

2

34

5

6

7

8

9
10

0

Figure 41: Defibrillation state machine

Page 37 of 43 Design of a Current Controlled Defibrillator

7 Result
This section describes the results and final solutions regarding the defibrillator
and could be read somewhat separately by those who have little interest in the
underlying electrical theory. The final solution consists of three separate PCB’s:

• Charge and over voltage protection circuitry

• Discharge circuitry

• ATMega8 and current control circuitry

All the PCB’s were created using the Eagle software from Cadsoft and man-
ufactured at the department of industrial electrical engineering and automation.
All plots of measured results were achieved using a Tektronix TDS2002 oscillo-
scope together with the WaveStar software.

7.1 Charging
The final version of the charging module consists of one PCB containing the
charging electronics and the over voltage protection circuit described in Section
4.6. A complete schematic of the charging board is presented in B.2.1 and the
PCB layout in B.2.2.

The only major difficulty encountered when designing the charging circuitry
was the current measurement of the primary side. In the beginning of the
project the idea was to measure this current and optimize the duty cycle of
the switching transistor, so that the current through the primary windings of
the transformer would never exceed 5 A. Despite extensive research and ex-
perimenting, the current could never be accurately measured with the system
processor generating the PWM pulse. However, if a fast stand alone circuit for
generating the PWM and measuring the current was to be used, the bandwidth
of this circuit might be enough to measure the current directly without having
to use mean value approximation or peak hold circuits.

The need for safety distances between signals on the high voltage side of the
PCB was learned the hard way and no compromises have been made in the final
design regarding isolation distances.

The final version of the charging PCB is capable of charging a 44.1 µF
capacitor from 12 V DC to about 1350 V DC in 12 seconds, Figure 42. This
equals a total energy of W = C · U2/2 ≈ 43.2 Joule. Note that the plot in
(42) only goes as far as 1200 V . This is a known measurement error and the
actual peak voltage of the capacitor is 1350 V . It is possible to achieve higher
voltage levels but since the IGBT controlling the safety discharge is limited to
Vce ≤ 1500 V , higher secondary voltage is not recommended with this transistor.
The charging time mentioned above will of course increase if a larger capacitor
was to be charged, but this would be the only difference in respect of the charging
electronics.

The 16 kHz PWM signal used to boost the voltage is of incremental duty
cycle, since a constant duty cycle would cause charging time for the last hun-
dreds of volts to be very long. The incremental duty cycle algorithm utilizes
fixed values dependent on the voltage of the capacitor. These values has been
experimentally deduced and optimized so that the average current consumption
is below 600 mA during charging.

Section 7 Page 38 of 43

T
1->

1) [Tek TDS2000 Series].CH1 200 V 2.5 S

Figure 42: Measured capacitor voltage versus time

Something worth to notice regarding the switching transistor is that it has
to be able to block much larger voltages than the supply voltage. The minimum
voltage this transistor should be able to block is the supply voltage plus the
voltage on the secondary side transfered via the transformer winding qouta, in
this case:

Vmax,trans = Vcc + Vsec ·
np

ns
= 12 + 1400 · 0.033 ≈ 58.7 V (29)

The over voltage protection circuit implemented on the charging PCB works
very well and is set to about 1420 V . However, it should be mentioned that
no suitable thyristor was found, meaning that no safety discharge is performed
directly on the secondary side but this is instead initiated via the same safety
discharge circuit as used by the ATMega8.

7.2 Discharging and current control

The final version of the discharging module is composed of two PCB’s, one
containing the four quadrant converter, 5.1, and one that contains the current
control circuitry together with the AVR. The schematics are viewed in B.3.1
(H-bridge) and in B.4.1 (AVR and current control). The PCB layouts used to
manufacture the boards are shown in B.3.2 (H-bridge) and in B.4.2 (AVR and
current controller).

The quadrant converter presented no major problems during the design
phase. The largest problem encountered was that of driving the transistors gal-
vanically isolated from the control electronics, but this was solved as described
in Section 4.6.1.

Designing the control logic proved to be somewhat more troublesome. The
tolerance band controller (described in Section 4.5) together with the biphasic
behavior of the discharging requires the ability to change the sign of the current
reference. This was solved using an inverting amplifier which amplified the
reference value two times. If the current should change direction, the amplified
and inverted reference value is added to the original reference value. This means
that it is very hard to achieve the exact same absolute value of the current in
both directions.

Page 39 of 43 Design of a Current Controlled Defibrillator

Perhaps the most important component when it comes to applying current
control is the inductance placed in series with the load. This inductance has
to be large enough in order to maintain reasonable fall times for the current
through the load. The inductor core has to be large enough so that it does not
saturate when large currents are flowing through the load. The final version of
the discharging module consists of a ferrite core coil with an inner diameter of
4.8 cm and an inductance of around 3.5 mH. A smaller and lighter inductance
might have been possible to use. However, this might cause the switching of the
H-bridge transistors to rise above their maximum switching frequency causing
them to heat up and eventually break.

Since the energy available in the capacitor is limited to around 43 Joule no
extensive measurement has been made regarding the behavior of the module
during long discharging times. In Figure 43 a discharge is performed through a
22+27 Ω load and the voltage is measured across the 22 Ω resistor. The reference

T

1->

1) [Tek TDS2000 Series].CH1 100 V 500 uS

Figure 43: Current controlled biphasic defibrillation through a 22 Ω load

value for the current is 6 A (from the ATMega8 UI) and the capacitor is charged
to 1.3 kV . In Figure 43, it is evident that current control works properly and
the average current through the 22 Ω resistor is Il ≈ 130/22 = 5.9 A. This
corresponds to an error of approximately 1.67 %. A close up of the ripple is
shown in Figure 44 below. The current ripple is about 44 V/22 Ω = 2 A or
±1 A. The voltage spikes seen in Figure 44 are due to unfortunate noise in the
control logic. The most probable noise sources are the driver circuits on the
H-bridge PCB creating disturbances on the positive supply voltage causing the
transistors to start conducting for a short period of time. Although extensive
time and energy has been invested in the minimization of these disturbances
the plot in (44) illustrates the best result achieved by the time of writing this
report. The system is designed in such a way that it should be possible to set
the maximum current ripple from the ATMega8, but this feature was canceled
due to the fact that changing the current ripple changed the average current
through the load. The problem is most certainly hardware related and should
be possible to work around if more time was available for troubleshooting.

The differences in current between the positive and negative pulse are visible
from Figure 45 which is a close up of Figure 43. Close inspection of (45) reveals
a small difference in absolute values of the currents between the two directions,

Section 7 Page 40 of 43

T1->

1) [Tek TDS2000 Series].CH1 100 V 50 uS

Figure 44: Close up of the current ripple

1->

1) [Tek TDS2000 Series].CH1 100 V 100 uS

Figure 45: Close up of the idle time

≈ 2/22 A ≈ 91 mA which corresponds to 1.5 %. Considering the difficulty to
accurately measure the current error, an error of 1.5 % could be neglected.

It was mentioned in Section 7.1 that the energy of the capacitor is limited.
This becomes obvious when a current controlled defibrillation is performed since
the current control requires a minimum voltage of Rpatient · Ireference [A] across
the capacitor in order to control the current. When the voltage of the capacitor
is below this minimum value no current control is performed and the capacitor
will discharge directly through the load. The output from the control circuitry
when the voltage of the capacitor becomes too low can be seen in Figure 46.
From Figure 46 it is seen that the frequency of the control signal is reduced
as the capacitor voltage drops. At the point when the capacitance voltage is
below the minimum controllable voltage the output signal will have a frequency
of 0 Hz with a 5 V DC offset.

Including the one described above, there are six different modes of discharge
available in the device. It is possible to perform a monophasic, biphasic or
triphasic discharge, all with or without current control. The waveforms for all
types of discharge are seen in Section B.1.

Page 41 of 43 Design of a Current Controlled Defibrillator

1->

3) [Tek TDS2000 Series].CH1 2 V 100 uS

Figure 46: Output from control circuitry with low capacitor voltage

7.3 Meeting the standards
The initial idea presented in this masters thesis is closely related to the LUCAS
device and is mainly focusing on investigating the possibilities of integrating a
defibrillator in LUCAS. However, the thesis presented is not primarily a study
of a defibrillator in LUCAS, but rather a design procedure for engineering a
defibrillator. This has led to a stand alone defibrillator which needs much opti-
mization before it can be integrated in LUCAS. Nevertheless the result of the
thesis is a working prototype which can be further improved and optimized
when it comes to weight and size in order to fit inside the LUCAS device.

Another important purpose of this thesis was to engineer or investigate a
defibrillator with all variables variable. This goal has without a doubt been
met, all factors that effect the defibrillation are variable except for the current
ripple.

A current controlled defibrillator was desired and biphasic discharge was the
preferred mean of defibrillation. Not only is the engineered prototype current
controlled, it is also possible to perform triphasic defibrillation.

All in all, the goals of the thesis have been met. Even though further work
is needed in order for the system to be completely compatible with LUCAS, a
working prototype that can be tested together with LUCAS has been engineered.

7.4 Future improvements
The first priority when designing the defibrillator described in this report was to
determine whether a defibrillator could be built and secondly to create working
prototype. Working with this approach some trade offs have been made in
order to produce the prototype on schedule. Many of the factors mentioned
below are hardware related and should be solved by simply ordering better
components, but since the delivery times of some of these components are very
long it was decided to mention the factors here rather than actually waiting for
the components to arrive.

One of the most obvious drawbacks of the defibrillator designed is that the
energy of the capacitor is rather low. This is solved by changing the capacitor
to one with higher capacitance. Doing this would result in an increase of stored

Section 7 Page 42 of 43

energy proportional to that of the increase in capacitance. In order to further
increase the energy the IGBT’s should be replaced with components capable
of enduring higher collector emitter voltages. The increase in stored energy
would be proportional to the square of the increase in capacitor voltage. Both
these actions should be performed before any real clinical testing of the device
is commenced.

The microcontroller used to control the entire design should be replaced
with a larger one from the same family before the projects develops further.
The 8 kB of flash memory in the current controller (ATMega8L) is 94 % full
and the replacement controller should have at least 16 kB of flash. Added
features may cause the flash of the processor to fill completely thus resulting in
malfunction.

Short-circuit protection circuitry needs to be added before the device is used
clinically without the supervision of electrically competent people. Other safety
factors that needs to be considered are shielding of the high voltage parts since
these parts of the defibrillator should be protected from human touch.

Currently, no control of the PWM signal in order to keep the voltage at the
desired value during the time between charging and discharging is implemented.
Rough sketches of a digital PI controller has been produced, but the lack of
available memory in the ATMega8 made it impossible to implement this.

The coil placed in series with the load is a bit overly dimensioned due to the
lack of available core sizes. An alternative, if reducing the coil cause the core of
the coil to saturate, is to increase the allowed ripple or the switching frequency
of the current controller. However, the latter would require faster transistors
than the ones currently used.

The present prototype is, as mentioned, built on three different PCB’s. This
means that each of these boards have its own voltage controller in order to con-
vert the 12 V DC needed for the OP-amps to 5 V DC needed for the TTL logic.
Furthermore, there are two 4 MHz oscillator circuits consuming approximately
20 mA each. So an obvious improvement would be to manufacture the entire
design on one PCB, thus reducing the needed footprint and power consumption
radically. The three PCB’s that the prototype consists of are the first PCB’s
manufactured, this means that some of the PAD’s of the PCB’s have lifted of
the board and several soldered wires had to replace the originally routed wires.
A new version of the PCB’s would be more stable and less sensitive to shock.

During the design of the three PCB’s several compromises have been made
in order to fit the layout onto the boards. This has led to a layout that is not
completely optimized when it comes to EMC and the disturbances generated
on the PCB’s need to be carefully investigated and minimized. Furthermore, no
tests regarding sensitivity to disturbances have been conducted and this is an
important safety issue that needs to be considered when introducing the device
in a clinical environment.

Page 43 of 43 Design of a Current Controlled Defibrillator

References
[1] Agnvall, Clas G., Analog Elektronik, Kompendium 2000, department of

applied electronics, Lund Institute of Technology

[2] M. Olsson and M. Alaküla, Elmaskinsystem, IEA/LTH Lund, 2002

[3] Bardy, et al., 1996

[4] Cheng, David K., Field and Wave Electromagnetics, Addison Wesley, 1989,
Second Edition

[5] ELFA, catalogue ELFA 51,2003

[6] Per Karlsson, Kraftelektronik, IEA/LTH Lund, Oct. 1998

[7] Per Karlsson, Power Electronics Laboratory Exercises, department of In-
dustrial Electrical Engineering and Automation, Lund Institute of Tech-
nology

[8] Studies presented by Lombardi, Gallagher, & Gennis, 1994

[9] J. W. Machin, J. Brownhill and A Furness, Design for a Constant Peak
Current Defibrillator, IEEE transactions on biomedical engineering, Vol.
37, No 7, July 1990

[10] Mohan N., Underland T., Robbins W., Power Electronics, Converters, Ap-
plications, and Design, John Wiley & Sons Inc, 1995, Second Editon

[11] Zhang Y, Ramabadran RS, Boddicker KA, Bawaney I, Davies LR, Zim-
merman MB, Wuthrich S, Jones JL, Kerber RE., Triphasic waveforms are
superior to biphasic waveforms for transthoracic defibrillation: experimen-
tal studies, J Am Coll Cardiol. 2003 Aug 6;42(3):568-75

Page i of xxxi Design of a Current Controlled Defibrillator

A Technical specifications

A.1 Ports
The table below describes some of the ports available to the user.

Inputs
Type Value Description

When set to GND,
Ext trig GND, 5 V discharge will com-

mence
+Vcc +12 V Positive supply
−Vcc −12 V Negative supply

A.2 Buttons
The table below describes the buttons on the defibrillator.

Buttons
Name Description

+ Menu button ’+’
- Menu button ’-’

Enter Menu button ’enter’
Cancel Menu button ’cancel’
Reset Resets the processor

OV reset Resets the over voltage protec-
tion circuit

Note: pressing the reset button may set some of the outputs undefined thus
causing malfunction

A.3 Current consumption
The following table presents the current consumption of the system during dif-
ferent stages. Note that currents listed are all avarage currents and the peak
consumption could be as high as 5 A momentarily.

Current consumption
Mode Current
Idle 90 mA

Charging max 0.6 A
Charging min 0.3 A

Safety discharge 190 mA

Appendix B Page ii of xxxi

B Hardware
This appendix provides additional information regarding the schematics and
PCB layouts used in the project. It also presents some plots of different types
of discharging.

B.1 Discharging plots
All discharging sequences in this section are performed through a 49 Ω load
consisting of two, in series connected, resistors (22 Ω and 27 Ω). All plots show
the voltage drop over the 22 Ω resistor.

B.1.1 No current control

T

4->

4) [Tek TDS2000 Series].CH1 100 V 500 uS

Figure 47: Monophasic discharge from 500 V

T

5->

5) [Tek TDS2000 Series].CH1 100 V 500 uS

Figure 48: Biphasic discharge from 500 V

Page iii of xxxi Design of a Current Controlled Defibrillator

T

6->

6) [Tek TDS2000 Series].CH1 100 V 500 uS

Figure 49: Triphasic discharge from 500 V

B.1.2 Current control

T

1->

1) [Tek TDS2000 Series].CH1 100 V 250 uS

Figure 50: Monophasic discharge with 10 A

Appendix B Page iv of xxxi

T

2->

2) [Tek TDS2000 Series].CH1 100 V 250 uS

Figure 51: Biphasic discharge with 10 A

T

3->

3) [Tek TDS2000 Series].CH1 100 V 500 uS

Figure 52: Triphasic discharge with 10 A

Page v of xxxi Design of a Current Controlled Defibrillator

B.2 Charging
B.2.1 Schematic

Figure 53: Schematic for the charging circuit

Appendix B Page vi of xxxi

B.2.2 PCB

Figure 54: PCB layout for the charging board

Page vii of xxxi Design of a Current Controlled Defibrillator

B.3 Discharge
B.3.1 Schematic

Figure 55: Schematic for the discharge circuit

Appendix B Page viii of xxxi

B.3.2 PCB

Figure 56: PCB layout for the discharge board

Page ix of xxxi Design of a Current Controlled Defibrillator

B.4 ATMega8 and control
B.4.1 Schematic

Figure 57: Schematic for the control and AVR circuit

Appendix B Page x of xxxi

B.4.2 PCB

Figure 58: PCB layout for the AVR and control board

Page xi of xxxi Design of a Current Controlled Defibrillator

C Software

C.1 Graphical User Interface

System powerupSystem powerup

Figure 59: The menu system

Appendix C Page xii of xxxi

C.2 Program listing

The program listed below is compiled using ICCAVR20 from ImageCraft. This
software environment enables the programmer to develop C programs and down-
loaded the compiled code to the AVR directly from within ICCAVR.

// This is the complete source code file for FMCCD
// (Filip Magnus Current Control Defibrillator)
// It has support for both a small display
// as well terminal program connected to the
// serial port of a PC. The input to the program
// is always buttons on the defibrillator, but
// it is also possible to receive commands from
// the serially connected PC.
// The PC option is switched on via compiler directives.

// The source code is written to fit an ATMega8L running
// at 4.0 MHz. If the crystal is changed, the source code
// needs to be modified as well.

#include <iom8v.h>
#include <macros.h>
#include <Stdlib.h>
#include <eeprom.h>
#include "FMCCD.h"

// This first passage is to describe what should be
// connected to the AVR
//
// What should be connected to the AVR when it comes
// to Ports, PWMs, ADCs etc
//
// --- PORTB ---
#define DDRPortB 0xFE
// PBO (Pin 14) Connected to decrease (-) button (input)
// PB1 (Pin 15) Connected to overvoltage reset
// PB2 (Pin 16) Connected to Safety Discharge
// PB3 (Pin 17) Connected to PWM charge (OC2)
// PB4 (Pin 18) Extra option (a diode shows the current charge status)
// PB5 (Pin 19) Extra option (a diode shows the current charge status)
// PB6 (Pin 9) Used by XTAL
// PB7 (Pin 10) Used by XTAL
//
// --- PORTD ---
#define DDRPortD 0x02
// PD0 (Pin 2) RXD (Input)
// PD1 (Pin 3) TXD
// PD2 (Pin 4) INT0 Connected to buttons and external def. request
// PD3 (Pin 5) INT1 IRQ from overvoltage protection circuit
// PD4 (Pin 6)
// PD5 (Pin 11) Connected to Enter button (Input)
// PD6 (Pin 12) Connected to Cancel button (Input)
// PD7 (Pin 13) Connected to inc (+) button (Input)
//
// --- PORTC ---
#define DDRPortC 0xFE
// PC0 (Pin 23) Connected to measurement of sec voltage (ADC 0)
// PC1 (Pin 24) Connected to IGBT 2 and 3 (Right leg)
// PC2 (Pin 25) Connected to IGBT 1 and 4 (Left leg)
// PC3 (Pin 26) Enable. Connected to transistor to alter reference value polarity
// This signal is also used in the XOR circuity to alter
// the output signal that is used as enable from the current control
// PC4 (Pin 27) SDA
// PC5 (Pin 28) SCL
// PC6 (Pin 1) RESET

// First some defines

// Is display of terminal program used ?
// If UseTerminalProg is used it is presumed that there is
// a terminal program running on the PC and that the serial
// port is attached to the device.

//#define UseTerminalProg
#define UseSerialDisplay

// Input device used
// If a PC is connected to the serial device this define
// should be on
// #define UsePCAsInputControl

// IGBT connections
#define CIGBTLeftLeg 0x04
#define CIGBTRightLeg 0x02
#define CIGBTLeftLegPort PORTC
#define CIGBTRightLegPort PORTC

20version 6.29

Page xiii of xxxi Design of a Current Controlled Defibrillator

// Safety discharge
#define CSafetyDischargePort PORTB
#define CSafetyDischarge 0x04
#define CSafetyDischargeLowLevelADC 0

// Charging PWM define
#define CChargingPWMPort OCR2
#define CChargingPWMOff 0xFF

// ADC defines
#define CSecondaryVoltageADC 0x00

// Diode for charge completion
#define CDiodeCompletionPort PORTB
#define CDiodeCompletionA 0x10
#define CDiodeCompletionB 0x20

// Discharge polarity
#define CDischargeWantedPolarityPort PORTC
#define CDischargeWantedPolarity 0x08

// Overvoltage
#define COvervoltageResetPort PORTB
#define COvervoltageReset 0x02

// External button defines
#define CButtonEnterPort PIND
#define CButtonEnter 0x20
#define CButtonCancelPort PIND
#define CButtonCancel 0x40
#define CButtonIncreasePort PIND
#define CButtonIncrease 0x80
#define CButtonDecreasePort PINB
#define CButtonDecrease 0x01

// Program defines

// These two defines are used for calibrating the ADC
// This has to be done since the optocoupler is not
// linear
// #define CalibrateVoltageLevels
// #define TestVoltageLevels

// TWI defines not defined in include files
#define START 0x08
#define MT_SLA_ACK 0x18
#define MT_DATA_ACK 0x28

// Digital potentiometer DS1803
// Selection bits for DS1803 are the 4 MSB
// which are defined as 0b0101 i.e.0x50
// (See page 4 of the DS1803 data sheet)
// The consequtive 3 bits is the address
// which is defined (by us) in hardware to be 0b111
#define DS1803_AdressRead 0x5F
#define DS1803_AdressWrite 0x5E
#define DS1803_Pot0Command 0xA9
#define DS1803_Pot1Command 0xAA
#define DS1803_Pot0and1Command 0xAF

// Misc defines
#define CMaxNoOfUserBanks 6
#define CEEPromDataValidMarker 0x4519
#define CMaxChargingVoltage 1350
#define CMinChargingVoltage 150
#define CMinimumBlankingTime 1
#define CHysterValue 5
#define CTicsToQuarterMilliSeconds 124

enum Bool {false = 0, true = 1};

// TProcessStep is an enum used in the main state machine
// which keeps track of what is currently happening
enum TProcessStep {psStartup,

psIdle,
psEnterIdleState,
psInitCharge,
psCharge,
psInitMaintenanceCharge,
psMaintenanceCharge,
psStopCharge,
psInitForHumanControlledDischarge,
psWaitingToDischarge,
psPreDischarge,
psDischarge,
psStopDischarge,
psInitSafetyDischarge,
psSafetyDischarge,
psStopSafetyDischarge,
psShutDown};

// TCurrentMenuMode is an enum that is used for the menu
// state machine. It keeps track of what is shown
// currently
enum TCurrentMenuMode {mmIdle = 1,

mmCharge = 2,
mmSafetyDischarge = 3,
mmDischarge = 4,

Appendix C Page xiv of xxxi

mmSetChargingVoltage = 5,
mmSetDischargeType = 6,
mmCurrentControlled = 7,
mmSetPhaseLength = 8,
mmSetSafetyTime = 9,
mmSetBlankingTime = 10,
mmSetDischargeRefVoltage = 11,
mmSaveParamToEEProm = 12,
mmRestoreParamFromEEProm = 13,

// The menu modes below are used
// for sub menu settings

mmSetPhaseLength_Mono1 = 14,
mmSetPhaseLength_Bi1 = 15,
mmSetPhaseLength_Bi2 = 16,
mmSetPhaseLength_Tri1 = 17,
mmSetPhaseLength_Tri2 = 18,
mmSetPhaseLength_Tri3 = 19,
mmSetBlankingTime_Bi = 20,
mmSetBlankingTime_Tri1 = 21,
mmSetBlankingTime_Tri2 = 22
};

// These constants are used for the calibrated ADC
// in order to convert an ADC value to a voltage level.
// There is also a PWM lookup table. The intention
// with this table is that a known voltage will be
// kept with this PWM value
#define LookupSize 23
const unsigned int ADCLookup[LookupSize] = { 7, 16, 57, 110, 172, 243, 314, 354, 394, 435, 472, 518, 560, 609,

652, 700, 745, 796, 842, 895, 940, 895, 1022};
const unsigned int VoltageLookup[LookupSize] = { 60, 100, 200, 300, 400, 500, 600, 650, 700, 750, 800, 850, 900, 950,

1000, 1050, 1100, 1150, 1200, 1250, 1300, 1350, 1400};
const unsigned int PWMLookup[LookupSize] = {254, 254, 253, 250, 244, 242, 240, 239, 238, 238, 237, 237, 236, 235,

235, 234, 233, 232, 229, 222, 218, 215, 215};

// For showing a status (via a led) for the user
enum TDiodeStatus {dsLedOff = 1,

dsLedColor1 = 2,
dsLedColor2 = 3};

enum TParamStoragePos {psCurrentValue = 0,
psOldValue = 1};

// All editable parameters are stored in this vector.
// The reason for this is that is easy to revert to an old
// value if the user decides to press Cancel during an editing
// process
int ParameterStorage[2][mmSetBlankingTime_Tri2 + 1];
// Menu texts. These are stored in flash memory only
// and are not copied to SRAM by the compiler
const char *MenuFirstLineText[] = {"",

"Welcome - FMCCD",
"Charge ?",
"Safe discharge ?",
"Discharge ?",
"Charge voltage",
"Discharge type",
"Current control",
"Phase length",
"Safety time",
"Idle time",
"Discharge curr.",
"Save settings",
"Recall settings",
"Monophasic len.",
"Biph. length 1",
"Biph. length 2",
"Triph. length 1",
"Triph. length 2",
"Triph. length 3",
"Biph. blank",
"Triph. blank 1",
"Triph. blank 2",
""};

// TDischargeType is an enum describing what kind of
// discharge that will be performed. Single is equal to
// a monophasic, Double is a bipashic, Triple is tripahisc
// discharge
enum TDischargeType {dtSingle = 1,

dtDouble = 2,
dtTriple = 3};

// TIGBTSequence describes which IGBT leg (that is which
// pair of IBGT transistors) that is switched on
enum TIGBTSequence {ig_LeftLegOn,

ig_RightLegOn,
ig_LegsOff};

// TDischargeWantedPolarity describes which polarity the
// reference signal the controller should work with.
enum TDischargeWantedPolarity {wpPositive,

wpNegative};
// TTWIAction describes what action that should take place
// on the TwoWireInterface buss.
enum TTWIAction {TWI_StartCommand,

TWI_SlaveAddress,
TWI_SlaveData,
TWI_StopCommand};

// TDischargeParameter desribes which digital potentiometer
// that should be used. dpWantedValue controls the
// reference voltage for the controller and dpHysteresis

Page xv of xxxi Design of a Current Controlled Defibrillator

// controls the hysteresis voltage for the controller.
enum TDischargeParameter {dpWantedValue = 1,

dpHysteresis = 2};
#ifdef UseSerialDisplay

// TDisplayControlCodes is an enum which describes control
// codes for the display.
enum TDisplayControlCodes {dcClearScreen = 1,

dcMoveCursorHome = 2,
dcInvisibleCursor = 12,
dcBlinkingBlockCursor = 13,
dcMoveCursorOneLeft = 16,
dcMoveCursorOneRight = 20,
dcMoveToFirstLine = 128,
dcMoveToSecondLine = 192};

enum TDisplayCustomChars {ccCursorUp = 3,
ccCursorDown = 4};

#endif

// Some variable definitions
unsigned char MaintenacePWM = 248;
#ifdef CalibrateVoltageLevels

unsigned char CurrCalibPWMValue;
#endif
#ifdef TestVoltageLevels

unsigned char CurrCalibPWMValue;
#endif

// Buffer used for printing
char PrintStrBuff[20];

unsigned char CurrentProcessStep = psStartup;
unsigned char CurrentMenuMode = mmIdle;
unsigned char EditingCurrentParameter = false;
unsigned char NbrOfOvervoltageIRQ = 0;
unsigned char IgnoreOverVoltageIRQ = true;
unsigned char OkeyToShowMenu = true;
int SafetyDischargeCounter = 0;

//signed long Ik; // This is used for the integral part of the PI-reg

// Initialize default values to paramterers
void InitializeParameterStorage()
{

ParameterStorage[psCurrentValue][mmSetChargingVoltage] = CMinChargingVoltage;
ParameterStorage[psCurrentValue][mmSetDischargeType] = dtDouble;
ParameterStorage[psCurrentValue][mmCurrentControlled] = true;
ParameterStorage[psCurrentValue][mmSetSafetyTime] = 15;
ParameterStorage[psCurrentValue][mmSetBlankingTime] = 200;
ParameterStorage[psCurrentValue][mmSetDischargeRefVoltage] = 25;
ParameterStorage[psCurrentValue][mmSaveParamToEEProm] = 1;
ParameterStorage[psCurrentValue][mmRestoreParamFromEEProm] = 1;
ParameterStorage[psCurrentValue][mmSetPhaseLength_Mono1] = 20;
ParameterStorage[psCurrentValue][mmSetPhaseLength_Bi1] = 20;
ParameterStorage[psCurrentValue][mmSetPhaseLength_Bi2] = 20;
ParameterStorage[psCurrentValue][mmSetPhaseLength_Tri1] = 20;
ParameterStorage[psCurrentValue][mmSetPhaseLength_Tri2] = 20;
ParameterStorage[psCurrentValue][mmSetPhaseLength_Tri3] = 20;
ParameterStorage[psCurrentValue][mmSetBlankingTime_Bi] = 2;
ParameterStorage[psCurrentValue][mmSetBlankingTime_Tri1] = 2;
ParameterStorage[psCurrentValue][mmSetBlankingTime_Tri2] = 2;

}

// Initialise the IO ports
void port_init(void)
{

DDRB = DDRPortB;
PORTB = 0x00;

DDRC = DDRPortC;
PORTC = 0x00;

DDRD = DDRPortD;
PORTD = 0x00;

}

//TWI (I2C) initialisation
void twi_init(void)
{

TWCR= 0X00; //disable twi
TWBR= 0x03; //set bit rate
TWSR= 0x03; //set prescale
TWAR= 0x00; //set slave address
TWCR= 0x45; //enable twi

}

// UART0 initialisation
// Baud rate: 9600,8 bit, no parity
void uart0_init(void)
{

UCSRB = 0x00; //disable while setting baud rate
UCSRA = 0x00;
UCSRC = 0x86;
UBRRL = 0x19; //set baud rate lo

Appendix C Page xvi of xxxi

UBRRH = 0x00; //set baud rate hi
UCSRB = 0x98;

}

// ADC initialisation
// Conversion time: 26uS
void adc_init(void)
{

ADCSR = 0x00; //disable adc
ADMUX = 0x20; //select adc input 0, left adjust
ACSR = 0x80;
ADCSR = 0xC3;

}

// This timer is used for creating the charging PWM signal
// Timer 2 initialisation - prescale:1
// WGM: CTC
// desired value: 15KHz
// actual value: 15,038KHz (0,3%)
void timer2_init(void)
{

TCCR2 = 0x00; //stop
ASSR = 0x00; //set async mode
TCNT2 = 0x7C; //setup
CChargingPWMPort = CChargingPWMOff;
TCCR2 = 0x79; //start

}

// Call this routine to initialise all peripherals
void init_devices(void)
{

// Stop errant interrupts until set up
CLI(); // Disable all interrupts
port_init();
timer2_init();
uart0_init();
adc_init();
twi_init();

MCUCR = 0x0A;
GICR = 0xC0;
TIMSK = 0x00;
SEI(); //re-enable interrupts
// All peripherals are now initialised

}

// Delays a number of tics
void DelayTime(unsigned int Delay)
{

while(--Delay > 0) {};
}

// Delay in milliseconds
void DelaymS(unsigned int Delayms)
{

// This gives us pretty close to millisecond resolution
Delayms = Delayms * 4;
while(Delayms > 0) {

DelayTime(CTicsToQuarterMilliSeconds);
--Delayms;

}
}

// Delays in seconds
void DelaySeconds(unsigned char DelaySec)
{

while (DelaySec > 0) {
DelaymS(1000);
--DelaySec;

}
}

#ifdef UseSerialDisplay
// Sends a control code to the display
void SendControlCharToDisplay(unsigned char ControlCode)
{

putchar(254);
putchar(ControlCode);
switch (ControlCode) {

case dcClearScreen:
case dcMoveCursorHome:

DelayTime(5000);
break;

case dcMoveToFirstLine:
break;

case dcMoveToSecondLine:
break;

}
}

// Initializes the display
void InitDisplay()
{

unsigned char m;
// We need to wait almost 1 sec in order for the display to
// power up.

Page xvii of xxxi Design of a Current Controlled Defibrillator

DelaymS(900);
// We want to make character 0 (position 80 in the display
// RAM) enmpty. This enables us to use the puts function
// which terminates with a carriage return that shows up
// as character 0
putchar(254); // Tell display to
putchar(80); // point to RAM (ASCII code 2)
for (m = 0; m < 8; m++)

putchar(0);
// Then design an up and down arrow for showing that
// it is possible to edit the current value
// First the up arror
putchar(254); // Tell display to
putchar(88); // point to RAM (ASCII code 3)
putchar(4); // Data
putchar(14); // Data
putchar(21); // Data
for (m = 0; m < 5; m++)

putchar(4); // Data
putchar(254); // Tell display to
putchar(96); // point to RAM (ASCII code 4)
for (m = 0; m < 5; m++)

putchar(4); // Data
putchar(21); // Data
putchar(14); // Data
putchar(4); // Data
putchar(254); // Tell display to
putchar(128); // move cursor back to screen

}

// We override the normal library routine sine
// it prints a CR in the end which looks bad on
// our display
int puts(char *s)
{

while (*s != ’\0’) {
putchar (*s);
s++;

}
}

#endif

// This routine writes data to the serial port
void WriteDataToScreen(char s[])
{

puts(s);
}

// This method writes data that resides only in flash
void WriteConstDataToScreen(const char s[])
{

char pTempChar[] = {"1234567890123456"};
// We need to copy the const declared string from flash to a
// RAM variable in order to be able to print it out
strcpy(pTempChar, MenuFirstLineText[CurrentMenuMode]);
WriteDataToScreen(pTempChar);

}

// This method shows an error message and then enters an endless
// loop preventing the system from running again until system reset
void ErrorHalt(char Msg1[], char Msg2[])
{

SendControlCharToDisplay(dcClearScreen);
WriteDataToScreen(Msg1);
SendControlCharToDisplay(dcMoveToSecondLine);
WriteDataToScreen(Msg2);
while (true);

}

// This method shows a user message and then waits for
// two seconds before continuing
void WriteDelayedUserMessage(char Msg1[], char Msg2[])
{

SendControlCharToDisplay(dcClearScreen);
WriteDataToScreen(Msg1);
SendControlCharToDisplay(dcMoveToSecondLine);
WriteDataToScreen(Msg2);
DelaySeconds(2);

}

// This routine writes data to the serial port
void WriteIntToScreen(char PreStr[], int Value, char PostStr[])
{

// First the leading string
char m;
if (PreStr != NULL) {

for (m = 0; PreStr[m] != ’\0’; m++)
putchar (PreStr[m]);

}

// Then check if this is a negative number
// (itoa will print -10 as 65526 if an int)
if (Value < 0) {

Value = abs(Value);

Appendix C Page xviii of xxxi

putchar(’-’);
}

// Write the value to serial port
itoa(PrintStrBuff, Value, 10);
puts(PrintStrBuff);

if (PostStr != NULL) {
for (m = 0; PostStr[m] != ’\0’; m++)

putchar (PostStr[m]);
}

}

// This method is used for notifying the user of the current
// status. Two ports are used to either light a green or a
// red diode
void SetDiodeStatus(unsigned char Status)
{

switch (Status) {
case dsLedOff:

CDiodeCompletionPort = CDiodeCompletionPort & ~CDiodeCompletionA;
CDiodeCompletionPort = CDiodeCompletionPort & ~CDiodeCompletionB;
break;

case dsLedColor1:
CDiodeCompletionPort = CDiodeCompletionPort | CDiodeCompletionA;
CDiodeCompletionPort = CDiodeCompletionPort & ~CDiodeCompletionB;
break;

case dsLedColor2:
CDiodeCompletionPort = CDiodeCompletionPort & ~CDiodeCompletionA;
CDiodeCompletionPort = CDiodeCompletionPort | CDiodeCompletionB;
break;

}
}

// This method saves all parameters to EEProm so that
// the user later can recall them if so desired
void SaveParametersToEEProm(unsigned char BankNo)
{

// Each bank is 40 * 2 bytes big (i.e. 40 integers)
// On the first address we store if the data is valid
// If a specific value found, data is valid

// Since BankNo is a value from 1 to 6
// we reserve the space below 32 for
// future program usage
// This leads us to the following (EEPROM is 512 bytes)
// if the maximal bankno is 6 :
// (6 - 1) * 40 * 2 + 32 = 432
// from 432 to 512 there is exactly 80 bytes to save for the last bank
int Address = (BankNo - 1) * 40 * 2 + 32;
unsigned char M;
int CheckValue = CEEPromDataValidMarker;
EEPROM_WRITE(Address, CheckValue);
Address += sizeof(int);
for (M = mmSetChargingVoltage; M <= mmSetBlankingTime_Tri2; M++) {

EEPROM_WRITE(Address, ParameterStorage[psCurrentValue][M]);
Address += sizeof(int);

}
}

// This method recalls all parameters from EEProm.
// This is also done at power up if the contents of the
// EEProm is valid
void RestoreParametersFromEEProm(unsigned char BankNo)
{

// Each bank is 40 * 2 bytes big (i.e. 40 integers)
// On the first address we store if the data is valid
// If a specific value found, data is valid

// Since BankNo is a value from 1 to 6
// we reserve the space below 32 for
// future program usage
// This leads us to the following (EEPROM is 512 bytes)
// if the maximal bankno is 6 :
// (6 - 1) * 40 * 2 + 32 = 432
// from 432 to 512 there is exactly 80 bytes to save for the last bank
int Address = (BankNo - 1) * 40 * 2 + 32;
unsigned char M;
int CheckValue;
EEPROM_READ(Address, CheckValue);
Address += sizeof(int);
if (CheckValue == CEEPromDataValidMarker) {

for (M = mmSetChargingVoltage; M <= mmSetBlankingTime_Tri2; M++) {
EEPROM_READ(Address, ParameterStorage[psCurrentValue][M]);
Address += sizeof(int);

}
} else

ParameterStorage[psCurrentValue][mmSetChargingVoltage] = CMinChargingVoltage - 50;
}

// This method converts the inparameter to a time
// ms (the value is supposed to be shifted left by 2)
// which gives it a 0.25 resolution
void ConvertTimeToMilliSecondsAndPrint(int Time)
{

// Time is here a value that has two decimals,
// i.e. it is of fixed point type.

Page xix of xxxi Design of a Current Controlled Defibrillator

unsigned char Temp = 0;
WriteIntToScreen(NULL, Time >> 2, ".");
if ((Time & 0x01) == 0x01)

Temp = 25;
if ((Time & 0x02) == 0x02)

Temp += 50;
WriteIntToScreen(NULL, Temp, " ms");

}

// Shows the main menu
void ShowMenu()
{

if (OkeyToShowMenu) {
SendControlCharToDisplay(dcClearScreen);
WriteConstDataToScreen(MenuFirstLineText[CurrentMenuMode]);
SendControlCharToDisplay(dcMoveToSecondLine);

switch (CurrentMenuMode) {
case mmIdle:

WriteDataToScreen("Press ");
putchar(ccCursorUp);
WriteDataToScreen(" or ");
putchar(ccCursorDown);
break;

case mmDischarge:
case mmCharge:
case mmSafetyDischarge:

WriteDataToScreen("Press Ent to run");
break;

case mmSetChargingVoltage:
WriteIntToScreen(NULL, ParameterStorage[psCurrentValue][CurrentMenuMode], " volt");
break;

case mmSetDischargeType:
switch (ParameterStorage[psCurrentValue][CurrentMenuMode]) {

case dtSingle:
WriteDataToScreen("Monophasic");
break;

case dtDouble:
WriteDataToScreen("Biphasic");
break;

case dtTriple:
WriteDataToScreen("Triphasic");
break;

}
break;

case mmCurrentControlled:
if (ParameterStorage[psCurrentValue][CurrentMenuMode])

WriteDataToScreen("Yes");
else

WriteDataToScreen("No");
break;

case mmSetPhaseLength:
case mmSetBlankingTime:

// Do nothing. This menu contains a submenu
break;

case mmSetSafetyTime:
WriteIntToScreen(NULL, ParameterStorage[psCurrentValue][CurrentMenuMode], " sec");
break;

case mmSetPhaseLength_Mono1:
case mmSetPhaseLength_Bi1:
case mmSetPhaseLength_Bi2:
case mmSetPhaseLength_Tri1:
case mmSetPhaseLength_Tri2:
case mmSetPhaseLength_Tri3:
case mmSetBlankingTime_Bi:
case mmSetBlankingTime_Tri1:
case mmSetBlankingTime_Tri2:

ConvertTimeToMilliSecondsAndPrint(ParameterStorage[psCurrentValue][CurrentMenuMode]);
break;

case mmSetDischargeRefVoltage:
WriteIntToScreen(NULL, ParameterStorage[psCurrentValue][CurrentMenuMode] / 10, ".");
WriteIntToScreen(NULL, ParameterStorage[psCurrentValue][CurrentMenuMode] % 10, " amp.");
break;

case mmSaveParamToEEProm:
case mmRestoreParamFromEEProm:

WriteIntToScreen("Pos ", ParameterStorage[psCurrentValue][CurrentMenuMode], NULL);
break;

default:
break;

}
if (EditingCurrentParameter) {

putchar(32);
putchar(ccCursorUp);
putchar(ccCursorDown);
SendControlCharToDisplay(dcBlinkingBlockCursor);

} else
SendControlCharToDisplay(dcInvisibleCursor);

}
}

// Edit a settings depending on the current menu

Appendix C Page xx of xxxi

// The inparameter describes which way (up or down)
// that we a re going
void AlterSetting(unsigned char ButtonPressed)
{

// First find out which direction we are going. Up or down ?
signed char Dir = (ButtonPressed == wpPositive) ? 1 : -1;
unsigned char TempChar;
switch (CurrentMenuMode) {

// These are parameters that are adjustable
case mmSetChargingVoltage:

ParameterStorage[psCurrentValue][CurrentMenuMode] += Dir * 50;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] < CMinChargingVoltage)

ParameterStorage[psCurrentValue][CurrentMenuMode] = CMinChargingVoltage;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] > CMaxChargingVoltage)

ParameterStorage[psCurrentValue][CurrentMenuMode] = CMaxChargingVoltage;
break;

case mmSetDischargeType:
ParameterStorage[psCurrentValue][CurrentMenuMode] += Dir;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] < dtSingle)

ParameterStorage[psCurrentValue][CurrentMenuMode] = dtTriple;
else if (ParameterStorage[psCurrentValue][CurrentMenuMode] > dtTriple)

ParameterStorage[psCurrentValue][CurrentMenuMode] = dtSingle;
break;

case mmCurrentControlled:
if (ParameterStorage[psCurrentValue][CurrentMenuMode])

ParameterStorage[psCurrentValue][CurrentMenuMode] = false;
else

ParameterStorage[psCurrentValue][CurrentMenuMode] = true;
// Make sure that the digital potentiometer is set correctly
SetCurrentDischargingParameters();
break;

case mmSetPhaseLength_Mono1:
case mmSetPhaseLength_Bi1:
case mmSetPhaseLength_Bi2:
case mmSetPhaseLength_Tri1:
case mmSetPhaseLength_Tri2:
case mmSetPhaseLength_Tri3:

ParameterStorage[psCurrentValue][CurrentMenuMode] += Dir;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] < 0)

ParameterStorage[psCurrentValue][CurrentMenuMode] = 0;
break;

case mmSetBlankingTime_Bi:
case mmSetBlankingTime_Tri1:
case mmSetBlankingTime_Tri2:

ParameterStorage[psCurrentValue][CurrentMenuMode] += Dir;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] < CMinimumBlankingTime)

ParameterStorage[psCurrentValue][CurrentMenuMode] = CMinimumBlankingTime;
break;

case mmSaveParamToEEProm:
case mmRestoreParamFromEEProm:

ParameterStorage[psCurrentValue][CurrentMenuMode] += Dir;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] > CMaxNoOfUserBanks)

ParameterStorage[psCurrentValue][CurrentMenuMode] = 1;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] < 1)

ParameterStorage[psCurrentValue][CurrentMenuMode] = CMaxNoOfUserBanks;
break;

case mmSetSafetyTime:
ParameterStorage[psCurrentValue][CurrentMenuMode] += Dir;

if (ParameterStorage[psCurrentValue][CurrentMenuMode] < 1)
ParameterStorage[psCurrentValue][CurrentMenuMode] = 1;

break;

case mmSetDischargeRefVoltage:
// The user is about to change the value of the digital
// potentiometers. We will address the DS1803 chip right
// away to reflect the change !
// If we fail, we will set the current value to zero in order
// to show that something went wrong...
ParameterStorage[psCurrentValue][CurrentMenuMode] += Dir * 5;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] > 250)

ParameterStorage[psCurrentValue][CurrentMenuMode] = 250;
if (ParameterStorage[psCurrentValue][CurrentMenuMode] < 10)

ParameterStorage[psCurrentValue][CurrentMenuMode] = 10;
if (!SetDischargingParameter(dpWantedValue, ParameterStorage[psCurrentValue][CurrentMenuMode]))

ParameterStorage[psCurrentValue][CurrentMenuMode] = 0;
break;

default:
break;

}
}

// This method sets both the digital potentiometers to
// the value determined by the menu system.
boolean SetCurrentDischargingParameters()
{

boolean Result = false;
unsigned char TempDischargeSetting;

// Do the user want a current controlled def. ? If not

Page xxi of xxxi Design of a Current Controlled Defibrillator

// we set the wanted value (the ref voltage) to 0xFF
if (ParameterStorage[psCurrentValue][mmCurrentControlled])

TempDischargeSetting = ParameterStorage[psCurrentValue][mmSetDischargeRefVoltage];
else

TempDischargeSetting = 0xFF;

// Make sure that the digital potentiometers have the correct value
Result = SetDischargingParameter(dpHysteresis, CHysterValue);
if (Result)

Result = SetDischargingParameter(dpWantedValue, TempDischargeSetting);
return Result;

}

// This method sets the wipers (used to set
// a predefined voltage level to the discharge
// logic) to a value from 0 to 255.
// Param is the parameter (i.e. the wiper)
// that is to be changed
// Value is the wanted output setting, a value
// from 0 to 255.
boolean SetDischargingParameter(unsigned char Param,

unsigned char Value)
{

boolean Result = false;
switch (Param) {

case dpWantedValue:
Result = WriteToDS1803(DS1803_Pot0Command, Value);
break;

case dpHysteresis:
Result = WriteToDS1803(DS1803_Pot1Command, Value);
break;

}
return Result;

}

// This method sets an IO port to control if the wanted
// value (reference voltage to the summator) should be
// negative or positive. The IO signal is fed to a
// PNP transistor.
void SetDischargeWantedPolarity(unsigned char Pol)
{

if (Pol == wpPositive)
CDischargeWantedPolarityPort = CDischargeWantedPolarityPort | CDischargeWantedPolarity;

else if (Pol == wpNegative)
CDischargeWantedPolarityPort = CDischargeWantedPolarityPort & ~CDischargeWantedPolarity;

}

// Sends a reset signal to the overvoltage circuit
void ResetOvervoltageCircuit()
{

COvervoltageResetPort = COvervoltageResetPort | COvervoltageReset;
DelayTime(500);
COvervoltageResetPort = COvervoltageResetPort & ~COvervoltageReset;

}

// This method does all the setting of IO signals
// in order to do a proper discharge
void DoDischarge()
{

CLI();
switch (ParameterStorage[psCurrentValue][mmSetDischargeType]) {

case dtSingle:
// Set the IO signal for the tolerance band regulator
SetDischargeWantedPolarity(wpNegative);
// Switch on one leg of IGBT transistors
EnableIGBTLeg(ig_RightLegOn);
// Let the pulse last for a the desired time
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetPhaseLength_Mono1]);
// Switch off the IGBT leg
EnableIGBTLeg(ig_LegsOff);
break;

case dtDouble:
SetDischargeWantedPolarity(wpNegative);
EnableIGBTLeg(ig_RightLegOn);
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetPhaseLength_Bi1]);
EnableIGBTLeg(ig_LegsOff);
// Change the polarity for the tolerance band regulator
SetDischargeWantedPolarity(wpPositive);
// Wait for the specified blanking time
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetBlankingTime_Bi]);
EnableIGBTLeg(ig_LeftLegOn);
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetPhaseLength_Bi2]);
EnableIGBTLeg(ig_LegsOff);
break;

case dtTriple:
SetDischargeWantedPolarity(wpNegative);
EnableIGBTLeg(ig_RightLegOn);
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetPhaseLength_Tri1]);
EnableIGBTLeg(ig_LegsOff);
SetDischargeWantedPolarity(wpPositive);
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetBlankingTime_Tri1]);
EnableIGBTLeg(ig_LeftLegOn);
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetPhaseLength_Tri2]);
EnableIGBTLeg(ig_LegsOff);

Appendix C Page xxii of xxxi

// Change the polarity for the tolerance band regulator back again
SetDischargeWantedPolarity(wpNegative);
// Wait for the specified blanking time again
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetBlankingTime_Tri2]);
EnableIGBTLeg(ig_RightLegOn);
DelayTime(CTicsToQuarterMilliSeconds * ParameterStorage[psCurrentValue][mmSetPhaseLength_Tri3]);
EnableIGBTLeg(ig_LegsOff);
break;

default:
break;

}
SEI();

}

// This method does the actual setting
// of the IO signal to switch on and off
// the IGBT transistors

// The physical layout of the IGBTs are as
// follows
//
// 1 2
// X
// 3 4
//
// LeftLeg diagonal is 1 and 4
// RightLeg diagonal is 2 and 3
//
void EnableIGBTLeg(unsigned char IGBTLeg)
{

switch (IGBTLeg) {
case ig_LeftLegOn:

CIGBTRightLegPort = CIGBTRightLegPort & ~CIGBTRightLeg;
CIGBTLeftLegPort = CIGBTLeftLegPort | CIGBTLeftLeg;
break;

case ig_RightLegOn:
CIGBTLeftLegPort = CIGBTLeftLegPort & ~CIGBTLeftLeg;
CIGBTRightLegPort = CIGBTRightLegPort | CIGBTRightLeg;
break;

case ig_LegsOff:
CIGBTRightLegPort = CIGBTRightLegPort & ~CIGBTRightLeg;
CIGBTLeftLegPort = CIGBTLeftLegPort & ~CIGBTLeftLeg;
break;

default:
break;

}
}

// Get an ADC reading from the selected ADC
unsigned int GetADCValue(unsigned char ADCNumber)
{

int Value;
ADMUX = ADCNumber;
ADCSRA = ADCSRA | 0x40; // Start ADC
while ((ADCSRA & 0x40) == 0x40); // wait for ADC to finnish
Value = ADCL;
Value += ((ADCH << 8));
return Value;

}

// This method determines if the cap contains any energy, or rather
// can we see any voltage residing in the cap...
boolean IsCapacitorCharged()
{

return (GetADCValue(CSecondaryVoltageADC) > CSafetyDischargeLowLevelADC);
}

// This method performs an ADC measurement
// and returns the calculated voltage
unsigned int MeasureVoltage()
{

return CalcVoltage(GetADCValue(CSecondaryVoltageADC));
}

// Method that calclates the current voltage
// as a function of the ADC value
unsigned int CalcVoltage(unsigned int ADCValue)
{

// This method contains two versions of code.
// First one that does a coarse but fast
// linear approximation.
// Then one version which has certain fixpoints
// that the code linearises between

// Version 1
// This is the short version that is not very exact
//return (ADCValue * 2) + 350;

// Version 2
// This is the long version with a lookuptable
// Unfortunately it is also a bit slower

Page xxiii of xxxi Design of a Current Controlled Defibrillator

int Cnt;

Cnt = 0;
// First iterate through the ADC table to find out where we are
while ((Cnt <= LookupSize) && (ADCValue >= ADCLookup[Cnt]))

++Cnt;
--Cnt;
// If we are ’above’ the table, calc with the last known value
if (Cnt == LookupSize)

return ((ADCValue - ADCLookup[LookupSize - 2]) * 2 + VoltageLookup[LookupSize - 2]);
// If we are below, just return zero voltage
if (Cnt == -1)

return 0;
// Otherwise return the calulated value in the table
return ((ADCValue - ADCLookup[Cnt]) * 2 + VoltageLookup[Cnt]);

}

// This method returns a PWM value for the inparameter (in volts)
// so that the voltage over the CAP can be made constant
unsigned char GetPWMForCurrentVoltage(unsigned int CurrentVoltage)
{

// Since we do not measure the current through the transformers
// primary side we have a lookup table that gives us a reasonable
// duty cycle depending on the current voltage

int Cnt;
Cnt = 0;
// First iterate through the Voltage table to find out where we are
while ((Cnt <= LookupSize) && (CurrentVoltage >= VoltageLookup[Cnt]))

++Cnt;
--Cnt;
// If we are ’above’ the table, just return the last known value
if (Cnt == LookupSize)

return PWMLookup[LookupSize - 2];
// If we are below, just return the lowest value
if (Cnt == -1)

return PWMLookup[0];
// Otherwise just return the PWM value for the current span
return PWMLookup[Cnt];

}

// This method writes a wiper setting to the Dallas / Maxim
// potentiometer IC. The communication is handled over the
// I2C (TwoWireInterface) protocol.
boolean WriteToDS1803(unsigned char PotAddress, unsigned char Value)
{

// First send a start command
boolean Result = TWICommunication(TWI_StartCommand, 0);
// then send the slave identifier (hardcoded in the DS1803)
if (Result)

Result = TWICommunication(TWI_SlaveAddress, DS1803_AdressWrite);
// then send the address of the potentiometer to be used (0, 1 or both)
if (Result)

Result = TWICommunication(TWI_SlaveData, PotAddress);
// then send the actual potentiometer setting
if (Result)

Result = TWICommunication(TWI_SlaveData, Value);
// and finally send the stop command
if (Result)

Result = TWICommunication(TWI_StopCommand, 0);
return Result;

}

// This method sends either a command or data over the I2C (TWI) buss.
boolean TWICommunication(unsigned char Command, unsigned char Data)
{

boolean Result = true;
switch (Command) {

case TWI_StartCommand:
TWCR = 0xA4;
Result = WaitForTWIFlag();
if (Result)
Result = ((TWSR & 0xF8) == START);

break;

case TWI_SlaveAddress:
case TWI_SlaveData:

TWDR = Data;
TWCR = 0x84;
Result = WaitForTWIFlag();
if (Result) {

if (Command == TWI_SlaveAddress)
Result = ((TWSR & 0xF8) == MT_SLA_ACK);

else
Result = ((TWSR & 0xF8) == MT_DATA_ACK);

}
break;

case TWI_StopCommand:
TWCR = 0x94;
break;

Appendix C Page xxiv of xxxi

default:
return false;

}
return Result;

}

boolean WaitForTWIFlag()
{

unsigned int LoopCounter = 0;
// We will now wait for the TWI interrupt flag to be set
// This is done by hardware when the current TWI operation
// has finished. Note that we will not reset the flag since this
// implies a new TWI operation.
// We have a afety counter just in case the device does not
// respond
while (((TWCR & 0x80) == 0x00) && (LoopCounter < 5000))

++LoopCounter;
return ((TWCR & 0x80) == 0x80);

}

// This method is called when we receive an
// interrupt for incoming characters
#pragma interrupt_handler uart0_rx_isr:12
void uart0_rx_isr(void)
{

#ifdef UsePCAsInputControl
switch (UDR) {

case ’q’:
CurrentProcessStep = psEnterIdleState;
break;

case ’w’:
CurrentProcessStep = psInitCharge;
break;

case ’e’:
CurrentProcessStep = psInitSafetyDischarge;
break;

case ’r’:
CurrentProcessStep = psInitForHumanControlledDischarge;
break;

// Below are things for debugging
case ’a’:

SetDischargingParameter(dpWantedValue, 2);
break;

case ’s’:
SetDischargingParameter(dpWantedValue, 22);
break;

case ’d’:
SetDischargingParameter(dpWantedValue, 5);
break;

case ’z’:
EnableIGBTLeg(ig_LeftLegOn);
break;

case ’x’:
EnableIGBTLeg(ig_RightLegOn);
break;

case ’c’:
EnableIGBTLeg(ig_LegsOff);
break;

case ’v’:
SetDischargeWantedPolarity(wpPositive);
break;

case ’b’:
SetDischargeWantedPolarity(wpNegative);
break;

default:
break;

}
#endif

}

#pragma interrupt_handler twi_isr:18
void twi_isr(void)
{

// We get an interrupt every time a TWI event is completed
// However, we don’t use the interrupt currently due to the
// fact that we are not doing multiple things while using
// the TWI line. This implies that we are waiting for a flag
// to be set by polling anyway and an interrupt driven scenario
// would not give us any benefits.

}

Page xxv of xxxi Design of a Current Controlled Defibrillator

#pragma interrupt_handler int0_isr:2
void int0_isr(void)
{

// Okay, so we have seen an interrupt
// This could be due to a number of different reasons

// 1. A key has been pressed
// All keys are wired so that when a key is pressed
// an interrupt is sent. We then read the ports to
// find out which key it was.
//
// 2. An external discharge signal was sent to us
// This means that we should defibrillate. How do we know?
// Well, we got an interrupt and none of the buttons were
// pressed...

// First check the status of buttons
//
// Execute, Cancel, Increase and Decrease buttons

if ((CButtonEnterPort & CButtonEnter) == 0x00) {

switch (CurrentProcessStep) {
case psCharge:

break;
case psMaintenanceCharge:

// Discharge is the only thing we can do
CurrentProcessStep = psInitForHumanControlledDischarge;
break;

default:
// Are we in a menu that requires immediate
// action instead of changing a parameter ?
switch (CurrentMenuMode) {

case mmIdle:
break;

case mmCharge:
CurrentProcessStep = psInitCharge;
break;

case mmSafetyDischarge:
CurrentProcessStep = psInitSafetyDischarge;
break;

case mmDischarge:
CurrentProcessStep = psInitForHumanControlledDischarge;

break;

case mmSaveParamToEEProm:
case mmRestoreParamFromEEProm:

if (EditingCurrentParameter) {
if (CurrentMenuMode == mmSaveParamToEEProm)

SaveParametersToEEProm(ParameterStorage[psCurrentValue][CurrentMenuMode]);
else {

InitializeParameterStorage();
RestoreParametersFromEEProm(ParameterStorage[psCurrentValue][CurrentMenuMode]);

}
EditingCurrentParameter = false;

} else {
EditingCurrentParameter = true;
ParameterStorage[psOldValue][CurrentMenuMode] = ParameterStorage[psCurrentValue][CurrentMenuMode];

}
break;

case mmSetPhaseLength:
// The user want to alter the length of the current
// discharge type. Depending on which one that is selected
// that sub menu will be displayed.
switch (ParameterStorage[psCurrentValue][mmSetDischargeType]) {

case dtSingle:
CurrentMenuMode = mmSetPhaseLength_Mono1;
break;

case dtDouble:
CurrentMenuMode = mmSetPhaseLength_Bi1;
break;

case dtTriple:
CurrentMenuMode = mmSetPhaseLength_Tri1;
break;

}
break;

case mmSetBlankingTime:
// The user want to alter the blanking time for the current
// discharge type. Depending on which one that is selected
// that sub menu will be displayed.
switch (ParameterStorage[psCurrentValue][mmSetDischargeType]) {

case dtSingle:
// We can not set a banking time for a monophasic (single) pulse
break;

case dtDouble:
CurrentMenuMode = mmSetBlankingTime_Bi;
break;

case dtTriple:
CurrentMenuMode = mmSetBlankingTime_Tri1;
break;

}
break;

default:
// We are in a menu that has an editable

Appendix C Page xxvi of xxxi

// parameter
EditingCurrentParameter = !EditingCurrentParameter;
ParameterStorage[psOldValue][CurrentMenuMode] = ParameterStorage[psCurrentValue][CurrentMenuMode];
break;

}
break;

}

} else if ((CButtonCancelPort & CButtonCancel) == 0x00) {
// The user has pressed the cancel button. This either means
// that we want to abandon the current editing process
// or that we want to go back from the current submenu
// to the main menu or cancel a charging process

// First check if we are in the process of charging
// or maintenace charging the capacitor. If this is
// the case we enter idle state, but we leave the
// capacitor charged. This might be subject to change
// later on...
switch (CurrentProcessStep) {

case psCharge:
#ifdef CalibrateVoltageLevels

CChargingPWMPort = CChargingPWMOff;
DelaySeconds(3);

#endif
case psMaintenanceCharge:

CurrentProcessStep = psStopCharge;
break;

default:
// If we are not editing a value and we are in a submenu,
// Cancel means that we want to go up a menu level
if (!EditingCurrentParameter) {

switch (CurrentMenuMode) {
case mmSetPhaseLength_Mono1:
case mmSetPhaseLength_Bi1:
case mmSetPhaseLength_Bi2:
case mmSetPhaseLength_Tri1:
case mmSetPhaseLength_Tri2:
case mmSetPhaseLength_Tri3:

CurrentMenuMode = mmSetPhaseLength;
break;

case mmSetBlankingTime_Bi:
case mmSetBlankingTime_Tri1:
case mmSetBlankingTime_Tri2:

CurrentMenuMode = mmSetBlankingTime;
break;

}
} else

// We were editing a value, and hence pressing Cancel
// means that we want the old value back without
// storing the newly edited one
ParameterStorage[psCurrentValue][CurrentMenuMode] = ParameterStorage[psOldValue][CurrentMenuMode];

EditingCurrentParameter = false;
break;

}

} else if ((CButtonIncreasePort & CButtonIncrease) == 0x00) {
// The increase (+) button has been pressed.
// This either means that we are editing a value or
// that we are browsing the menu system. If we are
// browsing the menu system we have to take special care
// if we are in a submenu.

switch (CurrentProcessStep) {
case psMaintenanceCharge:
case psCharge:

#ifdef CalibrateVoltageLevels
++CurrCalibPWMValue;

#endif
#ifdef TestVoltageLevels

++CurrCalibPWMValue;
#endif
break;

default:
if (EditingCurrentParameter)

AlterSetting(wpPositive);
else {

// Okay, we are not editing a value. Are we in a submenu?
// The submenus have different ’length’ so we must take this
// into account.
switch (CurrentMenuMode) {

case mmSetPhaseLength_Mono1:
break;

case mmSetPhaseLength_Bi1:
CurrentMenuMode = mmSetPhaseLength_Bi2;
break;

case mmSetPhaseLength_Bi2:
CurrentMenuMode = mmSetPhaseLength_Bi1;
break;

case mmSetPhaseLength_Tri1:
case mmSetPhaseLength_Tri2:

++CurrentMenuMode;
break;

case mmSetPhaseLength_Tri3:
CurrentMenuMode = mmSetPhaseLength_Tri1;
break;

case mmSetBlankingTime_Bi:
break;

Page xxvii of xxxi Design of a Current Controlled Defibrillator

case mmSetBlankingTime_Tri1:
CurrentMenuMode = mmSetBlankingTime_Tri2;
break;

case mmSetBlankingTime_Tri2:
CurrentMenuMode = mmSetBlankingTime_Tri1;
break;

default:
// Okay, we were not in a submenu. Just iterate
// around in the top level menu system then as usual.
++CurrentMenuMode;

// If we have a non current controlled option switched on
// the current menu should not be visible
if ((!ParameterStorage[psCurrentValue][mmCurrentControlled]) &&

(CurrentMenuMode == mmSetDischargeRefVoltage))
++CurrentMenuMode;

// If there is voltage in the CAP we should not be able
// to change settings. Then we should just be allowed
// to charge, discharge and safety discharge
if (IsCapacitorCharged() && (CurrentMenuMode > mmDischarge))

CurrentMenuMode = mmCharge;
else if (CurrentMenuMode > mmRestoreParamFromEEProm)

CurrentMenuMode = mmCharge;
break;

}
}
break;

}
} else if ((CButtonDecreasePort & CButtonDecrease) == 0x00) {

// The decrease (-) button has been pressed.
// This either means that we are editing a value or
// that we are browsing the menu system. If we are
// browsing the menu system we have to take special care
// if we are in a submenu.

switch (CurrentProcessStep) {
case psMaintenanceCharge:
case psCharge:

#ifdef CalibrateVoltageLevels
--CurrCalibPWMValue;

#endif
#ifdef TestVoltageLevels

--CurrCalibPWMValue;
#endif
break;

default:
if (EditingCurrentParameter)

AlterSetting(wpNegative);
else {

// Okay, we are not editing a value. Are we in a submenu?
// The submenus have different ’length’ so we must take this
// into account.
switch (CurrentMenuMode) {

case mmSetPhaseLength_Mono1:
break;

case mmSetPhaseLength_Bi1:
CurrentMenuMode = mmSetPhaseLength_Bi2;
break;

case mmSetPhaseLength_Bi2:
CurrentMenuMode = mmSetPhaseLength_Bi1;
break;

case mmSetPhaseLength_Tri2:
case mmSetPhaseLength_Tri3:

--CurrentMenuMode;
break;

case mmSetPhaseLength_Tri1:
CurrentMenuMode = mmSetPhaseLength_Tri3;
break;

case mmSetBlankingTime_Bi:
break;

case mmSetBlankingTime_Tri1:
CurrentMenuMode = mmSetBlankingTime_Tri2;
break;

case mmSetBlankingTime_Tri2:
CurrentMenuMode = mmSetBlankingTime_Tri1;
break;

default:
// Okay, we were not in a submenu. Just iterate
// around in the top level menu system then as usual.
--CurrentMenuMode;

// If we have a non current controlled option switched on
// the current menu should not be visible
if ((!ParameterStorage[psCurrentValue][mmCurrentControlled]) &&

(CurrentMenuMode == mmSetDischargeRefVoltage))
--CurrentMenuMode;

// If there is voltage in the CAP we should not be able
// to change settings. Then we should just be allowed
// to charge, discharge and safety discharge
if (IsCapacitorCharged() && (CurrentMenuMode < mmCharge))

CurrentMenuMode = mmDischarge;
else if (CurrentMenuMode < mmCharge)

CurrentMenuMode = mmRestoreParamFromEEProm;
break;

}
break;

Appendix C Page xxviii of xxxi

}
}

} else {
// We got ourselves an interrupt even though no key was
// pressed...
// This must be an external interrupt
// The user wants to either charge or discharge
// the cap

switch (CurrentProcessStep) {
case psIdle:

// We are in idle mode. An interrupt here means that
// we want to charge the capacitor
CurrentProcessStep = psInitCharge;
break;

case psMaintenanceCharge:
// We are currently in a charged mode. An interrupt here
// means that we want to discharge
CurrentProcessStep = psPreDischarge;
break;

default:

break;
}

}
ShowMenu();

}

#pragma interrupt_handler int1_isr:3
void int1_isr(void)
{

// Okay, we have seen an interrupt
// Reason is that we have an overvoltage from the overvoltage logic.

// We might get interrupts during power-up. We want to
// avoid this from getting the system into a locked mode.
if (!IgnoreOverVoltageIRQ) {

// First stop the PWM pulse
CChargingPWMPort = CChargingPWMOff;
++NbrOfOvervoltageIRQ;
// then start discharging if this is the first time
if (NbrOfOvervoltageIRQ == 1) {

WriteDelayedUserMessage("Overvoltage err!", "Discharging");
CurrentProcessStep = psStopCharge;

} else {
CSafetyDischargePort = CSafetyDischargePort | CSafetyDischarge;
ErrorHalt("OVERVOLTAGE ERR!", "System halted!");

}
}

}

// The intention with this code was to create a simple
// PI controller which kept the voltage constant
// It turns out however that the compiler creates much
// larger code if the type long is used. Long was used
// due to the fact that we need decent resolution
// for our discrete time calculations.
// We did not have time to solve this problem since
// the code already takes up 94% of the available
// flash memory
/*

unsigned char PIReg(int CurrentCAPVoltage)
{

// We have a PI regulator that tries to keep the voltage
// over the CAP constant.
// Inparameter is the current voltage measured by the
// ADC and the menu system supplies us with the wanted value

// The returned result from this method is a ’new’ PWM value

// This define tells us how many bits that should be used for
// the decimal part and how many for the integer part
// i.e. a long is 32 bits. We need
// SignBit + IntegerBits + DecimalBits
#define IntegerCutOffPos 10;

signed long VoltageErr;
signed long uk;
signed long a1; //(20 << IntegerCutOffPos);
signed long a2; // = (10 << (IntegerCutOffPos - 3)); // Should be 0.010

// First calculate the error
VoltageErr = (CurrentCAPVoltage - ParameterStorage[psCurrentValue][mmSetChargingVoltage]);

// Calculate the new output : uk = a1*ek + Ik;
uk = (a2); // >> IntegerCutOffPos) + Ik;

// then calculate a new integral part for the next run
// Ik(+) = Ik + a2*e
//Ik = Ik + (((a2 << IntegerCutOffPos) * VoltageErr) >> IntegerCutOffPos);

// The last thing we need to do is to rescale the output

Page xxix of xxxi Design of a Current Controlled Defibrillator

//return (uk >> IntegerCutOffPos);
return 5;

}

*/

// Main method
void main(void)
{

unsigned int LoopCount = 0;
unsigned char TempChar;
int TempValue;
int TempVoltage;
int DischargeCounter = 0;

// First init all devices
IgnoreOverVoltageIRQ = true;
init_devices();
InitializeParameterStorage();

while(1 == 1) {

LoopCount++;

switch (CurrentProcessStep) {
case psStartup:

#ifdef UseSerialDisplay
InitDisplay();

#endif
#ifdef UseTerminalProg

WriteDataToScreen("System initialised, version 0.1");
#ifdef UsePCAsInputControl

WriteDataToScreen("Use keys:");
WriteDataToScreen("q - Idle");
WriteDataToScreen("w - Charge");
WriteDataToScreen("e - Safety discharge");
WriteDataToScreen("r - Discharge");

#endif
WriteDataToScreen("");
WriteDataToScreen("System idle");
WriteDataToScreen("");

#endif

// In case the overvoltage reset happens to be switched on
// during power up (spikes ?) we will just reset it
ResetOvervoltageCircuit();

// Get the settings from EEProm. The settings retreived are those
// in position 1
RestoreParametersFromEEProm(1);

// Initialize digital potentiometers
SetCurrentDischargingParameters();

IgnoreOverVoltageIRQ = false;
CurrentProcessStep = psEnterIdleState;
break;

case psEnterIdleState:
CChargingPWMPort = CChargingPWMOff;
CSafetyDischargePort = CSafetyDischargePort & ~CSafetyDischarge;
CurrentProcessStep = psIdle;
OkeyToShowMenu = true;
ShowMenu();
SetDiodeStatus(dsLedOff);
break;

case psIdle:
// Do nothing right now
break;

case psInitCharge:
OkeyToShowMenu = false;
SetDiodeStatus(dsLedColor1);
#ifdef UseTerminalProg

WriteIntToScreen("Upper voltage = ", ParameterStorage[psCurrentValue][mmSetChargingVoltage], NULL);
WriteDataToScreen("Starting to charge...");

#endif
#ifdef UseSerialDisplay

SendControlCharToDisplay(dcClearScreen);
WriteIntToScreen("Charging to ", ParameterStorage[psCurrentValue][mmSetChargingVoltage], NULL);

#endif
#ifdef CalibrateVoltageLevels

CurrCalibPWMValue = 255;
#endif
#ifdef TestVoltageLevels

CurrCalibPWMValue = 255;
#endif
CurrentProcessStep = psCharge;
break;

case psCharge:
// During the charging process we measure the voltage over the cap
// and depending on that voltage we set different PWM values

#ifdef CalibrateVoltageLevels
TempValue = GetADCValue(CSecondaryVoltageADC);
CChargingPWMPort = CurrCalibPWMValue;

#else
TempValue = MeasureVoltage();
#ifdef TestVoltageLevels

CChargingPWMPort = CurrCalibPWMValue;

Appendix C Page xxx of xxxi

#else
if (TempValue < 800)

CChargingPWMPort = 216;
else

CChargingPWMPort = 207;
#endif

#endif

if (LoopCount % 1000 == 0) {
#ifdef UseTerminalProg

WriteIntToScreen("Voltage = ", TempValue, NULL);
#endif
#ifdef UseSerialDisplay

#ifdef CalibrateVoltageLevels
SendControlCharToDisplay(dcClearScreen);
WriteIntToScreen("PWM : ", CurrCalibPWMValue, NULL);
SendControlCharToDisplay(dcMoveToSecondLine);
WriteIntToScreen("DAC : ", TempValue, " steps");

#else
#ifdef TestVoltageLevels

SendControlCharToDisplay(dcClearScreen);
WriteIntToScreen("ADC : ", GetADCValue(CSecondaryVoltageADC), NULL);

#endif
SendControlCharToDisplay(dcMoveToSecondLine);
WriteIntToScreen("Voltage : ", TempValue, " V ");

#endif
#endif

}
if (TempValue > ParameterStorage[psCurrentValue][mmSetChargingVoltage]) {

CurrentProcessStep = psInitMaintenanceCharge;
CurrentMenuMode = mmDischarge;

}
break;

case psInitMaintenanceCharge:
SetDiodeStatus(dsLedColor2);
CChargingPWMPort = GetPWMForCurrentVoltage(ParameterStorage[psCurrentValue][mmSetChargingVoltage]);
SafetyDischargeCounter = ParameterStorage[psCurrentValue][mmSetSafetyTime];
#ifdef UseTerminalProg

WriteDataToScreen("Maintenance charging...");
#endif
CurrentProcessStep = psMaintenanceCharge;
break;

case psMaintenanceCharge:
if (LoopCount % 1000 == 0) {

TempVoltage = MeasureVoltage();
}
// Check if we should safety discharge
if (LoopCount % 9000 == 0) {

SafetyDischargeCounter--;
#ifdef UseSerialDisplay

SendControlCharToDisplay(dcClearScreen);
WriteConstDataToScreen(MenuFirstLineText[mmDischarge]);
SendControlCharToDisplay(dcMoveToSecondLine);
WriteIntToScreen("Ent in ", SafetyDischargeCounter, " secs");

#endif
#ifdef UseTerminalProg

WriteIntToScreen("Safetycounter = ", SafetyDischargeCounter, BULL);
#endif
if (SafetyDischargeCounter == 0)

CurrentProcessStep = psStopCharge;
}
break;

case psStopCharge:
CChargingPWMPort = CChargingPWMOff;
#ifdef UseTerminalProg

WriteDataToScreen("Charging stopped...");
#endif
#ifdef UseSerialDisplay

SendControlCharToDisplay(dcClearScreen);
WriteDataToScreen("Charging stopped...");

#endif
CurrentProcessStep = psInitSafetyDischarge;
break;

case psInitSafetyDischarge:
OkeyToShowMenu = false;
#ifdef UseTerminalProg

WriteDataToScreen("Starting safety discharge...");
#endif
#ifdef UseSerialDisplay

SendControlCharToDisplay(dcClearScreen);
WriteDataToScreen("Safety discharge");
SendControlCharToDisplay(dcMoveToSecondLine);
WriteDataToScreen("Please wait !");

#endif
CSafetyDischargePort = CSafetyDischargePort | CSafetyDischarge;
CurrentProcessStep = psSafetyDischarge;
break;

case psSafetyDischarge:
if (!IsCapacitorCharged())

CurrentProcessStep = psStopSafetyDischarge;
break;

case psStopSafetyDischarge:
// We wait some extra time just to be sure

Page xxxi of xxxi Design of a Current Controlled Defibrillator

DelaySeconds(2);
CSafetyDischargePort = CSafetyDischargePort & ~CSafetyDischarge;
#ifdef UseTerminalProg

WriteDataToScreen("Safety discharge done!");
#endif
#ifdef UseSerialDisplay

WriteDelayedUserMessage("Safety discharge", "Done !");
#endif
CurrentProcessStep = psEnterIdleState;
break;

case psInitForHumanControlledDischarge:
OkeyToShowMenu = false;
#ifdef UseTerminalProg

WriteDataToScreen("Stand by for discharge");
#endif
#ifdef UseSerialDisplay

SendControlCharToDisplay(dcClearScreen);
WriteDataToScreen("Discharging...");

#endif
DischargeCounter = 2;
CurrentProcessStep = psWaitingToDischarge;
// This is due to the fact that the overvoltage circuit
// might react during a discharge

case psWaitingToDischarge:
if (LoopCount % 10000 == 0) {

DischargeCounter--;
#ifdef UseTerminalProg

WriteIntToScreen("Time to discharge = ", DischargeCounter, NULL);
#endif
#ifdef UseSerialDisplay

SendControlCharToDisplay(dcClearScreen);
WriteDataToScreen("Discharging...");
SendControlCharToDisplay(dcMoveToSecondLine);
WriteIntToScreen("Wait... ", DischargeCounter, NULL);

#endif
if (DischargeCounter == 0)

CurrentProcessStep = psPreDischarge;
}
break;

case psPreDischarge:
IgnoreOverVoltageIRQ = true;
CChargingPWMPort = CChargingPWMOff;
CurrentProcessStep = psDischarge;
break;

case psDischarge:
#ifdef UseTerminalProg

WriteDataToScreen("Discharging");
#endif
DoDischarge();
CurrentProcessStep = psStopDischarge;
break;

case psStopDischarge:
#ifdef UseTerminalProg
WriteDataToScreen("Discharging done");
#endif

DelayTime(1000);
ResetOvervoltageCircuit();

if (IsCapacitorCharged()) {
WriteDelayedUserMessage("Discharge done", "Now safety dis.");
CurrentProcessStep = psInitSafetyDischarge;

} else {
WriteDelayedUserMessage("Too low energy", "in capacitor");
CurrentProcessStep = psEnterIdleState;

}
IgnoreOverVoltageIRQ = false;
CurrentMenuMode = mmCharge;
break;

case psShutDown:
// Well, currently we never get here.... :-)
break;

}
}

}

