

Electromagnetic and magnetic forces Rotating magnetic field

Devices, Converters, Control and Applications

8.1 p 258-259

Energy density

- Medium ability to maintain magnetic field or/and electric field
- The permittivity ε is for polarization whereas the permeability μ is for magnetization
- Flux density in the air-gap
	- $B_g = 1T \rightarrow \sim 4 \cdot 10^5 / m^3 > PM$
- Break down field for air
	- $-E_b = 3kV/mm \rightarrow \sim 4 \cdot 10^1 J/m^3$
- Compare energy density [MJ/Lit] and specific energy [MJ/kg]

$$
\eta_{HB} = \frac{B^2}{2\mu_0} \qquad \mu_0 = 4\pi 10^{-7} \left[\frac{H}{m} = \frac{Vs}{Am} \right]
$$

$$
\eta_{ED} = \frac{\varepsilon_0 E^2}{2} \qquad \varepsilon_0 = \frac{1}{c_0^2 \mu_0} \approx \frac{1}{36\pi} 10^{-9} \left[\frac{F}{m} = \frac{As}{Vm} \right]
$$

Storage material
Liquid hydrogen
Discel
Lithium metal battery
10 142
Disel
Lithium-ion battery
2.6 0.8

Linear Motion

- In many applications the "most wanted"
- Often translated from a rotation

Generic Force

Lorentz force^{*} = Force on current in magnetic field

$$
^{^{*})}F=q\cdot(E+\nu\times B)
$$

Multi Phase, otherwise it stops

a, medurs b, medurs c, medurs b, moturs c, moturs a, moturs.

Linear movement from generic force

Rotating movement from generic force

Conclusions on force and movement

- The same generic circuit accomplish both linear and rotating movement.
- One phase is not enough for continuous force.
- Qualitative:

Voltage ~ Speed Current ~ Force

Stator, Rotor and Airgap

- The stator is static (not moving)
- The rotor rotates
- The air gap seperates them
	- Usually < 1 mm

Machine layouts

• Machine classification

- Saliency: none, single, double
- Supply: single or double fed
- Excitation: EM & PM

– Magnetization: IM & RM

8.2 p 259-260

13

Flux variation & electromotive force

• Faradays Law

1X variation & electronic force

\nFaradays Law

\n
$$
\oint \vec{E} \, dt = -\int \frac{\partial B}{\partial t} \, dA
$$
\n
$$
E = -\frac{d\psi}{dt}
$$
\n
$$
= -N_t \frac{d\varphi}{dt}
$$

- Lenz's law any current produced by
the emf tends to oppose the flux change variation & electromotive force

adays Law
 $u = -\int \frac{\partial B}{\partial t} dA$
 $E = -\frac{d\psi}{dt}$
 $= -N_t \frac{d\varphi}{dt}$
 $= -N_t \frac{d\varphi}{dt}$

and tends to oppose the flux
 u and tends to oppose the flux
- Flux variation due to magnet movement and current change

$$
\psi = Li
$$

\n
$$
e = +\frac{d\psi}{dt} = \frac{d}{dt}(Li) = L\frac{di}{dt} + i\frac{dL}{dt}
$$

\n
$$
L_s = L_\mu + L_\sigma = KL_s + (1 - K)L_s
$$

8.1 p 257-258

Electromechanical energy converters

• Conversion of electric energy into mechanical energy or vice versa ectromechanical energy converters

Conversion of electric energy into

— Reversible except for the energy losses –

— Reversible except for the energy losses –

— the presence of magnetic field (energy

— the presence of m ectromechanical energy converters

Conversion of electric energy into

mechanical energy or vice versa

— Reversible except for the energy losses –

motoing and generating mode

— In the presence of magnetic field (energy

- Reversible except for the energy losses motoring and generating mode
- In the presence of magnetic field (energy density)
-
- alternating AC

Torque and Power

- Torque = Force * radius on the shaft $T = F * r$
- Power = Torque*Speed on the shaft

$P = T^* \omega$

• Power = Voltage * **Current** on the electrical terminals

Tangential force

Stator current / meter air gap periphery

Shear Force & Torque

- **Shear Force & Torque**
• Current and Flux interact for tangential force
 σ = Force/Unit area is a key figure
• A good design accomplish about
 σ = 40.000 = 30.000 N/m²¹ σ = Force/Unit area is a key figure **Shear Force & Torque**
• Current and Flux interact for tangential force
 σ = Force/Unit area is a key figure
• A good design accomplish about
 σ = 10 000 ... 30 000 [N/m²]
• ... in continuous operation and
• 4 times **Shear Force & Torque**

• Current and Flux interact for tangential force
 σ = Force/Unit area is a key figure

• A good design accomplish about
 σ = 10 000 ... 30 000 [N/m²]

• ... in continuous operation and

2..
- σ = 10 000 ... 30 000 [N/m²]]
	- 2…4 times that in transient operation

$$
\sigma = \left(\frac{F}{A}\right)_{avg} = \frac{\frac{\pi}{2} D_{is} l_e B_{gm1} K_{s1}}{\pi D_{is} l_e} = \frac{B_{gm1} K_{s1}}{2} \quad \left[N / m^2\right]
$$

$$
T = \frac{\pi}{4} D_{is}^{2} l_{e} \cdot B_{gm}^{2} K_{sl}
$$

Conclusion on torque

The torque is proportional to the:

nclusion on torque

e torque is proportional to the:

— Magnetic flux density – Limited by material propertied to about 1.0

… 1.5 Tesla
— Spatial current "density" – Limited by cooling capability ... 1.5 Tesla nclusion on torque

be torque is proportional to the:

- Magnetic flux density – Limited by material propertied to about 1.0

... 1.5 Tesla

- Spatial current "density" – Limited by cooling capability

- Axial length of th

Rotor Volume

-
- Axial length of the machine
- Diameter SQUARED !

$$
T = \frac{\pi}{4} D_{is}^{2} l_{e} \cdot B_{gm}^{2} K_{s1}
$$

Sizing Exercise ...

- Size a machine capable of 250 Nm.
- Assume
	- Sigma = 25000 N/m2
	- Rotor outer radius = 75% of Stator outer radius
	- Rotor active lengt? = Stator outer diameter
- How big will it be?

>> Sigma = 25000; >> T=250; % T=2*pi*rr*lr*sigma*rr % rr=0.75*rs % T=2*pi*0.75*rs*2*rs*Sigma*0.75*rs = % 4*pi*0.75^2*Sigma*rs^3 $rs = (T/(4[*]pi[*]0.75⁴2[*]Sigma))⁴(1/3)$ $rs = 0.1123$

i.e. 224 mm diameter, 224 mm length

Stator windings …

- Assume inner rotor
- Assume 3-phase stator winding
	- The most common type in ACmachines
- Assume 2-pole
	- To simplify understanding
- Assume 3-phase sinusoidal currents
	- $-$ The normal case A^+

Rotation

Magnetomotive force, field intensity & flux

- **Amperes Law**
	-
- Constitutive relation

• Magnetic circuit

Supers Law	
$F = mmf = N_t I = \oint \vec{H} dl$	
Constitutive relation	$B = \mu H = \mu_0 \mu_r H$
Magnetic circuit	$F = H_{Fe} l_{Fe} + H_{\delta} \delta = \frac{B_{Fe} l_{Fe}}{\mu_0 \mu_{Fe}} + \frac{B_{\delta} \delta}{\mu_0}$
$= \left\{ \begin{array}{c} Assume \\ A_{fe} = A_{\delta} = A \end{array} \right\} = \phi \cdot \left(\frac{l_{Fe}}{A} \mu_0 \mu_{Fe} + \frac{\delta}{A} \mu_0 \right)$	
$F = F_{Fe} + F_{\delta} = \phi \cdot R_{Fe} + \phi \cdot R_{\delta}$	
Magnetic flux	$W_{mag} =$
$\phi = BA$	
Magnetic reductance	$R = \frac{l}{\mu A}$

$$
F = F_{Fe} + F_{\delta} = \phi \cdot R_{Fe} + \phi \cdot R_{\delta}
$$

- **Magnetic flux**
- Magnetic reluctance

$$
R=\frac{l}{\mu A}
$$

Sinusoidally distributed windings

 $F_s \times$ $F_s \times$ $F_{s}(\theta)$ $F_s(\theta)$ $F_s(\theta)$ $F_{S}(\theta)$

8.5 p 262-263

8.6 p 264-265

The PM and RM machine **The PM and RM machine**
• Salient poles in the rotor
• Rotor reference frame (x/y) (or (d/q))
• Rotor mmf \vec{F}_m and stator mmf \vec{F}_s (sinusiodal) **The PM and RM machine**
• Salient poles in the rotor
• Rotor reference frame (x/y) (or (d/q))
• Rotor mmf \vec{F}_m and stator mmf \vec{F}_s (sinusiodal)
• Reluctances R_x and R_y **The PM and RM machine**
• Salient poles in the rotor
• Rotor reference frame (x/y) (or (d/q))
• Rotor mmf \vec{F}_m and stator mmf \vec{F}_s (sinusiodal)
• Reluctances R_x and R_y
• Ideal iron (no magnetic saturation effe **The PM and RM machine**
• Salient poles in the rotor
• Rotor reference frame (x/y) (or (d/q))
• Rotor mmf \vec{F}_m and stator mmf \vec{F}_s (sinusiodal)
• Reluctances R_x and R_y
• Ideal iron (no magnetic saturation effe

-
-
- Rotor mmf \vec{F}_m and stator mmf \vec{F}_s (sinusiodal)
-
-

$$
W_{magn} = \frac{1}{2} \frac{\hat{F}_x^2}{R_x} + \frac{1}{2} \frac{\hat{F}_y^2}{R_y} = \frac{1}{2} \cdot \left(\frac{\hat{F}_s^2 \cdot \cos^2 \gamma + 2 \cdot \hat{F}_s \cdot \hat{F}_m \cdot \cos \gamma + \hat{F}_m^2}{R_x} \right) + \frac{1}{2} \cdot \left(\frac{\hat{F}_s^2 \cdot \sin^2 \gamma}{R_y} \right)
$$

Torque: derivative of magnetic energy I • Torque = derivative of mechanical energy w.r.t. angle **i.e. derivative of magnetic end

Torque = derivative of mechanical energy w.r.t.
** $\frac{dW_{mec}}{dy} = T$ **
** $\begin{array}{|c|c|}\hline \text{Compare to linear movement}\ \hline (F=dW/dx \text{ or } W=F*x)\ \hline \end{array}$ **
** $W_{magn} + W_{mech} = \text{Constant}$ **
** $i.e. - no energy supplied$ **
** $\frac{dW_{magn}}{dy} + \frac{dW_{mec}}{dy} = 0$

 $(F=dW/dx)$ or $W=F^*x$) Compare to linear movement derivative of magnetic energy I

derivative of mechanical energy w.r.t. angle
 $\boxed{\text{Compare to linear movement}\ \left(F=dW/dx \text{ or } W=F^*x\right)}$
 $W_{mech} = Constant$
 argy supplied
 $\frac{W_{mec}}{dy} = 0$

• W_{magn} + W_{mech} = Constant

$$
\frac{dW_{magn}}{d\gamma} + \frac{dW_{mec}}{d\gamma} = 0
$$

Torque: derivative of magnetic energy II

$$
\text{orange: derivative of magnetic energy II}
$$
\n
$$
W_{magn} = \frac{1}{2 \cdot R_x} \cdot (\hat{F}_s^2 \cdot \cos^2 \gamma + 2 \cdot \hat{F}_s \cdot \hat{F}_m \cdot \cos \gamma + \hat{F}_m^2) + \frac{1}{2 \cdot R_y} \cdot \hat{F}_s^2 \cdot \sin^2 \gamma
$$
\n
$$
\frac{d(-W_{magn})}{dy} = -\left(\frac{\hat{F}_s^2 \cdot 2 \cdot \cos \gamma \cdot (-\sin \gamma) + 2 \cdot \hat{F}_s \cdot \hat{F}_m \cdot (-\sin \gamma)}{2 \cdot R_x} \right) - \frac{\hat{F}_s^2 \cdot 2 \cdot \sin \gamma \cdot \cos \gamma}{2 \cdot R_y} =
$$
\n
$$
= \frac{1}{R_x} \cdot (\hat{F}_s \cdot \cos \gamma \cdot \hat{F}_s \cdot \sin \gamma + \hat{F}_s \cdot \hat{F}_m \cdot \sin \gamma) - \frac{1}{R_y} \cdot \hat{F}_s \cdot \sin \gamma \cdot \hat{F}_s \cdot \cos \gamma =
$$
\n
$$
= \frac{1}{R_x} \cdot (\hat{F}_{sx} \cdot \hat{F}_{sy} + \hat{F}_{sy} \cdot \hat{F}_m) - \frac{1}{R_y} \cdot \hat{F}_{sy} \cdot \hat{F}_{sx} = \frac{\hat{F}_{sy} \cdot \hat{F}_m}{R_x} + \hat{F}_{sx} \cdot \hat{F}_{sy} \cdot \left(\frac{1}{R_x} - \frac{1}{R_y}\right)
$$
\n
$$
T = -\frac{dW_{magn}}{dy} = \dots = \frac{\hat{F}_{sy} \cdot \hat{F}_m}{R_x} + \hat{F}_{sx} \cdot \hat{F}_{sy} \cdot \left(\frac{1}{R_x} - \frac{1}{R_y}\right)
$$

31

Electrically magnetized stator 8.7 p 267-271 $F_{\rm s}(\theta)$ \vec{F}_S \vec{F}_s

2 \sim 2 \sim $\frac{\overline{}}{\pi} \cdot N_s \cdot i_s$

33

Torque expressed in flux and mmf

Torque expressed in flux linkage

• Effective number of turns

 $N_{s,eff} = N_s \cdot k_{r1}$

• Express MMF in "Ampere-turns"

$$
\vec{F}_s = \hat{F}_{sx} + j\hat{F}_{sy} = \frac{2}{\pi} \cdot N_{s,eff} \cdot \vec{i}_s = \frac{2}{\pi} \cdot N_{s,eff} \cdot (i_{sx} + j i_{sy})
$$

• Insert in the Torque-equation

$$
\boxed{T = \frac{\pi}{2} \cdot (\varphi_{\delta x} \cdot \hat{F}_{sy} - \varphi_{\delta y} \cdot \hat{F}_{sx}) = \frac{\pi}{2} \cdot \left(\varphi_{\delta x} \cdot \frac{2}{\pi} \cdot N_{s,eff} \cdot i_{sy} - \varphi_{\delta y} \cdot \frac{2}{\pi} \cdot N_{s,eff} \cdot i_{sx} \right) =
$$
\n
$$
= \varphi_{\delta x} \cdot N_{s,eff} \cdot i_{sy} - \varphi_{\delta y} \cdot N_{s,eff} \cdot i_{sx} = \frac{\psi_{\delta x} \cdot i_{sy} - \psi_{\delta y} \cdot i_{sx}}{\psi_{\delta x} \cdot i_{sx}} = \frac{\overline{\psi}_{\delta} \times \overline{i}_{s}}{\text{Important conclusion}}
$$

Leakage inductances

The stator voltage equation in the stator reference frame

Rotation and multi-phase winding

$$
\vec{i}_s^{xy} = i_{sx} + ji_{sy} = i_s e^{j\gamma}
$$

\n
$$
\vec{i}_s^{\alpha\beta} = \vec{i}_s^{xy} e^{j\theta_r} = i_s e^{j(\gamma + \theta_r)} = i_{sa} + ji_{s\beta}
$$

\n
$$
i_{sa} + ji_{s\beta} = i_s \cos(\omega_r t + \gamma) + ji_s \sin(\omega_r t + \gamma)
$$

$$
\overline{i_a} = \sqrt{\frac{2}{3}} i_{sa}
$$
\n
$$
i_b = \sqrt{\frac{2}{3}} \left(-\frac{1}{2} i_{sa} + \frac{\sqrt{3}}{2} i_{s\beta} \right)
$$
\n
$$
i_c = \sqrt{\frac{2}{3}} \left(-\frac{1}{2} i_{sa} - \frac{\sqrt{3}}{2} i_{s\beta} \right)
$$

The stator voltage in the rotor reference frame

Exercises on MMF distribution (4) Exercises on MMF distribution (4)
• PE ExercisesWithSolutions2019b vers 190206
• Draw cross-section: EMSM (4.1) & DCM (4.2)
• Sine wave MMF: Single (4.3) Dual (4.9) wave

-
- Draw cross-section: EMSM (4.1) & DCM (4.2)
- Sine wave MMF: Single (4.3) Dual (4.9) wave
- Torque expression (4.10)
- Flux vector (4.11) (4.12) + armature current (4.13)
- Rotation problem (4.14)
- Voltage equation (4.15)