CODEN:LUTEDX/(TEIE-5160)/1-62/(2002)

The Design of a Simulator for
the Automation Industry

Jan-Olof Sivtoft

Department of Industrial Electrical Engineering and Automation
Lund University

-
e
)

]

-

@)
]

)
<
©

-

®

@))

-
-

)]

Q
=

@))

-
LL]
©

&)
-
)

&)
9
LL]
©
-
)

7p)

)
©
£

A
2IEA
B -
LUuND INSTITUTE

OF TECHNOLOGY L TetraPak

Lund Universit y

Thedesign of asmulator
for the automation industry

Maj 2002

Jan-Olof Sivtoft, E94
Handledare Tetra Pak, Istvan Ulvros
Handledare |IEA, Gustaf Olsson

Abstract

The devel opment of new technologies forces the industry to develop new products cheaper and
faster. Every advance has it own opportunity window and if you are too late, alot of money and
time are wasted. In the automation industry the product development process can last over a year
and therefore severa project are running side by side but only afew will survive to the end.

TetraPak R&D in Lund has studied this problem during the past few years and their aim isto find
out if thereis apossibility to use some kind of simulator instead of expensive test machines. This
master thesisis one step in that direction and its main goal is to construct as simulation environment
consisting a soft-PLC and a mechanical visualization program. The main problem is how these two
programs should communicate during a smulation. The PLC will control the model built in the
visualization program and react from signals produced from the model. Therefore a simulation core
has been designed and one possible solution to the communication problem is explained.

The coreis developed in Visua Basic and atest model is acommon part taken from any ordinary
filling machine. Finally the controller program is designed in ladder code.

Contents

11
12
13
131
132

21
2.2
221
222
2.2.3

3.1
3.2
3.3

4.1
4.2
4.2.2
4.2.3
4.2.4
4.2.5

5.1
5.2
5.3

6.1
6.2
6.3

Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
All

= = U0 PSPPI 3
a1 oo (3Tt A o o PSS 5
Why building & SOftware SIMUIBEONcoiriiirieeese e 5
GOalS Of tNETNESIS......eiiiiiciee ettt et r e 5
Limitations and MELNOUScceiieiiiieriee et s ennes 6
RESUITS. ...ttt ettt bbbt e e e et e s be e b e e b e e st e st et et e sbenbenbeeneeneeneas 6
REDOI OULIINE ...ttt b bttt e b e nbeene e e e 6
SIMUIALTON ENVIFONMENT ..o ettt sa et bt esse e e e eneas 8
Q0= I o = TSR 8
(O] 1101 070] 07 o | £ 7RSS 9
FramEWOIX (FX) ottt ettt b bt e 9
WOrking Model 3D (WM3) ...ttt sttt st sreeae s aesreesneennesnnenne s 10
ViSUA BBSIC (VB) ..uuiieieiciiciieieieiesies ettt ettt sttt ne s e e eaenaenaestennenneeneenes 11
Use of communication MECh@ANISIMccoiiiiieninieieee et 12
WHhEE IS OPC ...ttt e st et e s ae e ae e beeseese e e e e e ssenteseeaneeneenneneens 12
FrameworX built-in OPC-server and its OLE Automation interface...........ccocveevvvenenennns 12
Working Models OLE Automation INTEITaCE..........cceiiieririreeee e 14
S U= o g0 = o o S 16
DesCription Of the SIMUIBLOTc.coiiieeee e 16
Code design iN ViSUal BASIC........cccuiiieiuieieieeseesie ettt see et sne e sneenneeneenns 18
SIMUIEETION_ IMAIN CIBSS.....ccueeitieieeie ettt esre e ae e sreenseeneesneensens 19
COMPONENT ClASSES. ... eeivieteiteestieiteeee sttt e st e e s e s e e tesseesse e beeaeesseeseaseesseensesseesseensesseensens 22
SIMUIEETON MOAUIES ..ottt eesreesaeesaeeseesteeneesreenneensens 23
Arrangement in FrameworX and Working Modelcceeoveeiicie e 25
I S oo [SRS TRRR 28
Description of the MOAE!cc.eeiieeeee e ere s 28
BT 0170 o S 31
THE CONITOIEN ...ttt b et b b s e 32
(@] X 11 o0 S 35
RESUIL ...ttt bbbttt e e et bbbt e ne et et et e benbenreeneeneeneas 35
POSSIDI € IMPIOVEMENTS........oiiitiieee et sr e 35
FULURE dEVEI OPIMENTS........eceie ettt ettt et e e e e sreesseeneeene e reennennean 36
N] 6= 0T [RS RPR RSSO 37
NOMENCIALUNE. ...t sttt et e e et e besbenbenbeenenneeneas 37
FOrM SIMUIBETION_VIBW ...ttt st ne e ae e sreenseeneenneene s 38
Class SIMUIALTION IM@IN.........cciiiieie et et e s e e sae e e sneesreenneens 41
ClasS INPUE_CONEIOITEN ...t sb e 43
(O S N 1 ST PRR 44
O =SSR 150 S 45
Module Simulation FX_CONNECLION.........cceciiiieriecie ettt ae e sreesre e e e e 46
Module Simulation WM3_CONNECHIONccuiiierieiieiiesie e see e e see e sre e seesneene s 48
Module Simulation FX_TO WM3 ...ttt et ne s 50
Module SImulation WM3 TO FX ..ot e e ne s 51
(@011 0 1= g eT0 o L= SRS 53

R I BT ettt s e e s e e e e e e e e e e e e e e e eeeeeeeeeneeeeeeeeeeeeneeeeeaneeaeaaes 57

Preface

Finally this work has been completed and | want to thank all people involved during this project
both at Tetra Pak R&D in Lund and Department of Industrial Electrical Engineering and
Automation at LTH. | would like to tank Bo Hellberg and Lennart Christensson at Tetra Pak for
their help during my time at Tetra Pak. A special thanks for their encouragement and patience goes

to Istvan Ulvros, Tetra Pak and professor Gustaf Olsson.

Finaly | would like to thank my girlfriend Tove who has been supporting me all along this work.

1 Introduction

1.1 Why building a software simulator

In the automation industry it usually takes along time to develop new machines. There are many
stepsin a development cycle that all costs alot of money. If the development time could be
shortened, the costs would be reduced. Far from every machine design idea leads to a complete
machine. If anidea could be rejected earlier, it would save unnecessary development costs.

In at least one stage during the development cycle it is necessary to build atest machine. This test
machine is expensive and without any doubt there must be corrections made of this machine several
times due to incomplete design. If the number of errors could be reduced before starting using the
real machine, it will reduce the development time, spare parts and of course the costs.

So there are several reasons why a research and development department would like to build a
simulator instead of areal machinein the early stages of a development cycle. In asimulator we can
build amodel of the machine and we can test it without breaking anything. It is much easier to do
changes in the simulator than in the real machine. By using a simulator the control program could
be tested several times long before it isfirst tested on the real machine.

As we can see there are many reasons to build asimulator. It helps to shorten development time,
reduce cost due to errors and spare parts, and makes it easier to do changes and so on. But why
don’'t we do this every time we want to build a machine? One answer to that question isthat thereis
no software available, designed for this purpose. So in thisthesis| will try to design asimple
simulator out of known software and make it work.

1.2 Goals of the thesis

The main goa was to make a simulator and to simulate a part taken from afilling machine. The
simulator must handle signals both ways between itself and a controller. The simulator must also
contain some kind of visualisation and this is done by some software supplied with graphical tools.
This means that the visualiser must allow to be controlled from outside and be able to send signals
back when some certain criteriaare met. To achieve this there were afew other minor problems
that had to be solved first.

Programs use different ways of communication with other programs. Therefore a communication
link between them must be designed. The programs can’t work together in real time, since they are
located on the same computer. The time must be divided between them and this must be controlled
in some way.

An object must be constructed to simulate different parts of area machine. How these objects are
designed depends on severa things but the most important thing is that we must be able to reuse all
objects and that there must not be any limitations to add new objects to the model. In other words,
the simulation core should not have to be changed when a new object is added.

1.3 Limitations and methods

The simulator was limited to two programs available in the commercia market, one being the
controller and the other the simulation of the machine. The two programs are FrameworX from GE-
Fanuc, (FX) which isasoft PLC and Working Model 3D Motion from MSC Working Knowledge,
(WM 3) which is amechanical motion simulation software.

Asthe work went along, it turned out to be difficult to establish communication between the
programs. The main reason of thiswas that in the early stagesin my work, FrameworX was only
available in a beta version without proper manuals. Especialy the OLE Automations for Process
Control, OPC, documentation was missing which made it very difficult to connect the two
programs together. Another problem was that the final version of Working Model 3D was delivered
very late during the limited thesis working time. Therefore the work had to be focused on the minor
problems and there were no time left in the end to build a complete machine simulator as intended.

Thethesisislimited to establish communication between the programs, control the data flow
between them and build a small demonstration model to show how the simulator is supposed to
work.

In the beginning of the work, time had to be spent to learn and understand the basics around
FrameworX and Working Model 3D. Internet was used to find information about OPC. Missing a
lot of primary information trial and error had to be used alot during the work. When
documentation then was available is become easier and the communication was improved quite fast.
Then it was possible to focus on building a few objects and test model so it became possible to
demonstrate the ssmulator function. It finally worked!

1.3.1 Results

The main goa was to build a complete simulator and that goal was achieved. However, to build a
complete machine part as intended, failed. But the principles are shown in the small test model and
itisonly aquestion of available timeto build a more complex test model.

1.3.2 Report outline

Thereport is divided into three parts. The first part describes briefly the software used and the
communication protocols. Thisis donein Chapters 2 and 3. The second part, Chapters 4 and 5,
deals with simulation methods and test model. Finally the last chapter summarises the result of the
work.

To fully understand how this simulation works the reader should have some knowledge about object
orientated programming in Visual Basic. Those just interested in the simulation method may ook
directly at Chapter 5

During the second part there will be some written code among the text. This code is taken from the
final code created in Visual Basic. But some details are |eft out and sometimes there is no real code,
just some text notes. However, the complete code is printed in appendices A2-10.

2 Simulation environment

2.1 Total structure

The simulator consists of a soft-PLC, communication link and a mechanical simulation program.
The control program resides inside the PLC and it communicates with OPC, OLE Automations for
Process Control trough an OPC-server. The soft-PLC used is FX-Control from FrameworX, GE-
Fanuc and from now on, called FX. But the simulator is not bound to FX and it can be replaced by
any other soft-PL C that uses OPC to communicate. But FX has an advantage in having a built-in
OPC-server and al communication between FX and the OPC-server is handled automatically by
FX. Therefore, when referring to FX the OPC-server isincluded.

“ FX” HVB” “WM 3”

WM

Figure 2.1 The model consist of three parts. To the left: The soft-PLC and an OPC-server, from now on called FX.
Middle: Visual Basic and both API, referred as VB. To the right: Working model 3D, shorten toWM 3.

The communication link consists of two OLE Automation interfaces, refereed as APl and the
simulator core written in Visual Basic, hereafter named VB. The main task for the communication
link isto transfer and tranglate signals from FX to the mechanical simulation program, but it also
contains functions, such as starting and stopping the simulator. Finally it also has a monitoring
function, which allows us to se how the signals change during a simulation.

One API is providing VB with an interface to communi cate between OPC and VB. Through the
interface object is created and connected between FX and VB. All signals controlling the simulation
come from FX and are transferred to mechanical simulation, except from afew simulator signals.

The other API is providing VB with an interface to the mechanical ssmulation program. Through
these interface signalsis collected from the mechanical model and transferred to FX. Of course the
interface also provides the model with signals sent from FX.

Finally the mechanical simulation program is built to visualise the machine movements. This
simulator is using Working Model 3D Mation from MSC Working Knowledge. This program will
be referred to as WM 3 from now on. WM 3 has alarge number of possibilities to build advanced
models but our model is very simple and its main purpose is to show the idea behind the simulator

2.2 Components

As mentioned in the previous sections there are totally six components in the smulator. They can
be divided into three parts according to fig 2.1. The“FX” part consist of FX and the OPC-server as
shown in the left box in the figure. Below in this chapter there is an overview of FX and the OPC-
server is discussed in chapter 3. The“VB” part or the core of the simulator consists of all written
codein VB. Both API are imported and used in the code so they are treated asaonein VB. The
middle box contains both APl and VB. Both API will be described a bit further in chapter three and
below avery brief overview to VB. The third part consists only of WM 3 that also will be discussed
later in this chapter.

2.2.1 FrameworX (FX)

FX isasoft-PLC, which integrates development and execution of a controller. It also provides a
graphical tool to build aHMI that can monitor the process.

The program supports tools such as Ladder and SFC according to IEEE 1131. It also has atool
chest where many predefined objects are stored. Most of them has a graphical interface and can be
used when building aHMI.

mDemoSimulaloﬂ - FramewoiX - [Target1 - Ladder_Program] |- [#]x]
dF Fle Edt Search Yiew Inset Data Controller Tools MWindow Help =0
x| (Program Desctiption; double-click to edit) - =l
i'l Targetl ﬂ Ladder j
....... Alarm G
g ------- g A;;?calriz:?cripts -0 Advanced Math
1|-START nols =] -3 Alen-Bradley RIO
s Lonirol 0 Diivers (=) 3 ASCI Communications
[Factary Web ’E 2 ’E 125 ’? 2 e -5 Basic Math
= Graphical Panels o
: Footer e | B!t S.hlfl.-"Ho.tate
& Header -3 Bitwise Logic
[Home PLC_Ready -3 Coils
{7 23 Compatison

[Taok: 2 1)

_@' Ladder_Program Off -E1 Cortacts

@ Labels -3 Conversion
Subroutines -1 Copy
3|-END -1 Counters

Actiohz r
-F Initialization F-E1 DeviceMet

-3 Increment/Decrement
-R8) Mator_Setu
g Peset . 4|-ACT START Initialization F-B1 InteBusS
3 Process Control
) Stop_Machine -1 Program Flow
-85 Logaing Groups -2 quuencar
D2 OPC Clisnt Mo - Timers
% PLC Access Diivers — 5 EM DN
o SFCT 4N OUT[#Command
B Cimnlamantal Filas x 0

FEeET L o

ZTrgged in with no server

Fun_Machine

)

MERROE - Auditing i= disabled.

“ AT ™, Buid Ji_Tmport), Messages /£ Reports 2, |41 | 0|
For Help., press F1 lJos |LocAL MUM
i Start I fx DemoSimulator] - Fra... %W’olk\ng hdodel kation - [| @ Exploring - C:\Snap32 | MA 00: 35

Figure 2.2 Screenshot of FX-control.

In the very early stage of the thesis the graphical tool was explored to reveal if it could be used as a
visualisation tool of the machine. But then the model would only consist of a schematic model and
most important only in two dimensions. Also add some advanced algebra to solve al mechanical
properties and it would be athesis of it own.

Actually there are two different programs that can be executed, FX-control or FX-view. The
differences between them are that FX-control contains the development environment and FX-View
consists only of the HM1 and the executing controller. It is said before that there is a built-in OPC-
server to FX, actually there are two of them, one each to FX-control and FX-view. Every time any
of those programs is started the corresponding OPC-server is also started.

2.2.2 Working Model 3D (WM3)

WM3isa3- dimensional simulation program for mechanical modelsin motion. It'sapure
simulator tool where the model of the “real” machine is simulated. The model is build by many
different bodies and constraints with different degrees of freedom. Each body can have different
geometrical and physical properties and they can also haveinitial speed and acceleration.
Movements are described by functions and tables and of course the impact the environment
consisting of al other bodies. There are aso some defined objects such as motors, springs and
pistons that can be used to create more dynamic models. Momentum and forces can be applied
anywhere and can be used as initial conditions. Other greater featureisthat it is possible to import
models form other CAD-tools and convert them into WM 3 models.

*a Working Model Motion - [DemoSimulator] 'WM3 [Seen through “"Camera™]]

@Eile Edit “iew |nsert ‘“World Object Tool: ‘Window Help ;I_ﬂ;lil
DEH 2R s oald R Edhdione ¢ &b
PPy +ER A== POH &

By DemoSimulator] -
..... D body[46] Z

----- & bady[48]
----- & bady[50]
----- & bady[a0]
----- & bodya2]
----- & body[84] D
----- & bady[a8]

----- & bady[8]

----- & bady[a0]

----- & body[a2]

----- & bady[34]

----- & bady[36]

----- & bady[38]

(D bodiznl T
K

ks [E2 2 | (>
| Connections ko constraint[B
£ body[1] i
& congtraint[B]

L coord[S] on Ground
v coord[4] on body[1]

J -- Frame: W Time: lm 3

Draws a Restraint [|Last computed motion frame=2685 |

Figure 2.3 Screenshot of WM 3

Several properties can be controlled during the simulation through inputs. It is actually this feature
that makes it possible to control the model from an outside sourcei.e. a controller. WM3 has avery
simple script language, which mainly consists of the if-function, mathematical function and some
signal generators. But together with inputsit is quite ssmple to control properties during the
simulation of the model.

10

It is also possible to collect information from the model or, as we see it, signals that can be sent to
the controller. Thisis done by using an output that is an object that calculates a value during each
frame using information from the model properties together with the script language. Here the
signal generator functions that can extend a signals duration are especially helpful. But, even if
outputs give us away to get a certain information from the model, they are not used in the
simulator. Thereason isthat it is easier to directly use the API and acquire the information from the
model.

Visualisation of the model isvery powerful. It is possibleto look at the model from anywhere and
zooming down to small details. When asimulation is performed it remains in the memory until a
new simulation is done or if it is deleted. Rerunning the simulation will increase the visualisation
speed and it can be done from any angle and zooming. Finally it is possible to export a simulation
as avideo clip that can be shown in other tools.

However, one major feature is missing in WM 3 which was a part of is predecessor Working Model
2D. Instead of giving avalueto the side of a cube and the let other bodies refer to that side, it must
be set to anumerical value. This makesit very time consuming to edit fundamental body valuesin a
model and the whole model must be revisited. The same problem occurs when objects are placed in
the model. Fore example if two objects should be three radiuses apart it would be very helpful to

use the first objects reference point and then add three radiuses for the second one.

One other thing to understand is that WM 3 is not currently powerful enough to perform real-time
simulation even if it isworking stand-alone. Of course thisis also a hardware issue and therefore
there are a great possibilities to improve performance in the future.

2.2.3 Visual Basic (VB)

The simulator core iswritten in Microsoft Visual Basic 6 as a part of Microsoft Excel tool. The core
servesas a*“glue” between WM 3 and FX, taking care of timing issues and signal handling, but also
has a simple monitor window where the user can follow the signal flow between FX and WM 3

VB is an object-orientated language with is focused on the user and his interaction with the
program. In an application it is the user who controls the flow by actions throw the GUI, normally
by the mouse or keyboard. VB contains classes, which has methods and properties that can perform
operations and set attributes in the object. VB works with three components, class modules
(classes), modules and forms. Each class contains information about an object and its methods and
properties. The modules contain a set of procedures that should be executed each time they are
called. Finally, the forms represent the visible part in VB. We can create buttons, textboxes, and
lists and so on in order to communicate with the program.

Besides this, there are several APIs that can be added to the VB-environment that can be used to

create objects to control other applications without implementing that object. We just create an
instance of the object and it is ready to use.

11

3 Use of communication mechanism

3.1 Whatis OPC

OPC stands for OLE for Process Control and it is a standard protocol to transmit data and I/O-
signal's between programs running within the Windows environment. OPC is built upon two of
Microsoft’s technologies, OLE and DCOM and it’s also designed and optimised for industrial
applications. It is developed by a non-profit organisation, the OPC-Foundation, which provides free
specifications for developers.

The main reason behind OPC was to create a protocol, which allows different automation
applications to work together independent of any manufacture specifications. There are many
benefits, both for consumers and manufactures. The consumers are no longer limited to one
manufacturer and the system they provide. The consumer can freely change the controller and
choose one that suits his needs without changing the whole system. The manufacturers only have to
provide one communication-interface and therefore their devel opment process will be shortened.
Thus they can concentrate on the application and compete with their productsin alarger market.

OPC uses the concept of servers and clients. The server is connected to a controller and provides
data to the system throughout clients on their request. Since the server simply isa program it can
run in parallel on the same computer as the controller. The clients are data-consumers but they can
also send information to the server, typically trough aHMI to control a process.

There are two ways a client can get information from the server. The easiest but an inefficient way
ispolling. The client asks the server and will receive an answer directly. But the client doesn’t
know when a value has changed so it hasto ask repeatedly. Another way isto let the server notify
the client when avalue has changed. Then the client can respond by acquiring the value form the
server or by reading all values of interest at the moment.

3.2 FrameworX built-in OPC-server and its OLE Automation interface

As mentioned earlier FX has a built-in OPC-server. The advantage of thisisthat every signa
defined in the controller is registered in the server directly. The only thing VB needsto know isthe
name of the server and some additional information if they are located on different machines.

Lets take a closer look how we connect the OPC-server from VB. Of course the APl must be
installed and registered in VB before any of the code below will work.

First an object that will handle the OPC-server at the client is created. It is then connected to the
OPC-server named “fxControl.OPCServer.1” which is the name of the server started by FX-
Control. Thethird row in the code below creates an OPC-Groups object. Each signal in the server
must belong to a group. The advantage with groups is that you can create an event to each group
that will fire as soon as one of the signalsin the group changesits value. Thisisavery useful way
to notify the client that something has happened among all the signalsin a specific group. The

12

object OPC_Groups handles all groups created in the program and before we can do anything a
group must be created.

Set OPC_Server = New OPCServer
OPC_Server.Connect ("fxControl. OPCServer.1")

Set OPC_Groups = OPC_Server.OPCGroups
Set myGroup = OPC_Groups.Add("myGroup ")

After the group two properties are added, IsActive and IsSubscribed must be set to true in order to
acquire data from the OPC-server, continuously. Before we can register the signals we have another
level of object in the OPC-server to handle. OPCltems is an object that keeps a collection of items
together inside a specific group.

myGroup.IsActive = True
myGroup.lsSubscribed = True

Set myltems = myGroup.OPCltems
Set myCommand = myltems.Addltem("#Command", myGroup.ClientHandle)

Then finally the signal is added to the OPCltems object. Here it isimportant that the signal nameis
spelled exactly asin the server i.e. case sensitive. Otherwise asignal isregistered in the server but if
there is no corresponding signal name in the server, no error is reported.

Now we can use the signal in our program and we can read and write to the signal. Writing to the
signal is ssimple. We use the method write and the value is written to the OPC-server. Of course a
value must be of correct typei.e. Boolean, integer, char but otherwise it’s easy.

myCommand.Write (setValue)

myCommand.Read
k = k+ myCommand.Value

Reading avalue is done in two steps. When the read method is called it collects the value from the

OPC-server and stores it in the object in a property named value. After that the value is accessed by
calling the property. The value will remain the same until the read method is called again.

13

3.3 Working Models OLE Automation interface

In this section we will take a closer look at WM 3 and the API we are using to communicate
between VB and WM 3. Before we can read or write to WM 3 we must create an object in VB so we
can accesses its properties. Following code does this.

Set App = GetObject(, "WM3D.Application")
Set Doc = App.ActiveDocument

The App object contains a reference to the WM 3 program and the Doc object contains a reference
to the model in WM 3. The Doc object is our link to the model and through this we can access
almost everything in the model. We can control the whole simulation or the colour of any body in
the model. But to do this we must create alink to each specific object we want to control. In the
simulator we are most interested to get values from bodies and to set new valuesto inputs.

Lets take a closer look how we acquire a reference to a specific body object. The first step isto get
references to every body form the Doc object. Then we must know the name of the body in WM3.
Here are two possibilities, first we can use WM 3 predefined name fore each body which is
“body[index]” where index corresponds to the order the bodies where created in WM 3. Second we
can give each object in WM 3 a name and use that name to find it from VB.

Set CollectionOfBodies = Doc.Bodies
Set myBody = CollectionOfBodies.ltem(myName)

In the code above myBody now contains a reference to a specific object named myName in WM 3.
There is no need to go into each detail of each property but abody object has 4 methods and 6
properties. Two of these methods are GetConfig and SetConfig, which can be used to change the
three-dimensional configuration of the body object. However one of the propertiesis of great
importance to the smulator. Thisis the IsInterferingWith property that returns true or false if the
body isinterfering with any other body i.e. this property alone acts as a sensor. Unfortunately this
property requires a name of an other body to check if they are interfering. This means that one has
to loop through every body of interest before one knows the answer. But the great benefit is that
there is no need to calcul ate any geometry to reveal the answer.

Besides bodies there are motors, inputs and outputs that are of interest, but they all work inasimilar
way so there is no need to go deeper into that.

Now let’s go back to the Doc object. In order to control the simulation there is a method
RunTo(FrameNumber) which is very helpful when simulating. Upon calling the method the
simulation will start and continue until it reaches the frame number. During thistime VB is halted
and will resume first when WM3 is done. The frame number is kept by the Doc object, so in order
to make a good simulation you increase the frame number by one each simulation cycle and the
precision in the simulation is mainly determined by the frame ratei.e. frames per second.

14

15

4 Simulator design

4.1 Description of the simulator

To begin with, we have two industrial programs running on the same computer and using the same
resource, the CPU. A third program is also executing in the same environment and is responsible for
synchronising information between the programs. When we are simulating we need to calculate
how it would be in areal machine and extract information from those cal culations and pass the
information between the two programs. If we knew from the beginning what we want to do and
have all the inputs ready then it would be best to run and complete the first program. The
information could them be passed to the second program and after it is completed we would have
the result of the simulation. But, thisis not sufficient for simulations in the automation industry
where we want to pass information between the programs several times during runtime. So instead
of running each program completely, we run them alittle bit at atime and in between information
are shared. So, the main idea behind the simulator is that the available time in the computer is
divided in small fractions and that each simulation program is running in parallel. Between the time
periods the third program executes and transfers parameters between the programs.

Though, it isinteresting to know how a computer handles severa programs at the same time we
should not concern us anymore about that. Instead we will look how the different programs work
together and thereby understand more about the simulation method. At first, we will look at them,
aswewould liketo do in asimulation.

Let us start with the smulator. Before the VB-script can be executed we must start WM3 and FX-
View and load the simulation model into the environment. After that we start the VB-script and we
are then ready to run the simulation from FX-View.

Initialize ssimulation > Setup connections > Control simulation
WM3D - application creates WM 3D objectsin VB Continue
FX-Control / OPC register variablesin OPC

Read from OPC > Step one frame > Read from > Run one scan

Writeto WM 3D InWM3d WM3D in FX-Control

T Control simulation
Hold, Continue <
Quit
End simulation

Figure. 4.1 The simulator structure

16

When the VB-script is started it begins with initialising two objects, one, which isthe WM 3D
application and the other, is the OPC-server in FX. These object are necessary because they contain
the simulation variables that must be transferred between the programs to make the simulation
work.

The WM 3D-application object contains the whole model and every object can be manipulated from
the VB-script. However, most of the manipulation is done during the second stage, set-up
connections, before the actual simulation begins. During simulation the only external changesin the
model are changing colours at some objectsi.e. turning their visibility on or off. But to be able to
read some values from the applications object we must create a corresponding object in VB. Of
course we must send control signals, inputs, to the simulation but those signals should not be treated
as apart of the model.

If we look at the OPC-Server we have asimilar problem. But instead of creating a corresponding
object in VB we only have to register avariable in the OPC-Server and connect it to the
corresponding variable in the controller. So before the actual simulation can start we must initialise
all objects and register all variables that we need for the simulator to work. Thisis aso donein the
VB-script in two separate modules, which are executed in the set-up connection phase.

Now we are ready to run the simulation. Each cycle in the smulator consists of one scan in the
controller and one frame calculation in WM3D. We aso have to transfer control signalsin both
directions during one cycle. In the model we begin each cycle by reading the current controller
value in the OPC-server. They are then transferred to WM 3D, which then executes one simulation
frame. Next, we read the out signals from WM3D and write them to the OPC-server. Findly, we
execute one scan in the controller.

The question that should be raised after this, is how we can assure that only one scan is executed in
the controller and how do we know when it is done? The answer isthat the controller is equipped
with a command option which aloud usto run only on scan in the controller and then freeze it. After
this scan, it also changes avalue of one of itsinternal variables, #command. Thisvariableis
accessible throughout the OPC server and connected to a V B-variable during connection-
connection phase. When the controller executes, VB isidle and is waiting for an event from the
OPC-server. This event is trigged each time the controller changes the value of #command. To
summarise: the controller is signalling when one scan is done and VB will continue to execute.
Actualy we have the same problem for WM 3D but it is solved much easier and was discussed in
3.3.

17

4.2 Code design in Visual Basic

The simulator consists of several different components, but the main functionality liesin the VB-
script. Therefore we will take a closer ook at the structure and code in VB. The complete codeisin
Appendix A2-10, but some extracts are shown below to make it easier to understand the design and
functionality.

In previous chapters we have talked about objects and how we need to create them to be able to run
the simulation. But before we can create them they must be designed and programmed in VB. We
also need to know which objects are needed and how they work together, which also can be seenin
figure 4.2.

Form Class
Simulation_View Simulation_Main
UzerForrn_dctreate OeScan Init
Update Setup_Conmection
Distortion Click : OneScan * Called
Quit_Button_Click Useomo Botiidto] Sepiiy b FX
* CloseSim
* Sim_Control Group DataCharge
Setup Connectioh | Reset CineScan
y 3
dfodule ddodule
Simulation FX Connections Simulation_FX_To_Wh13
Setup Scan
Feset
bdfodule Sdfodule
Simulation_WRI3 Connections Simulation WhI3 To FX
Setup Scan
Tnat Al but It
Clase Clase Class
Arm Input_Controller ATm
Init Init Lrit
CheckPower Start Dirop
CheckPulze Hold Grip
Setlnt

Figure 4.2 Form, class and module dependency in the simulator

In our model we use one class for the simulation core and three classes represent different “real”
components in the machine. Of course a machine normally contains more than three components
but for now three is sufficient. To be able to simulate a more realistic machine more objects need to
be designed. The design of each such object totally depends on how the object is supposed to work
and how accurate the model would be. However, it isredly easy to add anew class, i.e. anew
component to the model. Of course they have to be connected to the model but we don’'t have to do
any modifications in the simulation core, which is one of the goals of the thesis.

18

A closer look at the components object reveal s that they have two types of methods in common,
initialisations methods and runtime methods. The initialisations methods are responsible for
connecting, registering and settings of a specific component. These methods are executed in the
beginning of each simulation and may also be called when asimulation is reset. The runtime
methods are used during a simulation and their task is to read or write signals between FX and
WM3D. They are normally called once each scan during the simulation. We will discuss these
classesin more detail in 4.2.2.

4.2.2 Simulation_Main class

The simulator core consists of one class Simulation_Main and four modules. The class itself
controls and runs the simulation. The modules contain al information about all used signals
between FX and WM3D. The reason we use four modulesis that then we don’'t need to change
anything in the class when we are creating a new simulation model. Everything that belongs to the
model itself is controlled from the four modules.

The main program in this model is actually very small and simple. Most of the simulators
functionality liesin the Sim object that is an instance of class Simulatin_Main . When we start the
VB-program, aform is activated and this form creates the Sim object. It also throws an event that
executes the UserForm_Activate() method.

Private Sub UserForm_Activate()
Sim.Init_Sim
Sim.Setup_Connections
Sim.Sim_Control.Write (8)

End Sub

The Sim object must first be initiated, i.e. create all object used by the simulator such as the OPC-
server object, WM 3D-application object and connect main control signals. Next all signals used by
the model must be attended. This means that every signal defined in the
Simulation_FX_Connections and Simulation WM 3_Connections modules are created, initiated and
registered. Finaly, signal is sent to the PLC which to run one scan.

Besides this, the form is drawn on the screen. The form is monitoring all signal's connected between
FX and WM 3. During each cycle every signal is updated and thisis avery helpful tool when we
want to study the smulators behaviour.

The buttons to control the model are created in FX but they are also connected to the Sim object
through the OPC-Server. The buttons, Start, Stop and Reset controls the PLC and the program that
liesinside. Each one of these buttons is throwing an event when they are pushed causing VB to
start, stop or restart the simulation.

As mentioned above Sim is the core of the simulator and therefore we will take a closer look at is
Sim_Init method. There are five main tasks for Sim_Init to do. First, import and create an object,
App, that corresponds to the WM 3D model. WM 3D must be running and the active document is the
simulation model, which is reset.

19

Public Sub Init()
Set App = GetObject(, "WM3D.Application")
Set Doc = App.ActiveDocument
Doc.Reset
App.Activate

After that an object, OPC_Server, as discussed in chapter 3.2. is created that will handle the OPC-
server

Set OPC_Server = New OPCServer
OPC_Server.Connect ("fxControl. OPCServer.1")
Set OPC_Groups = OPC_Server.OPCGroups

Third, anumber of signals are registered in the OPC-server that will handle the start and stop of the
simulation. For this reason agroup, Sim_Control _Group, is added to the OPC_groups object. It is
also agood ideato set some properties for the group. Most important are the IsActive and
IsSubscribed properties as mentioned in 3.2. A third property, UpdateRate, is also set. This controls
the rate at which an event from the group may be fired. This rate should match the general frame
rate for the simulator.

Next we create an OPCltems to hold the individual signals within the group. Since we only have
five signals we could manage with one group, but | have chosen to create two groups. One contains
the PLC control buttons, i.e. start, stop and restart signals, and the other one contains simulator
signals. After thisis done we are ready to register the items or signals to the OPC-server. So by
adding them to the Main_Group_Items object, we create a V B-object at the same time.. The only
requirement is the name of the corresponding signal in FX-control.

Set Sim_Control_Group = OPC_Groups.Add("Sim_Control_Group")
Sim_Control_Group.UpdateRate = 250
Sim_Control_Group.IsActive = True
Sim_Control_Group.IsSubscribed = True
Set Sim_Control_Items = Sim_Control_Group.OPCltems
Set Sim_Control = Sim_Control_Items.Addltem("#Command", Sim_Control_Group.ClientHandle)
Set PLC_Ready = Sim_Control_ltems.AddItem("PLC_Ready", Main_Group.ClientHandle)
Set Main_Group_ltems = Sim_Control_Group.OPCltems
Set Main_Control_Start = Main_Group_ltems.AddItem("Main_Control. SwitchOutput[0]", Main_Group.ClientHandle)
Set Main_Control_Stop = Main_Group_Items.AddIltem("Main_Control. SwitchOutput[1]", Main_Group.ClientHandle)
Set Main_Control_Reset = Main_Group_Items.AddItem("Main_Control.SwitchOutput[2]", Main_Group.ClientHandle)
PLC_Ready.Read (2)

While Not (PLC_Ready.Value = 1)

PLC_Ready.Read (2)
Wend
End Sub

20

The most important signal for the simulator is the #Command signal in the PLC which allows usto
control the simulator by starting, stopping and do a single scan in the controller. The object
corresponding to #Command is named Sim_Control in VB. Thereis an other signal in this group,
PLC_Ready that is used in the beginning to check if the controller is up and running.

Assoon as al five signals are registered, the event driven method
Sim_Control_Group_DataChange is called when anyone of those signals changes its value. So, to
start the ssimulation we just have to push the start button in FX.

Public Sub Sim_Control_Group_DataChange
If Main_Control_Start Then
Call OneScan
End If
If Main_Control_Restart Then
Call Reset
End If
End Sub

Now we have reached the core in the simulator, the One_Scan method. If we compare the code with
figure 4.1 we recognise that the four boxes in the middle row corresponds to the five linesin the
method. The remaining two lines are updating the VB-form, so every signal can be monitored. This
is done every time signals are parsed from FX or WM3D.

Public Sub OneScan()
Simulation_Fx_To_WM3.Scan Me
Call Simulation_Veiw.Update
Frame = Frame + 1
Doc.RunTo (Frame)
Simulation_WM3_To_FX.Scan Me
Call Simulation_Veiw.Update
Sim_Control.Write (8)

End Sub

OneScan begins with passing al signals from the controller to WM3D. Then one frame is executed
in WM3D. During that time period the VB script is halted and will resume first when WM3D is
done. Next signals are transferred to the controller and finally one scan are executed in the PLC.
Now VB isidle and waits for something to happen. And as soon the PLC has done one scan the
#Command will be set to 0 and the Sim_Control_Group_DataChange method is activated and
another cycleis started.

21

4.2.3 Component classes

There are two things a user of the simulator hasto do in VB to be able to run a simulation. One of
them is creating component classes and the other is connecting them to the simulator.

When we want to design a new class corresponding to areal component there are several things to
look at. First of al we want the object to act as area one but on the other hand it must be
reasonably easy to use. Depending of the type of simulation there is a trade-off between accuracy
and speed. If we want better performance of the object it usually takes more time to calculate the
simulated parameters of the component and vice verse.

However in our model we already has a program, WM 3D, taking care of the mechanical simulation.
What we have to do is extracting information from the model in WM3D and trandlate it to useful
signalsin FX-control. Some properties are easy to gain; others take some calculations to obtain.
Fortunately, the APl to WM 3D gives us several ways to extract information, which isn’t supported
by the internal script languagein WM3D. Exploring al possibilities using script and API together
would probably give us quite good objects, but that is not one of the main goals of thisthesis.
Therefore only three components are modelled and in a*“ quick and dirty” fashion way. The most
important has been to show that a controller can control WM3D during runtime.

There are three classes, each one representing one type of component in the simulation model.
These are Sensor, Arm and InputController. They all have one method, init, in common. This
method is called during Set-up and is responsible for connecting a VB variable to WM3D. During
the simulation each component has its own methods depending on its functionality. Next we will
discuss each component in brief.

Sensor component

A sensor can be one many different types, optic, heat, pressure etc. Depending of the model,
different sensors will be implemented. The sensor modulated in our model is a contact sensor,
which gives atrue value when something is in contact with the sensor, otherwise false. There are 34
sensor objects that together act as 28 sensorsin the model. The idea behind each sensor is when two
objects are in contact with each other a signal should be set to true. Now, how do we detect this? If
we look at WM 3D one way would be to cal culate the distance between specific pointsin each
object. When the distance is smaller than a certain value the objects are in contact with each other.

If the objects are symmetrical it would, in general, be fairly easy to make the detection. But if they
were not, we would have to a bit more complex algorithm, which would take some CPU-timeto
execute and thereby slowing the simulation down and also increase the time to build the model.

Instead of doing al this by ourselves, we use amethod for body objects in the API for WM3D.

This method, IsInterfering, revealsif two specific objects are in contact. In WM 3D the sensor
consists of one single body. The size and position of the body depends on the specific model.
Unfortunately, this method has two bodies as input parameters and therefore we must test every pair
of bodiesthat are of interest. If any pair is true the sensor should be set to true otherwise false. But
this method is much easier to use than calculate the distance.

22

The sensor object has three methods, init and CheckPower and CheckPulse. The difference between
the last two onesis that CheckPulse only is set to true during the first executed frame when the two
objects are in contact. CheckPower remains true during the whole time while the objects arein
contact. Theinit method is used during connection and contains the sensor body and the trigger
body. During the simulation CheckPower and CheckPulse are called every time signals are parsed
from WM3D to FX.

Input_Controller component

The Input_Controller component is a simple object. It passes an integer value to an input object in
WM 3D that could be used in many ways. | our model an input controls the speed of amotor. The
motor has three levels 0-2 that mean stop, half and full speed. To set the value a method, setint is
implemented and the value from is parsed to the input object. Besides this method Input_Controller
has three more, init, start and hold. Start and Hold actually sets the value 1 and O. Init is used during
setup and it has one parameter, a WM 3D input object.

Arm component

Finally, the Arm component, which basically is the same as an Input_Controller, but it only, has
two levels. Soit isfair to say that it is more like a binary controller, and that properly would be a
better name. But it uses reversed logic which means that set is zero instead of one and vice verse.
Besides init it has two other methods, named Grip (zero) and Drop (one), which makes it easier to
use the component because one does not have to bother about the reversed logic.

4.2.4 Simulation modules

Besides the main class we have four modules that are strongly connected and works together with
the main class. Two of them, Simulation_FX_Connections and Simulation WM3_Connections
handle the initialisations of the signals and they are called once in each simulation. The other two,
Simulation_Fx_To WM3 and Simulation WM3_To_Fx are called once each scan during runtime
and transfer the signals between the programs.

They al have in common that the builder of the simulation model must edit these modules. For each
signal or group of signals, depending on design, in the simulation model the builder must program
the four modules according to their use.

The “ Connections” modules contain two methods, connection and reset. Set-up is called when Sim.
Setup_Connection is called in the beginning of the simulator execution. Connection is responsible
for connecting a signal between FX and WM3D. This means, create an object corresponding to a
signal in the OPC-server and register it. And of course create an object corresponding to a
component in WM3D and initiate it.

23

If we start looking at Simulation_FX_Connections, the builder must declare the object and connect
it to asignal in the OPC-server. Thisis donein the same way as we introduced the PLC_Ready
signal earlier. All signals are declared as Public and there is a naming convention, which states that
every object related to the OPC-server should begin with “FX_". If it isasignal al the following
letters are written in upper case, otherwise they are written in lower cases, but the first letter in each
word isstill in upper case. If it were an input to the OPC-server the letters IN_ will be added to the
object name and of course the name of an output object would be FX_OUT _. When Set-up is called
the signal isregistered in the OPC_Server and ready to be used. In the code it would look
something like this

Public FX_Test_Group As OPCGroup
Public FX_Test_Items As OPCltems
Public FX_IN_TESTSIGNAL As OPCltem

Sub Setup (Sim As Simulation_Main)
Set FX_Test_Group = Sim.OPC_Groups.Add(“Test_Group_Name”)
Set FX_Test_Items = FX_Test_Group.OPCltems
Set FX_IN_TESTSIGNAL = FX_Test_Items.Addlitem("OPC_SIGNAL_NAME”",
FX Test_Group.ClientHandle, , , ,)
End Sub

It isimportant to notice that the OPC_SIGNAL_NAME must be written exactly i.e. case sensitive
asin the controller. Otherwise it will not be found in the server. The other method, reset, is much
simpler because the only task it hasisto reset the value to the initial values of the component.

The other module, Simulation_ WM 3_Connections, is a bit more complicated. Of course we have to
declare the object but we also might have to declare some extra variables to support, depending how
the component is designed. One example is when we use the sensor component. Besides the sensor
object we need a variable to store the result of an OR function between a group of sensor. The
reason behind this is the implementation of the sensor. As discussed in the previous section the
ChechPower function works between two bodies. If we want a sensor to react upon more bodies we
must test each pair. An other way to deal with this could be done with an aternative implementation
of the Sensor component. Instead of one trigger body we could have entered several bodies, but the
work of the computer would remain the same. Let’s see how the sensor placed at the end of the
conveyor is modulated. First, alook at Simulation WM3_Connection

Public WM3_OUT_CONVEYOR_END(5) As New Sensor
Sub Setup(Sim As Simulation_Main)

WM3_OUT_CONVEYOR_END(0).Init Sim, "oody[239]", "body[233]"
WM3_OUT_CONVEYOR_END(1).Init Sim, "oody[239]", "body[234]"
WM3_OUT_CONVEYOR_END(2).Init Sim, "oody[239]", "body[235]"
WM3_OUT_CONVEYOR_END(3).Init Sim, "oody[239]", "body[236]"
WM3_OUT_CONVEYOR_END(4).Init Sim, "oody[239]", "body[237]"

24

Here each container (body[233]-[237]) acting as a sensor and will react upon contact with
body[239] with isthe real sensor. But we want the sensor the give us asigna when any of the
containers are in contact with the sensor. So, by using the OR function we can retrieve asingle
value that we can parse along to the controller. Thisis how it isimplemented in
Simulation WM3 _To FX

Public conveyor_end As Boolean

Sub Scan(Sim As Simulation_Main)
conveyor_end = False
ForI=0To4
conveyor_end = conveyor_end Or WM3_OUT_CONVEYOR_END(l).CheckPower()
Next

FX_IN_SW_CONTAINER_READY/(0).Write (conveyor_end)

We can see that the same naming conventions apply, except that FX __is substituted against WM3 .
One other major difference is that the object (in this case Sensor) has methods, whichis called
instead of the set statement. Once again it depend on how the component is designed. In this case
we start by calling the init method, which basically connects the object to an object in WM3D.

The last two modules are called during runtime. One of them contains the code that transfers the
signal value from FX to WM3. The other module is taking care of the signals in the opposite
direction, from WM3D to FX. They both contain a method named Scan, which is called oncein
each simulation cycle.

4.2.5 Arrangement in FrameworX and Working Model

In this section we will take a closer ook at some special arrangement that must be done in FX and
WM3D in order to make the ssmulator to work. First of all we must make sure of that both
programs have the same simulation speed i.e. the frame rate in WM3D and the scan rate in FX. This
could and should be done from the Sim Objects sim_init method. However, for some unknown
reason this hasn’t been implemented in the ssimulator and instead it has been done manually. It
should be quite easy to implement and in a full working simulator this must be done.

If welook at it in the “quick and dirty” way we begin with setting the scan rate variable. It should
be set to avalue no less than 50 ms even if the PLC is capable of handling scan rates down to 10
ms. Instead the limit is based on WM 3D capacity and therefore 50 ms are recommended as a
minimum value. In the model have chosen 250 msto avoid a slow simulation.

Scan rate in FX corresponds to frame rate in WM 3D but instead of assigning the time interval
between each scan we assign the number of calculated frames per second. A scan rate of 50 ms
corresponds to a frame rate of 20 frames per second. Even if it quite easy to calculate thisvalue it
should be done during the execution of sim_init to avoid any miss configuration.

25

Besides actually building the model in WM 3D we can do some settings to improve the simul ator
speed. One way is to remove unnecessary cal cul ations among some graphical objects. For example,
we can turn off collision detection for those objects that can never be in contact with each other.
There are severa other possibilities to improve the simulation but then one really has to know how
WM3D worksin detail to take advantage of those methods.

In FX, or more precisely in the controller, there is one signal in the program that belongs to the
simulator. The signal, PLC_Ready, was described in section 4.2.1 and its main purposeit to tell VB
that the controller is up and running and ready to start. There will be a closer look at thisin chapter
5 when the ladder code is examined in more detail.

26

27

5 Test Model

5.1 Description of the model

In the previous chapters we have focused on the simulator, but we also need something to simulate.
For that reason a simple test model, the machine, has been designed, fig 5.1. The main purpose is to
show how the signals from FX can control the machine in WM 3D and of course the other way
around. In brief the machine consists of two wheels, one conveyor and a number of grip arm
stations symmetric placed around the wheels edge. This could very well be a part taken from a
filling machine form the packaging industry. There is one small wheel with 3 arms and alarger
wheel with 10 arms.

Figure5.1 A simple graphical overview over the test model.

A package isfirst transported on the conveyor, and then picked up by a grip arm on the small
wheel. After three-quarter of aturn it is released to the larger wheel, which controls the package for
almost one turn before the grip arm drops the package and it disappears. The conveyor and the
small wheel act as a synchronisation module to the large wheel, which will fill and close the
package.

If we look at one package and describe what the machine is supposed to do, we have the following.
A package arrives at the beginning of the conveyor and is transported along the line until it reaches
the end of the conveyor. Here we need some kind of sensor (1) telling the controller that a package
isready for the small wheel. The wheels are running at continually speed so we need a second
sensor (2) to tell when the grip arms are in position to pick up the package. When the controller
receives the signal, it responds with a signal to the grip arm to grab the package. Actualy it isthe
grip arm that sends a signal when it has reached the sensor and thisis how the controller knows
which grip arm should grab the package. The package then moves along the small wheel until it
reaches the transfer point to the large wheel. Here the controller receives another signal (3), which
means that the package is in position to be released to the large wheel. In the same way the large
wheel has a sensor (4) at each grip arm. The controller then responds with one signal to the grip arm
at each wheel, so the transfer of the package could be complete. Now the package will move almost

28

one turn at the large wheel before the grip arm receives asignal (5) to release the package and it
will disappear.

29

Figure 5.2 A closer look over the sensors placement.

In a perfect machine there wouldn’t be any problem with delays or lost signals. Or the wheels
would always be synchronised. But what happens if asignal islost? In areal machine there could
very well be some problems between the two grip arms attached to the two wheels. The controller
program will not rel ease the package from the small wheel if the signal from the receiving grip arm
islost. Instead it will keep the package and continue. What will happen then? The package will
continue and eventually crash into the waiting package on the conveyor. Of course thisis not
acceptable. Instead a sensor (6) a bit further on the turn will sense the package and an emergency
drop will be performed. To test this during ssmulation there is a button in the monitor window,
which removes asigna from the controller so the package will continue.

In same way the grip arm on the large wheel would sense that there is no package in the grip and
the controller program should prevent any filling or other activities round the large wheel when
there is no package in place. In the model there is no action around the large wheel so the controller
program doesn’t bother about that, but there is arelease sensor (5) just before the grip arm is going
to get anew package from the small whes!.

30

5.2 The monitor

To watch the ssimulation there is a ssmple monitoring tool. It was the last thing implemented in the
simulator and in a“quick and dirty” way. However it fulfillsits purpose even if it could be
improved alot. Aswe can seinfig. 5.2 there is awindow placed besides the FX.view so we can se
al signal changes but still be able to control the simulator. The monitor iswrittenin VB and is
updated each time signals are transferred in any direction.

A minor error in the monitor is that thereisamix of Booleans and integers but they really mean the
same, false means zero and true means one. As mentioned earlier, signals labelled OUT _issignals
from FX and signalslabelled IN_are signalsto FX or asit says in the monitor from WM3. SW
means the small wheel and LW the large wheedl. There are three arms on the small wheel implying
that there are three columns after the signals name and ten arms around the large wheel.

! . Signals from FX-Control
- <Insert Project Name H
y QLT _SW_MOTOR _SPEED 2
: - = CUT_LW_MOTOR_SPEED 2
CUT_COMYEYOR_SPEEL: 1
Home OUT_SW_HOLD_CONTAINER 110
OUT_Li_HOLD_COMTAIMER 0001100000
@ | Main Cnntm.l Sitch - |® Signals from Working Model
! e ——— IN_CONVEYOR_END T
| Start | IN_SW _COMTAIMER,_READY True True True
IN_SW_ARM_AT_INPUT False False False
| Stop | IN_SW_ARM_AT_OUTPUT False False False
i IM_SW_RECEIVER_READY False False False
| Restat | : IN_SW _EMERGENCY RELEASE False False False
e @ IN_Lwy_CONTAINER_READY 0000000000 I Distortion
| IN_LW_ARM_AT_INPUT FFFFFFFFFFalse
o = IN_LW_ARM_AT_OUTPUT FEFFEFFTFFFalse
: | Skip Setup | = IN_LW_RECEIVER_READY 1111111111
............... = IN_LW¢_EMERGENCY_RELEASE 0O000000oao
4 | Yeg |
N Mo | i
Home Tools

Fig 5.3 FX-view and the monitor, side by side

Besides monitoring all signals we can also put in some failure in the simulation. When active we are
overridingthe IN_LW_CONTAINER_READY signa and the transfer between the wheels never
occurs. Instead we will be able to see that the IN_SW_EMERGENCY _RELEASE signal works as
it should.

31

5.3 The controller

The control program in the simulation is quite simple and its main purpose isto show that it is
possible to control amodel in WM 3. All development of the controller program isdonein FX. The
program is built in ladder and SFC and the full program can be found in Appendix A11. To be able
to understand the simulation better a brief explanation of how it works comes next.

[Frogram_Init ||_| F'|Initia|izati|:|n |

Mair_Contral SwitchOutput[0]

Program_Star| | P|Reset |

Skip_Setup. SwitchOutput[0] Skip_Setup SwitchOutput[1] td ain_Caonkral SwitchOutput[1]

It | [N[Mator_Setup | [Hun] | Stop |

Motor_Setup Ready bdain_Contral. S witchO utput[1]

Fiun I_ F [Start_bachine [Sh:lp]
M| Run_tachine

b ain_Contral SwitchOutpuk[1]

Stop H F | Stu:-p_Mau:hine|

b ain_Contral. SwitchOutput [2] b ain_Caontral. S witchO utput [0]

Program_Start Run

Fig 5.4 The controller described in SFC

First we have the SFC, which shows the different states that the machine can bein. Thereare 5
different states in the chart and almost all transitions are controlled from the main menu in FX-
View. When the controller is started we start in the state named “Program_Init” where the
initialisation takes place.

Before we explain the flow further afew words about how the SFC chart works are in order. The
dark grey boxes are the different states in the flow. Each state has a name and those boxes with
rounded corners with the same name as a state mean that the flow will jump to that state. The
remaining light-grey boxes have alink to a yellow box, which contain the name of those actions or
subroutines that are executed when we are in a certain state. Before each name thereis aletter ‘N’
or ‘P. Thelabel P meansthat the subroutine is executed only at the first scan after it enters a state.
Thisisuseful for initialisations of variables. The ‘N’ label means that the subroutines are executed

32

every scan until it leaves the state. Each subroutine is written in ladder and these are found in
Appendix. Between states there is a condition to fulfil before atransition is made. In thisflow a
transition takes place when the variables value istrue or if it is an integer greater than zero.

In the chart we can se that there are three variables, which control the transitions in the chart.
Main_Control, is an object in FX-View that controls the simulation status. The user of the simulator
can start, stop and reset the simulator from FX-view. This corresponds to three Boolean attributes to
Main_Control where SwitchOutput[0] is the start button and SwitchOutput[1] is the stop button and
finally SwitchOutput[2] is the reset button. A second object in FX-View, Skip set-up is controlling
weather we should skip the initialisation sequence, Motor_Setup, when running the test model. The
actual reason for this control isthat it takes several seconds to go though this sequence and to save
some time during every test this was an easy way to do a short cut. Finally thereis atransition
condition, Motor_Setup_ready, which isn’t controlled from FX-View. Instead this signals becomes
true when Motor_Setup is done.

Now, lets get back to the flow. As mentioned before there afive states in the machine, and all of
them have at |east one subroutine linked to them. To simplify it even further, we say that the
Initialisation, Motor_Setup, Start Machine and Stop_Machine subroutines are so easy that they
don’'t need any further explanation. The only thing they do is to change some variables value and
this can be seen in the ladder code in Appendix A11. Instead we will concentrate on the
Run_Machine subroutine.

In section 5.1 the model was described and there we saw that the machine consists of 13 grippers
placed around the wheels. When we run the machine each arm has it own piece of ladder code and
they all run independently of each other. Each piece is encapsul ated into an object and the
Run_Machine therefore consists of 13 objects of the same type. Instead of printing the ladder code
here, lets look at the functionality through an equivalent state-diagram, shown in fig 5.5.

IN_ARM_AT INPUT and IN_CONTAINER_READY

@ IN_EMERDGENCY _DROP

IN_EMERDGENCY DROP

<

IN_ARM AT OUTPUT

IM_EECEIVEER_READY

STATE fOUT_HOLD CONTAINER

Fig 5.5 An equivalent state-diagram over the grip arm

33

There are 4 statesin the diagram and it startsin S4. There are two requirements to meet to move to
S1. First there needs to be a container in position to be picked up. Second, the arm needs to be at the
right place. If both these criterid s are met, the container is picked up, i.e. the output signal to the
arm is set on and the arm should grab the container. Next, we wait for asignal that we arein
position to deliver the container and that takes us to state S2. Finally we wait for asignal from the
receiver, which takes us to S3 and then directly back to S4. If something goes wrong thereis an
emergency drop signal that will take us back to S4 and the container is dropped immediately.

Since the container is transferred between the small and the large wheel these must be synchronised.
They must have the same |ead-time and the grip arms must be in correct position for at transfer to
occur. For that matter there is a subroutine, Motor_Setup, which will set the wheel in right position.
Thisis done by running each motor at alower speed until they reach a senor. When both wheels
signals that they arein right position both motors will continue in full speed.

6 Conclusions

6.1 Result

There are three mgjor results to point out from thisthesis. First and of course the most important is
that the idea behind the simulator structure works. It was possible to connect these two programs
with help of athird tool and let the simulator work in accurate time. The real drawback wasthat it is
far from real-time simulation.

Second point isthat if both programs would have used the same communication system i.e. OPC
we would have had a much simpler and better core. Instead of alot of connection modules we could
connect the signals directly to each other and the core should only contain the timing mechanism
and the monitor. But this is something the industry can work on by pushing the software
manufacturers to supply them with better tools. Originally WM 3 wasn't designed to handle external
signals during simulation and therefore there was no need for the manufacturer to integrate any
common communication interface like OPC, but now there is a reason.

Third point is about designing the model and core code as efficient as possible. Even if we will get
faster computers they cannot make up for everything. We need to think carefully how the logic
should be structured in the simulator and how the code can be optimised, independently of where it
islocated, i.e. in the core or in Working Modéel. If the script language in WM 3 would have been a
bit more powerful we could have smoother calculations and the core wouldn’t have to do anything
el se besides controlling the flow.

Then we may ask ourselves, if WM3 isthe best program for this purpose?

6.2 Possible improvements

Besides changing the hardware, which can improve the simulation speed, there are afew thingsto
do to the simulator in general.

First, all signals are hard coded into the four VB modules, which takes sometime and is
inconvenient. It should at least be reduced to one module. Instead each object should have some
more method that takes care of al initialisation and connection in a more automatic way.

The core should be replaced by stand-alone program, perhaps written in Java or C++. This should
provide afaster transmission between FX and WM 3. One problem here is that thereisno API for
C++ or Javaavailable but since thereisaVB-API it shouldn’t be any problem to generate one for
C++.

We could also improve the simulation of failure by adding a property to each signal. This property

could contain the fail rate of the signal. The rate could determine how often asignal change would
be lost or randomly changed.

35

There are some overall simulation properties like frame rate and scan rate that should be controlled
from the ssimulation main instead of changing them separately inside FX and WM 3.

A great improvement would be a connection tool where we could map signals from FX to WM3
and vice verse. There is some kind of support for this through the VB-API between OPC and VB
but between the VB and WM3 it must be implemented from scratch. To achieve thisin asimple
way al logic that is performed in VB to support WM 3 should be moved to WM 3. The drawback
hereisthat WM 3 script language is limited, as mentioned in 2.2.2, but newer versions might
provide better functions and a deeper insight into what can be done with the script may overcome
this.

6.3 Future developments

When we have a stable and functional simulation core there are several possible expanding tools to
consider. Below thereisalist with several different tools with abrief explanation. They are not
ordered in any particular way.

Graphical construction tool — This would make the simulator much more user friendly and easier to
build the model and understand the simulation.

Libraries with objects — Each new object constructed in the simulator should be added in the library
structure in order to build up a powerful toolbox.

Report generator — If we want to run longer simulations we must have atool that can summarize
the simulation.

Finally, aquick look in the systems performance monitor, at the particular computer we used,
revealsthat it is WM 3 that consumes around 75% of the CPU capacity during asimulation. Soin
order to have a good simulator WM 3 must be improved quite a bit. One way could be to use two
computers and separate WM 3 from the rest. But thisis a hardware issue and as mention before
changing the hardware can increase the simulation speed enormous.

36

A Appendix

Al

API
CAD
CPU
DCOM
FX
GUI
HMI
I/O
IEEE
OLE
OPC
PLC
SFC
VB
WM3

Nomenclature

Application Programming Interface
Computer Aided Design

Central Processing Unit

Distributed Component Object Model
FX-Control

Graphical User Interface

Human Machine Interface

Input Output

Institution of Electrical and Electronic Engineers
Object Linking and Embedding

OLE for Process Control
Programmable Logic Controller
Sequential Flow Chart

Visual Basic

Working Model 3D

37

A2 Form Simulation_View

This form contains the monitor and is also the starting application in Visual Basic. When
the form is activated the simulation core is started. Each time here is a transport of value
the Update method is called. Beside the quit button, which ends the application there is a
distortion button that removes a signal to simulate a failure.

Public Sim As New Simulation_Main
Private Main_Control As Boolean

Private Sub Distortion_Click() // Toggles distortions
Sim.Interference = Distortion.Value
End Sub

Private Sub Quit_Button_Click() / Ends application
Sim.CloseSim
Set Sim = Nothing

End Sub

Private Sub UserForm_Activate() // Executed on activation
Sim.Init
Sim.Setup_Connections
Sim.Sim_Control.Write (8)

End Sub

Public Sub Update() // Updates monitor values
Il The sensor at the conveyors end
IN_CONVEYOR_END.Caption = conveyor_end

/I The out signal the griparm

FX_OUT_SW_HOLD_CONTAINER_0.Caption = FX_OUT_SW_HOLD_CONTAINER(0).Value
FX_OUT_SW_HOLD_CONTAINER_1.Caption = FX_OUT_SW_HOLD_CONTAINER(1).Value
FX_OUT_SW_HOLD_CONTAINER_2.Caption = FX_OUT_SW_HOLD_CONTAINER(2).Value

Il The sensor which signals if there is a package ready on the conveyor

FX_IN_SW_CONTAINER_READY_0.Caption = FX_IN_SW_CONTAINER_READY(0).Value
FX_IN_SW_CONTAINER_READY_1.Caption = FX_IN_SW_CONTAINER_READY(1).Value
FX_IN_SW_CONTAINER_READY_2.Caption = FX_IN_SW_CONTAINER_READY(2).Value

Il The sensor which signals if the arm is in position to grab a package at the small wheel
FX_IN_SW_ARM_AT_INPUT_0.Caption = FX_IN_SW_ARM_AT_INPUT(0).Value
FX_IN_SW_ARM_AT_INPUT_1.Caption = FX_IN_SW_ARM_AT _INPUT(1).Value
FX_IN_SW_ARM_AT_INPUT_2.Caption = FX_IN_SW_ARM_AT_INPUT(2).Value

38

Il The sensor which signals if the package is in position to be released to the large wheel
FX_IN_SW_ARM_AT_OUTPUT _0.Caption = FX_IN_SW_ARM_AT_OUTPUT(0).Value
FX_IN_SW_ARM_AT_OUTPUT _1.Caption = FX_IN_SW_ARM_AT_OUTPUT(1).Value
FX_IN_SW_ARM_AT_OUTPUT_2.Caption = FX_IN_SW_ARM_AT_OUTPUT(2).Value

Il The sensor which signals if there is an arm on the large wheel in position to receive a package
FX_IN_SW_RECEIVER_READY_0.Caption = FX_IN_SW_RECEIVER_READY(0).Value
FX_IN_SW_RECEIVER_READY_1.Caption = FX_IN_SW_RECEIVER_READY(1).Value
FX_IN_SW_RECEIVER_READY_2.Caption = FX_IN_SW_RECEIVER_READY(2).Value

Il The sensor which signals if the package isn't released in a normal way

FX_IN_SW_EMERGENCY_RELEASE_0.Caption = FX_IN_SW_EMERGENCY_RELEASE(0).Value
FX_IN_SW_EMERGENCY_RELEASE_1.Caption = FX_IN_SW_EMERGENCY_RELEASE(1).Value
FX_IN_SW_EMERGENCY_RELEASE_2.Caption = FX_IN_SW_EMERGENCY_RELEASE(2).Value

I Motor and conveyor speed controls

FX_OUT_SW_MOTOR_SPEED_.Caption = CStr(FX_OUT_SW_MOTOR_SPEED.Value)
FX_OUT_LW_MOTOR_SPEED .Caption = CStr(FX_OUT_LW_MOTOR_SPEED.Value)
FX_OUT_CONVEYOR_SPEED _.Caption = CStr(FX_OUT_CONVEYOR_SPEED.Value)

/I The out signal the griparm

FX_OUT_LW_HOLD_CONTAINER_0.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_1.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_2.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_3.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_4.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_5.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_6.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_7.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_8.Caption = FX_OUT_LW_HOLD_CONTAINER
FX_OUT_LW_HOLD_CONTAINER_9.Caption = FX_OUT_LW_HOLD_CONTAINER

0
1
2
3
4
5
6
7
8
9

Value
Value
Value
Value
Value
Value
Value
Value
Value
Value

—~ o~~~ A A AR AaA| A
— N o S~ e —

Il The sensor which signals if there is an arm on the small wheel in position to deliver a package
FX_IN_LW_RECEIVER_READY_0.Caption = FX_IN_LW_RECEIVER_READY(0).Value
FX_IN_LW_RECEIVER_READY_1.Caption = FX_IN_LW_RECEIVER_READY(1).Value
FX_IN_LW_RECEIVER_READY_2.Caption = FX_IN_LW_RECEIVER_READY(2).Value
FX_IN_LW_RECEIVER_READY_3.Caption = FX_IN_LW_RECEIVER_READY(3).Value
FX_IN_LW_RECEIVER_READY_4.Caption = FX_IN_LW_RECEIVER_READY(4).Value
FX_IN_LW_RECEIVER_READY_5.Caption = FX_IN_LW_RECEIVER_READY(5).Value
FX_IN_LW_RECEIVER_READY_6.Caption = FX_IN_LW_RECEIVER_READY(6).Value
FX_IN_LW_RECEIVER_READY_7.Caption = FX_IN_LW_RECEIVER_READY(7).Value
FX_IN_LW_RECEIVER_READY_8.Caption = FX_IN_LW_RECEIVER_READY(8).Value
FX_IN_LW_RECEIVER_READY_9.Caption = FX_IN_LW_RECEIVER_READY(9).Value

39

Il The sensor which signals if there is a package ready on the small wheel

FX_IN_LW_CONTAINER_READY_0.Caption = FX_IN_LW_CONTAINER_READY(0).Value
FX_IN_LW_CONTAINER_READY_1.Caption = FX_IN_LW_CONTAINER_READY(1).Value
FX_IN_LW_CONTAINER_READY_2.Caption = FX_IN_LW_CONTAINER_READY(2).Value
FX_IN_LW_CONTAINER_READY_3.Caption = FX_IN_LW_CONTAINER_READY(3).Value
FX_IN_LW_CONTAINER_READY_4.Caption = FX_IN_LW_CONTAINER_READY(4).Value
FX_IN_LW_CONTAINER_READY_5.Caption = FX_IN_LW_CONTAINER_READY(5).Value
FX_IN_LW_CONTAINER_READY_6.Caption = FX_IN_LW_CONTAINER_READY/(6).Value
FX_IN_LW_CONTAINER_READY_7.Caption = FX_IN_LW_CONTAINER_READY(7).Value
FX_IN_LW_CONTAINER_READY_8.Caption = FX_IN_LW_CONTAINER_READY(8).Value
FX_IN_LW_CONTAINER_READY_9.Caption = FX_IN_LW_CONTAINER_READY(9).Value

Il The sensor which signals if the arm is in position to grab a package at the large wheel
FX_IN_LW_ARM_AT_INPUT_0.Caption = FX_IN_LW_ARM_AT_INPUT(0).Value
FX_IN_LW_ARM_AT_INPUT_1.Caption = FX_IN_LW_ARM_AT_INPUT(1).Value
FX_IN_LW_ARM_AT_INPUT_2.Caption = FX_IN_LW_ARM_AT_INPUT(2).Value
FX_IN_LW_ARM_AT_INPUT_3.Caption = FX_IN_LW_ARM_AT_INPUT(3).Value
FX_IN_LW_ARM_AT_INPUT_4.Caption = FX_IN_LW_ARM_AT_INPUT(4).Value
FX_IN_LW_ARM_AT_INPUT_5.Caption = FX_IN_LW_ARM_AT_INPUT(5).Value
FX_IN_LW_ARM_AT_INPUT_6.Caption = FX_IN_LW_ARM_AT_INPUT(6).Value
FX_IN_LW_ARM_AT_INPUT_7.Caption = FX_IN_LW_ARM_AT_INPUT(7).Value
FX_IN_LW_ARM_AT_INPUT_8.Caption = FX_IN_LW_ARM_AT_INPUT(8).Value
FX_IN_LW_ARM_AT_INPUT_9.Caption = FX_IN_LW_ARM_AT_INPUT(9).Value

Il The sensor which signals if the package is in position to be released

FX_IN_LW_ARM_AT_OUTPUT _0.Caption = FX_IN_LW_ARM_AT _OUTPUT
FX_IN_LW_ARM_AT_OUTPUT _1.Caption = FX_IN_LW_ARM_AT_OUTPUT
FX_IN_LW_ARM_AT_OUTPUT _2.Caption = FX_IN_LW_ARM_AT OUTPUT
FX_IN_LW_ARM_AT_OUTPUT _3.Caption = FX_IN_LW_ARM_AT_OUTPUT
FX_IN_LW_ARM_AT OUTPUT 4.Caption = FX_IN_LW_ARM_AT _OUTPUT
FX_IN_LW_ARM_AT_OUTPUT _5.Caption = FX_IN_LW_ARM_AT_OUTPUT
FX_IN_LW_ARM_AT OUTPUT_6.Caption = FX_IN_LW_ARM_AT _OUTPUT
FX_IN_LW_ARM_AT_OUTPUT _7.Caption = FX_IN_LW_ARM_AT_OUTPUT
FX_IN_LW_ARM_AT OUTPUT 8.Caption = FX_IN_LW_ARM_AT _OUTPUT
FX_IN_LW_ARM_AT_OUTPUT_9.Caption = FX_IN_LW_ARM_AT_OUTPUT

End Sub

0
1
2
3
4
5
6
7
8
9

Value
Value
Value
Value
Value
Value
Value
Value
Value
Value

AN N N N SN N S S S
—_— N N ~— ~— —

40

A3 Class Simulation_Main

This object contains the simulator core.When the object |Is created the Init method should be called
to initiaise the smulator.

Public App As Wm3d.Application
Public Doc As Wm3d.Document
Public CollectionOfBodies As Bodies
Public CollectionOfinputs As Inputs
Public Frame As Integer

Public OPC_Server As OPCServer
Public OPC_Groups As OPCGroups

Public WithEvents Sim_Control_Group As OPCGroup
Public Sim_Control_Items As OPCltems

Public Sim_Control As OPCltem

Public Main_Control_Start As OPCltem

Public Main_Control_Stop As OPCltem

Public Main_Control_Restart As OPCltem

Public PLC_Ready As OPCltem

Public Sub Setup_Connections() // Handles initial signals connections
Simulation_WM3_Connections.Setup Me
Simulation_FX_Connections.Setup Me
Simulation_FX_Connections.Reset Me

End Sub

Public Sub Reset() / Resets the simulation
Simulation_FX_Connections.Reset Me
Frame =0
Doc.GoTo (0)

Doc.RunTo (1)
Doc.EraseHistory
End Sub

Public Sub OneScan() // Performs one simulation cycle
Simulation_Fx_To_WM3.Scan Me
Call Simulation_Veiw.Update
Frame = Frame + 1
Doc.RunTo (Frame)
Simulation_ WM3_To_FX.Scan Me
Call Simulation_Veiw.Update
Sim_Control.Write (8)
End Sub

41

Public Sub Init() // Initialise the simulation core
Set App = GetObject(, "WM3D.Application")
Set Doc = App.ActiveDocument
Doc.Reset
App.Activate
Set CollectionOfBodies = Doc.Bodies
Set CollectionOfinputs = Doc.Inputs

Set OPC_Server = New OPCServer
OPC_Server.Connect ("fxControl.OPCServer.1")
Set OPC_Groups = OPC_Server.OPCGroups

Set Sim_Control_Group = OPC_Groups.Add("Sim_Control_Group")

Sim_Control_Group.UpdateRate = 250

Sim_Control_Group.IsActive = True

Sim_Control_Group.IsSubscribed = True

Set Sim_Control_Items = Sim_Control_Group.OPCltems

Set Sim_Control = Sim_Control_Items.Addltem("#Command", Sim_Control_Group.ClientHandle)

Set PLC_Ready = Sim_Control_ltems.AddItem("PLC_Ready", Sim_Control_Group.ClientHandle)

Set Main_Group_Items = Sim_Control_Group.OPCltems

Set Main_Control_Start = Main_Group_Items.Addltem("Main_Control. SwitchOutput[0]",
Sim_Control_Group.ClientHandle)

Set Main_Control_Stop = Main_Group_Items.Addltem("Main_Control.SwitchOutput[1]",
Sim_Control_Group.ClientHandle)

Set Main_Control_Restart = Main_Group_Iltems.Addltem("Main_Control.SwitchOutput[2]",

Sim_Control_Group.ClientHandle)

PLC_Ready.Read (2)
While Not (PLC_Ready.Value = 1)
PLC_Ready.Read (2)
Wend
End Sub

Public Sub Sim_Control_Group_DataChange(ByVal TransactionID As Long, ByVal Numltems As Long,
ClientHandles() As Long, ItemValues() As Variant, Qualities() As Long, TimeStamps() As Date)
Il An event, which is trigged from fx when one scan is done
If Main_Control_Start Then
Call OneScan
End If
If Main_Control_Restart Then
Call Reset
End If
End Sub

Public Sub CloseSim() // Close down connections
OPC_Server.Disconnect
End Sub

42

A4 Class Input_Controller

A simple discrete controller with two predefined values but also has a method to set any discrete value
Private WmObjectinput As Wm3d.Input

Public Sub Init(Sim As Simulation_Main, InputObjectName As String) // Initialise the object
Set CollectionOfinputs = Sim.CollectionOfinputs
Set WmObjectinput = CollectionOfinputs.ltem(InputObjectName)
WmObjectinput.InputValue = 0

End Sub

Public Sub Start() // Sets the controller to one
WmObjectinput.InputValue = 1
End Sub

Public Sub Hold() // reset the value to zero
WmObjectinput.InputValue = 0
End Sub

Public Sub SetInt(x) // Sets any diskrete value

WmObjectinput.InputValue = x
End Sub

43

A5 Class Arm

A simpler two level switch that uses reversed logic.

Private WmObjectinput As Wm3d.Input
Public IsActive As Boolean

Public Sub Init(Sim As Simulation_Main, WmObjectName As String) / Initialse the object
Set WmObjectinput = Sim.CollectionOfinputs.ltem(WmObjectName)
WmObjectinput.InputValue = 1
IsActive = False

End Sub

Public Sub Drop() // Turn the switch off
WmObjectinput.InputValue = 1
IsActive = False

End Sub

Public Sub Grip()// Turn the switch on
WmObijectinput.InputValue = 0
IsActive = True

End Sub

A6 Class Sensor

A simple sensor which gives a signal if two object is interfering with each other.

Private SensorObjectBody As Wm3d.Body
Private TriggerObjectBody As Wm3d.Body
Private CollectionOfBodies As Bodies
Private SensorMemory As Boolean

Public Sub Init(Sim As Simulation_Main, SensorObjectName As String, TriggerObjectName As String)
Il nitialise the object
Set CollectionOfBodies = Sim.CollectionOfBodies
Set SensorObjectBody = CollectionOfBodies.ltem(SensorObjectName)
Set TriggerObjectBody = CollectionOfBodies.ltem(TriggerObjectName)
End Sub

Public Function CheckPower() // Checks if the two object are interfering
CheckSensor = SensorObjectBody.IsInterferingWith(TriggerObjectBody, True)
CheckPower = CheckSensor

End Function

Public Function CheckPulse() // Checks only for the first scan they interfere
CheckSensor = SensorObjectBody.IsInterferingWith(TriggerObjectBody, True)
TempMemory = CheckSensor
CheckSensor = (Not SensorMemory) And CheckSensor
SensorMemory = TempMemory
CheckPulse = CheckSensor

End Function

45

A7 Module Simulation_FX Connection

This module connects every signal that is used between FX and the simulator core. The names in the OPC
server are case sensitive.

Public FX_Conveyor_Group As OPCGroup

Public FX_Conveyor_ltems As OPCltems

Public FX_OUT_CONVEYOR_SPEED As OPCltem

Public FX_SW_Group As OPCGroup

Public FX_SW_Items As OPCltems

Public FX_OUT_SW_MOTOR_SPEED As OPCltem

Public FX_OUT_SW_HOLD_CONTAINER(3) As OPCltem
Public FX_IN_SW_RECEIVER_READY(3) As OPCltem
Public FX_IN_SW_CONTAINER_READY(3) As OPCltem
Public FX_IN_SW_ARM_AT_OUTPUT(3) As OPCltem
Public FX_IN_SW_EMERGENCY_RELEASE(3) As OPCltem
Public FX_IN_SW_ARM_AT_INPUT(3) As OPCltem

Public FX_LW_Group As New OPCGroup

Public FX_LW_ltems As OPCltems

Public FX_OUT_LW_MOTOR_SPEED As OPCltem

Public FX_OUT_LW_HOLD_CONTAINER(10) As OPCltem
Public FX_IN_LW_RECEIVER_READY(10) As OPCltem
Public FX_IN_LW_CONTAINER_READY(10) As OPCltem
Public FX_IN_LW_ARM_AT_OUTPUT(10) As OPCltem
Public FX_IN_LW_EMERGENCY_RELEASE(10) As OPCltem
Public FX_IN_LW_ARM_AT_INPUT(10) As OPCltem

Sub Reset(Sim As Simulation_Main) // Resets all signal to initial value
FX_OUT_CONVEYOR_SPEED.Write (0)

FX_OUT_SW_MOTOR_SPEED.Write (0)

Forl=0To?2
FX_OUT_SW_HOLD_CONTAINER(l).Write (0)
FX_IN_SW_RECEIVER_READY(l).Write (0)
FX_IN_SW_CONTAINER_READY(I).Write (0)
FX_IN_SW_ARM_AT_OUTPUT(l).Write (0)
FX_IN_SW_EMERGENCY_RELEASE(I).Write (0)
FX_IN_SW_ARM_AT_INPUT(l).Write (0)

Next

FX_OUT _LW_MOTOR_SPEED.Write (0)

Forl=0To9
FX_OUT_LW_HOLD_CONTAINER(I).Write (0)
FX_IN_LW_RECEIVER_READY(I).Write (0)
FX_IN_LW_CONTAINER_READY(I).Write (0)
FX_IN_LW_ARM_AT_OUTPUT(l).Write (0)
FX_IN_LW_EMERGENCY_RELEASE(l).Write (0)
FX_IN_LW_ARM_AT_INPUT(l).Write (0)

46

Next
End Sub

Sub Setup(Sim As Simulation_Main) / Connects all signal and sets them to initial value
With Sim
Set FX_Conveyor_Group = .0OPC_Groups.Add("Conveyor")
Set FX_Conveyor_ltems = FX_Conveyor_Group.OPCltems
Set FX_OUT_CONVEYOR_SPEED = FX_Conveyor_ltems.Addltem("OUT_CONVEYOR_SPEED",
FX_Conveyor_Group.ClientHandle)
Set FX_SW_Group =.0OPC_Groups.Add("Small_Wheel")
Set FX_SW._Items = FX_SW_Group.OPCltems
Set FX_OUT_SW_MOTOR_SPEED = FX_SW_lItems.AddItem("OUT_SW_MOTOR_SPEED",
FX_SW_Group.ClientHandle)
ForI=0To2
Set FX_OUT_SW_HOLD_CONTAINER(l) = FX_SW_ltems.AddItem("SW_ARM[" + CStr(l) +
".OUT_HOLD_CONTAINER", FX_SW_Group.ClientHandle)
Set FX_IN_SW_RECEIVER_READY(I) = FX_SW_Items.Addltem("SW_ARM[" + CStr(l) +
"l.IN_RECEIVER_READY", FX_SW_Group.ClientHandle)
Set FX_IN_SW_CONTAINER_READY(l) = FX_SW_Items.Addltem("SW_ARM[" + CStr(l) +
" IN_CONTAINER_READY", FX_SW_Group.ClientHandle)
Set FX_IN_SW_ARM_AT_OUTPUT(l) = FX_SW_lItems.Addltem("SW_ARM][" + CStr(l) +
"lIN_ARM_AT_OUTPUT", FX_SW_Group.ClientHandle)
Set FX_IN_SW_EMERGENCY_RELEASE(l) = FX_SW_Items.Addltem("SW_ARM[" + CStr(l) +
" IN_EMERGENCY_DROP", FX_SW_Group.ClientHandle)
Set FX_IN_SW_ARM_AT_INPUT(l) = FX_SW_ltems.AddItem("SW_ARM][" + CStr(l) +
"l IN_ARM_AT_INPUT", FX_SW_Group.ClientHandle)
Next

Set FX_LW_Group = .OPC_Groups.Add("Large_Wheel")
Set FX_LW_Items = FX_LW_Group.OPCltems
Set FX_OUT_LW_MOTOR_SPEED = FX_LW_Items.Addltem("OUT_LW_MOTOR_SPEED",
FX_LW_Group.ClientHandle)
ForI=0To9
Set FX_OUT_LW_HOLD_CONTAINER(I) = FX_LW_Items.Addltem("LW_ARM[" + CStr(l) +
"l.OUT_HOLD_CONTAINER", FX_LW_Group.ClientHandle)
Set FX_IN_LW_RECEIVER_READY(l) = FX_LW_ltems.Addltem("LW_ARM[" + CStr(l) +
"lIN_RECEIVER_READY", FX_LW_Group.ClientHandle)
Set FX_IN_LW_CONTAINER_READY(l) = FX_LW._ltems.Addltem("LW_ARM[" + CStr(l) +
" IN_CONTAINER_READY", FX_LW_Group.ClientHandle)
Set FX_IN_LW_ARM_AT_OUTPUT(l) = FX_LW_Items.AddItem("LW_ARM][" + CStr(l) +
"lIN_ARM_AT_OUTPUT", FX_LW_Group.ClientHandle)
Set FX_IN_LW_EMERGENCY_RELEASE(l) = FX_LW_ltems.Addltem("LW_ARM[" + CStr(l) +
" IN_EMERGENCY_DROP", FX_LW_Group.ClientHandle)
Set FX_IN_LW_ARM_AT_INPUT(l) = FX_LW._ltems.Addltem("LW_ARM[" + CStr(l) +
"lIN_ARM_AT_INPUT", FX_LW_Group.ClientHandle)
Next
End With
End Sub

47

A8 Module Simulation_ WM3 Connection

This module connects every signal that is used between WM3 and the simulator core. The name of the object
in the WM3 model is used to connect

Public WM3_IN_CONVEYOR_SPEED As New Input_Controller

Public WM3_OUT_CONVEYOR_END(5) As New Sensor

Public WM3_CONVEYOR_Package_List(4) As String

Public WM3_IN_LOAD_NEW_PACKAGE_ON_CONVEYOR As New Input_Controller

Public WM3_IN_SW_MOTOR_SPEED As New Input_Controller
Public WM3_OUT_SW_ARM_AT _INPUT(3) As New Sensor

Public WM3_OUT_SW_ARM_AT_OUTPUT(3) As New Sensor

Public WM3_OUT_SW_EMERGENCY_RELEASE(3) As New Sensor
Public WM3_IN_SW_HOLD_CONTAINER(3) As New Input_Controller

Public WM3_IN_LW_MOTOR_SPEED As New Input_Controller

Public WM3_OUT_LW_ARM_AT _INPUT(10) As New Sensor

Public WM3_OUT_LW_ARM_AT_OUTPUT(10) As New Sensor

Public WM3_IN_LW_HOLD_CONTAINER(10) As New Input_Controller

Sub Setup(Sim As Simulation_Main) // Connects all signal and sets them to initial value

WM3_IN_CONVEYOR_SPEED.Init Sim, "Conveyor_Motor[240]"
WM3_IN_LOAD_NEW_PACKAGE_ON_CONVEYOR.Init Sim, “input[244]"

WM3_OUT_CONVEYOR_END(0).Init Sim, "body[239]", "body[233]"
WM3_OUT_CONVEYOR_END().Init Sim, "body[239]", "body[234]"
WM3_OUT_CONVEYOR_END(2).Init Sim, "body[239]", "body[235]"
WM3_OUT_CONVEYOR_END(3).Init Sim, "body[239]", "body[236]"
WM3_OUT_CONVEYOR_END(4).Init Sim, "body[239]", "body[237]"

WM3_IN_SW_MOTOR_SPEED.Init Sim, "SW_Motor[45]"

WM3_OUT_SW_ARM_AT_INPUT(0).Init Sim, "body[46]", "body[10]"
WM3_OUT_SW_ARM_AT_INPUT(L).Init Sim, "body[48]", "body[10]"
WM3_OUT_SW_ARM_AT_INPUT(2).Init Sim, "body[50]", "body[10]"

WM3_OUT_SW_ARM_AT_OUTPUT(0).Init Sim, "body[59]", "body[12]"
WM3_OUT_SW_ARM_AT_OUTPUT(L).Init Sim, "body[61]", "body[12]"
WM3_OUT_SW_ARM_AT_OUTPUT(2).Init Sim, "body[63]", "body[12]"

WM3_OUT_SW_EMERGENCY_RELEASE(0).Init Sim, "body[59]", "body[274]"

WM3_OUT_SW_EMERGENCY_RELEASE(L).Init Sim, "body[61]", "body[274]"
WM3_OUT_SW_EMERGENCY_RELEASE(2).Init Sim, "body[63]", "body[274]'

48

WM3_IN_SW_HOLD_CONTAINER(0).Init Sim, "input[246]"
WM3_IN_SW_HOLD_CONTAINER(L).Init Sim, "input[248]"
WM3_IN_SW_HOLD_CONTAINER(2).Init Sim, "input[250]"

WM3_IN_LW_MOTOR_SPEED.Init Sim, "LW_Motor[47]"

WM3_OUT LW_ARM_AT INPUT
WM3_OUT_LW_ARM_AT INPUT
WM3_OUT LW _ARM_AT INPUT
WM3_OUT_LW_ARM_AT INPUT
WM3_OUT LW _ARM_AT INPUT
WM3_OUT_LW_ARM_AT INPUT
WM3_OUT LW _ARM_AT INPUT
WM3_OUT_LW_ARM_AT INPUT
WM3_OUT LW _ARM_AT INPUT
WM3_OUT_LW_ARM_AT INPUT

0
1
2
3
4
5
6
7
8
9

Init Sim, "body[80]", "body[11]"
Init Sim, "body[82]", "body[11]"
Init Sim, "body[84]", "body[11]"
Init Sim, "body[86]", "body[11]"
Init Sim, "body[88]", "body[11]"
Init Sim, "body[90]", "body[11]"
Init Sim, "body[92]", "body[11]"
Init Sim, "body[94]", "body[11]"
Init Sim, "body[96]", "body[11]"
Init Sim, "body[98]", "body[11]"

P~ A~ A~ A~ o~~~ o~~~
M e N o~ ~— —

WM3_OUT_LW_ARM_AT OUTPUT
WM3_OUT_LW_ARM_AT OUTPUT
WM3_OUT_LW_ARM_AT OUTPUT
WM3_OUT LW _ARM_AT OUTPUT
WM3_OUT_LW_ARM_AT OUTPUT
WM3_OUT LW _ARM_AT OUTPUT
WM3_OUT_LW_ARM_AT OUTPUT
WM3_OUT_LW_ARM_AT OUTPUT
WM3_OUT_LW_ARM_AT OUTPUT
WM3_OUT LW _ARM_AT OUTPUT

0).Init Sim, "body[80]", "body[275]"
1).Init Sim, "body[82]", "body[275]"
2).Init Sim, "body[84]", "body[275]"
3).Init Sim, "body[86]", "body[275]"
4).Init Sim, "body[88]", "body[275]"
5).Init Sim, "body[90]", "body[275]"
6).Init Sim, "body[92]", "body[275]"
7).Init Sim, "body[94]", "body[275]"
8).Init Sim, "body[96]", "body[275]"
9).Init Sim, "body[98]", "body[275]"

P~ A~ A~ A~ A~ o~ o~~~ —~

WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER
WM3_IN_LW_HOLD_CONTAINER

0
1
2
3
4
5
6
7
8
9

Init Sim, "input[251]"
Init Sim, "input[253]"
Init Sim, "input[255]"
Init Sim, "input[257]"
Init Sim, "input[259]"
Init Sim, "input[261]"
Init Sim, "input[263]"
Init Sim, "input[265]"
Init Sim, "input[267]"
Init Sim, "input[269]"

I~~~ N A A AAAaA]| A
— S e~ N o e e —

Sim.CollectionOfBodies.ltem("body[233]").SetConfig 0.78, -0.12, 0.142, 0, 0, 0, True
Sim.CollectionOfBodies.ltem("body[234]").SetConfig 0.78, -0.065, 0.142, 0, 0, 0, True
Sim.CollectionOfBodies.ltem("body[235]").SetConfig 0.78, -0.01, 0.142, 0, 0, 0, True
Sim.CollectionOfBodies.ltem("body[236]").SetConfig 0.78, 0.045, 0.142, 0, 0, 0, True
Sim.CollectionOfBodies.ltem("body[237]").SetConfig 0.78, 0.1, 0.142, 0, 0, 0, True

End Sub

49

A9 Module Simulation_FX To WM3

This module contains the code which transfers signals from FX to WM3 and is called once during every
simulation cycle

Private load_new_package _on_conveyor As Integer
Private load_new_package_on_conveyor_memory As Integer

Sub Scan(Sim As Simulation_Main) // Copy values from FX to WM3
FX_OUT_SW_MOTOR_SPEED.Read (2)
WM3_IN_SW_MOTOR_SPEED.SetInt (FX_OUT_SW_MOTOR_SPEED.Value)

FX_OUT LW_MOTOR_SPEED.Read (2)
WM3_IN_LW_MOTOR_SPEED.Setlnt (FX_OUT LW_MOTOR_SPEED.Value)

FX_OUT_CONVEYOR_SPEED.Read (2)
WM3_IN_CONVEYOR_SPEED.Setint (FX_OUT_CONVEYOR_SPEED.Value)

load_new_package on_conveyor =0
For1=0To?2
FX_OUT_SW_HOLD_CONTAINER(l).Read (2)
WM3_IN_SW_HOLD_CONTAINER(]).SetInt (FX_OUT_SW_HOLD_CONTAINER(]).Value)
load_new_package_on_conveyor = load_new_package_on_conveyor +
FX_OUT_SW_HOLD_CONTAINER(l).Value
Next

ForI=0To9
FX_OUT_LW_HOLD_CONTAINER(l).Read (2)
WM3_IN_LW_HOLD_CONTAINER().SetInt (FX_OUT_LW_HOLD_CONTAINER(]).Value)
Next

If Not Hold_Conveyor Then
If load_new_package_on_conveyor_memory <> load_new_package_on_conveyor Then
WM3_IN_LOAD_NEW_PACKAGE_ON_CONVEYOR.SetInt (1)
Else
WM3_IN_LOAD_NEW_PACKAGE_ON_CONVEYOR.SetInt (0)
End If
load_new_package _on_conveyor_memory = load_new_package_on_conveyor
End If
End Sub

50

A10 Module Simulation_ WM3 To FX

This module contains the code which transfers signals from WM3 to FX and is called once during every
simulation cycle

Public conveyor_end As Boolean

Sub Scan(Sim As Simulation_Main) // Copy valus from WM3 to FX
conveyor_end = False
ForI=0To 4
conveyor_end = conveyor_end Or WM3_OUT_CONVEYOR_END(l).CheckPower()
Next

FX_IN_SW_CONTAINER_READY/(0).Write (conveyor_end)
FX_IN_SW_CONTAINER_READY(1).Write (conveyor_end)
FX_IN_SW_CONTAINER_READY(2).Write (conveyor_end)

FX_IN_SW_ARM_AT_INPUT(0).Write (WM3_OUT_SW_ARM_AT_INPUT(0).CheckPower())
FX_IN_SW_ARM_AT INPUT(L).Write (WM3_OUT_SW_ARM_AT_INPUT(1).CheckPower())
FX_IN_SW_ARM_AT_INPUT(2).Write (WM3_OUT_SW_ARM_AT_INPUT(2).CheckPower())

FX_IN_SW_ARM_AT_OUTPUT(0).Write (WM3_OUT_SW_ARM_AT_OUTPUT(0).CheckPower())
FX_IN_SW_ARM_AT OUTPUT().Write (WM3_OUT_SW_ARM_AT OUTPUT(L).CheckPower())
FX_IN_SW_ARM_AT OUTPUT(2).Write (WM3_OUT_SW_ARM_AT_OUTPUT(2).CheckPower())

FX_IN_SW_EMERGENCY_RELEASE(0).Write WM3_OUT_SW_EMERGENCY_RELEASE(0).CheckPower())
FX_IN_SW_EMERGENCY_RELEASE(1).Write (WM3_OUT _SW_EMERGENCY_RELEASE(1).CheckPower())
FX_IN_SW_EMERGENCY_RELEASE(2).Write (WM3_OUT_SW_EMERGENCY_RELEASE(2).CheckPower())

sw_receiver_ready = False
ForI=0To9

sw_receiver_ready = sw_receiver_ready Or WM3_OUT_LW_ARM_AT_INPUT(I).CheckPower()
Next

FX_IN_SW_RECEIVER_READY(0).Write (sw_receiver_ready)
FX_IN_SW_RECEIVER_READY(1).Write (sw_receiver_ready)
FX_IN_SW_RECEIVER_READY(2).Write (sw_receiver_ready)

lw_container_ready = False
ForJ=0To?2
Iw_container_ready = Ilw_container_ready Or (WM3_OUT_SW_ARM_AT_OUTPUT(J).CheckPower() And
FX_OUT_SW_HOLD_CONTAINER(J).Value)
Next

If Not Fail_Container_Ready Then
Iw_container_ready = False
End If

51

ForK=0To9
FX_IN_LW_CONTAINER_READY (K).Write (Iw_container_ready)
FX_IN_LW_ARM_AT_OUTPUT(K).Write (WM3_OUT_LW_ARM_AT_OUTPUT(K).CheckPower())
FX_IN_LW_EMERGENCY_RELEASE(K).Write (0)
FX_IN_LW_ARM_AT_INPUT(K).Write (WM3_OUT_LW_ARM_AT_INPUT(K).CheckPower())
FX_IN_LW_RECEIVER_READY/(K).Write (1)

Next

End Sub

52

A1l Controller, ladder code
The ladder code for the controller.

1|-START

PLC_Ready
2 {
3|-END off
4|-ACT START Initialization Moy
5 EN DM
&|-ACT END Initialization 4N OUT\#Command
]
7|-ACT START Reset
Pl [Lek%)
2 EM DM EM OM
oM QUT|OUT LW MOTOR_SPEED ol OUT|QUT SW_MOTOR_SPEED
0 0
MO
EN DM
afis OUT|OUT_COMYVEYOR_SPEED
i}
S _ARM0].OUT_HOLD_CONTAINER

e 8

off
SW_ARMILOUT_HOLD_COMTAINER

10 £

off
SW_ARMZLOUT_HOLD_CONTAINER

11 £

Off
L _ARM[O].OUT_HOLD_COMTAINER
12 B

Ot

k)
k)

Lit_ARM[S].0UT_HOLD_COMTAINER

i
Wy

21 £
Off

22|-ACT END Reset

Rung 13 through 20 are identical asrung 12 except for the index.

53

23

24

24

26

i,

27

28

29

L _ARML4LIN_SRM_AT_IMPUT
Ly _ARMIILIN_ARM_AT_IMPUT
Lty _ARM[2]IN_SRM_AT_INPUT
L _ARM[LIN_SRM_AT_INPUT

aUT_Sw_MOTOR_SPEED

—ACT START Motor_Setup
h O b O
ENM DM EM DM
TN OUT{OUT_LW_MOTOR_SPEED 1(IMN OUT
I 0
h o
EM DM
oM ouT
0

L _ARM[OLIN_SRM_AT IMPUT
L _ARMIE]IN_ARM_AT_INPUT
L _ARM[TLIN_SRM_AT_INPUT
L' _ARMIGLIN_SRM_AT_INPUT

OUT_CONYEYOR_SPEED

W

an

—ACT END Motor_Setup

L ARMIOLIN_ARM_AT INPUT LWy ARMIS]IN_ARM_AT INPUT L 52 L 51
LA A 11 {}
Off Off Off Off Off Off Off Of Off Off ot Oft
L 51

| |
ot
Li_51 LW_ARMIOLIN_ARM_AT_INPUT Lw_S2
11 11 iy
1 T 1 T U
oft Off off
MOV
LW ARMTTIN_ARM_AT INPUT EM DM
|] oM QUT|OUT LW MOTOR_SPEED
Off 0
LW _ARMIELIN_ARM_AT INPUT
| L
off
Lind_ 52
| |
ot
S ARM[]IN_ARM_AT INPUT
Sy ARM[O]IN_ARM_AT INPUT Sy ARM[ZLIMN_ARM_AT INPUT S 92 SW ST
L A —)
off O ot ot Oft
SW_S1
| |
Off
SW_S1 Sy _ARM[O]IN_ARM_AT_INPUT SwW_S2
Il Il 5
it Ot off
Sy ARMLIN_ARM_AT IMPUT ey
|} Ex DM
Ot oliM OUT|OUT_SwW_MOTOR_SFEED
Sy ARM[Z]LIM_ARM_AT INPUT a
| L
Ot
Sy 52
| |
off
SWy_82 LW 52 Matar_ Setup_Ready
| L | 1 LAY
1 T 1 T U
ot Ot off

31 |-ACT START Run_Machine
SW_ARMIOLIN_ARM_AT_IMPUT
S ARMIOLIM_COMTAINER_READY Sy_ARMO).S2 Sy ARMO0).S1
32 || || 171 {}
Off Off off Off
Sy_ARMI0].51 Svy_ARMD).OUT_HOLD_COMNTAIMER
] 1 =
1 T U
off Off
S ARMIOLST SWARMOLIMN_ARM_AT QUTPUT Sy ARMI0].S4 Sy ARNMI0LS2
33 || || 11 {3
oft Off Off Off
S ARNM[0]LS2
| |
oft
Sv_ARM[D)S2 SW_ARMIDLIN_RECENER_READY Shy_ARM(0).54 Sy_ARMIO).S3
34 | | | | 11 O
off off Off Off
S ARMIDLS3
| |
oft
S\ ARMIDLIN_EMERGENCY _DROP S ARMID]S 4
35 || &
oft Ot
SV ARMIOLS3 SV ARMIOLOUT_HOLD_COMTAIMER
1] £
1 T U
ot Off
T

T
Rung 32 through 35 is the ladder code corresponding to the grip arm discussed in chapter 5.3 and

described in fig 5.5 as a state diagram. Rung 36 through 79 contains the remaining 12 grip arms.

55

LW ARM[E]IR_ARM_AT INPLUT
L ARME]IN_COMNTAIMER_READY L ARM[9].S2 L _ARM[9].51
20 || || /1 {3
o Off Ot Off
L ARM[9].51 L ARMSEL.OUT_HOLD_COMNTAINER
1] =
1 T U
O O
L ARMIE]).ST L ARMS]IMN_ARM_AT OUTPUT Liy_ARM[E].54 L _ARME].52
g1 | | 71 &
O ot off O
L _ARM[E].52
| |
O
L ARMMELSZ LW _ARM[9].IM_RECENWER_READY L ARM[9].54 L ARM[E].S3
82 | | | | 171)
Cif Cif Off off
LWy_ARM[S].53
| |
O
LWy_ARM[ELIN_EMERGEMNCY_DROP LWy_ARM[E].54
83 | | {1
O O
L ARM[E].S3 L ARMME].OUT_HOLD_CONTAINER
1] =1k
1 T U
off Ot
34|-ACT END Run_Machine
835|-ACT START Start_Machine
1 [[[
o6 EM DM EM DM
2(IM OUT|OUT_LWy MOTOR_SPEED 2|IM QUT(QUT_SWW_MOTOR_SPEED
]]
T
EM DM
TR QUTIOUT_COMYEYOR_SPEED
1]
a7|-ACT END Start_Machine
88|-ACT START Stop_Machine
hf T
og EM DM EM DM
TR QUTIOUT_LW MOTOR_SPEED 1IN OUT[QUT_Sw MOTOR_SFPEED
1] 1]
[[
EM DM
QW OUT{ouUT_COMVEYOR_SPEED
1]
g0|—ACT END Stop_Machine

56

References

Reports

Norén, Adam (2000), Simulating logical functionsin afilling machine, master thesis at Tetra Pak
R&D AB and Dept of Industrial Electrical Engineering and Automation, Lund University

Books

Olsson, Gustaf and Gianguido Piani (1998), Computer Systems for Automation and Control,
Prentice Hall, New Jersey, USA

Olsson, Gustaf (2002), Industrial Automation, A system approach, Department of Industrial
Electrical Engineering and Automation, Lund Institute of Technology, Sweden

Manuals
OPC Foundation (1999), OPC Data Access Automation Specification, version 2.02

Working Model 3D, Automation Programming Guide.
MSC/Working Model User manual version 5.0
FrameworX Beta 3 Package, Online manual

Internet resour ces
http://www.gefanuc.com/total control/products/oas/frameworx_home/frameworx_home.html

http://www.opcfoundation.org

http://www.workingmodel.com

57

