Structures of the Energy flow system

Mechatronics 2007

Mekatronics - energiflow

Structures of the energy conversion system (< 1 h)

Primary energy to output

Electrical as intermediate

Power electronic converters as components (< 3 h)

AC/DC/AC

Modulation

Power Units (50 Hz / SMPS / Integration)

Passive components / Integration of passives

Electromechanical converters as components (< 3 h)

Conv. machine types

Elektrostrictive/magnetostrictive converters

Cooling

Power and Energy density

Energyconverters as construction elements (< 1 h)

Laminated steel / powder pressing / injection moulding

Powerelectronic measurements (< 2 h)

Current / voltage / flux

Torque /speed / position

Preassure / flow (in pumps)

Energy processed in several steps

- Primary energy source
 - (chemical, mechanical, electrical)
- Intermediate electrical energy storage
 - (capacitive, inductive, ...)
- Output energy
 - (mechanical, heat, light, sound,...)

Primary energy sources

Chemical

- Batteries
- fuel cell with hydrogen
- Combustion
- Capacitors

Electrical

- Power grid
- Mechanical
 - Flywheel
- Solar power
 - Max 10...15% 1000 W/m2

Primary to intermediate energy conversion

AC to rectified DC

- 230 V / 50 Hz to almost 325 V (singel phase rectifier)
- 400 V / 50 Hz to almost 540 V (three phase rectifier)

AC to low voltage DC

- Transformer + rectifier
- Switched Mode Power Supply (SMPS)

DC to DC

- Non-isolated, step down
- Non-isolated, step up
- Isolated

AC to rectified DC - 1 phase

 High harmonic content in the line current

$$U_d = \frac{2}{\pi} * \hat{U} \approx 0.9 * U_{rms}$$

AC to rectified DC – 3 phase

High harmonic content in the line current

0.01

0.02

U_d,i

0

O

$$U_d = \frac{3}{\pi} * \hat{U}_h \approx 1.35 * U_{h,rms}$$

0.03

AC to low voltage DC

- Step down transformer + rectifier. Still the same problem with high harmonics in the line current.
- Galvanic isolation

SMPS – Switched Mode Power Supplies

Function

- Transistor "on" -> increasing inductor current through transistor
- Transistor off -> decreasing inductor current through diode

Advantages:

- Output voltage greater than input voltage (universal input);
- Simple control;
- Input inductance acts like a filter toward AC line;
- Many control ICs available on the market.
- PFC of 0.95 or better over line and load variations.

 U_d

Switched mode power supplies for low voltage DC with flyback

Features:

- Galvanic isolation to the feeding grid
- Output voltage range adjusted with the transformer ratio

Example from http://www.irf.com/technical-info/refdesigns/irismps4.pdf

Kvadranter

1-quadrant step down converter (buck-converter)

- Output voltage lower than input voltage
- Output current positive

Control of 1-q. buck converter.

1-quadrant step up converter (boost-converter)

- Output voltage higher than input voltage
- Output current positive

Styrning av 1-kv. Uppsp.omv

2-quadrant DC converter

- Current can be negative
- Both directions for energy flow
 - Voltage unipolar, current bipolar
- Equivalent switch:

Control of 2-Q. converter.

4-Quadrant DC converter

- All combinations of voltage and current
- **AC-voltage**
- Both directions for energy flow

Control of 4-Q converter

Class D Audio Amplifiers

Features

- Power ranges from 20 to 150 W (up to 400 W with application support)
- Excellent power efficiency (≤ 95%)
- Good EMC performance
- Excellent THD (0.01%)
- Symmetrical supply between 15 30 V
- Internal oscillator:
 - frequency adjustable between 200 and 600 kHz
 - can be overridden by an external clock (tracking option).
- Output stage protected against short circuit and overheating
- Simple SE and BTL applications
- Few external components
- Asymmetrical supply possible for BTL configurations (with application support)
- Powerpath ICs in Sil17P and HSOP24 Power SMD package

3-phase converter

Drive circuits

All power transistors need a gate/basedriver to

- Switch between on- and off-state
- Turn off at over current
- Provide galvanic isolation to the control circuitry

• Example of separate driver

- 600V and 1200V gate driver in a single IC for MOSFET and IGBTs
- Multiple Configurations
- Single high side
- Half-bridge
- 3 phase inverter driver
- Up to +2.0/-2.0A output source/sink current enables fast switching
- Integrated protection and feedback functions
- Optional deadtime control
- Tolerant to negative voltage transient
- Up to 50V/ns dV/dt immunity
- Optional soft turn-on
- Uses low cost bootstrap power supply
- CMOS and LSTTL input compatible

Fully integrated power semiconductors

International

TOR Rectifier

Bulletin I27147 01/03

PIIPM25P12B008

Programmable Isolated IPM

• Self-containing with built in:

- Drive circuit
- Protection circuit
- Galvanic isolation
- Power transistor

Three phase inverter with current sensing resistors on all output phases and thermistor

Passive components

- Inductors
- Capacitors
- Heat sinks

Inductors

Many types:

- Ferrite type components
 - For SMPS transformers @ 100 kHz
- Chokes & Coils & Inductors
 - For EMC supression
- Toroidal transformers
- Laminated core transformers
- Current transformers
- Noise protection transformers
- AC voltage stabilizers

Capacitors

- Electrolytic
 - For energy storage and filtering
- Film
 - For filtering
- Must be selected with care, can be destroyed by:
 - Harmonic currents
 - Over voltages
- Most producers have software design tools available on their home page.

Heat sinks

• Extruded

• Integrated in housing

Power Electronic Design

- All circuits contain capacitive and inductive elements with switches in between.
- Non ideal components contribute to short circuit currents and over voltages that may harm/destroy the circuit.
- Example:

What should look like this:

do instead look like this:

Solution: - Minimize non ideal components and distances

How to improve a circuit

- Minimize length of capacitive cables
- Example:

- Avoid capacitance in inductive circuits
 - Eg. keep primary and secondary winding of a transformer apart.

Integration of passive components

