
In
d

u
st

ri
a
l 
 E

le
ct

ri
ca

l 
E
n

g
in

e
e
ri

n
g

 a
n

d
  
A

u
to

m
a
ti

o
n

Department of Industrial Electrical Engineering and Automation
Lund University

Sequential Function Chart
Interfacing

CODEN:LUTEDX/(TEIE-5152)/1-67/(2001)

Mattias Nilsson
Kristoffer Persson



 1

Master Thesis in Industrial automation 
                             at Lund Institute of Technology       
 
 

Sequential 
���������
	
����


�����������
 

 

 
Authors: Mattias Nilsson    M96                        Lund, Sweden 2001-04-17 
               Kristoffer Persson E96 
                
 
 
Examiner:  Professor Gustaf Olsson  
 
Supervisor :   Håkan Augustsson, ABB Automation Products AB 
 
 
 



 1

 
 

Preface 
 
We would like to thank our  supervisor at Lund Institute of Technology professor Gustaf 
Olsson for critical review and guidelines to the report. The master thesis has been performed 
at ABB Automation Products in Malmö. We would like to thank following people at ABB for 
ideas and help: our supervisor at ABB: Håkan Augustsson, Ulf Andersson, Ulf Hagberg and 
Andreas Hellström.   
   
 

 



 2

Summary 
 
Kristoffer Persson and Mattias Nilsson made this thesis work for ABB Automation in Malmö. 
Our supervisor at ABB has been Håkan Augustsson and the examiner is Gustaf Olsson, 
Professor at the Department of Industrial Electrical Engineering and Automation (IEA) at 
LTH. 
 
The task was to improve the SFC user interface of ABB:s product Advant Control Builder. 
 
Advant Control Builder is a program for industrial control, the SFC interface is used to be 
able to construct an automation-program to control for example an industrial process. 
Alternative programming languages is function block diagram (FBD), Ladder (LD) or IL 
(Instruction List). 
 
ACB is based on Visual C++ programming so this is the language we used in the thesis work. 
When neither of us have been using Visual C++ before the thesis work, we had to do some 
self-studying in this language. 
 
The work began with a study in how the product works today, to get grip on which 
modifications and additions that we want to make. 
We studied competitive programs and program in other working areas that uses similar 
graphical interface. This was made to get more ideas than our own ideas of how we wanted 
the new improved SFC interface to look like. 
 
The next part of the thesis work was to put together the ideas into a function-specification. 
 
The last and biggest part of the work was to implement the improved SFC interface. To be 
able to make this in the limited time we had we started out from the existing prototype 
program that we modified and added our functions to. 
To add things to the program where we forced to learn the existing program, when this was 
made of a lot of files and that was programmed during a period of more than 15 years it 
sometimes where hard to find persons that had knowledge about this files. 
When we had some knowledge we made modifications and added parts to the program and 
then we compiled and tested and then we modified again. This was repeated until we where 
satisfied with the function of the program. 
 
The final result is not exactly the same as the one we specified in the function-specification, 
when you explore better and easier ways to program about the same things.  
 
But totally our work has resulted in faster and user friendlier program to use for building SFC 
nets.     
 
 
  



 3

SEQUENTIAL FUNCTION CHART INTERFACING 
Table of content 

Preface 
Summary 
 
1. Introduction………………………………………………………………………4                                 
1.1 The task……………………………………………………………………..…4 
1.2 Limitations………………………………………………………………….…5                                   
1.3 ABB Automation Products…………………………………………………....6 
1.4 Advant Control Builder…………………………………………………….…6 
1.5 Outline of the Report……………………………………………………….…8 
 
2. Sequential Function Chart……………………………..………………………..10 
2.1 Background…………………………………………………………………....10 
2.2 Example…………………………………………………………………….…11 
2.3 Detailed Description…………………………………………………………..12  
2.4 Building Sequences…………………………………………………………...14 
2.5 Using a SFC-program………………………………………………………....15 
2.6 SFC in IEC 6113-3…………………………………………………………....16 
  
3. Competitive Programs………………………………………………………….23 
3.1 Investigation of Competitive Programs……………………………..….……23 
3.2 Examination of SFC-Programs………………………………………………24 
3.3 Examination of Other Programs………………………………………....…..31 
3.4 Opinion poll…………………………………………………………..….…. 33 
 
4. Function Specification………………………………………………………….37 
4.1 Development of the Program……………………………………………...…37 
4.2 The Selection of Program Solutions……………………………………...….38 
4.3 Summary of Program Solutions…………………………………………...…43 
 
5. Implementation…………………………………………………………………44 
5.1 The Functions of the Program………………………………………………..44 
5.2 The Function-specification compared with the implementation……………..53  
5.3 Program-construction………………………………………………………...54  
 
6. Conclusions and Continued Work…………………………………………….62 
6.1 Conclusions and Experiences…………………………………………..……62 
6.2 More Functions…………………………………………………………..…..63 
6.3 Other Modifications……………………………………………………….....63 
 
References 
Appendix 
 Functions specification 
 
 

 
 



 4

1 Introduction 
 
A PLC is a microcomputer designed to work in industrial environments, it generates on/off 
signal outputs to control valves, electrical motors, lights etc. PLC stands for Programmable 
logical controller. 
Small and simple PLCs is designed to replace relays and have some additional counter and 
timing functions. While more advanced can perform mathematical calculations and process 
analog signals and contains feedback control circuits (like e.g. PID controllers). 
 
PLC:s is usually programmed via an external programming unit, for example a portable PC. 
The programming unit is not needed online and can be removed when the PLC is online. 
There is different program languages to program a PLC. Program languages can be simple 
assembler like or more advanced high-level languages.  
When the programming is finished the program instructions is translated into machine code in 
a compilator.  
 
This thesis work is about improvement of such high-level language named SFC. SFC is 
described in the IEC standard 848 and 6113-3. 
We have worked with the SFC editor in the ABB program ACB. ACB is a Windows based 
program designed for programming of some of ABBs products. 
 
1.1  The task 
 
SFC stands for Sequential Function Chart and is a graphical programming language to 
describe sequential operations. SFC is closely related to Grafcet and it has some similarity 
with a Petri-net. 
 
SFC is built up of steps with transition conditions in-between, where each step represents one 
state. When a step is active it means that the control program is in this state. When the 
succeeding transition conditions become fulfilled the control program execution continues in 
the next step (the token is moved). Then the succeeding step gets active and the previous 
active step becomes inactive. It is also possible to build parallel and alternative step-
constructions. More about this in chapter 1.5 
 
The task for this thesis work is to improve the SFC editing in ABB product Advant Control 
Builder. 
 
In today’s system one has to mark the place for insertion of the new element and then select 
by the menu what type of element to add. This makes it time-consuming and not very flexible 
to build a new sequential net. 
 
ABB wants a modern interface where it is possible to build sequences with “drag and drop”. 
With “drag and drop” one can select one object in the program toolbar and then drag it out 
over the workspace and directly place it anywhere. This makes it much smoother to build new 
sequence nets. 
 
The thesis work can be divided into the following phases: 
1. Study how the ABB and the competitor’s SFC interface on the market today works. 
2. Specify how the editing should work. 
3. Implement a prototype in the ABB Advant Control Builder. 



 5

1.2  Limitations 
 
Because of the limited time we have chosen to build our program on the existing SFC 
prototype for the Advant Control Builder. To start from scratch would have taken too much 
time and in this way we could concentrate on adding more functions instead of rebuilding the 
already working functions. 
 
We have limited our thesis work to modify the off-line editing, i.e. the editing when the 
control program is off. In this mode the program development is made.   
 



 6

1.3  ABB Automation Products 
 
ABB Automation Products is a part of the ABB automation-segment, the world-leading 
manufacturer of automation systems. 
The business consists of the development and manufacturing of products for control, 
supervision, control and protection of processes within the industry and in plants for electrical 
power. These products are a platform for the automation solutions that ABB offer to 
customers all over the world.   
  
The ABB effort is to make products that are open, easy to use and simple to enlarge and adept 
to modified needs. 
 
ABB Automation Products has a sale of 2400 million SEK, 1400 employees and spend 25 
percent of the sales on Research and Development. 
 
1.4  Advant Control Builder 
 
The control program where our improved SFC has to be implemented is the ABB Advant 
Control Builder. Below is a short description of Advant Control Builder. 
 
General: 
The Advant Control Builder is a fully integrated Windows application for programming and 
configuration of the ABB products Advant 210, Advant 250 and Advant Soft Controller. 
Advant Control Builder contains several programming languages. The control program is 
developed off-line and simulation of the control program can be made without having a 
controller connected. Advant Control Builder also has a number of on-line functions for test, 
program simulation and start-up. The status of variables, I/O-signals etc, can be supervised 
on-line. 
 
Project: 
Advant Control Builder contains a project explorer, which is a tool for navigation in, creating 
and modifications of projects. In the project explorer both the controller hardware and 
software are configured. 
 
In a project the Advant Control Builder can handle an application that is maximum divided 
into three programs, which as standard are called Fast, Normal and Slow. In these three 
programs the program-code, function blocks and functions can be placed freely. In each of the 
three programs there is a connection to a task. For each task the interval time and priority is 
set. The users can create their own data types and function blocks when needed. They can be 
reused later. 
 
Programming: 
The programming in Advant Control Builder, supports data types such as Boolean, integers, 
floating point numbers, strings, time, date, etc, everything according to IEC 61131-3. The 
basic data types can also be combined with new structured data types. 
 
Programming using the Advant Control Builder is made off-line. In the released version of 
Advant Control Builder there are two languages available in accordance with IEC 61131-3, 
that is ST (Structured Text) and (IL Instruction List). 



 7

ST is a high level programming language for very structured programming. It has a large 
menu of constructs for assignment, functions, function block calls, expressions, conditional 
statements, iterations, etc. IL is a programming language, where the instructions are listed in a 
column with one instruction per line. It is structured in the same way as a simple machine 
assembler. 
            
The intention is that the Advant Control Builder would be complemented with more 
programming languages. There is already an existing prototype for SFC programming to 
Advant Control Builder available. This prototype is just under development and the thesis 
work is about improving its functionality.  
 
The Advant Control Builder also has a program editor that contains several tools to make the 
programming easier and simplify debugging. They include for example functions for syntax 
checking, cut and paste, drag and drop and search and replace. It is possible to have several 
windows open at the same time, which gives a good overview of the entire application. 
 
Compilation: 
When the user program is compiled, machine code is created. This code is then optimized for 
the actual control system before it is downloaded to the control unit. When the compilation is 
started there is an extensive test of the program made and errors are easily detected. The error 
messages that come up works as links to the error in the code, the user just has to double-click 
on the error message. 
 
To test the user program without having a control system connected the user can use the 
Advant Control Builders simulation mode. In the simulation mode all the tasks are executed 
locally in the Advant Control Builder. The control program Advant Soft Controller that can be 
run together in the same PC adds functions for development, testing and training. 
 
Libraries: 
Advant Control Builder contains a comprehensive set of predefined functions and function 
blocks. They are placed in several different libraries and can be used in the projects. 
There is for example a System library, which is always available. It contains all basic data 
types and functions, for example type conversions, math and time. 
 
The Advant Control Builder has a Logic function library with function blocks for flip-flop, 
timer and counters according to the IEC 61131-3. 
 
There are several other libraries such as the Communication library containing client function 
blocks for different protocols. There is a Control library with regulators and an alarm library 
for alarm and event detection. 
 
On-line functions: 
The Advant Control Builder contains a number of functions to make the on-line testing easier. 
• Status inspection. I/O signals and variables are inspected on-line.  
• Force. The I/O signals can be forced to a chosen state. 
• Overwrite. Temporary overwriting of a chosen variable for one run. 
• Tasks. The user can select one-time execution to facilitate the program debugging.    

Warning and errors are indicated in the project explorer, when for example the program is 
stopped or overloaded. 
 



 8

Program modifications can be made on a running application. The modification can be 
implemented in the control system without stopping it, which mean that the variable values 
will be retained. 
 
1.5 Outline of the Report 
 
The outline of the thesis is described below. 
 
1.5.1 Phase 1: Training and information obtaining 
 
The purpose of this part of the thesis work was partly to learn and understand how SFC is 
used. It is necessary if we want to make a better program. The purpose is also to get new ideas 
to different program solutions, from other programs and from us. 
 
The work began with learning how to use SFC. We tried SFC in SattLine and built different 
simple control programs in the studying purpose. We first had to understand and be able to 
use SFC ourselves to see how a new program shall work. We also studied a product from 
ABB Automation Products that is under development, which is a SFC to the Advant Control 
Builder.  
Some of the documentation for SFC standard was also studied. 
We then went on with studying SFC programming in the programs from competitive program 
manufactures. This was made by running the demos that ABB had an also by getting several 
more demos via Internet. We also looked at programs that are used to completely different 
things, suck as CAD-programs for electrical- or mechanical construction. These programs 
could add some ideas how our program shall look like and how it should work.  
 
The next phase was to investigate the programs closely. Some programs were immediately set 
aside while other programs got our attention. Control programs with SFC language available, 
that were interesting were studied closely and then evaluated, see chapter 2.2.1. The CAD 
program where also studied and evaluated, see chapter 2.2.2. 
 
We also work with own ideas and solutions to how a new SFC program shall work to be as 
simple and smooth as possible to use. 
 
1.5.2 Phase 2: Producing a Function Specification 
 
In this phase we worked with selecting the best of our ideas and thoughts from phase 1, to get 
a complete program. Different concrete solutions where created from the ideas in phase 1. 
Advantages and disadvantages by the different solutions where evaluated and finally the 
functions where decided one by one. Some functions were changed several times during the 
process. 
 
The result of the work in this phase is a function specification. The function specification was 
written in a standard document for function specifications.   
 
The prototype to SFC interface for Advant Control Builder is built with Visual C++. 
Since none of us had used Visual C++ we also trained in programming with this language, to 
prepare us for the next phase. 
 
 



 9

1.5.3 Phase3: Implementation 
 
Now it was time to try to create the theoretical program that we had made in the function-
specification.  
After discussions with our supervisor Håkan Augustsson we came to the conclusion that we 
should use the existing prototype of SFC in Advant Control Builder and try to improve it. We 
did this to save time so that all time was not spent on building the basic interface that is 
already made. Instead we could concentrate on implementing new functions. 
 
We began to study the source-code to the prototype to learn the how the program works and 
how the procedures and functions in it work. Then we began to implement functions that we 
had in the function-specification. We began with the functions that we thought was the most 
important and left the less important to the future. 
 
Due to lack of time and because some things are more difficult to solve in the reality than in 
the theory, the program did not become exactly as the program in the function-specification.   
 



 10

2 Sequential Function Chart 
 
Here is a general description of SFC and SFC-programs. SFC stands for Sequential Function 
Chart. 
 
2.1 Background 
 
As long as the applications are small there is no need to structure the sequence process, but 
when the applications get larger and the complexity in the control events increase, there is 
also an increasing need for better functional descriptions.  
As a tool for “top-down” analyze and representation of a control sequence, when logical 
expressions such as ladder diagram and function block diagram is not powerful enough, the 
SFC got introduced. 
 
SFC is a special high-level language to describe control sequences in graphical schedules. At 
the late 70s the first function chart program Grafcet was developed in France and it has later 
been the base for the definition of the international standard IEC 848 (“Preparation of 
function charts for control systems”). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 11

2.2  Example  
  
The use of function charts is illustrated with an example (see Figure 2.1). 
 

   Function                      Comments 
 
      
 
 

True if the sensor for low 
level indicates empty = 1 and 
the commando start is given. 
 
Start the filling of the water-
tank. 
 
The water level in tank has 
reached the upper limit 
value. 
 
Stop filling and start heating. 
 
The water has reached 90°C. 
 
 
The waiting time is 20 min. 
 
The waiting time is over. 
 
 
 
 
 
The tank is empty. 

 
 
Figure 2.1 Grafcet illustration of a simple tank operation. 
 
A tank shall be filled with water. A water-tank has to be filled and then the water has to be 
heated to 90°C. After 20 minutes the tank is emptied and the process starts all over again. 
When the water-tank is empty a sensor signals “Empty” and the tank can be filled again. This 
indication is connected to the “Start” signal, so the sequence can be initiated. In step 2 the 
filling operation is started, the discharge valve is closed and the filling pump is activated. 
When the tank is full a sensor signals that the upper limit is reached. The program continues 
to step 3, where the filling operation is stopped, the pump is turned off and the heating is 
started. The heating continues until the water has reached 90°C. Then there is a transition to 
step 4. In step 4 the heater is turned off and a timer begins to count. When the timer has 
counted to 20 minutes the program transits to step 5. In step 5 the tank is emptied, the 
discharge valve is opened. When the tank is empty the whole sequence can be repeated from 
the beginning. 

Empty * Start 

Full 

90°C  

5 

4 
Heater off 

Open discharge valve 

Wait time = 20 min 

2 

3 

1 
Empty tank 

Discharge valve closed 

Pump off 

Heater on 

Pump on 

20 min 

Empty 



 12

2.3  Detailed Description  
 
The SFC elements are used to structure the internal organization in a control program. They 
are written in a language that is defined in the standard [ref] to perform sequential control 
functions.   
 
SFC describes the control sequences with predefined rules for: 
 
• Controls that have to be executed and in which order they shall be done. 
• Execution details for each instruction 
 
The SFC can be divided into two parts, the “sequence“ part and the “object” or “control” part. 
In the “sequence” part the order between the control steps is described and in the “object” or 
“control” part is the internal actions that shall be executed. Graphically the “object” or 
“control” parts consist of boxes to the right of the sequence steps. 
 
In this thesis work we will only treat the “sequence” part of the SFC. 
 
According to IEC 611131-3 (1998-11-18) page 86 the SFC elements give a division of the 
control program in a number of steps and transitions connected to each other by directed 
links. To every step there is one or several actions and to each transition there is a condition 
connected. 
 
Step: 
The program behavior in a step follows a number of rules defined by the associated actions 
that is connected to the step. The step can be either active or inactive. At any given moment, 
its active steps, the internal and the output variable values define the state of the control 
program.    
              
Graphically a block that contains a step-name represents the steps. A vertical line attached to 
the top of the step represents the directed link to the step. A vertical line connected 
graphically represents the link from the step to the bottom of the step.  
 
The step that is “active” is the step that is currently executed. To indicate if a step is active or 
inactive, there is a step flag. The step flag is represented by a Boolean, the value of the step 
flag is one if the step is active and zero if the step is inactive. 
The time that is spent in a step is saved as the variable “step elapsed time” it keeps it value 
when a step is inactivated. The value on “step elapsed time” is reset when a step is activated. 
 
The control program must have an initial state, in this state the internal and output variables 
have their initial values and the control program stand in its initial step. The initial step is the 
step that is initially active and there shall be exactly one initial step. The initial step is 
represented graphically by a step with double lines for boarder. 
 
The number of steps per SFC and the accuracy for the “step elapsed time” is dependent on the 
implementation.    
 
 
 
 



 13

Transitions:     
There are transitions between every step Thanks to the transition the program can pass from 
one or more preceding steps to one or more successor steps. When the program passes a 
transition the successor step(s) becomes active and the preceding step becomes inactive. The 
transition is made along the vertical directed link. To each transition there are associated 
steps, which is called transition conditions. 
The transition condition shall result in an evolution of a simple Boolean expression. 
Sometimes the user wants the transition condition to always be true, and then the symbol 1 or 
the keyword true shall represent it. 
 
Actions: 
Every action is associated with a step. The step can have none or several actions associated. If 
there is no associated action to the step, it will be considered as a WAIT function. The WAIT 
function is a function that is waiting for the successor transition to be true. An action can be 
described in several ways, for example with a ladder-diagram, logical circuits or with Boolean 
expressions  
 
Action blocks: 
This is a graphical element for the combination of a Boolean variable with one of the action 
qualifiers to produce an enabling condition. 
The action block contributes with a kind of Boolean indicator variable; it can be set by a 
specific action to indicate its completion, time-out, error conditions, etc. 
The graphical concatenated action blocks can have multiple indicator variables, but just one 
common Boolean input variable, it shall act simultaneous for all the concatenated blocks. 
 
Action qualifier: 
Each step/action association shall have an associated action qualifier. The action qualifier can 
have the following values according to IEC 61131-3 (1998-11-18)  page 97: 
   
No. Qualifier Explanation 
1 None Non-stored (null qualifier) 
2 N Non-stored 
3 R Overriding Reset 
4 S Set (Stored) 
5 L Time Limited 
6 D Time Delayed 
7 P Pulse 
8 SD Stored and time Delayed 
9 DS Delayed and Stored 
10 SL Stored and time Limited 
11 P1 Pulse (rising edge) 
12 P0 Pulse (falling edge) 
 
 
In addition, the qualifiers L, D, SD, DS and SL shall have an associated duration of the type 
TIME. 
 
 
 
 



 14

2.4  Building Sequences 
 
The SFC syntax can handle much more than just an iterative execution of the same control 
instructions. The initial step, step(s) and transitions can be connected in several ways, which 
makes it possible to describe many complicated functions. Three possible combinations are: 
 

• Simple sequences, this is just a step followed by a transition or a transition followed 
by a step.  

• Alternative parallel sequences consist of two or more transition succeeding a step, so 
that the execution can take alternative ways depending on external conditions. These 
sequences can be used to for example if-then-else conditions and are useful to describe 
for example an alarm situation.  
When using these sequences it is very important to prevent a simultaneous start. This 
is done by verifying the condition for selection of one of the program execution 
branches so that they are consistent and unambiguous.   

• Simultaneous parallel sequences, are made up of two or more steps placed parallel 
after a transition. The parallel steps can be simultaneously active. They represent a 
concurrent execution of several actions. The double horizontal lines indicate the 
parallel processing. When the condition for the transition condition for the parallel 
simultaneous sequences is fulfilled, both branches become simultaneously active and 
are executed concurrently. The transition to the successor steps below the lower 
double horizontal lines can take place only after all the concurrent processes are 
terminated. 

 
There is also another possibility to modify the control program, by putting jumps into the 
SFC. With a jump the execution can jump from one step to another location in the program. 
The jump must be preceded by a transition condition and it is not allowed to jump to a 
transition.      
 



 15

2.5  Using a SFC-program 
 

SFC programs operate under real-time conditions, which normally requires intensive efforts 
with considerable investments in time and employees. In this case the designer of the SFC 
compiler does most of the work, while the user can describe complex control sequences in a 
simple way. The real-time aspects on the programming are also important for the design of 
the PLC, but it affects the final user only indirectly and in a limited way. 
 
Programming and compilation are easily made on a PC. After compilation the code is 
transferred in form of control instructions to a PLC for execution. When the code is 
transferred the PC is no longer necessary during real-time PLC operations. Some compilers 
have a built in simulation tool and can show the execution flow without being connected to a 
PLC. There are also some PLCs that have built in compilers. 
 
There are several advantages with describing the control program in an abstract way such as a 
SFC. The SFC programs are independent of a specific hardware and are more oriented 
towards the task than the computer itself. 
 
The SFC implementation allows the code to be divided into smaller parts, for example that 
each machine in a complex line has its own graph. Graphs from several machines can then be 
assembled. Such hierarchical structure is necessary when programming large, complex 
systems. 
 
More advantages with SFC are that it is easier for the non-expert to understand compared with 
for example ladder-diagram. Because of this the SFC is useful not only for complex 
operations, but also for simpler tasks. The advantage with a standard for automated operations 
is that more program-code can be kept and re-used, which is impossible with incompatible 
languages and devices.    
    
 



 16

2.6  SFC in IEC 6113-3 
 
IEC stands for the International Electrotechnical Commission and in this chapter is a 
summary of what this standard says about SFC. 
 
2.6.1 Fundamentals 
 
 
 
 
 
 
 
 
 
 
                                                  
 

Figure 2.2 Simple sequence   
 
The figure shows a simple sequence. S1 has a double line frame, which means that it is an 
initial step. The transition from S1 to S2 occurs when the expression in Tr1, which is a 
Boolean with process signals, is fulfilled. Then S1 is inactivated and during the entrance of S2 
the P1 (pulse rising edge) is executed one time. Then S2 becomes active and equation N is 
executed as long as the transition condition Tr2 not is fulfilled. When Tr2 is fulfilled P0 
(pulse falling edge) is executed one time S2 is inactivated. The sequence continues with P1 in 
step S1 and so on. 
 
2.6.2 Single Sequence 
 
 
 
 
 
 
 
 
                   
 
Figure 2.3 Illustration of a single sequence 
 
A transition from S3 to S4 shall happen only when S3 is in active state and Tr3 is TRUE. 
 
 
2.6.3 Divergence of sequence selection 
 
A choice between different sequences is represented by as many transitions under the 
horizontal line as there are possible ways. The asterisk shows that there is a priority from left 
to right for the transition progress. If numbered branches follow the asterisk, the numbers 
indicate the user-defined priority of the progress. 

S1 

S2 

Tr1 

Tr2 

P1 

N 

P0 

S3 

S4 

Tr3 



 17

 
 
 
 
            *           
 
 
 
 
 
 
 
 
Figure 2.4 Illustration of a divergence 
 
There has to be only one possible progress. From S5 to S6 when S5 is active and the 
transition condition Tr8 is TRUE or from S5 to S8 only if S5 is active and Tr7 is TRUE and 
Tr8 is FALSE. 
 
2.6.4 Convergence of sequence selection  
 
The end of a Sequence selection is represented of as many transitions above the horizontal 
line as there are selection choices that shall be terminated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     
 
Figure 2.5 Illustration of convergence 
 
A transition from S6 to S8 happens only if S6 is active and the transition Tr6 is TRUE or 
from S7 to S8 if S7 is in active state and Tr7 is TRUE. 
 

S5 

S6 S7 

Tr5 

Tr7      Tr8 

S6 S7 

S8 

Tr7      Tr6 



 18

2.6.5 Simultaneous sequence-divergence 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6 Illustration of simultaneous sequence - divergence 
 
The execution from S4 to S5 and S& happens simultaneous when S4 is active and Tr4 is 
TRUE. 
 

S4 

S5 S6 

  Tr4 



 19

2.6.6 Simultaneous Sequence-Convergence 
 
Below the double synchronization line only one transition is allowed. 
 
 
 
 
 
 
 
 
 
                                         
 
 
Figure 2.7 Illustration of simultaneous sequence - convergence 
 
The execution from S5 and S6 to S7 shall happen, only if the steps above the synchronization 
line and connected to it is active and that Tr7 is TRUE. 
 
2.6.7 Sequence skip 
 
A sequence skip is a special case of sequence selection where one or more branches contain 
no steps. 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                                                           
 
 
 
 
 
 
 
 
Figure 2.8 Illustration of sequence skip 
 
An execution shall from S2 to S5 occur if Tr2 is FALSE and Tr5 is TRUE. S3 and S4 are then 
skipped. 
 
 
 
 

S7 

S5 S6 

    Tr7 

S3 

S4 

Tr3 

S2 

S5 

Tr2 

Tr4 

Tr5 



 20

2.6.8 Sequence Loop 
 
Sequence Loop is a special case of sequence selection where one or more branches return to a 
successor step. 
 
 
                                                                                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9 Illustration of sequence loop 
 
An execution from S4 to S3 occurs if S4 is active state and Tr4 is FALSE and Tr5 is TRUE. 
That repeats S3 and S4. 
 
2.6.9 Directional Arrows 
 
The ”less then” sign (<) can be used to indicate right-to-left control flow and the “bigger 
than” sign (>) can be used for left-to-right control flow.  
They shall then be placed on the flow-wire. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.10 Illustration of directional arrows 

S3 

S4 

S2 

S5 

Tr5 

        Tr4 

  Tr3 

     Tr2 

S3 

S4 

S2 

S5 

Tr5 

        Tr4 

  Tr3 

     Tr2 



 21

 
The arrows show the direction of the flow from Tr5 to S3. 
 
Another way to show the direction of the flow is by jumps. By the start point for the jump 
there is an arrow that shows the direction with a destination address next to it.  
 
 
 
 
 
                                                            Tr5 
 
 
 
 
 
 
 
 
                                                                 S3 
 
 
 
 
 
Figure 2.11 Illustration of a jump 
 
The figure is exactly the same as with directional arrows but with jumps is used instead. 
 
2.6.10 Jump into or out from simultaneous sequences 
 
It is not allowed to jump in or out from simultaneous sequences.  
 
 
                                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                              Figure 2.12 illustration of a forbidden jump  

S3 

S4 

S2 

S5 

Tr5 
        Tr4 

  Tr3 

     Tr2 

S4 

S5 

S6 

  Tr4 

S7 

S8 

  Tr6 

Tr7 

     Tr8 



 22

 
S5 and S6 are executed simultaneous when S4 is in active state and Tr4 is TRUE. If then Tr7 
is TRUE when S6 is in active state S8 will be executed. The state S5 will wait in eternity for 
S7 to become active so the program can leave the simultaneous sequence. A forbidden 
locking has occurred in the SFC program. 
 
2.6.11 Subsequences 
 
To make a large SFC net easier to survey some parts of it can be placed in a subsequence that 
hides some part of it. The subsequence does not affect the SFC nets function. There are 
different ways to draw the subsequence depending on what type of elements the entrance and 
exit elements are.  
                    
 
 
 
 
 
 
 
 
Figure 2.13 The entrance and exit elements are steps. 
 
   
 
 
 
 
 

 
 
 
Figure 2.14 The entrance element is a step and the exit element is a transition 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.15 The entrance and exit elements are transitions. 
 
 
 



 23

3 Competitive Programs 
 
In this chapter there is an examination of programs that can contribute with ideas to the 
development of a new SFC program. It is a study of similar, competitive programs, but also a 
study of programs in other areas, such as electrical- and mechanical-construction. It is 
possible that these programs can contribute with some ideas too. 
 
We also took part of an opinion poll that were made earlier by ABB. We selected the parts 
that are interesting to this thesis work. The opinion poll gives us an idea of what the customer 
wants; the opinion poll is presented in 3.3. 
 
3.1 Investigation of Competitive Programs 
 
Limitations: 
In this thesis work we have concentrated on the using of the SFC interface, the building and 
modification of the SFC net. Because of that limit the investigation include this and nothing 
more. Compilation and other functions in the program have been left uninvestigated. 
 
Areas for the investigation: 
In this investigation we have especially looked at the following areas: 

• How plain is the interface? Does the program look nice and is it easy to understand 
what the different symbols mean? 

• How easy is the program to use? Are the commands logical and easy to use? 
• How fast can a new sequence be built? How fast and smooth is the program for the 

advanced user? 
 
It can be very individual what a user finds good and bad with an SFC interface. To minimize 
this problem we have tried to think about who will use the program and their situation. It can 
also be difficult to set a value on the different areas in this investigation. To have something 
to relate the program performance (advantages and disadvantages) to we first studied all 
programs fast to get some kind of program average reference to have in the further, deeper 
investigation. Then we could relate for example the editing speed or the user friendliness to 
this average. 
 
The “other programs” are the existing ABB products and programs from the competitors that 
we have studied the demo-versions of. The demos have we found and downloaded from 
Internet or that we got a demo CD from the manufacturer.  
 
Others: 
We have removed the names of the competitive programs, and just numbered them in order. 
This is done to avoid any possible irritation from the manufacturers of the programs. 
 



 24

3.2 Examination of SFC-Programs 
 

In this section there is a short list of SFC-programs studied. The programs have been studied 
to learn how SFC works and to get ideas how a new SFC program can be designed. The 
programs represent different solutions to solve the same task and the intention is to sort out 
what the user considers positive and negative aspects of the different solutions. 
 
The examination of the programs has been made in the following way: 
• The programs were installed and some time was spent in starting the programs. 
• The functions were investigated and some training in building simple sequences was done. 
• A careful examination was done, all functions in the program where studied and noted. 
• Finally the most important comments to the program where sorted into positive and 

negative things with the program. 
 
On the following pages the most important observations are presented. 
 



 25

3.2.1 SFC in SattLine 2.2 
 

SFC is one of the programming languages in ABB Automations product SattLine, which is a 
system for distributed industrial control. 
 
General description: 
Starting point is one step and one transition. To edit the SFC the user has to right click and 
select from the popup menu. There are no tools in the toolbar for this purpose. The program 
places the objects. There are no drag-and-drop functions. 
 
The following things where noted as positive with this program: 
• The graphics is plain with marked objects and errors displayed in color. The step-actions 

are divided in three parts, initial-, step- and entrance action. 
• It is possible to divide the sequences in subsequences that increase the simplicity when the 

sequence is very big. 
•  There are three different levels of viewing the step-actions: 

Level 1, names are presented. 
Level 2, name and comments are presented. 
Level 3, name, comment and code are presented. 

• The list of variables is plain and easy to use. On the other hand some of the commands in 
the list of variables are difficult to handle. 

 
The following things where noted as negative with this program: 
• There is no toolbox in the program and there is no undo command. Just a few commands 

have an accelerator key. 
• There is no flexibility when placing the objects the program does it automatically. When 

there is objects deleted or cut out, the size of the wire is not adjusted. 
• The step-actions can only be written in ST 
• There are a number of commands that do not work satisfying and that probable nobody 

use. 
• A lot of clicking and sometimes clicks in an unusual order. The position of an object must 

first be chosen, before the choice of object type is made. 
• There is no warning when an incorrect operation is made instead the operation is blocked 

and can’t be performed. This is not good for the beginner when he or she becomes 
uncertain if the error is in the program itself or if he or she is trying to make an incorrect 
operation. 

 
Summary: 

The program has a plain and simple graphics but the user can’t control the position of 
step-actions and transitions. There are a number of commands that make about the same 
thing, for example: New branch, Parallel branch and Alternative branch. There is no 
toolbox so the user has to do a lot of clicks to perform some operations. In some 
situations there is a good indication of errors in other cases there is no indication at all.  

 
 

 

 

 



 26

3.2.2 Competitive Program No 1. 
 
Program No1 is German. It is a program with the same field of applications as SattLine, 
where SFC is one way of programming. The demo-version which where tested was made in 
1998 and was the latest available. 
 
General description: 
The starting point is an initial-step with transition and then a jump back. To edit the SFC, 
select one object and use the tools in the toolbar. Or right click when the objects are selected 
and use the popup menu. There are a lot of tools in the toolbar the user has the possibility to 
select to place new objects before or after. He or she also can choose to place parallel 
branches to the left or the right of the selected object.   
 
The following things where noted as positive with this program: 
• It contains a toolbar with plenty of tools, perhaps to many. 
• There is an undo function and it works for several steps back. 
• There are accelerator keys, but not for all functions. 
• The step-actions are written in a separate and overlapping window. Several languages are 

available to write the step-action. 
• A step-action can be written in SFC, this can be seen like some kind of subsequence. The 

plainness increases and the size of the sequence chart decreases. The size of the steps is 
easy to adjust. 

• It is possible to set initial- and entrance-actions on the steps. 
• The program contains a distinct list of variables that is continuously visible on the edge of 

the worksheet. 
 
The following things where noted as negative with this program: 
• It is only possible to delete separate parallel steps and transitions, because it is only 

possible to mark one object at a time. Serial steps must be deleted with the undo-function. 
• The graphics is inflexible. There is no possibility for the user to move or place the objects. 

The program does it automatically. 
• The zooming has only two steps and the program doesn’t use colors, therefore the 

graphics feels indistinct. 
• The step-actions must be opened with a text-editor to see the code. Consequently it is 

invisible in the sequence window. 
• When incorrect operations are executed the program doesn’t show any messages. 
 
Summary: 

The graphics in the program feels out of date, it’s indistinct and inflexible. On the other 
hand the program toolbar is good with a lot of tools. Another good thing is that the user 
can write the step-actions in several different languages. It’s also possible to write step-
actions in SFC, that is the same as to make a subsequence and it makes complex 
sequences more distinct. Program No1 has an excellent list of variables, which is visible 
continuously and in which it is possible to direct declare new variables or change old 
ones. 
There is an undo function and it works in several steps, which is very good but necessary 
since the delete command does not work properly. It can be hard for new users, when the 
program doesn’t give any messages when he tries to do an incorrect operation. Instead the 
program blocks the operation so it can’t be done. 

 



 27

3.2.3 Competitive Program No 2. 
 
Program No 2 is a program from a French Company. With Program No 2 a PLC can be 
programmed with SFC, FBD, LD, ST and IL. In this examination it’s only the SFC function 
that is interesting.  
 
General description: 

Program No 2 is a flexible program, the user construct the SFC with “drag and drop”- 
technique” and can place the objects freely. The program doesn’t stop the user from 
making errors such as placing a step after another step. The starting point is an initial-step 
with very long outgoing wire. On the wire the user can place steps and transitions. To 
build parallel branches the user has four different commands in the toolbar to help. 
  

The following things where noted as positive with this program: 
• The program has a big toolbox with many tools. There are also a few accelerator keys. 
• The step can be showed in four different detail modes, where the most detailed level 

shows the code or the LD: 
• There is a lot of flexibility in the graphical SFC construction. The program is using ”drag 

and drop”- technique. 
• It is possible to have many windows opened at the same time for example step-actions or 

transition conditions. 
• The list of variables is placed in an own window, which has a toolbar.  It is distinct and 

easy to use. 
 
 
The following things where noted as negative with this program: 
• The step-actions can only be written in ST and the transition conditions can be written in 

ST or LD. 
• The graphic is indistinct and feels out of date. No colors are used and the graphic has a 

strange construction. For example a new sequence has an endless output wire, 
furthermore the building of new parallel branches are complicated. 

• The program contains no undo-commando. 
• There is no indication in the graphics when an incorrect operation has been done; instead 

it will show up in the compiling of the program. 
 
Summary: 

The graphic is indistinct and it’s hard to construct parallel branches. It has a good 
flexibility but with Program No 2 the programmer can do many faults in the graphic 
construction without having any fault detection.  
There is a big toolbar where it’s possible to use ”drag and drop”-technique. The toolbox 
contains some strange commands, that are used in the construction of parallel branches. 
The list of variables is in a separate window that has a toolbar; the list is very distinct and 
easy to use. 

 
 

 

 

 
 



 28

3.2.4 Competitive Program No 3. 
 
Program No 3 from a German Software Company is a program with the same refinements like 
Program No 1. 
 
General description: 

SFC is just one of the languages in Program No 3. The starting point is a net with one 
step and one transition. To edit the SFC the user has to mark one object and right click. 
Then a popup menu appears the menu contains the necessary commands. Otherwise he or 
she can use the toolbar. 

 
The following things where noted as positive with this program: 
• The graphic is flexible. Steps and transitions can be moved along the wire. 
• There is a toolbox with well-chosen functions. 
• It has an undo function, but unfortunately it only works one step back. 
• There are accelerator keys for most of the functions. 
• There is distinct fault indication when the user tries to do an incorrect operation and the 

operation is stopped. 
• The step-actions can be written in many different languages and the user can have several 

windows opened at the same time. 
• An edit-wizard is available to help the user with common programming expressions, the 

edit-wizard changes when the user changes language. 
 
 
The following things where noted as negative with this program: 
• In the SFC graph the code of the step-actions and transitions is not visible, the user has to 

open a text-editor first. 
• When a step with transition is deleted the SFC does not adjust its size. The same thing 

happens when parallel-steps or transitions are added. 
• There is no separate list of variables. The variables can only be seen in code. 
 
Summary: 

Program No 3 is a modern program with nice, colorful graphic. It’s distinct and clear but 
the automatic adjustment of the sequence net doesn’t work properly. It is only possible to 
draw wires between objects that have nodes and it is only possible to connect input and 
output nodes. The toolbox is scanty; there are only four tools that can help the user under 
construction of the SFC-net. The edit-wizard is a good refinement to make the 
programming easier. It isn’t possible to see the program-code in the steps and transitions 
without first opening a window. Fault messages appear when an incorrect command is to 
be executed.  

    
 

 

 

 

 

 

 



 29

3.2.5 Competitive Program No 4. 
 
Program No 4 is a program from a German Company. 
 
General description:    

SFC in Program No 4 is build as a network with different sized squares. Steps are placed 
in the largest squares and transitions are placed in the smaller ones. Between these two 
types of squares there are smaller squares where wires are drawn. The step-actions can be 
written in FBD, IL or LD. Since the control is comprehensive so the risk of doing 
anything wrong is small. 

     
The following things where noted as positive with this program: 
• It is very smooth to copy and move steps and transitions. 
• Immediately after a new step or transition is placed, there is a text-string opening to enter 

the name of the object. 
• There are a lot of accelerator keys. 
• The list of variables is distinct. 
 
The following things where noted as negative with this program: 
• There is no toolbox at all. This leads to a lot of clicking to place new objects and 

especially parallel steps and transitions. 
• The graphic is tiresome. There are no colors used and the flexibility is small. 
• The list of variables placed in an own window that always is maximized. The list must be 

closed if the user shall be able to see the worksheet. 
• Transitions and step-actions can only be written in FBD, IL or LD. 
• There is no indication of errors but it is quite difficult to do wrong when there is so little 

flexibility. 
 
Summary: 

The graphics is boring and inflexible when steps and transitions just can be placed in the 
given squares. Copying and moving objects between squares work well. It is a 
disadvantage that the step-actions and transitions only can be written in FDB, IL and LD. 
There is no indication of errors, but it is quite difficult to do wrong. Since there is no 
toolbox in the program there will be a lot of clicking. 
 

 

 

 

 

 

 

 



 30

3.2.6 Competitive Program No 5. 
 
Program No 5 is a PLC program from a Canadian Company. 

 
General description: 

In Program No 5 the user has a little library window from which new objects can be 
dragged to the worksheet. The objects in the library is step, transition, action, stand-alone 
action, link, OR link and AND link. All objects have nodes where it connects to other 
objects. The nodes indicate if the connections are correct. 
 

The following things where noted as positive with this program: 
• Very flexible construction of the SFC net. The placing of objects are done in the 

following way: The objects are chosen in a list in a separate window where the objects 
are seen in there “natural size” (same size as when they are placed). When the objects are 
chosen, a picture of the object is following the pointer (“drag and drop” function).  

• The objects have nodes which are black when they are connected and red when the 
objects are incorrect connected or unconnected. Wire is a separate tool in the toolbox this 
makes it possible to draw wire between distant object nodes. 

• It is easy to move or delete objects in the chart. 
• To move an object: Press the left mouse-button over the object and move the mouse. 
• The zooming is working well. There are four different zooming tools in the toolbox. 

- Zoom in 
 - Zoom out 
 - Zoom window, zooms the drawn window. 
 - Zoom all, makes the whole SFC visible in the worksheet. 
• Both undo and redo functions in the toolbox. 
 
The following things where noted as negative with this program: 
• The graphic is tiresome with white background color and objects drawn of black lines. 

Both errors and marked objects are red. 
• It’s complicated to add the separate step action-box or transition-box. They are separate 

objects with own nodes to connect to steps or transitions. 
• To add a parallel object the wire must be drawn separately. 
• No automatic adjustment of the sequence-net.  For example the user has to do the 

adjustments to make room for a parallel action. 
• The list of variables is very difficult to use. 
 
Summary: 

Program No 5 is a very flexible program with  ”drag and drop” functions. But both steps 
and step-actions have to be separately dragged out to the worksheet. This is unnecessary 
when a step never is used without a step-action. The graphics is boring with white 
background and very simple objects. Both marked objects and incorrect nodes are red, 
which makes it a bit indistinct. The toolbox contains a lot of functions and is it is easy to 
modify, move and delete objects, in the sequence chart. 

  
 
 
 
 



 31

3.3 Examination of Other Programs. 
 
Introduction: 

Here follows notes from the studied programs, which were not SFC programs. These are 
programs that do not necessary have to be used in PLC programming. Instead it can be 
programs for electric construction and mechanical engineering. The reason why they 
were examined is that they contain graphic functions that is used or could be used in a 
SFC program. 

 
3.3.1 MicroSim Schematic: 
 
This is a program made for electric construction. 
 
The following things where noted when the program were examined: 
• MicroSim Schematic has ”drag and drop”-functions when a component is placed. After 

the component is chosen and dragged out to the worksheet, its outline follows the cursor. 
The user just presses the left mouse-button to place it. 

• There are four different zoom commands and they are all available in the toolbar. 
 - Zoom in  
 - Zoom out 
 - Zoom area, zooms the window defined by the user. 
 - Zoom to fit page, the window is adjusted to fit the sequence net. 
• If the component is connected wrong, for example the outgoing wire from a component is 

connected with another outgoing wire, there will be an error message displayed. The error 
message is a yellow exclamation mark and a cross over the incorrect connection point. 
The connection is made anyway. 

• The net can be divided into different boxes, which can be useful when it is a big sequence 
net. 

• It is possible to create separate text-windows for messages. 
 
3.3.2 HiDraw: 
 
HiDraw is a program especially made for electric, pneumatic and hydraulic design.  
 
The following things where noted when the program were examined: 
• There is a continuous open field on the worksheet, were there are different components 

showed. From this field the user can drag the components out to the construction. If the 
right mouse-button is pressed down in this field there will be a big component library 
displayed. When the user marks a component in this library it will become visible in the 
component field. 

• When one object is marked and the right mouse-button is pressed there is a little menu 
displayed with the following possible choices: Rotate, mirror x-axis, mirror y-axis, cut, 
copy and properties. 

• In ”Properties” the marked components color and line-type can be modified. 
• There are connection-nodes on every component where the wire must be connected. 
 
 
 
 



 32

3.3.3 CircuitMaker: 
 
In CircuitMaker electric circuits are constructed with different components. 
 
The following things where noted when the program were examined: 
• The wires are drawn to different connection-points, which become red when the position 

for connection is correct. 
• The components are placed with ”drag and drop”, and the components can be rotated in 

the worksheet by a click on the right mouse-button. 
• In the toolbox there is a text-line that immediately describes the type of tool. The user 

doesn’t have to wait for the yellow popup tag. 
• There are accelerator keys for most of the commands. 
• When two wire-ends are close enough to each other, they will be automatically connected. 
 
3.3.4 WinDraft: 
 
WinDraft is a program for design of electronics. 
 
The following things where noted when the program were examined: 
• To connect different components, chose ”Wire” in the toolbox. Then a ”W” is displayed 

next to the cursor and only click between the positions draws the wire. 
• When the command Cut is chosen the cursor becomes a scissors. 
• There is an undo-command and it is placed in the toolbar. 
• When ”wire” is chosen in the toolbox, there is a little box around the wire-ends that 

indicate that the position is right for connection. 
 
3.3.5 More programs: 
 
Besides the programs above their where also an examination made of the following programs: 
• EasyCAD 
• Toshiba 
• PSpice 
• CAD Std Lite 
• TraxMaker PRO 
• Dw-2000 
• DesignWorks 4 
• FastCAD 
• Siemens Simatic 
• Melsec Medoc 
• SoftControl 3.0 
 
None of these programs could bring anything new. 
 



 33

3.4 Opinion poll 
 
Introduction: 
Andreas Hellström on ABB Automation made an investigation 1999. The investigation was 
directed towards experienced SattLine programmers and manufactures. It was based on the 
SattLine 2.2. We have selected the questions and comments that are interesting for this master 
thesis work.  
 
Purpose: 
The point is to get ideas and customer desires to the new SFC program that this thesis work 
shall result in. 
 
The investigation: 
From the investigation that were sent the following questions were considered interesting for 
this work: 
 
3.4.1 Questions 
 
(1) Several initial steps 
 
In SattLine 2.2 it is possible to have several initial-steps in a sequence-block. We want to 
remove this possibility and just allow one initial-step per sequence-block. 
• Is there any practical use in having several initial-steps? 
• Can the possibility to have several initial-steps be deleted? 
 
(2) Branch from one sequence to another 
 
In SattLine 2.2 there is an opportunity to have branches from one sequence to a different 
sequence (within the same module). We want to remove this opportunity and just allow 
branches within one sequence. The synchronization between different sequences has to taken 
care of with own variables. 
• Is it common to use branches from one sequence to another? 
• Can we remove the possibility to have branches between the sequences? 
 
(3) Branches 
 
In today’s SattLine 2.2 branches can be used almost anyhow. The system has no control of 
insane programming, for example branches in and out of parallel structures. The only 
protection there is today is that the danger is mentioned in the SattLine manuals. We think 
that the user has little practical use of the flexibility there is and instead get problems with the 
allowed bad programming. We want to restrict the functionality to just allow conditional 
jumps, and that the semantic forbids jump in and out of the own step. 
 
For the continued discussion we refer to Appendix [?]:  
 
Alternative 1 shows branch from one step. This corresponds to an alternative branch, the 
execution continues in either S1 or S2. The strange thing with this construction is that the 
transition condition is placed wrong. The evaluation order can seem strange; the branch has 
the highest priority. 
 



 34

Alternative 2 shows the branch from a transition. This corresponds to the beginning of a 
parallel branch, the execution continues in both the steps after S3 and in S4. Nobody know 
what will happen next? 
 
Alternative 3 shows the construction that we believe is used in reality. It consists of an 
alternative branch where a break is placed after the transition where the branch comes out. In 
reality this is conditional jump. Either continue as usual or jump to S6. 
 
If possible we want to keep the functionality shown in Alternative 3. We definitely want to 
remove alternative 2. 
 
• Which construction is used in reality? 
• Is alternative 2 ever used? 
• Should one manage if just the functionality in Alternative 3 existed? 
 
(4) Other points of view 
 
Take the opportunity to mention other errors, desires or strange things that affect the 
sequences. Welcome to put priority on the functions that you consider has to exist or must be 
corrected. 
 
Priority 1 has to be there. 
Priority 2 ought to be there. 
Priority 3 ought to be in a future version of the product. 
 
3.4.2 Answers and Comments to the Opinion Poll 
 
Here beneath is a summary of the answers and comments of the SFC investigation. When 
there were a lot of comments, they were examined and sorted into the following categories: 
• Objects construction. 
• Allowed construction. 
• Construction of the SFC net. 
• The graphic. 
• Others. 
   
(1) Several initial steps 
Several initial-steps: 
Nobody had the need of using several initial-steps in one sequence. IEC 1131 just allow one 
initial-step. 
 
Branch from one sequence to another: 
The majority thought that branch from one sequence to another should be removed. 
 
(2) Branches: 
 
The majority thought that it was enough with conditional jumps. 
 
 
 
 



 35

(3) Object construction 
 
• Be able to put in comments in transitions. 
 
• A chooses of fork gives automatically ”break”, writes it clearer. ”Break don’t need to exist 

as a concept. 
 
• Observe that a sequence you usually jump to is of the type ”non connected”, this type of 

sequence must therefore be left. 
 
• ToolTip to the step-action and to the outstearing of a step. You don’t need to double-click 

on the step-action. 
 
(4) Allowed constructions 
 
• It should be able to jump to the same step, for instance in cyclic functions. 
 
• The handling of the fault management will be much more hard to work with if jump to 

another sequence is taken away. 
 
• Automatic fault detection is desired. For instance by a special type of faults, like object in 

manual, I shall always jump to a certain step. When I have several fault-types that would 
imply a certain action than I wish that these jumps would be declared automatically. F1 to 
F4 would be declared very often in every (almost) step. This makes the sequence unwieldy 
(presentation) and hard to program. 

 
(5) Construction of the SFC net 
 
• Mark a whole step even if the step goes outside the screen, unfortunately sometime 

impossible to zoom out the whole sequence-step. 
 
• Cut and paste function should be improved 
 
• The whole step should be able to click on and not only the text and frame. 
 
• When a variable is changed it should be enough to just a click on the value and than write 

the new straight in the diagram, without need to right-click, menu and a dialog. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 36

(6) The Graphics 
 
• If we would have three shared code in one step, so must the line between the code be 

different from the connections. 
 
• Is it possible to configure the background-color. The Fonts must be the same as in the other 

editors. 
 
• More 3-D in the graphic, step, conditions and others. 
 
• Hard to separate the three ”equations” on the screen because the same type of lines is used 

even in equations. 
 
(7) Others 
 
• Names of the forks in a list with possibility to mention search profile, the beginning sign at 

the name in a fork. 
 
• Functions for ”hot keys” with programming and online: go to the active step 
     At a fork: go to the step before the jump, go to next/previous step, go to first/last     
    Step in a fork/sequence. 
 
• Printing of a sequence on text format, the graphic print today generates many sides with 

much air on every side. 
 
 
 



 37

4 Function Specification 
 
In this chapter it is presented how our function specification was developed. In the function 
specification all functions of the program is specified. We use a standard ABB document as a 
template for the function specification. 
  
In 3.1 we describe the demands we have on the new program. In 3.2 we show the different 
solutions we have to the program functions that we have chosen.  
 
4.1 Development of the Program  
 
4.1.1 General demands 
 
The first thing to do in the development of the new program is to structure the demands and 
desired qualities on the new program. 
 
Limitations: 
In this thesis work we have only been interested in the using of the SFC user interface, 
because of that the demands are also limited to this area. 
 
The user: 
A very important aspect in the development of a program is to identify the user of the 
program. We have estimated that the user of this type of programs usually is an experienced 
application programmer that uses the program almost daily. Because of this the program does 
not need to have a lot of error messages and warnings that pop-up. We have given priority to 
make the program fast and flexible instead of making it easy to use for beginners. 
 
Demands: 
It is difficult to specify the demands on the program, but we say that the program must be: 
• At least as plain as the old program. 
• Decrease the time for building new sequences, which in fact is the main goal with the new 

program. 
• Be user-friendlier than the old version. 
 
It is difficult to set weighting factors on the different demands, so we have to relate the 
program to the older programs from ABB and the competitive programs. 
 
It is also quite individual what the user finds good or bad with different functions. We have 
tried to have the average user in mind and also got some feedback from the ABB personal.  
 
4.1.2 Method 
 
The development process went as following: 
• We tried to have three to four different ideas to how each function in the program should 

work. The ideas were our own ideas together with ideas from the competitive programs. 
• Evaluation of the different ideas according to the demands and wishes. 
• Selection of the best solution.  
 



 38

4.2 The Selection of Program Solutions 
 
In this chapter different program solutions are described. It is also mentioned which solution 
that is chosen and why it has been chosen.  
 
4.2.1 SFC construction methods  
 
Right click menu 
 
This construction method is used in Sattline. It takes long time to place an object. The user 
must first select a step or a transition by left clicking on the element. Then the user has to 
right click and choose from a list the object that is placed. The object will be placed after the 
released object. This means that the user must click on the mouse three times to place one 
object. 
 
Toolbox 
 
The user must first select a step or transition by left clicking and then left click on the symbol 
of the object, which is to be placed, in the toolbox. It will be the opposite order of the 
placement. The user will first choose an object type that has to be placed and then place it. 
This means that the user must click on the mouse two times to place an object. 
 
Drag-and-drop  
 
The object is in a toolbox or in a window. The user chooses an object and then the object 
follows the cursor. The object is then placed when the object is in correct position and the 
user left clicks. This is a fast way to construct a SFC net and easy way for new users. When 
the user has placed one object the drag-and-drop object still follows the cursor. The user can 
then place the objects by left click one time. 
 
Conclusion: 
 
Drag-and-drop is a fast and easy way to understand the construction for the users. This is the 
construction method that we suggest to be used.  
 
4.2.2 Drag-and-drop menu 
 
• Toolbox 
• A special window with the drag-and-drop objects in natural size 
• Right click menu 
 
Conclusion: 
 
We have placed the drag-and-drop objects in a toolbox. A window would be a cleaner design 
but we have only five drag-and-drop objects. They can be shown proportionately plain in a 
toolbox. Right click menu can not be used with drag-and-drop object. The object can then not 
be dragged out in the window. 
 

 
 



 39

4.2.3 Choice of Objects 
 

Level 1 The objects are divided in components 
 

The SFC net is constructed with single object like wires, step, transitions and jumps. It takes a 
long time to draw wires between every object but it is a free way to build the SFC net. 

 
Level 2 The objects are divided in elements 

 
The SFC net is constructed with step, branch, transition and jump. It takes a long time to place 
every object. 

 
Level 3 The objects also consist of several elements 
 
The net is built with the following elements: Step with transition, branch, simultaneous 
sequence, jump and sequence selection. The Simultaneous sequence consists of two 
simultaneous steps and one transition, which are placed before or after the simultaneous lines. 
The sequence selection consists of two parallel transitions and one step, which are placed 
before or after the parallel transitions. 

 
Conclusion: 

 
The object has been divided like level 3. There is no need to divide the objects in more pieces, 
since the construction time would not be faster. A step should always be followed by a 
transition. The fault control of the net will be much easier.  

 
4.2.4 User help to correct placement 
 
The node method 
 
The first idea for construction method we called the node method. In this method all drag-
and-drop objects have wires and nodes on their outputs and inputs. When an object is to be 
placed is it moved to the worksheet and pulled over the existing SFC net, so that the nodes of 
the drag-and-drop object coincident with nodes in the SFC net. If it is a correct placement the 
nodes at the drag-and-drop object will be green and if it is an incorrect placement they will be 
red. Another variant is that step has a filled input node and unfilled output node. Transitions 
shall have a filled output node and an unfilled input node. When the drag-and-drop objects top 
node coincident with a node of the same type can it be placed. The disadvantage with the 
method is that the nodes will be small and hard to interpret. 
 
The wires change color 
 
Another idea is that the input and output wires to the drag-and-drop object shall change color 
when they are to be placed. The wire can be for instance green for correct connection and red 
for incorrect connection. The disadvantage with this method is that it would be interpret for 
users with color defects to interpret the wires when they overlap in the existing SFC net. 

 
 

 
 



 40

The objects change color 
 
Another way is that the objects change color when an object is to be placed in the SFC net. 
The object is for instance green when it is a correct connection and red when it is an incorrect 
connection. The disadvantage this method is also that it is hard for users with color defects to 
interpret the colors. It would be easier if the colors were black and white. The disadvantage is 
that the net will be hard to interpret if the wires are black and the drag-and-drop object is also 
black. 

 
Stop lamp 

 
Another variant is to have a stop-and-go lamp, for instance red and green, like Winzip, which 
turns to green when it is a correct connection and red when it is an incorrect connection. The 
disadvantage this method is also that it is hard for users with color defects to interpret the 
colors. Black and white would be easier to interpret.  

 
The cursor change appearance 

 
The final variant is that the cursor change appearance for correct connection and incorrect 
connection. One idea is that a question mark would be seen next to the cursor when an object 
is to be placed incorrect. Another idea is that the cursor shall change appearance to a hair-
cross when it is a correct connection. This is the same cursor that is used in drawing-
programs.   

 
Conclusion: 

 
We decided to use the method where the cursor changes appearance. This is an easy and 
obvious way to show when it is a correct connection. 

 
 



 41

4.2.5 Handling of faults 
 
1. It is possible to do faults during the construction of the SFC net. The faults are detected 

and shown in the compile.  
2. It is not possible to do faults. Help-texts show what is wrong and the command is not 

executed. 
3. It is not possible to do faults. Warning dialog-boxes pops up and the commands is not 

executed. 
4. The program sends out warning dialog-boxes but it is possible to do faults in SFC during 

the construction. The fault is also detected and shown in the compilation. 
5. Help-text shows what is wrong but it is possible to do faults in SFC during the 

construction. The faults is also detected and shown in the compilation. 
  

Conclusion: 
         

The method number two, for handling faults, has been chosen. It guarantees that it is not 
possible to do any faults and the command is not executed. This choice has been made 
because the only way to cutting down the construction time is to use this method. If instead 
method number one had been used the user instead had to look for faults in the compile file. 
The total construction time would be the same. Method number two will be a secure and 
direct way to control that the user constructs correctly. There are no dialog-boxes that irritate 
and stop the user. Instead there is a help-text popping up in the window frame that shows 
what the user made wrong. This is also good for a new user to understand the construction 
principle of the SFC.  

 
4.2.6 How to rotate objects 

 
Some drag-and-drop objects, for instance step with transition, must be rotated when they are 
moved over the existing SFC net. If it shall be placed after a step the drag-and-drop object 
should have the transition on the top and the step bellow. This indicates that a new transition 
and step will be added after the existing step. If instead a new step with transition will be 
placed after a transition the drag-and-drop object should have the step on the top. The rotation 
of the drag-and-drop objects can be done in two ways: 

  
1. The object rotates with right-clicks. 
2. The object rotates automatically when it is to be placed in the existing SFC net. 

 
Conclusion: 

 
The objects shall be rotated automatically (method 2). This is to having the user to avoid to 
manually rotate the object so it is fitted in the existing SFC net. That would increase the 
construction time.  

 



 42

4.2.7 The placement of drag-and-drop objects 
 

The cursor is overlapping a wire below an element. If it is a correct placement when the user 
left-clicks the drag-and-drop object is placed after the element. 
The cursor is overlapping a node. If it is a correct placement when the user left-clicks the 
drag-and-drop object is placed after the node. 
The cursor is overlapping an element. If it is a correct placement when the user left-clicks the 
drag-and-drop object is placed after the element. 

 
Conclusion: 

 
The method number one has been chosen. The cursor should hit the wires when the drag-and-
drop objects are to be placed. The drag-and-drop object is pasted between the objects that the 
wire is connected between. The user directly sees where the object has to be placed in the 
existing SFC net. The user left-clicks to place the object. This is a normal behavior in 
programs. 

 

 



 43

4.3 Summary of Program Solutions  
 

The main features of the program solution is:  
 

• The SFC net shall be constructed with drag-and-drop technique. 
• The drag-and-drop object should be placed in a toolbox. 
• The drag-and-drop object has to be a new step with transition, new branch, new 

simultaneous sequence, new sequence selection and new jump. 
• The cursor should change appearance to a hair-cross when it is a correct placement in the 

net for the drag-and-drop object. 
• It should not be possible to construct incorrectly. The program auto adjusts and help-text 

in the window frame shows the user what is wrong. 
• The cursor should hit the wires when the drag-and-drop objects are placed. The drag-and-

drop object is pasted in between the object that the wire is connected between. The user 
directly sees where the object will be placed in the existing SFC net. 

• The drag-and-drop objects are rotated automatically when it is moved over the existing 
SFC net. When the user for instance has chosen Step with transition, the element on the top 
to changes to a transition when the cursor is on the wire under a step. Furthermore the 
element on the top changes to a step when the cursor is on the wire under a transition.   

• The user has to be able to save user settings. 
• To reduce the size on the worksheet the user has to be able to place objects in a 

subsequence. 
• The user has to be able to save parts of the SFC net that he usually uses in the 

construction, in a special subsequence library. 
• The drag-and-drop object that follows the cursor is removed when the user presses down 

the right mouse button. 
  
 



 44

5 Implementation 
 
5.1 The Functions of the Program 
 
The implemented program has the Advant Control Builder as base and then we have added 
several functions. 
In this chapter the new functions that have been implemented to the program are explained.  
 
5.1.1 Drag-and-drop Toolbar 
 
The toolbar consists of five symbols (from left in the figure 4.1): new step with transition, 
new sequence selection, new simultaneous sequence, new jump and new branch. 
 

 
Figure 4.1 Toolbar for drag-and-drop objects 
 
5.1.2 New step with transition 
 
To add a new step with transition: 
• Press down the symbol for new step with transition 
• Move the cursor to the SFC worksheet. An object that looks like step with transitions 

follows the cursor. A help-text will pop up in the window frame “ The step with transition 
will be placed after the selected element”. 

1. Move the cursor over a step. The step is highlighted with green colour, which symbol that 
it is selected. The object that follows the cursor has the transition at the top and the step 
below. That means that if the user presses the left mouse button a new transition and a 
new step is placed after the selected step. 

2. Move the cursor over a transition. The transition (Tr1 in the figure 4.2) is highlighted with 
green colour, which symbols that it is selected. The object that follows the cursor has the 
step at the top and the transition below. That means that if the user presses the left mouse 
button a new step (S2 in the figure 4.3) is placed after the selected transition and a new 
transition (Tr2 in the figure 4.3) after that new step. 

• Move the cursor over an alternative or parallel elements so that the whole alternative or 
parallel sequence is highlighted with green colour. If the user presses the left mouse 
button nothing happens. It is not possible to place a new step with transition in that way. 
The drag-and-drop object is still following the cursor. 

 
Figure 4.2 The cursor is placed over a transition 



 45

 
• After a new step with transitions is placed the object is still following the cursor and a new 

step with transitions can be placed. If the user wants to select another drag-and-drop 
object they can directly choose another in the toolbar.  

• The user press the right mouse button if they want to get rid of the drag-and-drop object 
and return to normal mode. 

   
5.1.3 New sequence selection 
 
To add a new sequence selection: 
• Press down the symbol for the sequence selection in the drag an drop toolbar 
• Move the cursor to the SFC window sheet. An object that looks like a sequence selection 

follows the cursor. A help-text will pop up in the window frame “ The sequence selection 
will be placed after the selected element”. 

1. Move the cursor over a step. The step (S2 in the figure 4.3) is highlighted with green 
colour, which symbols that it is selected. The object that follows the cursor has the 
alternative transitions at the top and the step below (figure 4.3). That means that if the user 
press on the left mouse button two new alternative transitions (Tr3 and Tr4 in figure 4.4) 
is placed after the selected step (S2 in the figure 4.3) and a new step (S3 in figure 4.4) 
after those new alternative transitions. 

2. Move the cursor over a transition. The transition is highlighted with green colour, which 
symbols that it is selected. The object that follows the cursor has the step at the top and the 
alternative transitions below. That means that if the user presses the left mouse button a 
new step is placed after the selected transition and two new alternative transitions after 
that new step. 

• Move the cursor over an alternative or parallel elements so that the whole alternative or 
parallel sequence is highlighted with green colour. If the user presses the left mouse 
button nothing happens. It is not possible to place a new sequence selection in that way. 
The drag-and-drop object is still following the cursor. 

 

Figure 4.3 The cursor is placed over the step S2 
 
• After a sequence selection is placed the drag-and-drop object is still following the cursor 

and a new sequence selection can be placed. If the user wants to select another drag-and-
drop object they can directly choose another in the toolbar. 



 46

• The user presses the right mouse button if they want to get rid of the drag-and-drop object 
and go to normal mode. 

 
5.1.4 New simultaneous sequence  
 
To add a new simultaneous sequence: 
• Press down the symbol for the simultaneous sequence in the drag-and-drop toolbar. 
• Move the cursor to the SFC window sheet. An object that looks like simultaneous 

sequence follows the cursor. A help-text pop-up in the window frame “The simultaneous 
sequence will be placed after the selected element". 

1. Move the cursor over a step. The step (S2 in the figure 4.4) is highlighted with green 
colour, which symbols that it is selected. The object that follows the cursor has the 
transition at the top and the simultaneous steps below (figure 4.4). That means that if the 
user presses the left mouse button a new transition (Tr5 in figure 4.5) is placed after the 
selected step (S2 in the figure 4.4) and two new simultaneous steps after that new 
transition. 

2. Move the cursor over a transition instead. The transition is highlighted with green colour, 
which symbols that it is selected. The object that follows the cursor has the simultaneous 
steps at the top and the transition below. That means that if the user presses the left mouse 
button two new simultaneous steps is placed after the selected transition and a new 
transition after those new simultaneous steps. 

• Move the cursor over an alternative or parallel elements so that the whole alternative or 
parallel sequence is highlighted with green colour. If the user presses the left mouse 
button nothing happens. It is not possible to place a new simultaneous sequence in that 
way. The drag-and-drop object is still following the cursor. 

 
 

 
Figure 4.4 The cursor is over the step S2 
 
• After a new simultaneous sequence is placed the object is still following the cursor and a 

new simultaneous sequence can be placed. If the user wants to select another drag-and-
drop object they can directly choose another in the toolbar.  



 47

• The user press the right mouse button if they want to get rid of the drag-and-drop object 
and return to normal mode. 

 
5.1.5 New jump 
 
A new jump is added in the following way: 
 
Select the placement for the jump. 
 
• Press down the symbol for the jump in the drag-and-drop toolbar. 
• Move the cursor to the SFC window sheet. An object that looks like a jump arrow follows 

the cursor. A help-text pop-up in the window frame “Select placement for the jump”. 
 
1. Place the cursor over a transition. The transition (Tr1 in the figure 4.5) is highlighted with 

green colour, which symbols that it is selected. If the user press down the left mouse 
button a new transition (Tr7 in the figure 4.6) is placed parallel to the one that was 
selected. The new transition is then selected and it will be a jump when the jump-
destination is decided. A help-text pop-up in the window frame “DoubleClick on the 
destination step or the background”. 

 
2. Place the cursor over a step with a transition after instead. The step is highlighted with 

green colour, which symbols that is it selected. If the user press down the left mouse 
button a new transition is placed parallel to the transition that is under the selected step. 
The new transition is then selected and it will become a jump when the jump-destination 
is decided. A help-text pop-up in the window frame “DoubleClick on the destination step 
or the background”. 

 
• If the user left-click on a step that is inside a simultaneous sequence with no transition 

below the step inside the simultaneous wires will a help-text pop-up. The help-text says “ 
Incorrect placement for the jump”. The drag-and-drop object is still following the cursor 
and the user can place the jump some place else. 

• Move the cursor over an alternative or parallel elements so that the whole alternative or 
parallel sequence is highlighted with green colour. If the user presses the left mouse 
button nothing happens. It is not possible to place a new jump that way. The drag-and-
drop object is still following the cursor. 

• If the user press down the left-mouse button when nothing is selected nothing happens. 
The drag-and-drop object is still following the cursor and the help-text is still in the 
window frame “Select placement for the jump”.                        
        



 48

  

 Figure 4.5 The cursor is over the transition Tr1.  
 
Select the jump-destination. 
 
• The help-text “DoubleClick on the destination step or the background” is in the window 

frame. That means that the user shall double click on the step (S3 in the figure 4.6) that 
shall be the destination of the jump or double clicks on the background so that a dialog-
box pop-up. There shall the jump destination be typed. It can be a step that not yet is 
added to the SFC net. The added jump is show in the figure 4.7.   

• If the user Double Clicks on a transition will a help-text pop-up "Please choose a step or 
hit the background" and the user has to double click on a step or hit the background so that 
the dialog-box pop-up. 

• If the user Double Click on a step that is inside a simultaneous sequence and the transition 
that the jump goes from is not inside the simultaneous sequence a help-text will pop-up. 
The help-text is "Incorrect placement for the jump, can't jump into a simultaneous seq". 
The user has to double click on another step or hit the background so that the dialog-box 
pop-up. 

 



 49

 
 
Figure 4.6 A new transition (Tr7) is added and the cursor is over step S3 
 
To remove the drag-and-drop object or choose some other type 
 
• If the user has not placed the jump it is possible to directly choose another drag-and-drop 

object in the toolbar or right click with the mouse to go to normal mode, which means the 
drag-and-drop object disappears.  

• If the user is just to choose a destination of the jump they can right click and the drag-and-
drop object disappears and the program returns to normal mode as soon as the mouse is 
moved. The transition that was added when the jump was placed is still in the SFC net. 
The user cannot directly choose another object if they are about to choose destination of 
the jump.  
 

  
 
 
 
 
 
 
 
 
 



 50

5.1.6 New Branch 
 

A new branch is added by selecting the element that the branch starts before and the 
element that the branch ends after. The element must be of the same type but the do not 
need to be selected in order for instance up and down in the SFC net.  
 
First branch element  
 
• Press down the symbol for branch in the drag-and-drop toolbar a help-text pop-up 

"Choose placement for the Branch". Move the cursor to the SFC window. An object 
follows the cursor. The object looks like a transition (figure 4.7) when the cursor is 
placed over a transition and it looks like a step when the cursor is over a step. This 
means that an alternative transition is placed when the object is a transition and a 
simultaneous step when it is a step. 

• Left click on the step or the transition where the branch shall start (the branch starts 
before the selected one) or the end (the branch ends after the selected one). The branch 
can start and end on the same element. 

                                                                                                            

                      
Figure 4.7 The cursor is over the transition Tr5. 
                                                                           
 
 



 51

Last branch element 
 
• A new help-text "Select destination of the branch" popsup when the first element is 

decided. The drag-and-drop object has change appearance to a wire (figure 4.8).  
• The user has to double click on the element, which will end or start the branch. In the 

figure the user has to double click on a transition (Tr 2). When the user has double 
clicked on the transition (Tr2) the SFC net looks like figure 4.9. The user then can 
place a new branch. The drag-and-drop object first branch is following the cursor.  

• The element should be of the same type as the first one. If for instance the user first 
left clicks on a transition and then double clicks on a step a help-text that says 
"Incorrect placement for the Branch, only step to step or trans to trans" will pop-up 
and be shown in 4 s. Then the help-text "Choose placement for the Branch" pops up 
and the user have to start again and left click on the first element. 

• The branch cannot go outside a simultaneous sequence the SFC program will then get 
locked. If the user double clicks on an element that is not in the same simultaneous 
sequence, as the first element, a help-text will pop-up. The help-text says, "Incorrect 
placement for the Branch" in 4 s. Then is the help-text "Choose placement for the 
Branch" pop-up and the user has to start again and left click on the first element.  

Figure 4.8 The cursor is over the transition Tr2  
 
 



 52

 
 

 
Figure 4.9 The branch is placed  
 
• If the user wants to remove the drag-and-drop object is it just to right click with the 

mouse button and the object disappears and the program goes to normal mode. 
• If the user wants to change drag-and-drop object directly after the branch object is 

chosen they can only do that when the first element has not been decided. 
 
 
 
 
 
 
 
 
 
 
 
 



 53

5.2 The Function-specification compared with the Implementation 
 
All the functions that were specified in the function-specification have not been implemented 
and some of them are not exactly the same as in the function-specification.  
Here follows the functions that have not been implemented and some ideas of how they could 
be implemented. 
 
• The cursor does not change appearance when the cursor is in correct position. The cursor 

is of hair-cross type when drag-and-drop object is selected. The reason this is not 
implemented is that the master thesis is of the limited time. The function that controls 
what element the cursor is overlapping could possibly be implemented in the procedure 
OnMouseMove in the file SFCView. The program shall there control what kind of element 
the mouse is over. The control should be the same as in the jump and branch procedures in 
the file Editseq. If for instance the jump destination is to be decided and the cursor is over 
a transition the cursor shall be a stop sign. If instead the cursor is over a step the cursor 
shall be a hair-cross.  

• The cursor shall not be over the wire between elements when a drag-and-drop object shall 
be placed. We use the existing method where the elements are selected. The drag-and-
drop object will be placed after the selected object when the user left clicks. In the existing 
program the wires are not objects, so they are impossible to select. If the wires shall be 
selectable the wire must therefore be an object and how this is done we have no good 
answer to.   

• The menus have not been modified according to the function specifications. This is not 
important according to the task and has been disregarded because of lack of time.  

• The destination of the branch and the jump is decided with double-click in the 
implementation. In the function specification they are decided with left-click. This is a 
normal behaviour. We tried to use the existing left-click functions in the implementation 
but it didn’t work. It seems that Double-click work properly and we decided to use it 
instead. 

• No undo-function has been added in the implementation. This is not important according 
to the task and has been disregarded due to  lack of time. 

• No keyboard accelerators have been added. This is not important according to the task and 
has been disregarded because of lack of time. 

 
 
 
 

 
 
 
 
 
 
 
 
 



 54

5.3 Program-construction 
 
This chapter is especially written to describe the program solution for the personnel at ABB, 
who will use or further develop the program. The part can be difficult to understand for 
persons with no access to the source code. Program files have been written in italic style. 
 
5.3.1 Selection of Elements 
 
If the drag-and-drop functions are to work, the elements must be automatically selected when 
the cursor is over them. In the present version of Advant the selection take place when the 
user left clicks on an element. The program handles the selection by use of events, that a 
process waits for. When the user presses down the left button a PickEvent appears and when it 
is released a ReleaseEvent appears. There is also a MoveEvent that appears when the cursor is 
moved. MoveEvent is not used in the present version of SFC. Therefore MoveEvent has been 
added in the file InputEvent so it works in the same way as PickEvent, which means that the 
cursor position is updated. 
 
The process for selection handling is waiting for events in the file mainprog. If an event 
appears for instance menus and selections it is handled. 
 
If a MoveEvent appears nothing happens in the file mainprog, the processes keep waiting. 
Additions have been made in the file mainprog so the process only waits for MoveEvent 
when a drag-and-drop object has been chosen. It handles as a PickEvent every other and as a 
ReleaseEvent every other. This is made to simulate the selection procedure that exists today. 
In the file Redrawandwaitfor it is control if the events that have to happen in mainprog 
actually have happened. In Redrawandwaitfor additions have been made, so the only event 
that can happen when drag-and-drop is selected is MoveEvent. This is done to prevent the 
program from getting locked in the file. 
 
In the file picking the multiselection is disabled by turning off the selection frame, which is 
used to drag over the elements to be selected. This is made so that the selection frame does 
not pop  up when a drag-and-drop element is placed, which can be irritating. If more than one 
object is selected all selected object will be deselected. 
In the file selection, which handles the selection, is the multiselection disabled when drag-
and-drop object is chosen.  
 
If the user hits the wire that goes from the last transition to the first step, the whole SFC will 
be selected. This is irritating for the user, additions have been made in the file drawseq to 
disable this command for drag-and-drop. 
 
Addition has been made in the file SFCView so that the command 
OnMouseMoveEvent(true,true) is executed when a drag-and-drop object is chosen. The first 
variable controls all drag-and-drop additions for selection in the files mainprog, 
Redrawandwaitfor and picking. The second variable controls the drag-and-drop additions for 
selection in the files selection. To prevent the program from selecting the whole SFC is done 
by executing OnMouseDeselect(true). This must be done separate because the file drawseq is 
not in the same directory that the other mentioned files. 
 



 55

5.3.2 Toolbar 
 
A toolbar has been added for the drag-and-drop commands. It is placed in the resource file 
and has the name IDR_SFCDARGTOOLBAR. It contains the symbols: New step with 
transition, new sequence selection, jump and branch.  
 
Adjustments for the toolbar, for instance that it shall be moveable, is made in the file 
MainFrm. Additions have also been made so that the toolbar only is visible when SFC 
language has been chosen. The initiation of the toolbar is made in the file SFCView. 
 
5.3.3 The Drawing of drag-and-drop objects 
 
All drawing procedures of the drag-and-drop object that follows the cursor is made in the file 
SFCView. When the user presses down a symbol in the drag-and-drop toolbar a boolean 
variable that is specific for each object will be true. 
From the procedure OnDraw(CDC*pDC) the added procedure OnDragDraw(CDC*pDC) is 
executed. To reduce the flicker there is an area around the cursor made as a bitmap. The area 
has to be updated when the cursor is moved over the window. This is made in the procedure 
OnMouseMove(UINT nFlags, Cpoint point). 
 
In OnDragDraw it is controlled which type of element that is selected. This is used for new 
step with transition, sequence selection, simultaneous sequence and for branch. If a transition 
is selected the drag-and-drop object shall have the step on the top for the three first mentioned 
cases. For branch the drag-and-drop object shall be a transition when a transition is selected 
and a step when a step is selected. The change in appearance after what is selected is made by 
the variable RotateStepTrans that is true if a step is selected. This variable is than sent into the 
drawing procedure. The command jump always has the same symbol that follows the cursor. 
This is due to the fact that jumps always start from a transition and goes to a step. If a jump is 
placed from a step to a transition a new transition will first be added after the selected step. 
The jump then starts from this new transition. If the jump instead goes from a transition a new 
transition will first be placed parallel to the selected one. The jump then starts from this new 
transition. The addition of a transition is in the present version of the SFC program. 
 
The procedures for the drawing of the different object is OnDrawStepTrans(pDC, 
RotateStepTrans), OnDrawSeqSel(pDC, RotateStepTrans), OnDrawSimSeq(pDC, 
RotateStepTrans), OnDrawJump(pDC)  and OnDrawBranch(CDC* pDC,bool StepBranch). 
The variable StepBranch has the same value as RotateStepTrans. 
 



 56

5.3.4 Helptext 
 
The following have been added in the file SFCView to make helptext work: 
The procedure DragHelpText(int HelptextType) has been added to write the help-text. 
The variable HelpTextType is sent with the procedure and controls what help-text that shall 
be written. DragHelpText is called in the procedure OnDraw, which is executed when the 
window is redrawn.  
 
The following have been added in the file Editseq to make helptext work: 
It is not possible to get the class CeditorMainFrame from the file Editseq and it is therefore 
not possible to write helptext commands in Editseq. It is also not possible to include SFCView 
in the file Editseq so that the procedures in SFCView will be accessible from Editseq and not 
only reverse. Instead has the procedure DragTextSeq been added in the file Editseq. In 
Editseq is an integer m_DragText set to a value when a helptext shall be written. The 
procedure DragTextSeq is called from the file SFCView and returns the value on 
m_DragText, which agrees with the value that shall be sent into the DragHelpText procedure. 
 
5.3.5 The Cursor appearance 
 
In the procedure OnMouseMove in the file SFCView changes the cursor appearance to hair-
cross when drag-and-drop objects have been chosen. 
 
5.3.6 New step with transition 
 
All procedures where additions have been made, to make new step with transition work for 
drag-and-drop, are in the file SFCView. 
If the user presses the drag-and-drop symbol for new step with transition the following 
happens in the procedure OnNewDragStepTrans when the user press: 
The variable m_bStepTrans is set to true if the variable m_bDestJump and m_bDestBranch 
are false. These variables are true when the user shall select jump destination or branch 
destination. This is done to prevent a step with transitions to be placed when a jump or a 
branch is not completed. When m_bStepTrans is set to true all other drag-and-drop objects is 
set to false. This is made so that the user directly can choose a new object in the toolbar. 
 
Then OnMouseMoveEvent(true,true) and OnMouseMoveDeselect(true) is set, which is 
mentioned in the selection description.  
 
If the user presses the left mouse button on a selected object the following happens in the 
procedure OnLButtonDown(UINT nFlags, Cpoint point): 
 The variable m_bStepTrans is true and therefor a step with transition is placed in the net. 
After that is it possible to place another step with transition in the same way. 
 
When the user presses the right mouse button and release it the procedure 
OnRButtonUp(UINT nFlags, Cpoint point) is executed. There the following happens:  
Variable m_bStepTrans is set to be false, which means that the drag-and-drop object 
disappear. After that the procedure OnMouseMoveDeselect(false) executes, which restore the 
possibility to select the whole SFC net. Then is the procedure 
OnMouseEventEvent(false,false), which restore so the user has to left click on the element to 
get it selected. 
 



 57

5.3.7 New sequence selection 
 
All procedures where additions have been made, to make new sequence selection work for , 
are in the file SFCView. 
If the user presses the symbol for new sequence selection in the drag-and-drop toolbar the 
following happens in the procedure OnDragSeqenceSelection: 
The variable m_bSeqSel is set to true if m_bdestJump and m_bDestBranch are false. Then all 
other drag-and-drop variable is set to be false. In the same way as new step with transition is 
the procedures OnMouseMoveEvent(true,true) and OnMouseMoveDeselect(true) is executed. 
 
If the user presses the left mouse button on a selected object the following happens in the 
procedure OnLButtonDown(UINT nFlags, Cpoint point): 
The variable m_bSeqSel is true and therefor a new sequence selection is placed in the SFC 
net. After that it is possible to place another sequence selection in the net. 
 
When the user presses the right mouse button and releases it is the procedure 
OnRButtonUp(UINT nFlags, Cpoint point) is executed. The following happens for new 
sequence selection: 
The variable m_bSeqSel is set to be false, which means that the drag-and-drop object 
disappears, and the user can make other commands. After that is, in the same way as step with 
transition, the procedures OnMouseMoveDeselect(false) and 
OnMouseMoveEvent(false,false). 
 
5.3.8 New simultaneous sequence 
 
All procedures where additions have been made, to make simultaneous sequence work for 
drag-and-drop, are in the file SFCView. 
 
If the user presses the symbol for new simultaneous sequence in the drag-and-drop toolbar the 
following happens in the procedure OnDragSimultaneousSeqences: 
The variable m_bSimSeq is set to true if m_bDestJump and m_bDestBranch is false. 
Then all other drag-and-drop variable is set to be false. On the same way as new step with 
transition the procedures OnMouseMoveEvent(true,true) and OnMouseMoveDeselect(true) is 
executed. 
 
If the user presses the left mouse button on a selected object the following happens in the 
procedure OnLButtonDown(UINT nFlags, Cpoint point): 
The variable m_bSimSeq is true and therefor a new simultaneous sequence is placed in the 
net. It is then possible to place another simultaneous sequence.  
 
When the user presses the right mouse button and release it the procedure 
OnRButtonUp(UINT nFlags, Cpoint point) is executed. The following happens for new 
simultaneous sequence: 
The variable m_bSimSEq is set to be false, which means that the drag-and-drop object 
disappear. In the same way as new step with transition the procedures 
OnMouseMoveDeselect(false) and OnMouseMoveEvent(false,false) is executed. 
 



 58

5.3.9 New jump 
 
In the file SFCView the following happens: 
When the user presses the symbol for new jump the procedure OnDragJump is executed. The 
following happens: 
The variable m_bJump is set to true if m_bdestJump and m_bDestBranch are false.  
Then all other drag-and-drop variable is set to be false. The procedure DragJumpEvent(true) 
is then executed, it sets the variable m_bJumpDrag to true in the file Editseq. This is done so 
that a procedure in Editseq shall work both by the old toolbox and the new drag-and-drop 
toolbox. 
In the same way as for new step with transition the procedures 
OnMouseMoveEvent(true,true) and OnMouseMoveDeselect(true) are executed. 
 
If the user presses the left mouse button on a selected object the following happens in the 
procedure OnLButtonDown(UINT nFlags, Cpoint point): 
The variable m_bJump is true and the variable m_bDestJump is set to true so that another 
drag-and-drop command not is executed before a jump destination is decided. After that it is 
controlled what kind of element the user has clicked on. If the user has clicked on a step with 
simultaneous wires will a help-text pop up and the program waits in 4 s so that the user 
understand the message. After that the procedure is interrupted, the user has to click on 
another element to place the jump. This is done to prevent the program from getting locked.  
If there is not a simultaneous wire after the step that the user clicked on the program will call 
the file Editseq. There the following happens: 
 
If the user has clicked on a step, two alternative transitions will be placed after it. 
If the user instead has clicked on a transition an alternative transition will be created parallel 
to it.  
 
The transition that has been created will be selected and be sent in the procedure 
SeqElemTurnIntoJumpAction(pSeqElem eSEqElement). There the following modifications 
have been done: 
First the procedure OnMouseEvent(false,true) is executed. If this is not done the command 
WaitFor(DoubleClickEvent,100000,&Event) will not work. It will wait for MoveEvent, 
which happens when the cursor is moved. The boolean true is sent in the procedure to prevent 
that the selection frame, that is dragged over elements, will pop up. WaitFor is waiting in 
100000 ms for the user to double click. 
 
When the user has double clicked the JumpSelection(Event,true) is executed, which is a new 
procedure with selection commands. The Boolean true is sent in so that it works properly. In 
the branch the same procedure is used but then false is sent in. 
Then the element that the user double clicked on is controlled. 
 
If the user has double clicked on a transition a help-text will pop up. A help-text will also pop 
up if the jump goes out of or into a simultaneous sequence. If one of these faults happens the 
program will wait for a new destination of the jump.  
 
If the user double clicks on the background or when 100000 ms have proceeded a dialog-box 
will appear where the destination has to be written. After that OnMouseMoveEvent(true,true) 
is executed, which means that the selection is working for drag-and-drop again. 



 59

When the program returns to the file SFCView and the procedure OnLButtonDown, 
m_bDestJump will be set to false and a new jump or another drag-and-drop command can be 
executed.  
 
If the user right clicks the procedure OnRButtonUp(UINT nFlags, Cpoint point) in the file 
SFCView will be executed and there the variable m_bRightClick will be set to true. After that 
OnMouseMoveEvent(true,true) is executed. This means that if the program is waiting for 
double click in the procedure SeqElemTurnIntoJumpAction in the file Editseq it will also 
react on MoveEvent. Waitfor is passed when the cursor is moved and no jumpadress is 
placed. When the program has returned to the procedure OnLButton in the file SFCView and 
m_bRightClick is true m_bDestJump and m_bJump will be set to false. This means that the 
drag-and-drop object disappears. In the same way as new step with transition the procedures 
OnMouseMveDeselect(false) and OnMouseMoveEvent(false,false) is executed. The variable 
m_bRightClick is then set to false. 
 



 60

5.3.10 New Branch  
 
In the file SFCView the following happens: 
When the user presses the symbol for new branch the procedure OnDragBranch will be 
executed. There the following happens: 
The variable m_Branch is set to true if m_bDestJump and m_bDestBranch are false. 
Then all other drag-and-drop variable is set to the value false. On the same way as new step 
with transition the procedures OnMouseMoveEvent(true,true) and 
OnMouseMoveDeselect(true) is executed. 
 
When the user presses the left mouse button the procedure OnLButtonDown(UINT nFlags, 
Cpoint point) is executed. There the following happens: 
It is controlled if an element is selected. The variable m_bBranch is true and the variable 
m_bDestBranch is set to true so that no other drag-and-drop commands can be executed until 
a branch destination is decided.  
 
After that the procedure SeqElemNewDragBranchAction(eSEqElem, eDummy, 
SiSoType,TiToTpe,Before) in the file Editseq is executed. This procedure has been added so 
that a branch between several elements shall work. There the following happens: 
It is controlled how many elements that is selected. If no element is selected the procedure 
shall not be executed, the program will get locked. If an outgoing element is selected so the 
procedure OnMouseMoveEvent(false,true) is executed. This is done so that 
Waitfor(DoubleClickEvent,100000,&Event) shall work properly. It will else react on 
MoveEvent, which was explained in jump.  
 
After that is the whole net unselected so that a branch destination could be selected. The 
procedure WaitFor is waiting in 100000 ms for the user to double click. If the user has double 
clicked the procedure JumpSelection(Event,false) is executed, which is a new procedure with 
selection commands. The selected element is then fetched. It should be an element and it 
should be of the same type as the element that the user first has selected. If the elements are of 
different types a help-text will pop up and the user must select a new element for the 
destination. Then it is controlled if the outgoing and the destination element are the same 
element. If that is the case the procedure SeqElemNewBranchAction is executed. If the 
elements are of different types it is controlled so that the branch does not go into a 
simultaneous sequence. In that case a help-text will pop up and the user has to double click on 
another element. After that it is controlled so that the user has chosen a branch destination that 
is over the outgoing branch in the net. If that is the case the pointer of branch destination and 
outgoing branch will change values. This is done because the procedure 
ConSeqElemNewBranchAction that is used must have the elements in correct order, or else 
the program will get locked.  
Then OnMouseMoveEvent(true,true) is executed, which means that the selection works for 
drag-and-drop again. 
When the program returns to the procedure OnLButtonDown in the file SFCView the variable 
m_bDestBranch is set to false and a new branch or another drag-and-drop command can be 
executed. 
 
If the user right clicks the procedure OnRButtonUp in the file SFCView is executed. There the 
following happens: 
The variable m_bRightClick is set to true. If a branch destination is decided is m_bBranch set 
to false, which means that the drag-and-drop object disappears. If the program instead is 



 61

waiting for a double click in the procedure SeqElemNewDragAction in the file Editseq will 
m_bDestBranch be true. That means that OnMouseMoveEvent(true,true) first is executed so 
that the procedure WaitFor shall react on MoveEvent and no branch will be placed. The 
program then returns to the file SFCView and the procedure OnLButtonDown. There will 
m_bDestBranch and m_bBranch will be set to false, which means that the drag-and-drop 
object disappear. 
In the same way as new step with transition the procedures OnMouseMoveEvent(true,true) 
and OnMouseMoveDeselect(true) is executed. 
The variable m_bRightClick is then set to the value false. 
 
 
 
 
 
 
 



 62

6 Conclusions and Continued Work 
 
6.1 Conclusions and Experiences  
 
The conclusion of the implemented program is that the construction of SFCs is more flexible 
and easier to understand then the existing program. The drag and drop figures are not ultimate 
but the user is helped by the help-texts. 
The implemented program works reliably and the program did not get locked during our tests. 
  
We spent a lot of time at searching and examination of similar programs in the beginning of 
the master thesis. Afterwards we realise that the examination may have been not completely 
adequate. The interesting facts to find out were the editing principle and the graphics. The 
ways that the programs worked were of much less interest. 
 
We had no experience on object programming before the master thesis. Therefore we spent 
more than one month part-time practising Microsoft Visual C++ programming. This was very 
instructive to the following implementation programming. 
 
It is not easy to get acquainted with the existing ABB software. It is a large, complex program 
with several processes. There are some files from 1985. After that new files have been added 
and modified several times. There is not much help text in the files from the programmer, 
who is usually mentioned in the file. In several cases the programmer of a file is not working 
with ABB anymore and no one else is really familiar with the file. We started to do small 
changes in the program to understand the principle of the program. It is not possible to 
understand every detail in the program and it is not necessary.  
 
The order of the functions we have implemented has been adequate. We started to add the 
selection principle of drag and drop, which is fundamental for its functionality. 
 
The first function we added was new step with transition. This forms the basis for the next 
functions, new simultaneous sequence and new sequence selection.  
 
The functions jump and branch were the most difficult to implement. The final time was spent 
at help-texts and drag and drop objects adjustments. 
 
We had only one computer during the most part of master thesis. Therefore we decided to 
concentrate us on the implementation and wait to write the report. This has lead to that much 
time after the implementation has been spent at report writing. Afterwards it can be discussed 
if we spent too much time at the implementation. We think that it was the most important and 
it had to be finished.  
 
 



 63

6.2 More Functions 
 
In Section 5.2 the difference with the function-specification is mentioned and the functions 
are described in more detail. There are still some functions that remain to be installed in the 
future, such as: 
 
• The cursor has to change appearance to a hair-cross. 
• The cursor does not have to cover the wire between elements where a drag and drop 

object has to be placed. 
• The menus have not been modified according to the function specifications. 
• The destination of the branch and the jump is decided with double-click in the 

implementation. 
• An Undo-function that will undo the last command. It should work in several steps. 
• Keyboard accelerators for the most used commands. 
 
6.3 Other Modifications 
 
• One idea is that the top wire of the drag and drop object should attach to the SFC net when 

the starting point of the branch has been decided. The length of the wire is adjusted when 
the drag and drop object is moved. The branch is attached to the SFC net when ending 
point of the branch is decided. 

• Parts of the SFC net should be saved as a file in a subsequence library. The files can then 
be loaded and then be pasted in the SFC net. It could for instance be a drill process in a 
factory, which can be used as a module for the complete control program. 

 
 



 64

References 
 
 
SattLine language Development version 0.31-n 
SattControl AB 
Malmö, Sweden 1991 
Order no: 493-0298-11 

 
Programming Microsoft Visual C++ Fifth Edition      
Microsoft Press 
Washington, USA 1998 
ISBN: 1-57231-857-0 

 
Computer Systems for Automation and Control, Second Edition 
Gustaf Olsson and Gianguido Piani 
Industrial Electrical Engineering and Automation 
Lund Institute of Technology, Sweden 1998 

 
Committee Draft IEC 61131-3, 2nd Ed. 
Programmable Controllers Programming Languages 
ABB Satt AB 
Sweden 1998-11-18 
 

 


