Hybrid Drive Systems for Vehicles

L9 - Cost

Vehicle requirements

Powertrain components in the study

- Excluding the battery
- Including the:
 - PEC
 - Traction Machine
 - Transmission
- Almost all developed by:
 - Gabriel Dominguez (design & control)
 - Pontus Fyhr (production)
 - Former PhD students in Lund
 - Gabriel now @ Borg Warner
 - Pontus now @ Haldex Brakes Products

Powertrain concepts

Powertrain optimization

Electrical Machine: Approach and Topologies

- FE are used to determine the characteristics of the EM.
- A large number of EM geometries are simulated in advance.
- The goal is to take the FE out of the optimization loop.
- Axial scaling is used to adjust the EM performance to the requirements.

Electrical Machine: Approach and Topologies

+ Number of poles + Number of Slots/pole/phase

Electrical Machine: Thermal model

- 1. Simple, quick to excecute.
- Thermal capacitances and resistances are calculated based on the geometry and materials of the machine.
- 3. Used for axial scaling of the EM, limitation of overloading capabilities and evaluating the thermal performance of the EM in a given drive cycle and powertrain.

Electrical Machine: Cost – Commodities

Electrical Machine Cost – Actual materials

Electrical Machine Cost – Sim materials

Electrical Machine Cost – Actual materials

Electrical Machine Cost – Actual materials

- Increased Nd with some Dy (Ga, Co) gives lower coercivity loss with increased temperature.
- Control of grain size important.
- Substitute elements (Dy, Ga, Co) increase price.

Electrical Machine Cost – Manufacturing

FIG. 1

Electrical Machine: Cost

200

100

Active mass (kg)

150

Power Electronics: DC-link Capacitors and Control unit

Power Electronics: "Commodities"

© 2020 LTH

ALL AL SIGIL

Power Electronics: Manufacturing

Power Electronics : Cost Examples

TABLE III: Cost of a 600V, Three phase, two level voltage TABLE IV: Cost of a 400V, Three phase, two level voltage source converter for EV/HEV application

Power-Units	100	1000	5000	10000	20000
20 kW	1085	358	294	286	282
40 kW	1160	434	369	361	357
60 kW	1231	504	439	431	427
80 kW	1315	588	523	515	511
100 kW	1397	670	605	597	593
120 kW	1422	695	630	622	618
140 kW	1510	783	718	710	706
160 kW	1588	862	797	789	785
180 kW	1633	906	841	833	829
200 kW	1747	1021	956	948	944

source converter for EV/HEV application

Power-Units	100	1000	5000	10000	20000
20 kW	1073	346	282	274	270
40 kW	1172	445	381	373	369
60 kW	1276	549	484	476	472
80 kW	1396	670	605	597	593
100 kW	1425	698	633	625	621
120 kW	1531	804	740	732	127
140 kW	1629	903	838	830	826
160 kW	1765	1038	973	965	961
180 kW	1780	1053	988	980	976
200 kW	1895	1168	1103	1095	1091 .

Electric vehic	cle specifications	
Vehicle weight	1600 kg	EM
Top speed	$150 \ km/h$	
Starting torque (wheel)	2200 Nm	
Continuous Power	$80 \ kW \ (v > 43 \ km/h)$	
DC-link Voltage	400V	

EM topologies:

al'

Other Constraints:

- Fsw = 10kHz
- Semiconductor tech: IGBT & Si PiN diodes

Optimization process ...

In another perspective ...

- 2 speed = lower cost
- Less demanding FWR
- To come:
 - SiC
 - HV (PD issues)
 - More machine types
 - Other transmissions
 - Other cooling concepts
 - ..
- Incremental improvement!
 - Like the ICE ...

٠

