Lecture 3 – Modulation

Summary An inductance keeps a current "constant"

Electric Drives Control

 $\overline{2}$

Summary A capacitance keeps a voltage "constant"

Electric Drives Control

 $\overline{3}$

Some fundamental topologies

Converter topologies

Remember:

- $-$ 1 side capacitive
- $-$ 1 side inductive
- ALWAYS!

Modulation - Control of voltage time area

Modulation - Control of voltage time area
\n
$$
v_c = \begin{cases} v_a w h \sin s = 1 \\ v_b w h \sin s = 0 \end{cases}
$$
\n
$$
u = s \cdot (v_a - v_b) = s \cdot u_k = \begin{cases} u_k w h \sin s = 1 \\ 0 w h \sin s = 0 \end{cases}
$$
\n
$$
u = \frac{v_a + v_c}{u} \cdot \frac{v_c}{u} + \frac{v_c}{u} \cdot \frac{v_c}{u} + \frac{v_c}{u} \cdot \frac{v_c}{u} + \frac{v_c}{u} \cdot \frac{v_c}{u} + \frac{v_c}{u} \cdot \frac{v_c}{u}} = \frac{e}{\sqrt{2 \cdot \left(\frac{u_c}{v_a} \right)^2 + \frac{v_c}{u}}}
$$

Output voltage

 $^{+}$

 \pmb{e}

 $\overline{}$

Voltage control options

Assume a limited pulse $\uparrow u_k$ interval T and a slowly varying switching voltage u_k

$$
Y_0 = \int_0^T u_k \cdot dt
$$

$$
u_k(\tau_+) = -\frac{dy(\tau_+)}{d\tau_+}
$$

$$
u_k(\tau_-) = \frac{dy(\tau_-)}{d\tau_-}
$$

Control with positive flank

$$
y(\tau_+) = \int\limits_{\tau_+}^T u_k \cdot dt = Y_0 - \int\limits_0^{\tau_+} u_k \cdot dt
$$

Control with negative flank

Control with both flanks

Control with both flanks

\n
$$
v_{0} = \int_{0}^{T/2} u_{k} \cdot dt
$$
\n
$$
y(t_{+}, \tau_{-}) = y_{+} + y_{-}
$$
\n
$$
y_{+} = \int_{\tau_{+}}^{T/2} u_{k} \cdot dt = Y_{0} - \int_{0}^{\tau_{+}} u_{k} \cdot dt
$$
\n
$$
y_{-} = \int_{\tau_{/2}}^{T/2 + \tau_{-}} u_{k} \cdot dt
$$
\nElectric Dives

\nControl

Carrier wave modulation

- A reference value y^* for the desired average voltage over one switching period is calculated by an external control system
- A modulation signal y_m is generated, $\begin{pmatrix} u_k \\ v_k \end{pmatrix}$ such that $y(t)=y_m(t)$
- The reference is compared to the y^*
modulation signal to determine the y^* modulation signal to determine the switching instants.

Voltage time area vs. average voltage

- This far the modulation has been described with voltage time areas, both regarding the estimate of the output voltage time area as a function of the switching time instant, i.e. the modulating wave $y_{_{\scriptscriptstyle{I\!P\!I}}}$ and the references for the output voltage time areas y^* .
- In the following sections and chapters, voltage time area is replaced with average voltages.

 \mathfrak{U}_m

PWM-controlled dc converters

Electric Drives **Control**

Two quadrant DC converters : I

Two quadrant DC converters : II

Control

2-quadrant DC converters : III

With twice the switching and the solution frequency!

Blanking Time + Voltage Drops

4 – quadrant DC converters

- - - other purposes.

4-quadrant DC converters

C converters
\n
$$
u * = v_a^* - v_b^*
$$

\n $alt1 : v_a^* = sign(u *) \cdot \frac{U_{dc}}{2} \Rightarrow v_b^* = v_a^* - u * = sign(u *) \cdot \frac{U_{dc}}{2} - u *$
\n $alt2 : v_a^* = -v_b^* \Rightarrow v_a^* - v_b^* = 2 \cdot v_a^* \Rightarrow \begin{cases} v_a^* = \frac{u *}{2} \\ v_b^* = -\frac{u *}{2} \end{cases}$

4-quadrant DC converters - alt 1

4-quadrant DC converters - alt 2

Example

• Sampling and symmetry ...

2-Q DC converters

- Bidirectional power
	- $u > 0$, *i* bidirectional
- · Equivalent switch:

Modulation of a 2Q DC converter

di $(u-e-R \cdot i)$

- Only positive output voltages
- Currents both positive and negative
- Example:
	- $-$ Udc=600;
	- La=1e-3;
	- $-$ Ra=0.1;
	- $-$ ea=400;
	- $Ts = 100e-6$
	- $u^* = 400 + Ra^*10$

To Simulink

One more 2Q example

- To reduce current ripple
- Example:
	- Udc=600;
	- $-$ La=1e-3;
	- $-$ Ra=0.1;
	- $-$ ea=400;
	- Ts=25e-6 (much higher switching frequency)
	- u* = 400 + Ra*10
- DC side: PWM current
- AC side: PWM voltage

