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Abstract

Analysis of production losses is useful for investigating and examining problems connected
with a production process. It is a way to understand and improve the production process; to
plan maintenance programs and to decrease the cost of production.

This report describes an initial approach to quantify and analyse the loss of production in
nuclear power plants. The aim of this work is to improve the understanding of causes of
production losses and to support analysis of the production as well as production planning at
the plant. The work generates a basis for further development of the software that analyses
and presents production data on the internet/intranet.

The work has been carried out in co-operation with Barsebäck Kraft AB, at a nuclear power
utility for electricity generation. It consists of maintenance and production data analysis,
model development for different causes of production losses and software specifications of
the data structure and user interface.
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1 Introduction

Traditional maintenance of large production facilities is to a large part carried out based on
empirically defined time schedules and maintenance intervals. However, some surveys
indicate that 70% of the failures that appear within industrial production processes are not
related to failures of different subsystems (sensors, pumps, electrical drives etc.) but rather
because the scheduled maintenance work itself is carried out in an erroneous way and thus
creates failures. Consequently, one of the largest contributions to the need for maintenance is
the scheduled maintenance itself (which in turn creates a need for emergency maintenance).

For large and complex industrial processes (power plants, chemical industries, paper- and
pulp processes etc.) the costs for maintenance is highly significant and yet few efforts have
been made to minimize these costs in a systematic way. There is a high potential to save
resources by efficient and optimised maintenance. This can be achieved by using production
data to determine when maintenance is to be carried out rather than basing such work on rigid
time schedules. An integration of production- and maintenance data bases is a necessary step
towards achieving such a goal.

1.1 Goal and strategy

The goal of the work was to develop a concept for efficient use of production data for a
nuclear power plant to support the optimisation of the maintenance work and to determine
what production data are the most relevant for the maintenance work. The concept should
then be integrated into the existing software analysis tool Bi-Cycle Warehouse and Analysis.
The work was carried out at the nuclear power plant in Barsebäck, Sweden.

This report describes an initial approach to quantify and analyse the loss of production in
nuclear power plants. The aim is to improve the understanding of causes of production losses
and to support analysis of the production as well as production planning at the plant. The
work generates a basis for further development of the software that analyses and presents
production data on the internet/intranet.

The work consists of maintenance and production data analysis, model development for
different causes of production losses and software specifications of the data structure and
user interface.

Production data (1994-1999) from the nuclear power plant (B2) in Barsebäck (Sweden) are
used for the study. Barsebäck Kraft AB (BKAB), situated north of Malmö, is a nuclear power
utility for electricity generation. BKAB consists of two ABB Atom designed boiling water
reactor (BWR) units, B1 and B2. The 615 MW units were taken into operation 1975 and
1977, respectively. B1 was closed at the end of November 1998. B2 has been in operation for
23 years.



An initial approach for data analysis of production losses in nuclear power plants
Letizia Bagnoli, IEA, Lund Institute of Technology, Sweden

- 5 -

1.2 Nuclear power production in Sweden

The nuclear power plant at Barsebäck (Figure 1) was placed in commercial operation in
1972, marking the beginning of the expansion of nuclear power in Sweden.

Fig 1. The nuclear power plant at Barsebäck.

The choice of nuclear power was far from being a foregone conclusion. While there was a
heavy demand for electricity, public opinion strongly opposed the further development of the
rivers in northern Sweden to generate more hydroelectric power. They decided for the nuclear
power because the power generation experts were seeking a future technology that would
reduce dependence on oil.

The locations of nuclear power plants provoke much discussion. When the power plants were
in the planning stage, Barsebäck on the coast north of Malmö, was regarded as a suitable site.
Access to seawater for cooling purposes is essential. This location was also considered
suitable by the licensing authorities. The locations for all Swedish nuclear reactors are shown
in Figure 2 and Figure 3 presents the contribution of power and electricity from the Swedish
nuclear power plants compared to other power sources.
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Fig 2. Location of nuclear power plants in Sweden.

Fig 3.  Power sources and electricity production in Sweden.

Nuclear power plants are relatively expensive to build, but have very low operating costs today.
Even if the costs of extensive renovation and rebuilding work are taken into account, nuclear
power provides cheap electrical energy compared with the cost of building new power plants.
The service life of a nuclear power plant is determined primarily by the length of time for which
it remains economically advantageous to replace or renovate parts that do not fulfil the
requirements for safe operation. The nuclear power plants were originally designed for a service
lifespan of 40 years.

Power sources 5,900 MW 1998

Nuclear power
43%

Gas turbine power
8%

Other thermal power
10%

Hydroelectric power
39%

Electricity production 30,905 GWh 1998

Hydroelectric power
44%

Nuclear power
53%

Other 
3%
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1.3 The Sydkraft Group

This work was carried out at the nuclear power plant in Barsebäck, Sweden. The plant is owned
and operated by the Sydkraft Group, which comprises of four business areas consisting of some
60 operating companies, half of which have their own personnel. The Group includes companies,
which supply electricity, natural gas, heating power generation and solid fuel, and also provides
computer, electrical installation, measurement, telecom and consulting services. Sydkraft
produces electricity in its own plants and also purchases and sells power in the Nordic region and
through its cable link with Germany.

It is in the power companies’ interests to use resources as efficiently as possible. During the
winter months, both nuclear power and hydropower are needed, which run at full capacity during
this period (see Figure 4). In the summer, following the spring flood, an abundance of water
coincides with a relatively low power demand, making this the best time to inspect the nuclear
power plants and change the fuel. In a normal year, the Barsebäck plant produces approximately
9 TWh per year. This is the double the amount of electricity consumed each year by the cities of
Malmö and Copenhagen combined.

In 1998, with the support of the “Act concerning the phasing out of nuclear power”, the
government decided to close one reactor at Barsebäck, unconditionally, on July 1, 1998, and to
close the second reactor unit not later than July 1, 2001, provided that the shortfall in power
production can be offset through power produced from renewable sources and a reduction of
electricity consumption. Since then the decision concerning the second reactor has been altered
and it is today not clear when the final shut-down is to take place.
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Fig 4. Electricity consumption in Sweden during a year.
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2 Bi-Cycle – software for maintenance

Bi-Cycle is a maintenance data-warehouse and analysis software system, that uncover key
maintenance problem areas and identifies potential cost reductions. Most industries store
engineering, production and maintenance data. All these sources of information are
instrumental to improve maintenance plans.

The Bi-Cycle Warehouse module allows the user to link all the maintenance-related
information. This consolidated data is then scrutinised by the Bi-Cycle Analysis module,
which provides sophisticated tools to analyse years of accumulated data on hundreds of
thousands of components. Bi-Cycle was developed jointly with the Swedish nuclear power
industry. It has been tried and tested, with major success, in rigorous use.

2.1 Maintenance data warehouse

Bi-Cycle Warehouse stores information from all the different sources in the company that are
relevant to improve maintenance plans. Engineering information, maintenance reports and plant
production data from one or more plants are placed in one data warehouse.

For example, it enables the user to search through all the systems, equipment and components.
This hierarchy can be changed in for example: equipment type, subtype and manufacturer. For the
selected systems, equipment or components the related maintenance work orders are easily
accessible.

The user can navigate through this data with extreme ease of use, using the intuitive datatree
navigator. The datatree arranges the components in the same way as the plant build-up, on the
levels plant, equipment and components.

Bi-Cycle Warehouse allows the user to filter, search and sort more than 200,000 maintenance
reports in seconds. Components with similar problems, for example valve leakage, can be
identified and grouped together for analysis.

2.2 Maintenance data analysis

With the Analysis tool, the user is able to determine important maintenance indicators and sort
items according to these indicators. For example sorting all centrifugal pumps by number of
failures in the specific year, or sorting all valves by occurrence of a certain type of failure.
Classifying maintenance reports based on free text keywords and/or predefined codes are possible.

Within minutes, the user is presented with all relevant maintenance, safety and costs indicators
(see Table 1) for more than 100,000 components.

Bi-Cycle Analysis has three analysis functions: History, Watchdog and PM Fix. History produces
maintenance history reports with clarifying charts. Watchdog calculates maintenance indicators,
identifying essential problem areas such as components with high numbers of maintenance-
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induced failures, or the component manufacturer with the highest mean repair time. PM Fix
compares the results of different preventive maintenance (PM) programs on similar components
to deduce optimal maintenance intervals. Further, it calculates maintenance statistics on different
failure modes (e.g. FMECA - Failure Mode Effect and Criticality Analysis).

All results of an analysis in Bi-Cycle can be displayed graphically and exported to other programs
(like Excel) or in the form of user defined reports. Reports can be automatically generated in
Word format or publicised directly on intra- or Internet in HTML format.

Table 1.  Example of available indicators in Bi-Cycle.

Preventive maintenance (PM),

Corrective maintenance (CM)

Trends Reliability characteristics

• jobs per year, %PM, %CM • trends in failures, jobs and costs • failure rate

      (Weibull shape)

• costs per year, hours per

      year, %PM, %CM

• trends in types of failures and

      jobs

• repair hours per year

• costs per job, hours per job • trends in other

      maintenance  indicators

• mean repair time

• failures after maintenance
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3 Analysis of production data

With the tool Bi-Cycle Warehouse and Analysis it is possible to make some analysis of the
production data in order to study the causes of failure. In this program, the nuclear power
plant is divided into three groups:
• systems;
• equipment;
• components.

In each of these, one can study the causes of production losses. For every group it is possible
to see the type of failure, preventive maintenance (PM) and corrective maintenance (CM)
reports and other adequate data like the description of the failure, the date, the repair work
and the designation of the system, or equipment or component. Based on a thorough analysis
of available production data, it was possible to identity the most relevant causes and their
respective influence on the production losses.

3.1 Production data

Schematically, the production (or rather the production losses) in a nuclear power plant can
be described according to Figure 5.

Fig 5. Input-output relationship for a nuclear power plant.

The major causes that influence the production are: outages (planned and unplanned
revision), failures, coast down, load following and seawater temperature, see also Figure 6.

The study is based on production data from 1994 to 1999. A number of annually recurring
events that cause loss of production have been identified. The data will be analysed using
time series analysis since the main characteristic of a time series is that its observations have
some form of dependency on time. In this section the most important causes of production
losses are briefly described, see[7].

 

  

Outage 

Seawater temperature 

Failure 

Coast down 

G(s) Production losses 

Load following 
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Fig 6. Total production during 1995 and the causes for production losses.

3.1.1 Outage

Outage is the most significant cause because the plant has to shut down for almost one month
in order to perform planned activities such as maintenance, refuelling and modifications (see
Table 2). Outages are undertaken during low electricity consumption periods (i.e. during the
summer).

Table 2.   Data regarding outage periods.
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Fig 7. Data and amount of production loss due to outage.

Figure 7 shows the relation between the production loss during the outage period and the
duration in days of the revision period. We can see that both of them have the same trend. In
fact we can calculate that for each day the plant looses 14,760 MWh (in relation to the full
capacity). Consequently, to avoid a waste of energy, the best thing is to concentrate all
maintenance works in a few days. The production loss for outage has decreased over the last
years, which may indicate that a better program for maintenance has been applied.

3.1.2 Coast down

The coast down phenomena (reduction of fuel capacity) occurs only in 1994 and 1995. This
effect is not relevant for this study due to the limited amount of available data. Usually the
coast down phenomena occurs after a long operational period and during coast down the
plant losses are approximately 2% of the weekly production. Moreover, a model describing
the effects of coast down already exists at Barsebäck.

Year

Duration of
outage period

(days)
Production loss

MWh/10000
1994 38 56.088
1995 86 126.936
1996 79 116.604
1997 53 78.228
1998 45 66.42
1999 50 73.8
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The coast down occurs when certain pumps carry their maximum flow in combination with
the use of control rods to reduce the plant production. These pumps have to carry the full
flow as they try to compensate the reduction of reactor energy with more work.

Fig 8. Production decrease due to coast down and the coast down loss increase in 1995.

In Figures 8 and 9, we can see how the production decreases during coast down. Due to other
effects (e.g. failure and load following), the production decrease and the coast down increase
do not coincide.
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.
Fig 9. Production decrease due to coast down and the coast down loss increase in 1994.

3.1.3 Component failure

Failures are important, but this cause is not relevant to study by deterministic models because
the failures occur more and less at random. However, stochastic models may in future works
be used to describe such behaviour. Figure 10 demonstrates that the production loss due to
component failures is rather constant over time (i.e. between 500,000 MWh and 1,000,000
MWh), which is due to the random behaviour of the failures. However, a limited decrease can
be seen for 1998 and also an increase for 1999.
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Fig 10. Trend of production loss due to component failures.

The mechanical failures are the most common ones and Figure 11 shows the components that
fail most frequently. The system’s classification considering the influence on reactor safety
and availability (energy production) is presented in Table 3. The classification data, regarding
the entity of the failures, are shown in Table 4. These are divided into reactor safety and
availability (for electric power production).

The production loss for component failures is always related to the total production because
normally a higher production means a higher probability for failures.
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Fig 11. Most frequent components to fail from 1995 to 1999.

Table 3.  System’s classification of component failures (cmp. Figure 11).

Designation Reactor-safety Availability
b2-711 -Seawater cooling system. A total system
failure will automatically stop the plant.
Degradations due to sea pollutions lead normally
to reducing the power. This system has also
safety influence.

1 2

b2-743 -Ventilation for non-controlled (low
radiation activity) areas. No availability influence.

1 0

b2-354 -Hydraulic scram system. A safety system
that is only used to stop the plant quickly (in
emergency). No availability influence.

2 0

b2-756 -Nitrogen dosing. Prevents pipe corrosion.
Influence on both safety and availability.

2 2

b2-742 -Ventilation for radiation active areas.
Only safety influence.

2 0

b2-332 -Condensate cleaning system. Only
availability influence

0 2

b2-312 -Feed water system. This system leads
water into the reactor tank and a total system
failure will lead to stop of the plant.
Both safety and availability influence.

2 2

b2-311 -Mean steam pipes (this system leads
steam to from the reactor tank to the turbine.
A system failure will stop the plant.
Both safety and availability influence.

1 2

b2-462 -Main condensate system (low-pressure –
pre heater). A system failure will stop the plant
also effect the reactor safety.

2 2

b2-765 -Water for extinguishing system. Only
safety influence

2 0
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Table 4. Classification data.

3.1.4 Seawater temperature

The seawater temperature influences the production during the whole year, although the
influence is not as significant as for the other causes, see Figure 12 below.

Fig 12. Relationship between seawater temperature and production during a year (outage period
removed from the data).
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Reactor safety: 
 
Class 
 
0   No STF (non safety requirements)    
  
1 The failure shall be corrected within a time that  allows  exceed  48h.  
 
2 The failure shall be corrected within  48h.  

 
 
Availability (for electric power production): 
 
Class 
 
0 Failure has no influence on production capacity  
 
1 Failure leads to reduced (automatically or manually)production capacity, but leads not 

to stop of the plant.  
 
2 Failure leads to reduced (automatically or manually) production capacity and leads to 

stop of the plant. 
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Figure 13 represents the behaviour of the seawater temperature during an entire year. We can
recognize that this behaviour is the normal behaviour of the seawater temperature but if we
compare this with Figure 14, we can see that the two figures are complementary, thus, when
the seawater temperature is low the plant produces more and the production decrease by the
end of spring and in the summer when the seawater temperature is high.

Fig 13. Seawater temperature during an entire year.
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Fig 14. Production during an entire year.

3.1.5 Load following

The load following, due to low electricity consumption (and prices), usually starts by the end
of spring, (i.e. April or May), and ceases by the end of summer.

Fig 15. Production loss due to low prices.
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Figure 15 shows the amount of production loss due to load following between 1995 and
1999. The total production loss due to load following has a strange trend. It started in 1995
with a low value and was almost zero in 1996 and then increased until the peak in 1998
(almost 170,000 MWh). Then is started to decrease during the end of 1998 and 1999. This
behaviour is due to the shut-down of reactor 1, which led to that reactor 2 had to produce
more energy also during the summer.

3.2 Data quality

The data are stored in data base files and they are hourly averages for every day. The
maximum hourly production is 615 MWh and when the data are higher than this, it needs to
be changed to the maximum value because the plant is not able to produce more. For missing
data (only one or two time instances), we have chosen to calculate the average production
based on data for seven hours before and after the problem occurred. Sometimes strange
values appear (like –9999.99 indicating a data base problem) and those time instances have
been treated similar to missing data (see Table 5). For some types of analysis it is not
essential to have access to hourly values. For that reason and to speed up the analysis the
hourly values have also been used to calculate daily averages.

Table 5.  Real data from the production data base.

Figure 16 shows that the yearly production is always between 300,000 MWh and 350,000
MWh. Only for the year 2000 the prediction is somewhat higher but this does not mean that
the plant will be able to produce this amount of energy.

 

DATE PRODUCTION

1999-01-18 615 615
1999-01-18 01:00 616 615
1999-01-18 02:00 615 615
1999-01-18 03:00 616 615
1999-01-18 04:00 615 615
1999-01-18 05:00 616 615
1999-01-18 06:00 615 615
1999-01-18 07:00 615 615
1999-01-18 08:00 615 615
1999-01-18 09:00 616 615
1999-01-18 10:00 615 615
1999-01-18 11:00 616 615
1999-01-18 12:00 615 615
1999-01-18 13:00 616 615
1999-01-18 14:00 615 615
1999-01-18 15:00 -9999,99
1999-01-18 16:00 615 615
1999-01-18 17:00 615 615
1999-01-18 18:00 616 615
1999-01-18 19:00 615 615
1999-01-18 20:00 616 615
1999-01-18 21:00 616 615
1999-01-18 22:00 615 615
1999-01-18 23:00 616 615
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Fig 16. Total plant production from 1995 to 2000 (year 2000 predicted production).

The production data may also be used to calculate different indicators, such as the time and
the energy utilisation factor, using the simple formulae given below. The values of the
indicators from 1995 to 1999 are presented in Tables 6 and 7.

• Energy utilisation factor: 100
615

×
× )MWh(oductionPrMaxmeCalendarTi

oductionPrGross

• Time utilisation factor: 100
...

×
meCalendarTi

gridthetoPower

Table 6. Data regarding time utilisation factor.

Year
Calendar

Time
Power to
the grid Time utilisation factor

1995 8760 6724 76.75799087
1996 8783 6477 73.74473415
1997 8760 6826 77.92237443

1998 8760 7371 84.14383562
1999 8784 6180 70.35519126
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Table 7. Data regarding energy utilisation factor.

Year
Calendar

Time
Gross

production
Energy utilisation

factor
1995 8760 3890487 72.21455619
1996 8783 3900155.1 72.20443595
1997 8760 4042937 75.04430709

1998 8760 4171528 77.4311913
1999 8784 3600392 66.64726702

These indicators, together with the total production show that the year 1998 was the best.
Considering all five years both the time and energy utilisation factors are highest for 1998
(see Figures 17 and 18).

The remaining part of this section will devoted to show various aspects of the available
production data and maintenance data for each individual year between 1999 and 1994.

Fig 17. Energy utilisation factor.
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Fig 18. Time utilization factor.

Fig 19. Total production in 1999.
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Figure 19 demonstrates the production for each month during 1999 and it is clearly seen that
from 10th June to 23rd September the production was zero because the plant was stopped for
the annual revision period. Actually the declared revision period was only from 3rd August to
23rd September but prior to the revision different types of repairs were needed.

Fig 20. Trend of regaining production after a shut-down.

Figure 20 represents the trend of production after the outage period. It can be seen that the
plant needs almost six days to arrive at the normal production after a shut-down. The sum of
production loss due to failure was 1,193,803 MWh and the sum of production loss due to load
following was 91,340.2 MWh during 1999.

Table 8. Failures grouped by different causes (1999).

Class Total Per
Item

MTBF 99

Break/Crack 25 0.095 15400 25
Internal leakage 69 0.261 5570 69
External leakage 138 0.523 2790 138

Mechanical failure 294 1.11 1310 294
Electrical failure 145 0.549 2650 145

Calibre 90 0.341 4270 90
Other failure 152 0.576 2530 152

No failure 102 0.386 3770 102
No Class 823 3.12 467 823
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Fig 21. Bi-Cycle chart for 1999.

In Table 8 the different types of failures that occurred during 1999 are given. They have been
divided into different groups depending on the characteristics of the failures. Figure 21 shows
the same type of information (on a monthly basis) in a graphical format, using colour coding
to represent different failure classes. Both the tabular format and the graphical format are
available from the maintenance software program Bi-Cycle. The most common type of
failure is the one that cannot be incorporated into a specific class (i.e. no classified failure)
followed by different sorts of mechanical failures.
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Fig 22. Total plant production during 1998.

In 1998 the production has increased compared to 1999. In fact this year is the best for the
total energy production of all the studied years. From Figure 22 it seems almost as if there
was no outage period; but this is not true because if we check the real date we see that from
11th September to 19th October there was no production. However, in the graph, since it is
monthly averages it may be difficult to see this. Also the production loss is less than in 1999.
This is to a large degree due to the significant reduction of the so called no classified failures
(see Table 9 and Figure 23). The number of mechanical failures remains the most significant
also this year. The loss of production due to failures is 487,674 MWh and 170,317 MWh of
production is lost due to load following.
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Table 9.   Failures grouped by different causes (1998).

Class Total Per
Item

MTBF 98

Break/Crack 50 0.189 5770 50
Internal leakage 49 0.186 5890 49
External leakage 175 0.663 1650 175
Mechanical failure 616 2.33 468 616
Electrical failure 233 0.883 1240 233
Calibre 90 0.341 3210 90
Other failure 523 1.98 552 523
No failure 520 1.97 555 520
No Class 34 0.129 8490 34

SYSTEM-B2SYSTEM-B2SYSTEM-B2SYSTEM-B2SYSTEM-B2SYSTEM-B2200400600FEL1998-01-01 - 1998-12-311998-01-01 - 1998-12-311998-01-01 - 1998-12-311998-01-01 - 1998-12-311998-01-01 - 1998-12-311998-01-01 - 1998-12-311998-01-01 - 1998-12-311998-01-01 - 1998-12-311998-01-01 - 1998-12-311234567891011121998FELBreak/CrackInternal leakageExternal leakageMechanical failureElectrical failureCalibreOther failureNo failureFUFUProvningStäll , iso.Dekont.AUAUProvningStälln . isol.Dekont.AUR

Fig 23. Bi-Cycle chart for 1998.
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In 1997 the outage period was from 18th July to 8th September; but also during parts of
February and March there was no production due to failures (see Figure 24). But also if the
production was zero during these periods the total production was satisfactory. In fact the
energy utilisation factor was 77.92%, which is a very good result. The outage period was
fairly short and consequently also the production loss due to revision was only 78,228 MWh.

Fig 24. Total plant production during 1997.

Table 10. Failures grouped by different causes (1997).

Class Total Per
Item

MTBF 97

Break/Crack 88 0.333 2190 88
Internal leakage 65 0.246 2960 65
External leakage 179 0.678 1080 179
Mechanical failures 638 2.42 302 638
Electrical failure 247 0.936 779 247
Calibre 79 0.299 2440 79
Other failure 499 1.89 386 499
No failure 548 2.08 351 548
No Class 59 0.223 3260 59
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Fig 25. Bi-Cycle chart for 1997.

The problems with the mechanical failures are similar to the other years and also there is a
significant amount of no classified failures (see Table 10 and Figure 25). The production loss
due to failures were 630,528 MWh and only 28,550 MWh due to load following.
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Fig 26. Total plant production during 1996.

In 1996 the production was zero for more than two months, in fact the outage period started
26th of July and finished 10th of October (see Figure 26). The production loss due to outage
was consequently large, 1,107,000 MWh. Production loss due to other causes was 901,888
MWh and almost all of this was due to failures. This year is the first in which no load
following is present. To explain this, we have tried to study the air temperature with the help
of SMHI (Swedish Meteorological and Hydrological Institute) since a cold summer could be
a reason why the electricity prices remained high over the entire year. We looked at time
series for the daily temperatures in the meteorological station closest to Barsebäck, but we
have not found any significant differences compared to the other years. The outage period
was one of the longest in the last fifteen years.

Table 11. Failures grouped by different causes (1996).

Class Total Per
Item

MTBF 96

Break/Crack 57 0.216 1690 57
Internal leakage 34 0.129 2830 34
External leakage 101 0.383 954 101
Mechanical failure 527 2 183 527
Electrical failure 265 1 364 265
Calibre 88 0.333 1100 88
Other failure 193 0.731 499 193
No failure 620 2.35 155 620
No Class 776 2.94 124 776

Total production 1996

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Jan Febr March April May Juni July Aug Sept Oct Nov Dec

P
la

nt
 p

ro
du

ct
io

n 
(M

W
h/

m
on

th
)

Total production



An initial approach for data analysis of production losses in nuclear power plants
Letizia Bagnoli, IEA, Lund Institute of Technology, Sweden

- 32 -

For the total component failures it is clear that the number of no classified failures is high as
well as the number of mechanical failures (see Table 11 and Figure 27). The high number of
no classified failures is a general problem with regard to maintenance and analysis of
maintenance plans. When the failures are not classified they cannot be analysed in a
traditional way since the reasons for such failures are completely unknown.

Fig 27. Bi-Cycle chart for 1996.
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Fig 28. Total plant production during 1995.

In 1995 the production was zero for almost three months. The outage period started 23rd of
August and finished 17th of November (see Figure 28). The production loss due to outage was
consequently large, 1,279,000 MWh. This year, for the first time, we observe the coast down
problem. The production loss due to coast down was 133,580 MWh. Due to failures and load
following, the plant lost 762,244 MWh. If we compare Figures 28 and 29, we can see that
when the production is zero during the outage, we have the maximum of failures. The reason
for this is that during the revision a large number of failures are detected and repaired, which
is an obvious goal of the revision work. From Table 12 it can also be noted that the number of
no class failures is small, especially compared to years 1996 and 1999.

Table 12. Failures grouped by different causes (1995).

Class Total Per Item MTBF 95
Break/Crack 17 0.064 11300 17
Internal leakage 72 0.273 2670 72
External leakage 124 0.47 1550 124
Mechanical failure 337 1.28 570 337
Electrical failure 129 0.489 1490 129
Calibre 63 0.239 3050 63
Other failure 167 0.633 1150 167
No failure 87 0.33 2210 87
No Class 8 0.03 24000 8
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Fig 29. Bi-Cycle chart for 1995.
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Fig 30. Total plant production during 1994.
Figure 30 shows that the outage period during 1994 was between 24th June and 1st August
and that in January the plant had a lot of problems due to failures. The outage period was the
shortest during the five investigated years and the production loss due to outage was only
560,880 MWh. The loss of production due to failures was 612,735 MWh and 20,908 MWh of
production is lost due to load following.

Fig 31. Behaviour of the flow in a pump 313K034.

During 1994 the coast phenomena is present. Coast down is related to the flow produced by a
number of pumps at the plant. For instance, we can look at the maximum flow from pump
313K034. For the pump 313K034 the normal operating range is between 2500 Kg/s and 6000
Kg/s and we can see from Figure 31 that it have to pump the maximum flow from February
to June and it is during this period that the coast down is present. The loss of production due
to coast down in 1994 was 192,024 MWh.

Based on the data from 1994 to 1999 we have found a lot of things that appear repeatedly
during all years, e.g. revision, low electricity prices (load following) and component failures.
Coast down was only present during 1994 and 1995 and appear to be a problem with which
the plant has learned to deal with. The number of failures varies significantly over the years
but the most prominent reason for failures appear to be various mechanical problems. The
data has been used to explain the behaviour of a nuclear power plant and in the next chapter
the data will be used to identify mathematical models for various causes of production losses.
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4 Modelling production loss

4.1 Introduction

Models describe relationship between measured signals. It is convenient to distinguish
between input signals and output signals. The outputs are then partly determined by the
inputs. In most cases the outputs are also affected by more signals than the measured input.
Such “unmeasured inputs” will be called disturbance signals or noise. If we denote inputs and
output by u and y, respectively, the relationship can be depicted as in the figure below.

Fig 32. Relationship between input and output.

All these signals are functions of time. Often, in the identification context, only discrete-time
points are considered, since the measurement equipment typically records the signals just at
discrete-time instants, often equally spread in time with a sampling interval of T time units.
The basic relationship is the linear difference equation. An example of such an equation is the
following one:

)1nbnkt(ub...)nkt(ub)nat(ya...)1t(ya)t(y nb1na1 +−−++−=−++−+

which relates the current output y(t) to a finite number of past outputs y(t-k) and inputs u(t-k).
The structure is thus entirely defined by the three integers na, nb and nk. na is equal to the
number of poles and nb-1 is the number of zeros, while nk is the pure time-delay in the
system. For a system under sampled-data control, typically nk is equal to 1 if there is no dead
time. The output at time t is thus computed as a linear combination of past outputs and past
inputs. It follows that the output at time t depends on the input signal at many previous time
instants. This is what the word dynamic refers to.

The identification problem is then to use measurements of u and y to figure out:
• the coefficients in the equation ( )nbna bbaa ...,... 11 ;

• how many delayed outputs to use in the description (y(t-T)…y(t-nT));
• how many delayed inputs to use.

4.1.1 Principles for identification

The system identification problem is to estimate a model of a system based on observed
input-output data. Several ways to describe a system and to estimate such descriptions exist.

 

G(t) 
Input u(t) Output y(t) 
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The procedure to determine a model of a dynamical system from observed input-output data
involves three basic ingredients:
• the input-output data;
• a set of candidate models (the model structure);
• a criterion to select a particular model in the set, based on the information in the data (the

identification method).

The identification process amounts to repeatedly selecting a model structure, computing the
best model in the structure, and evaluating this model’s properties to see if they are
satisfactory. The cycle can be itemized as follows:
1. Design an experiment and collect input-output data from the process to be identified.
2. Examine the data. Polish it so as to remove trends and outliers, select useful portions of

the original data, and apply filtering to entrance important frequency ranges.
3. Select and define a model structure (a set of candidate system description) within which

the model is to be found.
4. Compute the best model in the model structure according to the input-output data and

given criterion of fit.
5. Examine the obtained model’s properties.
6. If the model is good enough, then stop; otherwise go back to step 3 to try another model

set. Possibly also try other estimation methods (step 4) or work further on the input-
output data (step 1 and 2).

4.1.2 Estimation methods

One can distinguish between two different types of estimation methods:
• Direct estimation of the impulse or the frequency response of the system. These methods

are often also called non-parametric methods and do not impose any structure
assumptions about the system, other then that it is linear.

• Parametric model. A specific model structure is assumed, and the parameters in this
structure are estimated using data. This open up a large variety of possibilities,
corresponding to different ways of describing the system. Dominating ways are state-
space and several variants of difference equation descriptions.

Having estimated a model is just a first step. It must now be examined, compared with other
models, and tested with new data sets. All linear models that are estimated can be written in
the form:

 y(t) = G(z)·u(t) + v(t)

where G(z) is the (discrete-time) transfer function of the system and v(t) is an additive
disturbance, see [2].

A good way of obtaining insight into the quality of a model is to simulate it with the input
from a fresh dataset, and compare the simulated output with the measured one. This gives a
good feel for which properties of the system the model has picked up, and which have not
been picked up.
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4.2 Modelling production loss

The production in a nuclear power plant, as we have already seen, can be schematically
outlined as in Figure 33.

Fig 33. Input-output relationship in a nuclear power plant.

The inputs that determine the production are in the left and any problems in one of these can
have repercussions on the production. The only causes that it is not determined by human
intervention are the seawater temperature and failures; the others are decided by company
strategies. There is someone that decides when to start the outage, the coast down and load
following period. Naturally, for the component failures nobody can know when they will
appear and they are not relevant to study by using deterministic modelling.

In this work we had access to the real seawater temperature data from 1994 to 1999 measured
at Barsebäck (at eight different locations) and stored in the same data base as the production.
These data are hourly averages. As with the production data, daily averages were also
calculated based on the hourly values. In this case we are interested in making a model of
how the production changes as a function of the seawater temperature. Thus not all data are
of interest because if the production goes to zero for some other reason, that type of
behaviour should not be represented by the model. Consequently, the data must be pre-
processed in order to remove outliers and different types of disturbances.
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Fig 34. Raw daily production data for 1997.

4.2.1 Data pre-processing

As shown in Figure 34, we have a lot of values of energy production that do not depend on
the seawater temperature. For instance, there is the revision period during which the
production is zero and also various types of failures that lead to zero production. Before the
data can be used to identify the relationship between seawater temperature and production
such data must be removed. Based on other sources of information from the plant it was
decided to only include production values between the maximum production (14760
MWh/day and 615 MWh/hour) and 14000 MWh for the daily production and 550 MWh for
the hourly data.

Basically, the daily data are only a low-pass filtered version of the hourly data (calculated as
an average). When we look at the number of data that is thrown away using the limits given
above there is a significant difference. For the daily production data between 23% and 56%
are removed (see Table 13), whereas for the hourly data only between 6.6% and 30% are
thrown away (see Table 14). Due to this difference it was also decided to base one possible
model on a stricter lower limit of the hourly data, in this case 600 MWh/hour. Using this
limitation approximately the same number of data points are removed from the hourly data as
for the daily data. Furthermore, the data for some years also contain strange values of the
seawater temperature (e.g. –5), which actually indicate sensor failures. Therefore we have
also imposed a limitation on the temperature data, which means that all temperature values
(and the associated production values) less than zero degrees have been removed from the
data series, see [1].
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Table 13. Amount of data available to identify the daily model.

Year 1994 1995 1996 1997 1998 1999
Total no. of daily data
after revision

327 279 286 312 320 315

No. of days used 143 192 220 223 198 209
% data used 43.73 68.82 76.92 71.47 61.87 66.35
% data removed 56.27 31.18 23.07 28.53 38.13 33.65

Table 14. Amount of data available to identify the hourly model (low limit 550 MWh/hour).

Year 1994 1995 1996 1997 1998 1999
Total no. of hourly
data after revision

6688 6621 5889 5817 7114 5914

No.of hours used 5035 5084 5683 5435 4967 5005
% data used 75.28 76.79 91.41 93.43 69.82 84.63
% data removed 24.72 23.21 8.59 6.57 30.18 15.37

In Figure 35 the hourly production data is plotted as a function of the seawater temperature
(using the limitations discussed above). If we compare this figure with the daily production
data shown in Figure 36 (only data values higher than 14,000 MWh), we can observe the
obvious similarities. However, we can also see some data that appear unrealistic. For
example, in the hourly data there are a lot of production data close to the maximum value also
when the seawater temperature is high, especially during 1999. However, there is a reason for
this: when reactor B1 was closed (in 1998), B2 had to produce energy close to its maximum
also during the summer of 1999. This demonstrates the need for good process knowledge
when interpreting production data.

Fig 35. Hourly production from 1994 to 1999 as a function of seawater temperature.
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Fig 36. Daily production from 1994 to 1999 as a function of seawater temperature.

The software program Matlab, see [7] was used to pre-process the data further and identify a
model. To eliminate various types of disturbances from the data, digital filters were used. A
digital filter’s output y(n) is related to its input x(n) by convolution with its impulse response
h(n):
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In general, the z-transform Y(z) of a digital filter’s output y(n) is related to the z-transform
X(z) of the input by:
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where H(z) is the filter’s transfer function. Here, the constants b(i) and a(i) are the filter's
coefficients in two vectors: one for the numerator and one for the denominator. Many
standard names for filters reflect the number of a and b coefficients present:
• when nb = 0 (that is, b is a scalar), the filter is an Infinite Impulse Response (IIR), all

pole, recursive, or autoregressive (AR) filter;
• when na = 0 (that is, a is a scalar) the filter is a Finite Impulse Response (FIR), all-zero,

non-recursive or moving average (MA) filter;
• if both, na and nb are greater than zero, the filter is an IIR, pole-zero, recursive, or

autoregressive moving average (ARMA) filter.

 

Daily production 1994-1999

14000

14100

14200

14300

14400

14500

14600

14700

14800

0 5 10 15 20 25

Seawater temperature (°C)

P
la

nt
 p

ro
du

ct
io

n 
(M

W
h/

da
y)

1999

1998

1997

1996

1995

1994



An initial approach for data analysis of production losses in nuclear power plants
Letizia Bagnoli, IEA, Lund Institute of Technology, Sweden

- 42 -

For the models in this work we have chosen a moving average filter, because in the case of
FIR filters, it is possible to design linear phase filters that, when applied to data, simply delay
the output by a fixed number of samples. Instead, for IIR filters, the phase distortion is
usually highly non-linear. The applied filtfilt function of Matlab, uses the information in the
signal at points before and after the current point, in essence looking into the future to
eliminate phase distortion. As the filter is used in an off-line application the non-causal
implementation is not a limitation rather it avoids the general problem of time delay, which is
an unavoidable drawback for all causal filters.

To see how filtfilt does this, recall that if the z-transform of a sequence x(n) is X(n), the z-
transform of the time reversed sequence x(n) is X(1/z). The principle is shown in Figure 37.

Fig 37. Non-causal filtering process.

When 1=z , that is z= ωje , the output reduces to 2)()( ωω jj eHeX . Given all the samples of

the sequence x(n), a doubly filtered version of x that has zero-phase distortion is possible. We
can use different number of points to calculate the average. The applied filtering reported in
this report are based on 5, 10 and 15-point averaging FIR filters for the daily model and 150,
300 and 400-point averaging FIR filters for the hourly model. First we create the specific
filter that we want in Matlab and then apply the function to the production and temperature
vectors, see [8].

Looking at the effects of the filters we see that the phase does not change but remains the
same as in the original signal. In the following figures (numbers 38 to 41) we demonstrate the
effects of the different filtering approaches. The daily production and seawater temperature
data are filtered using a 5- and 15-point MA filter.

The solid black line represents the behaviour of the signal after filtering and the other line
shows the original signal. In this first case, the effect of the filter is less emphasised than in
the case in which we base the average on 15 points. This is simply because when we use a
15-point averaging filter we base the average on more values and, consequently, the effect of
the filtering is more dramatic.
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Fig 38. Daily production data filtered using a 5-point MA filter.

Fig 39. Daily seawater temperature data filtered using a 5-point MA filter.
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Fig 40. Daily production data filtered using a 15-point MA filter.

Fig 41. Daily seawater temperature data filtered using a 15-point MA filter.

From Figures 39 and 41 we can see that for the last two years the seawater temperature data
have been measured with much higher accuracy, in fact the filtered signal more or less
follows the behaviour of the raw data. In principle, the raw data are so accurate that no
filtering of the temperature data would have been necessary if the model identification would
be based only data from the years 1997 and 1998. Whether this measurement improvement is
due to new and better sensors or some other reason is unknown.
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Fig 42. Hourly production data filtered using a 400-point MA filter (prod > 550 MWh).

Fig 43. Hourly seawater temperature data filtered using a 400-point MA filter.

Figures 42 and 43 show the hourly production and seawater temperature data. In this case, we
have used a 400-point averaging MA filter with a low limit for production of 550 MWh. The
number of data points is high (due to the chosen limit) and the effect of the filtering is more
significant than in the case when the signal was filtered with a 150-point MA filter, as is
shown in Figures 44 and 45.
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Fig 44. Hourly production data filtered using a 150-point MA filter (prod > 550MWh).

Fig 45. Hourly seawater temperature data filtered using a 150-point MA filter.
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Fig 46. Hourly production data filtered using a 150-point MA filter (prod > 600 MWh).

Fig 47. Hourly seawater temperature data filtered using a 150-point MA filter.

In Figures 46 and 47 we have changed the limitation for the production data: 600 MWh is the
new value, but we still filter with an identical 150-point averaging filter. The disturbances in
the raw data are naturally more prominent in the case of a low limit of 550 MWh. In the
figures below we have also applied a 400-point MA filter to the raw data using a low limit of
600 MWh (Figures 48 and 49). The conclusions are the same at discussed above.
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Fig 48. Hourly production data filtered using a 400-point MA filter (prod > 600 MWh).

Fig 49. Hourly seawater temperature data filtered using a 400-point MA filter.

As we can see from the figures, the behaviour of the signals is strongly affected by the type
of filter we apply. The more we increase the number of points for calculating the averages the
stronger is the effect of the filter.

To further investigate the influence of different filters for the data pre-processing we have
also tested a Butterworth low-pass filter. The characteristics of a n:th order Butterworth filter
is:
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In the figures below (50 and 51) a 5th order filter with a cut-off frequency of approximately
1/20 day-1 has been applied to the daily data. In this specific case, the effect of the filter is not
as significant as for the previously applied MA filters. By modifying the cut-off frequency a
similar type of behaviour as shown before can be achieved. However, as the differences
between the filter types are quite limited, the moving average filter was selected due to its
simplicity.

Fig 50. Daily production data filtered using a 5th order Butterworth filter.

Fig 51. Daily seawater temperature data filtered using a 5th order Butterworth filter.

Based on the behaviour of the graphs shown in Figures 38 to 49 the final selection of the
number of averaging points was done. To identify the models we base the averages on 10
point for the daily data and 300 points for the hourly data.
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Fig 52. Daily production data filtered using a 10-point MA filter.

Fig 53. Daily seawater temperature data filtered using a 10-point MA filter.

Figures 52 and 53 show that the effect of this filter is more or less a compromise between the
previously shown filters. For the hourly data we show only the case when the low limit of the
production is set to 600 MWh (see Figures 54 and 55).
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Fig 54. Hourly production data filtered using a 300-point MA filter (prod > 600 MWh).

Fig 55. Hourly seawater temperature data filtered using a 300-point MA filter.

4.2.2 Model identification

In order to identify models of how the production is related to the seawater temperature (both
on a daily and hourly basis) it was decided to use data from 1994 to 1998 for the actual
identification, and use data from the year 1999 for validation of the models. After the data
pre-processing (i.e. removal of ‘unrealistic’ data, limiting the data region and filtering the
data), we are ready to identify the models. In this case we are only interested in identifying a
static model (i.e. no dynamics). We use the Matlab function polyfit for this purpose, see [7].
Polyfit identifies a polynomial model of a specified degree in a least-square sense based on
the input (i.e. temperature) and output (i.e. production) data. Furthermore, error bounds are a
useful tool for determining if the data are reasonably modelled. Using the polyfit function an
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optional second parameter can also be obtained (in addition to the identified coefficients of
the polynomial). In order to obtain the errors bounds, this second parameter is passed as an
input parameter to polyval (another Matlab function). Using these functions, we identify a
model and produce error bounds for a second-order polynomial model. The calculated error
bounds correspond to a 95% confidence interval. Naturally, a higher-order model could be
used but tests have shown that the improvement of such an approach is limited. We have
chosen a polynomial model because of is quite easy and it gives good results. Of course, there
is a wide choice of models: polynomial, exponential, and logarithmic.

The models describe how the production of energy varies as a function of the seawater
temperature and a confidence interval of 95% has also been calculated. This means that when
the production is within this interval, the possible variation is most likely due to effects
caused by the seawater temperature; see Figures 56, 57 and 58.

Fig 56. Model based on daily production data with a confidence interval of 95%.

Fig 57. Model based on hourly production data with a confidence interval of 95% (production
low limit equal to 550 MWh).
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Fig 58. Model based on hourly production data with a confidence interval of 95% (production
low limit equal to 600 MWh).

These three figures (56, 57 and 58) show the different models that we have obtained when
using daily data and hourly data with different limitations for the amounts of production. The
identified equations of the models are given below (x represents the seawater temperature in
Celsius and y is the energy production in MWh/day and MWh/hour, respectively):

• daily production model (based on production data greater than 14000 MWh/day)
2932703188171714779 x.x..y −−= ;

• hourly production model (based on production data greater than 600 MWh/hour)
203790430804125615 x.x..y −−= ;

• hourly production model (based on production data greater than 550 MWh/hour)
20601.05995.04186.615 xxy −−= .

The figures show that the trend is the same for both hourly and daily production data. This is
an indicator that the model is reasonable, because it demonstrates that the relationship
between the seawater temperature and the hourly and daily production is similar. If we
consider the confidence intervals and compare the two different hourly models, we can see
that the model identified from the data with a low limit of 600 MWh has a smaller confidence
interval. This is an immediate effect of that more of the disturbances are removed from the
data when the low limit is increased.

4.3 Model validation

Model validation is the process of gaining confidence in a model. Essentially this is achieved
by “twisting and turning” the model to scrutinize all aspects of it. Of particular importance is
the model’s ability to reproduce the behaviour of the validation data sets.
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Now we need to decide if the models are adequate descriptions for our purposes. Model
validation is the heart of the identification problem, but there is no absolute procedure for
approaching it. It is wise to be equipped with a variety of different tools with which to
evaluate model qualities. The data from year 1999 are used for the validation. The raw data of
production and temperature related to this year are plotted together with the model
predictions. The results are shown in Figures 59 and 60.

Fig 59. Validation of the daily model using production data from 1999.

Fig 60. Validation of the hourly model using production data from 1999 (note the truncation
effect of the production values in the data base, which appear as ‘straight lines’).

Figures 59 and 60 show that the models appear reasonable. It should be noted that all data
points do not have to be inside the confidence interval (both due to the statistical variation of
the raw data and because there are some disturbances that can be related to other types of
events).
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In order to further investigate the influence of the data pre-processing, we have also tried to
identify a model based on the raw daily data, see Figures 61 and 62. Thus we have used all
data (production and temperature including the outage period, outliers etc.), and applied a
filter of the same type as before but with a moving average based on 25 data points (because
the disturbances present in the raw data are much more severe). After the filtering we have
removed unreasonable values and decided to apply the same limitations for temperature and
production as before. This approach is referred to as procedure 2 in the text below. The model
equation obtained using this principle is given below.

• Daily production model (based on the procedure 2)
278761659406014653 x.x..y −−= .

Fig 61. Production data after filtering and removal of outliers (procedure 2).

Fig 62. Seawater temperature data after filtering and removal of outliers (procedure 2).
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The behaviour of the second-order polynomial model that we obtain based on these daily data
is shown in Figure 63.

Fig 63. Model based on data using procedure 2 and corresponding confidence interval of 95%.

The general behaviour of the different types of models is almost identical; the main
difference is related to the size of the confidence interval. This is logical because when the
raw data are pre-processed in a filter the effects due to other causes than the seawater
temperature will have a more prominent influence and the confidence interval will become
larger. In Figure 64 the model behaviour is validated using raw data from 1999.

Fig 64. Validation of the model (based on procedure 2) using production data from 1999.

In this case almost all data points are within the confidence interval. However, this does not
mean that the model is better (instead the uncertainty of the model is higher as is indicated by
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the larger span of the confidence interval). Filtering the raw data and removing outliers
afterwards represents another approach to the traditional pre-processing of data and it was
interesting to investigate how such an approach affected the model behaviour.

We have built these models to investigate the importance of the seawater temperature for the
energy production in nuclear power plants. As have already been stated, the influence of the
seawater temperature is only responsible for small variations of the overall energy
production. Other factors, such as revision and component failures, are the primary reasons
for the major variations of the energy production.
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5 Software design

This chapter briefly describes the main problems of the software design process and presents
a motivation for the use of abstract data types and how such data types should be specified.

5.1 The software design process

Modifying a software system is often called maintenance. Maintenance of large software
system is not only difficult but also error-prone. Therefore, the design of reliable software
should fulfil the following conditions:
• it should lead to adequate programs, i.e. programs that solve the customer’s problem; this

requires a correct and complete understanding of the problem by the programmer;
• it should lead to correct programs, i.e. programs that are free of bugs and thus behave the

way the programmer wants them to behave;
• it should lead to programs whose maintenance is easy, i.e. programs that can be easily

corrected or modified without introducing new errors.

5.1.1 Conventional software design

A conventional but naive methodology for software design consists in writing a program that
is supposed to solve a given problem. Repeating the different design steps then starts the
process of maintenance. The so-called software lifecycle model of Figure 65 may illustrate
this methodology. The programming language is assumed to be a classical high-level
programming language, such a Pascal, C, ML or LISP. The compiler is assumed to detect any
syntactical errors and to provide the user with sufficient information on how to correct them.

Fig 65. The different steps for the software maintenance process.
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The rest of the discussion therefore excludes syntactical errors. Testing consists in running
the program for ‘typical’ as well as for ‘critical’ input data that are supposed to cover the
cases that may imaginably occur. The methodology described has at least the following two
deficiencies. Firstly, being based on testing, it can only confirm the existence of errors, not
their absence. Hence, when testing uncovers no errors the program may nevertheless be
erroneous. Secondly, a deficiency of the methodology described is the fact that results are
compared with ‘expectations’, i.e. the results of a program run on test data are compared with
the expectations resulting from ‘one’s own understanding of the problem’. Hence testing may
fail to unveil inadequacies of the program, see [4].

5.1.2 Abstraction and formalisation

The goal of a less naive methodology for software design is to avoid errors and inadequacies
as far possible, or at least, to try to detect and correct them in an early stage of the design.
The first step towards this goal is abstraction and formalisation, which means that the
problem to be solved is described in an abstract and formal way. Being abstract, the
description avoids mentioning unnecessary details; being formal, it avoids imprecision. In
this way, the description may in particular help to avoid inadequacies. Again, a software life
cycle model (Figure 66) may illustrate the methodology. It is obtained by extending the
process of Figure 65 and refers to concepts that are briefly discussed below.

A specification constitutes an abstract description of the problem to be solved. It is abstract in
the sense that it merely states the required properties of the software system to be designed.
Hence, a specification concentrates on the demands of the customer. Therefore a specification
is concerned with “what has to be done” but not with “how it is done”. A formal specification
is a specification expressed in some formal language.

Program verification consists of mathematically proving that a program satisfies its
specification. Unlike testing, program verification proves the absence of programming errors,
since it proves that the program yields the correct result for any input data. Like testing,
program verification cannot prove the adequacy of a program. The reason is that a
mathematical proof is feasible only if the property to be proved can be stated with
mathematical precision. Some formal specification techniques lead to specifications that
constitute “abstract” although possibly very inefficient programs. The execution of these
specifications for testing purposes is called rapid prototyping. The advantage of rapid
prototyping over classical testing is that the possible detection of inadequacies occurs at an
earlier stage in the software design process.
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Fig 66. Extended software design process.

5.1.3 Modularisation

Modularisation consists in decomposing a problem into sub-problems and in repeating this
decomposition on each of the sub-problems until the resulting sub-problems are of
“manageable” size. The solution to such a sub-problem is called a module. When applied to
software design, modularisation has obvious advantages. Being of small size each sub-
problem may be easy to understand and solve. Different software designers may solve the
different sub-problems independently from each other. Maintenance is easier because the
different modules may be maintained independently. Finally, modules may be reused for
other problems, consequently avoiding the repeated solution of the same sub-problem. Of
course, the full benefit of these advantages is obtained only if the different subproblems are
sufficiently independent. This requires that the modularisation reflect the inherent structure of
the problem.

Conceptually, modularised software design suggests a top-down design or “design by
stepwise refinement”, decomposing a problem into sub-problems. On the other hand the use
of modules suggests a bottom-up design, composing (solutions to) sub-problems into a
(solution to a) “larger” problem. In practice, modularised software design generally uses a
mixture of top-down and bottom-up design. “Learning by past experience” is a first step
towards prevention of accidents, see [5].

The production data from the Barsebäck plant have been organised into temporal groups. As
the raw data are hourly averages, daily and monthly values have also been calculated.
Consequently, it is now possible to visualise the production trends based on monthly, daily
and hourly data. The work with regard to the maintenance software program should also
involve several aspects with regard to failure curves. In fact the goal is to be able to visualise
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the trends of production and simultaneously obtain information to promote an easy
understanding of which causes are responsible for different production losses visible in the
production data. To manage this aspect we need to connect the Bi-Cycle data base, in which
there are the reporter for accidents and failures, with the conventional production data base.
The production data base is structured in a similar fashion as Bi-Cycle 2000. We can use the
same principles to select the appropriate time window, measurements and other choices in the
program.

The chart shown in the centre of the program display (see also Figure 68) will be the
production trend using different colours to indicate when the production decreases fast
towards zero. Moreover, a special colour is used to show the revision period. Then it will be
possible select any part of the production graph, to get information about the production trend
during that specific time period including all failures that have occurred (if any). On the right
side of the display, we can find all data and charts related to the causes of production loss and
model predictions of these.

As discussed before, the raw hourly production data were used to calculate daily and monthly
averages as well. This was done to enhance the understanding when displaying the data. The
user can select which type of averages is most interesting for the current purpose and display
those. In fact it is interesting to see when the production is zero for just few hours or if it is
zero during several days. If the production is zero for weeks, this means that the plant is in a
revision period and for this time interval it is shut down. Since the revision period is the most
significant cause of production loss, it is important to clearly indicate this interval.
Consequently, the production trend during such intervals are displayed using different
colours.

5.1.4 Data types

The data are stored in a data base and are available as hourly averages (see Table 15). The
data are structured in a matrix format where the rows represent time and the columns contain
the production and signals from sensors and actuators.

Table 15. Example of data base contents for production data.

DATE M211K116 M211K126 M211K127 M211K405
12/1/99 0:00 70,29 70,19 70,1 4,01
12/1/99 1:00 70,3 70,23 70,12 4
12/1/99 2:00 70,33 70,23 70,14 4
12/1/99 3:00 70,3 70,19 70,12 4
12/1/99 4:00 70,31 70,21 70,12 4
12/1/99 5:00 70,29 70,16 70,12 3,99
12/1/99 6:00 70,34 70,23 70,16 4
12/1/99 7:00 70,32 70,26 70,12 4,01
12/1/99 8:00 70,3 70,23 70,1 3,99
12/1/99 9:00 70,32 70,19 70,14 3,99
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Outage

The revision period is characterised by zero production and because of this it is the largest
cause of production loss. The most important thing is to determine the duration of this period.
However, this data are not directly available from the production data base, rather it has to
looked for in different production sheets which are updated by the staff at Barsebäck.
Therefore it was necessary to create an Excel file with these data to be able to show the
duration trend for revisions. Moreover, during these periods basically no data are available. In
order to calculate the production loss, we used the information that the plant each day can
produce at maximum of 615 MWh*24h, i.e. the maximum daily production loss is 14,760
MWh. This value was used for the analysis. It is then possible to show that the duration of the
revision period and the production loss have identical trends. When the plant is restarted after
the revision period the production does not immediately regain its maximum value instead it
takes a few days. If we want to know how the production increases this information is
available from the production data base.

Coast down

The production loss due to coast down is also not directly available from the data base. The
information may be found in manual production sheets in which there are the sums of
production losses divided by each cause for each month. An Excel file was created based on
these data and the trend of coast down could then be represented by graphs (see Table 16).

Table 16. Example of production data related to coast down.

Gross production May-Aug 95 439271.4 398116.4 392713 264014.5
Prod. loss coast down May-Aug 95 1562.55 37211.55 78636.25 133580.3

Gross production March-Jun 94 431986 387769 313848 280852
Prod. loss coast down March-Jun 94 7422 30448.27 68208.81 85945.47

For the second indicator for coast down (i.e. the flows from certain pumps discussed in
Section 3.1.2), we have compared the flows when coast down is not present with when it is
present. In the example below, we have chosen data from the year 1994 when coast down
appeared and from 1998 when no coast down occurred. Based on the available hourly pump
data daily and monthly averages were created (similar as discussed for the production data),
see Table 17. This data are then used in a histogram to show the differences.

Table 17. Example of data regarding the flows of a coast down related pumps.

January February March April May

pump M313K034 1998 (kg/s) 5,362.198 5,384.74 4,422.66 5,479.47 5,119.34
pump M313K034 1994 (kg/s) 2,507.841 6,832.787 7,074.503 7,128.028 6,499.899

pump 512K104 1998 (kg/s) 10,268.95 10,234.59 6,909.41 10,131.62 10,328.92
pump 512K104 1994 (kg/s) 5,025.938 10,768.78 10,666.7 10,717.02 9,420.677
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Component failures

Component failures are difficult to analyse because they appear more or less at random.
However, with the help of the Bi-Cycle we can show which causes are more recurrent. In
order to do this the Bi-Cycle data base is essential. For example, we can select a specific year
and get access to all failures divided by different classes (see e.g. Table 9). Then this
information can be exported as an Excel file and used in various diagrams. However, this is
not always interesting because a lot of failures are without specific classification (i.e. no
class). More interesting is often to show the ten components that are subject to the highest
number of failures for each year. In addition, we can use Bi-Cycle to find the correlation
between the components and the failures for each year.

Load following

The problem of load following is interesting because it is present almost every year. Also in
this case the information is not directly available from the data base. The information may be
found in manual production sheets in which there are the sums of production losses divided
by each cause for each month. An Excel file was created based on these data (see Table 18)
and the trend of load following can then be visualized.

Table 18. Example of data related to load following.

Production loss due to
low prices (MWh)

Total production
(MWh)

1995 25,203.3 3,890,487
1996 198 3,900,155
1997 28,550 4,042,937
1998 170,317 4,171,528
1999 913,40.21 3,488,644

5.2 Data structure and user interface

The principal aim of this work is to use only one data base where the engineer registrers
production loss data every day and where he can immediately see the trend of the production.
The production data base has links to BiCycle. BiCycle has links to IDUN (operation and
maintenance information system), which makes it possible to present for instance failure data
together with the production data. When the engineer requests a graph on the production
trend, he gains knowledge about the causes that have influenced the losses of production.

Barsebäck has already a production data base PDB (based on ORACLE), which will be used
to link the raw production data to Bi-Cycle. The principle data base structure is presented in
Figure 67.
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Fig 67. Principal data base structure.

The production losses data base (based on Excel) includes the real production values and
planned production for every day, see Table 19. The causes of production losses are divided
into:
• causes that do not effect the availability of the gross production (coast down, external

failure, load following, seawater temperature);
• causes that have an influence on the gross production (outage, test…).

To further enhance the understanding, the following types of indicators can be used to
measure the production capacity performance including the losses:

• Energy utilisation factor: 100
615

×
× )MWh(oductionPrMaxmeCalendarTi

oductionPrGross

• Time utilisation factor: 100
...

×
meCalendarTi

gridthetoPower

• Energy availability factor: 100
615

×
× )MWh(oductionPrMaxmeCalendarTi

oductionProssPossibleGr

• Time error factor: 100×
× oductionPrTotalHoururetopForFailTotalHourS

uretopForFailTotalHourS

The Excel file shown in the table below is really useful because we can directly use this data
in Bi-Cycle to achieve a better view of the production behaviour. In Figure 68 the solid line
represents the total production (taken from the Excel file). It is plotted together with the
number of failures shown in the corresponding histogram (divided into functional and non-
functional failures).

PDB 
(SYNDAC data)

BiCycle IDUN

Out-put prod.data, 
graphs

Production data 
(Excel)
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Table 19. Production data in Excel format.

 not affect the availability gross prod  affect the availability gross prod

Date Real
prod

Coast
down

Load
following

Ext
failure

Seawater
temp

Revision Failure
efficiency
rate

Test  Failure

01-jan 14736 24
02-jan 14699 61
03-jan 14694 6 60
04-jan 10116 4 4640
05-jan 8770 10 5980
06-jan 14567 4 189
07-jan 14707 53
08-jan 14686 74
09-jan 14711 49
10-jan 14700 60
11-jan 14698 62
12-jan 14702 58
13-jan 14699 61
14-jan 14710 50
15-jan 14714 48
16-jan 14705 55
17-jan 14682 78
18-jan 14716 44
19-jan 14720 40
20-jan 14713 47
21-jan 14737 23
22-jan 14747 13
23-jan 14743 17
24-jan 14753 7
25-jan 14753 7
26-jan 11931 9 2820
27-jan 10920 15 3825
28-jan 13486 4 1270
29-jan 14731 29
30-jan 14712 48
31-jan 14743 17

Total 437701 0 0 0 1077 0 0 18784 0
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Fig 68. Representation of total production related to the number of failures (from Bi-Cycle).

Fig 69. Yearly amount of production losses related to the type of failure (from Bi-Cycle).

Figure 69 is an example of how to work with the combined data bases. The first chart shows,
for each year, the division between functional and non-functional failures (both these types of
failures cause production loss but represent different classes of failures). The data are coming
from the IDUN failure report data base. In the second chart we see the total amount of
production loss for each year. Moreover, the production loss is now divided into different
sections, where each section is related to a specific type of failure. For example, when
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examining the information for 1995 we can see that the largest part of the production loss is
due to component failures, followed by outage, load following and coast down (in descending
order).

Figure 70 represents information from the years 1995 to 1999 and shows the behaviour of the
real production (solid line) compared and plotted together with the number of failures shown
in the corresponding histogram (divided into functional and non-functional failures).

Fig 70. Representation of total production related to the number of failures from 1995 to 1999
(from Bi-Cycle).
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6 Conclusion

6.1 The data concept

In order to understand the essential features of a system or a process it is necessary to make
measurements. These measurements are called data and are collected to understand the
properties of the process. It is important to realise that data contain both systematic
information about a given system and unwanted variations (noise). The noise is a mixture of
measurement errors, sampling errors and other sources of variability. Obviously, the mere
fact that we have done a lot of measurements does not per se imply that we know the
properties of the system. All data must be processed and analysed by appropriate methods to
reveal the systematic information. The conclusion is that data is not synonymous with
information; but that data must be processed with data analytical tools to extract the
information, see [3].

6.2 The model concept

It is of the utmost importance to recognize that a model is an approximation, which simplifies
the study of reality. A model will never be 100% perfect, but may still be useful. Models are
not reality, but approximate representations of some important aspects of reality. Provided
that a model is sound – there are tools to test this – it constitutes an excellent tool for
understanding important mechanisms of reality, and for manipulating parts of reality towards
a wanted outcome.

Certain classes of mathematical models are discernible, i.e., empirical models, semi-empirical
models and theoretical models. A theoretical model, also called a hard or fundamental model,
is usually derived from a well established and accepted theory building within a field.
Theoretical models are often regarded as fundamental laws of natural science even though the
label model would certainly be more appropriate in experimental discipline. However, in
most cases, the mechanisms of a system or a process are usually not understood well enough,
or may be too complicated, to permit an exact model to be postulated from theory. In such
circumstances, an empirical model based on experiments might be a valuable alternative. A
semi-empirical model is a local model, which describes the situation within the investigated
interval.

6.3 Summary of results

The seawater temperature is independent of the company’s decisions. On the contrary, there
is someone who decides when outage and load following are initiated and the effects of coast
down is also a fairly well-known phenomena. On the other hand, component failures are
more or less random and much more difficult to study with traditional models. Consequently,
the only available independent variable is the seawater temperature, which has an influence
on the production during the entire year.

At this time the models are primarily developed to be used for investigations of the historical
behaviour of the production. However, they can rather easily be modified for on-line
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purposes and in that sense be used to identify deviations in the plant production and
determine whether these deviations are related to changes of the seawater temperature or if
the causes are related to some other type of event.

In Barsebäck, there is a software program with which the production is planned and the
production losses predicted including those related to seawater temperature. This model is
based on more theoretical and ideal assumptions and is probably more suited as a planning
tool than for on-line purposes. The models developed in this work are entirely empirical (i.e.
only based on an input-output relationship) and the work also suggests methods of how to
deal with disturbances and non-valid data. Consequently, they are more related to on-line
applications. However, it is encouraging that the Barsebäck planning model and the models
identified in this work demonstrate a similar behaviour and that the output from the ideal
planning model is well within the 95% confidence interval suggested in this work. Since the
two types of models have been developed independently the validity of the models for their
respective purposes is made more credible.

6.4 Generalisation of the problem

The kind of study carried out in this work is not only relevant for nuclear power plant, but the
same principle may be used for various production companies where different events and
phenomena cause production losses.

The analysis of experimental and process data consists of three primary stages:

• evaluation and pre-processing of raw data;
• model derivation and interpretation;
• model validation and use.

The work may be continued and extended in several ways, especially the modelling part. For
example, the need to predict various aspects related to failures may arise (frequency of
failures for different components, probability of a failure occurring within a certain time
horizon, the effect of explicit failure types on the production etc.). From a modelling point of
view the type of static and deterministic models used to describe the relationship between
seawater temperature and production is not suitable. Instead such an approach should be
based on stochastic models or models that are based on probability distributions (since
failures occur in a more or less random fashion and it is only possible to determine a
probability that a certain type of failure will appear). Another interesting approach would be
to create models where all types of factors that are related to production losses could be
included simultaneously. Such multiple input models are much more complex than traditional
single input/single output models. However, multivariate analysis and multivariate projection
methods represent a highly interesting approach to deal with such types of systems.
Therefore, a short introduction to multivariate analysis is given below, which may be
inspirational for various continuations of this work.

Today, the reality for experiment has changed. Data matrices are no longer typically long and
lean, but rather short and fat. This causes problems for the classical methods of statistics and
raises new demands on the data analytical techniques. Short and fat data structures arise
because it is no longer difficult and time-consuming to measure variables. Due to the
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introduction of modern electronics, a vast array of technical instruments have been devised,
which are capable of outputting hundreds or thousands of variables within a short period of
time. The existence of large data tables in general, and short and fat matrices in particular,
necessitates the use of multivariate projection models like PCA (Principal Components
Analysis) and PLS (Projections to Latent Structures). For multivariate projection methods,
such as PCA and PLS, the basic conceptual model is such that the variable correlations are
modelled as arising from a small set of latent variables, where all the measured variables are
modelled as linear combinations of these latent variables. This is illustrated in Figure 71
(compare also with Figure 5, which represents the system in this work). A process is
characterised by registering six signals (variables). Note that many more signals could be
used. In the ensuing multivariate analysis, the information in these six variables is contracted
to a few informative variables, latent variables.

Fig 71. Example where six variables are measured to characterise the behaviour of a process.

PCA is a multivariate projection method that is designed to:
• extract and
• highlight the systematic variation in a multivariate data matrix.

This means that the primary objectives of PCA are:
• to evaluate the underlying dimensionality (complexity) of the data;
• to get an overview of the dominant patterns and major trends in the data.

Therefore, PCA summarises the information residing in the initial data matrix into a form,
which may be more easily overviewed and used. The original multi-dimensional space,
defined by the number of measured variables, is contracted into a few descriptive dimensions,
denoted principal components, which represent the main variation in the data. Each principal
component can be displayed graphically and analysed separately, and its meaning may often
be interpreted according to simple technical fundamental factors.

Prior to PCA data are usually pre-processed by means of mean centring and scaling to unit
variance. Plots of PCA scores are invaluable for viewing relationships among the
observations, e.g., for finding outliers. It is here appropriate to make a distinction between
strong and moderate outliers. Strong outliers that are found in score plots, conform with the
overall correlation structure, whereas moderate ones, which are found in residual plots, break
the general correlation structure. Moderate outliers do not show the same profound effect on
the model building, as does a strong outlier.

ProcessProcess1

2 3

4

56
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Partial least square projection is a regression extension of PCA, which is used when it is of
interest to connect the information in two blocks of variables, x (inputs) and y (outputs), to
each other. The explanation of PLS is made both for the situation when only one response
variable is modelled, and when several responses are analysed at the same time. PLS derives
its usefulness from its ability to analyse data with many, noise, collinear, and even
incomplete variables in both x and y. PLS has the desirable property that for the parameters
regarding the observations, the precision improves with the increasing number of relevant
variable. PLS can be seen as a certain technique of generalised regression to model the
association between x and y, but it can also be seen as a philosophy of how to deal with
complicated and approximate relationships. As in any data analysis application, data are
usually pre-processed prior to using PLS. PLS modelling works best when the data are fairly
symmetrically distributed and have a fairly constant error variance. In addition, data are
usually centred and scaled to unit variance before the analysis. This is because in PLS a given
variable has an influence on the model parameters that increases with the variance of the
variable. Scaling all variable to unit variance corresponds to the assumption that all variables
are equally important a priori. PLS provides many parameters and diagnostics, which are of
utility for model interpretation, and assessment of model performance and relevance.
Whenever one wishes to model one or several response variables, y, by a linear model based
on a set of correlated x-variables, the PLS method is a good choice.

The rather natural assumption underlying the method, namely that the predictor and response
variables are correlated and possibly also noisy and incomplete, is more in line with reality
than those of classical regression. In PLS, the variable correlations are modelled as arising
from a smaller set of latent variable, where all the measured variables are modelled as linear
combinations of these latent variables. PLS has the ability to model and analyse several y-
variables together, which has the advantage of giving a simpler picture than separate models
for each response. In general, when the y-variables are strongly correlated, one can
recommend than they are analysed together, since the correlations stabilise the model.
Another attractive property of PLS lies in its ability to cope with almost any type of data
matrix. For instance, the precision and reliability of the PLS parameters related to the
observations, is enhanced by increasing the number of relevant variables. Also PLS work
wells with short and fat matrices.

Multivariate Data Analysis is used when we need to measure many things, many variables,
many properties of the systems and processes. Hence, data collected in science, technology,
and almost everywhere else are multivariate, a data table with multiple variables measured on
multiple observations. Multivariate data, well measured on intelligently selected variables
contain much more information than univariate data, and hence an adequate multivariate
characterization of samples, systems and processes of interesting, is a necessary first step in
their investigation. However, to use a multivariate data set to reach insight about the studied
system, it is not enough to just look at the data table. Rather, the data must be analysed so that
the desired information in the data is expressed in a way that we can grasp, for instance a
graphs or two, or a few information-rich parameters. This approach is useful in science and
technology for a wide variety of applications. This information content in collected
multivariate data can be expresses in term of plots and list of parameters resulting from a
multivariate data analysis. These results help to improve processes and productions, as well
as improving the efficiency of research and development. In industry this may lead to great
savings of cost as well as increase income from higher yields and higher quality.
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