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Lecture 1 – Introduction & Basic Switching
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We want torque !
 We are mainly interested in the mechanical torque on the 

electrical machine shaft

 But, the torque is the result of a complex interaction of 
electric voltages and currents, magnetic fluxes and 
mechanical layout

 Our source is (usually) a DC Voltage, that ...

– we convert to AC with PWM and feed to the electrical 
machine to ...

– control the machine currents such that the 
mechanical torque becomes the one we want.

 Against us we have:

– A machine that require voltages that increase with 
speed

– A battery with limited and almost constant voltage

– A converter that needs to be controlled in a 
microsecond time scale
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How we do it?
 We start knowing:

– The desired torque

– Lots of system states, like speed, DC 
link voltage, phase currents, battery 
SOC, ...

 We calculate:

– The traction machine currents needed

– The voltages needed to set these 
currents

– The modulation pattern needed to set 
these voltages

 We modulate the swithes accordingly !
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Why Power Electronics?

• The efficiency of a linear amplifier (converter) has a theoretical 
upper limit of 78.5 %

• This is sufficient in many low power applications, such as home 
audio

• In trains the rated power may be as high as 4-8 MW

• For an efficiency of 78.5 % the losses would be 0.86-1.72 MW

• This means that huge amounts of power and money would be 
lost

... but the main problem would be thermal management, i.e. handling 
the heat power

• Typically, the efficiency of a power electronic switch mode 
converter is >98 % 



Simple low power amplifiers

A B och AB

Eff = 20 – 25% Eff = 60 %
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Class D Audio Amplifiers



What is Power Electronics used for?
• All kinds of electrical drives where electrical power is transfered to mechanical

and variable speed is required such as
• Traction applications such as trains, electrical vehicles and ship propulsion
• Pumps and fans

• All kinds of electrical drives where electrical power is transfered to mechanical
and position control (servo) is required such as

• Robots, cranes

• Power system applications such as
• HVDC (up to 3000 MW), Transistor based HVDC
• Feeding and priming power from renewable energy sources (solar, wind, ...)
• Active power filters, reactive power compensation, ...

• Power supplies
• Computers, tv-sets, ...
• Battery chargers for computers, mobile phones, hand-held tools, ...

- Back-up power, i.e. uninteruptable power supplies

• Many other applications



Electrical Motor Drives

http://www.irf.com

http://www.semikron.com

http://www.abb.com



Typical Motor Drive Applications
- Except pumps, fans, cranes, …

Series Hybrid
http://www.hybridcenter.org/

http://www.toyota.com/

Prallel Hybrid
http://www.hybridcenter.org/

Series-Parallel Hybrid
http://www.hybridcenter.org/

Traction: for example trains and hybrid vehicles

http://www.abb.com

Robotics



Energy Conversion in Hybrid Vehicles 
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EV Charging

Professor Mats Alaküla
Industrial Electrical Engineering at Lund University

Senior Technology Advisor, AB Volvo
Scientific Leader, Swedish Electro Mobility Research Centre
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Energy 
Source

Energy 
Transfer

Energy 
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Conventional

Renewable

Inefficient

Dirty
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The last Century
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1912

The Charging Challenge is NOT new ...
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Possibilities
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Car charging needs

0 5 10 15 20 25 >30 [mil]

• # fast chargers / # Cars ?

• Norway, california and EU says:
”- 1:100 or denser... ”

• 1 gasstations / 5000 cars
• 1 fast charger / 100 cars

• = 50 fast chargers / gas station  !!!

… in average, in Sweden
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Static Charging
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On boardOff board

On board / Off board = AC / DC

• ”AC Charging”
• Automation missing
• High power plug missing?
• 10...100 MW/m2

• ” DC Charging”
• Automation missing

• 10...100 MW/m2

• ”Wireless Charging”
• 10...100 kW/m2
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a b c 0 pe

Current
ControlAC

• 3 phase plug limited to 63 A
• Max charging power 44 kW
• Available from all OEMs for night time 

charging

• E.g. 200 kWh in 5 hours night time.

• NOT Enough for Opportunity Charging at 
+100 kW

• New Plug Needed for higher power levels!
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Current
Control

a b c 0 pe

AC

DC1

DC2

• OppCharge an open ”standard”, capable of up to 600 kW
• Expensive stations, not compatible with most truck applications

• CCS/DC normally limited to 200 A.
• @ 750 V this gives 150 kW, e.g 4x0.25h = 150 kWh
• NOT automatic

• Pushed towards 500 A with water cooling = 375 kW 
@ 750 V
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a b c 0 pe

NO PE !

DC2
DC/DC

2bl Isol

Current 
Control

• Siemens eHighway is currently leading
• Others follow very soon
• Significant battery size reduction (-60%...-80%)
• 150 kWh instead of 600 kWh

• No protective earth – requires special safety 
solutions



Tesla Semi Analysis ...



• GVW = 80000 lbs = 36 287 kg

• Drag Coefficient = Cd = 0.36

• Drivetrain: 4 PM motors from Model 3

• Acceleration 0-60 mph = 0-97 km/h

– Tractor only: 5 seconds

– Full load (80000 lbs): 20 seconds

• Hill climbing: 5 % slope @ 65 mph = 105 km/h

• Range: 300/500 miles = 483/805 km 

• Charging time: 400 miles = 644 km in 30 
minutes

Technical facts
Given Facts Calculated Facts

• Energy consumption = about 1 kWh/km

• Tractor weight = 9 tons

• Traction motors = 4 x 137/192 kW (cont/peak)

• Battery Energy = 850 – 950 kWh (depends on DoD)

• Battery Weight = 4.2 – 4.7 tons (@ 0.2 kWh/kg)

• Charging power

= almost 1.3 Megawatt for Fast Charging

= 100 kW for Night Time Charging

• MEGA Charging Connector: Seems to be 4xSUPER 
Charging Connector

X 4 =
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Dynamic Charging
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• Transfer energy to vehcles in motion
• Traditionally in Trains, Trams and Trolley 

Buses
• Different technologies, different 

connections
• Several different technology 

demonstrations under way

Electric Road Systems (ERS) – Continuous charging

Top Side Below

Conductive

Inductive

Capacitive



28

Suppliers considered in Sweden ...

SiemensAlstom

https://www.alstom.com

Elways ElonroadElectreon Honda
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Battery reach
D

A

B

A

B

”Infinite range Extender”

All National and 
European roads

50 % of All National 
and European roads

25 % of All National 
and European roads

D = 61 km D = 134 km D = 336 km
Kör & 
Ladda

Kör = 
ladda ur

Kör = 
ladda ur
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ERS between cities and static charging in cities

City 1
City 2

Static car charging

Static car charging
Truck static depot charging

Bus dynamic & stop charging

Higway dynamic charging
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• No ERS
= No ERS cost, high battery cost

• Some ERS
= Reduced battery cost, some ERS cost

• Only ERS
= Low battery cost, high ERS cost

• There is an optimum

Not ERS all the way... No ERS

Some ERS

Only ERS
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• Possibilities:
– Large reduction of battery need (-50% … -80%)

• Cheaper, lighter and more energy
efficient vehicles

– No need for fast chargers
• Only night time + ERS

• Challenges
– Road installation and maintenance
– Electro magnetic, thermal and mechanical 

safety
– Legal and business aspects

Possibilities and Challenges
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• 5 million cars á 15 kWh 
batteries á 1000 SEK/kWh @ 
10 years lifetime
-> 7 Billion SEK/year

• 50 000 Heavy Duty Trucks á 
100 kWh batteries á 1000 
SEK/kWh @ 2 years lifetime

-> 2 Billion SEK/year

• 15 600 km National and 
European road á 10 Million 
SEK/km @ 20 years lifetime
-> 8 Billion SEK/year 

A fast cost comparison

-> 17 Billion

SEK /year

• 5 million cars á 75 kWh 
batteries á 1000 SEK/kWh
@ 10 years lifetime
-> 38 Billion SEK/year

• 50 000 Heavy Duty Trucks 
á 500 kWh batteries á 1000 
SEK/kWh @ 2 years lifetime

-> 12 Billion SEK/year

• 50 000 ”SuperChargers” á 
150 kW á 6000 SEK/kW @ 
25 years lifetime
-> 1 Billion SEK/year

500 ”MEGAChargers” á 
1000 kW á 6000 SEK/kW @ 
25 years lifetime
-> 0,12 Billion SEK/year-> 51  Billion

SEK /year
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Elonroad
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Other applications 
of

Power Electronics



Frequency Conversion 

 Japan East / West

 50/60 Hz

 600 MW



HVDC

 Japan: Hokkaido to Honshu / 600 MW



HVDC and Transistor Based HVDC

http://swepollink.svk.se/ http://www.abb.com/



Camera with flash



Audio amplifiers
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Renewable Energy Systems

http://www.toshiba.com

Converters Suitable for Solar Cells

Without transformer

With transformer



Active Filters
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Switch Mode Power Supplies
- Forward Converter

http://www.irf.com



Thank You!



The Course 2021

 Lectures 2 times a week

 2…3 exercises a week

 6 labs with home assignments / simulation exercises:

– The Flyback Converter

– The H-bridge

– Speed Control with a DC Machine

– Control of an Active Power Filter

– Control of PM Machines

– Control of Induction Machines



Teaching Plan 2021



Home Assignments

 Content as similar as possible to the labs

 Prepares you for the lab

 Diagnostic tests can be used before the labs – You must pass!



Covid-19 limitations

 To start with, we will do everything via Internet

– Lectures, Exercises, Labs

 IF, or WHEN, it is possible, we will return to F2F teaching

 The Labs are the trickiest part !

– Based on filmed lab moments that you analyse
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Teachers

 Lectures:

– Mats Alaküla, professor

 Course assistance, simulation exercises and Labs:

– Akanksha Upadthey, PhD student

– Max Collins, PhD student

– Samuel Estenlund, PhD Student



Components



Components 1 : The transistor

 Works like a valve for electric current

 Compare to a water tap

– Control a big flow with a small movement

– Flow x Pressure drop = Power

– Heats the water (a little)

 A transistor

– Controls a big current with a small 
current

– The voltage drop across the transistor x
the current = Power

– Heats the transistor (a lot)



Components 2: The Diode
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Components 3: The IGBT – transistor

 

S y m b o l 

B o ttn a d  

S try p t  E ffe k tg r ä n s  

i  

u  

C  

C E  

i  C  

u  C E  +  

+  

-  
-  

u  G E  

G a te  

K o lle k to r  

E m it te r  

u  

u  

u  

G E 2  

G E 3  

G E 1  

Ö k a n d e   
u  G E  



Components 4: The Capacitor

 Stores electric current with increasing 
voltage like a hydrophore stores a fluid 
or gas with increasing pressure

i
Cdt

du c 
1

+ uc -ic



Components 5: The Inductor

 Stores currrent into magnetic energy like 
a flywheel stores torque into speed and 
mechanical energy

L
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Never break an inductive current
Never short a capacitive voltage
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Basic Switching



Fundamentals of Switching

Analogue Switched

Ut

Uload

Ia
U0

0Ploss = Ut*Ia

Pload = Uload*Ia

Ut ≈ Uload

On
Ut ≈ 0            Ut = U0

Ploss = 0         Ploss = 0

Off

Ia = Iload Is = 0
Ploss ≈ Pload

Ia

tt
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Never break an inductive current
Never short a capacitive voltage
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BASIC 
turn on current step, capacitive load. 
No problem

C
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BASIC 
turn off current step, capacitive load. 
No problem

C

i

dt
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t
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BASIC 
turn on voltage step with capacitive load. 
Problem!

dt

du
Ci 
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BASIC 
turn off voltage step, capacitive load. 
No problem

dt

du
Ci 
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BASIC 
voltage ramp, capacitive load. 
No problem

dt

du
Ci 
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t
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U
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BASIC 
turn on current step, inductive load. 
Problem

dt

di
Lu 

I
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t

u,i
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I > i



BASIC 
turn on current step, inductive load. 
Counter measure with capacitor

t

u,i
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BASIC 
turn off current step, inductive load. 
Problem

t

u,i

Electric Drives Control 67

dt

di
Lu 

I
+

u

-

i



BASIC 
turn off current step, inductive load. 
Counter measure with freewheeling diode
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