Hybrid Drive Systems for Vehicles Hybrid Drive Systems for \
• L5
- Alternative drive train Components Vierrel Drive Systems for Vel (15)
L5
Alternative drive train Components

Drawback with conventional drivetrains **Drawback with convent**
• Limited ability to optimize
operating point **Drawback with conventior**
• Limited ability to optimize
• operating point
• No ability to regenerate braking
power

- operating point
- power

Solutions

-
- **Solutions
• Smaller Engine
• Reach higher operating points
• Still cannot regenerate** + Reach higher operating points
	-
- **Sultions
Smaller Engine
- Reach higher operating points
- Still cannot regenerate
Store energy in the vehicle mass
- Speed variations** • Smaller Engine
• Reach higher operating points
• Still cannot regenerate
• Store energy in the vehicle mass
• Speed variations
• Still cannot regenerate **Smaller Engine

Smaller Engine

+ Reach higher operating points

- Still cannot regenerate

Store energy in the vehicle mass

- Speed variations

- Still cannot regenerate

Secondary energy storage >lutions**
Smaller Engine
+ Reach higher operating points
- Still cannot regenerate
Store energy in the vehicle mass
- Speed variations
- Still cannot regenerate
Secondary energy storage
+ Selectable operating point (Pstor
	-
	-
-
- Smaller Engine
• Reach higher operating points
• Still cannot regenerate
• Store energy in the vehicle mass
• Speed variations
• Still cannot regenerate
• Secondary energy storage
• Selectable operating point (Pstorage
• + Selectable operating point (Pstorage aller Engine
each higher operating points
ill cannot regenerate
re energy in the vehicle mass
beed variations
ill cannot regenerate
condary energy storage
electable operating point (Pstorage
= Pice – Proad)
an regererate
E Smaller Engine

+ Reach higher operating points

- Still cannot regenerate

Store energy in the vehicle mass

- Speed variations

- Still cannot regenerate

Secondary energy storage

+ Selectable operating point (Pstorage

	- + Can regererate
	-

Smaller Engine – cylinder deactivation

Combustion On Demand

- **Combustion On Demand**
• Cylinder deactivation via free
valve control valve control **Combustion On Deman**
• Cylinder deactivation via free
• 4-stroke, 6-stroke, 8-stroke ...
-

Optimized efficiency

Max efficiency

Secondary Energy Storage selection Secondary Energy Stor
• Why electric?
• Efficient secondary energy
converters (Electrical machines)
• Safe quiet flexible installation **Example 2011 Strate Scondary Energy Storaction**
Why electric?
- Efficient secondary energy
- Safe, quiet, flexible installation
- Increasing need for Auxilliary electric **Example 20 Storage Set of the School Set Example 20 Storage

Why electric?**

— Efficient secondary energy

— Safe, quiet, flexible installation

— Increasing need for Auxilliary electric

— High torque density of Electrical

Mchines **Example 20 All Strates (Electric Property Strates)**

Why electric?

— Efficient secondary energy

— Safe, quiet, flexible installation

— Increasing need for Auxilliary electric

— High torque density of Electrical

Moh

- converters (Electrical machines)
-
- power
- **Mchines**
	- Up to 30 Nm/kg
	- ICE: <2 Nm/kg

Energy Storage Systems

How does a battery look?

Performance

What is a battery cell?

Different cell formats

Same principle inside

Prismatic

Simplier building block for module More mechanically stable than pouch (still needs mechanical support in the module)

Pouch

Need mechanical stability when packing

Closed

no material transfer

Controlled

no spontaneous reaction different energy levels

Reversible

rechargeable high efficiency

Short introduction to Battery
SOC – state-of-charge

© Charge level related to reference

© 20-1 or 0-100% Short introduction to Battery C

soc – state-of-charge
 \circ Charge level related to reference

capacity¹
 \circ 0-1 or 0-100%

OCV – open circuit voltage
 \circ Battery voltage at rest
 \circ Measured after 15-60min rest
 Short introduction to Battery Characteristics

- o Charge level related to reference capacity1 **DC** – **state-of-charge**
 \circ Charge level related to reference

capacity¹
 \circ 0-1 or 0-100%
 CV – **open circuit voltage**
 \circ Battery voltage at rest[°]
 \circ Measured after 15-60min rest

period²

Affected by 2. Charge level related to reference

capacity¹

2. O-1 or 0-100%

2V — **open circuit voltage**

2. Battery voltage at rest°

2. Measured after 15-60min rest

period²

2. Affected by temperature, age & hysteresis²

2
- \circ 0-1 or 0-100%

- o Battery voltage at rest°
- o Measured after 15-60min rest period2 \circ Measured after 15-b0min rest

period²
 \circ Affected by temperature, age & hysteresis²
 Ominal Voltage
 $\frac{1}{5}$
 $\frac{1}{5$
-

Nominal Voltage

- \circ Electrochemical voltage \approx average OCV
-
-

Physical Background & Model Design

 LiFePO_4 : SEM 60k \blacksquare

Power- vs. Energy- optimised

Battery Cell Properties

-
- **Battery Cell Properties**
• All parameters are non-linear
• Strong dependence on SOC,
temperature, current rate & direction, and
history. **Battery Cell Properties
• All parameters are non-linear
• Strong dependence on SOC,
• temperature, current rate & direction, and
• OSV = Open Circuit Voltage** temperature, current rate & direction, and $\sum_{QCV = f(SOC)}$ history. **Battery Cell Properties**

• All parameters are non-linear

• Strong dependence on SOC,

temperature, current rate & direction, and

history.

• OSV = Open Circuit Voltage

• R0, R1, C1 describe the battery

resistance, c **Battery Cell Properties**

• All parameters are non-linear

• Strong dependence on SOC,

temperature, current rate & direction, and

history.

• OSV = Open Circuit Voltage

• R0, R1, C1 describe the battery

resistance, ch **Battery Cell Properties**

• All parameters are non-linear

• Strong dependence on SOC,

temperature, current rate & direction, and

history.

• OSV = Open Circuit Voltage

• R0, R1, C1 describe the battery

resistance, ch All parameters are non-linear

Strong dependence on SOC,

temperature, current rate & direction, and

history.

OSV = Open Circuit Voltage

R0, R1, C1 describe the battery

resistance, charger transfer and "double

layer Strong dependence on SOC,
temperature, current rate & direction, and
history.
OSV = Open Circuit Voltage
R0, R1, C1 describe the battery
resistance, charger transfer and "double
layer effect"1
R2, C2 describe the diffusio
-
- resistance, charger transfer and "double Ambient temperature layer effect"1
- - negative), consists of ions adsorbed onto the object due to chemical interactions. The second layer is composed of ions attracted to the surface charge via the Coulomb force, electrically screening the first layer. https://en.wikipedia.org/wiki/Double_layer_(surface_science)
	-

https://www.sciencedirect.com/science/article/pii/S0360544217317127#fig1

http://www.mdpi.com/1996-1073/9/6/444

Short introduction to Battery Characteristics SOH – state-of-health BOL – beginning of life **Short introduction to Battery**

som – state-of-health
 \circ Actual capacity related to reference

capacity
 \circ 0-1 or 0-100%, sometimes 80-100%
 \circ No standard definition

BOL – beginning of life
 \circ Fresh / unused

- o Actual capacity related to reference capacity
- \circ 0-1 or 0-100%, sometimes 80-100%
- o No standard definition

o Fresh / unused battery

-
- $\begin{array}{c|c}\n\text{I} & \text{I} & \text{I} & \text{I} \\
\hline\n\text{I} & \text{I} & \text$ o Can be defined by capacity, energy, power etc.

No standard definition

Cell Voltage = f(...)

- o Material Selection
- o State of Charge (SOC)
- o Current / power
- o Temperature
- o Age

\rightarrow No equilibrium / steady-state $\frac{2}{\frac{8}{5}}$ $\frac{3}{2.8}$
 $\frac{2}{\frac{3}{5}}$ $\frac{2.8}{2.6}$

Cell Voltage = f(...)

- o Material Selection
- o State of Charge (SOC)
- o Current / power
- o Temperature
- o Age

\rightarrow No equilibrium / steady-state $\frac{\sum\limits_{\substack{8\text{odd}\\ 8\text{ odd}\\ 8\text{ odd}}}^{2^{3.35}}}{\sum\limits_{\substack{8\text{odd}\\ 8\text{ odd}\\ 8\text{ odd}}}^{2}}$

Cell Voltage = f(...)

- o Material Selection
- o State of Charge (SOC)
- o Current / power
- o Temperature
- o Age

\rightarrow No equilibrium / steady-state $\frac{1}{\frac{3}{5}}$

State of Charge State of Charge
• C-rate = P[kW] / W[kWh]
- C=1: 1 h full charge
- C=2: 30 min full charge ate of Charge

C-rate = P[kW] / W[kWh]

- C=1: 1 h full charge

- C=2: 30 min full charge

- -
	-

Li-lon Discharge Characteristics

https://www.researchgate.net/figure/Discharge-curves-for-different-technologiesand-different-batteries_fig1_224395476

$$
P = U \cdot I = U \left(\frac{U - OCV}{R} \right) = \frac{1}{R} \left(U^2 - U \cdot OCV \right)
$$

 $U = OCV(SOC) - R(SOC) \cdot I$

Enhanced battery model with SOC & t **Applied Modelling: Perform

Enhanced battery model with SOC

* Simple look-up tables

* Two internal states – not suitable

for optimisation**

-
- for optimisation

• Two internal states – not suitable

Advanced battery model with SOC, T & t

-
- suitable for optimisation

GSP Model

Battery simulation model : I

$$
P_{term} = (e_{bat} + R_{bat} \cdot i_{bat}) \cdot i_{bat} = e_{bat} \cdot i_{bat} + R_{bat} \cdot i_{bat}^{2}
$$

\n
$$
i_{bat} = -\frac{e_{bat}}{2 \cdot R_{bat}} \pm \sqrt{\frac{e_{bat}}{2 \cdot R_{bat}} \cdot \frac{P_{term}}{P_{bat}}}
$$

\n
$$
P_{loss} = R_{bat} \cdot i_{bat}^{2}
$$

\n
$$
P_{ch arg e} = P_{term} - P_{loss}
$$

\n
$$
\eta_{bat} = \frac{P_{ch arg e}}{P_{term}}
$$

\n
$$
e_{bat} = \frac{P_{ch arg e}}{P_{term}}
$$

\n
$$
P_{bat} = \frac{P_{ch arg e}}{P_{term}}
$$

\n
$$
P_{bat} = \frac{P_{ch arg e}}{P_{term}}
$$

\n
$$
P_{bat} = \frac{P_{ch arg e}}{P_{term}}
$$

Battery Simulation model : II

Super Capacitor Cell Properties

-
-

"Semi" Steady-State Operation!

Combined Energy Storage System

© Mats Alaküla

Tesla Model S&X, Milage vs remaining battery capacity

Battery Lifetime : II

- **Battery Lifetime : II
• Calculate the total converted
energy as:
Wconv=Wbatt*DoD/100*NoC** energy as: Wconv=Wbatt*DoD/100*NoC
- **Battery Lifetime : II

•** Calculate the total converted

energy as:

Wconv=Wbatt*DoD/100*NoC

 And the battery cost per kWh

converted energy as:

SEKperkWh = CostPerkWh*Wbatt / converted energy as: **attery Lifetime : II**
Calculate the total converted
energy as:
*Wconv=Wbatt*DoD/100*NoC*
And the battery cost per kWh
converted energy as:
SEKperkWh = *CostPerkWh*Wbatt /
CostPerkWh = 3000 [SEK]* **Wconv** Calculate the total converted

energy as:

Wconv=Wbatt*DoD/100*NoC

And the battery cost per kWh

converted energy as:

SEKperkWh = CostPerkWh*Wbatt/

Wconv

CostPerkWh = 3000 [SEK]

Battery Lifetime : III

- converted energy falls fast $\frac{1}{10^{3}}$ with increased DoD !!!
- The cost per converted

kWh increases rapidly

with increased DoD with increased DoD

Battery Lifetime : IV

Battery Lifetime : V

D o D [%]

Battery Lifetime in Years, used 8h/day, 300 days/year

- Now, plot the battery lifetime as a function of DoD and $(P_{ch,ave}/W_{batt})$
	- Assume 8h/day, 300 days/year

Cost and 2nd life

Battery Cost development

The Cost development

• The Cost of EV

• The Cost of EV

Traction

Batteries is

falling fast **Traction** Batteries is falling fast

If battery costs continue to decline as EV production increases, within several years they will reach the \$125-\$150 target that makes EVs competitive with conventional gasoline vehicles.

Note: Battery cost estimates include both academic analysis and statements from automakers. Multiple data points in a given year represent estimates from multiple analyses. Trend line represents exponential best fit of battery cost data.

SOURCES: ARB 2017; SOULOPOULOS 2017; VOELCKER 2017; SLOWIK, PAVLENKO, AND LUTSEY 2016; VOELCKER 2016; NYKVIST AND NILSSON 2015.

https://www.ucsusa.org/sites/default/files/attach/2017/09/cv-factsheets-ev-incentives.pdf

Battery 2'nd Life Daimler, 10's of MW and MWh

- Pattery 2'nd Life

 EV's use the battery

 EV's use the battery

is left

 After looving the until 85-90 % capacity is left
- vehicle, another 5...10 years of life remains.
- an important application

Tesla, 560 MW and129 MWh

Grid Battery Energy Storage — a Swedish perspective

"Fast charger and BIG Battery World" Wert-Stide energy turnover until

Thattery Lattery Lattery Latter (Stide Care of Orde cyclos/day [MWh]

- batteries represent a Significant Energy supply $\frac{5}{2}$ 200 for the electricity grid
- The (re)used EV battery is a **value carrier** into σ ₁₀₀ the electricity grid, together with renewable electricity generation

- In a few years we will have 1000's of batteries to handle.
- These will be more or less different ...
- These have to be joined in a systematic way
- interface and efficient converters
- "Design for 2nd life"-requirements

Battery Lifetime: Conclusions **attery Lifetime: Conclusions**
Deep discharge of a
battery costs lifetime
- Best with less than 10 % DoD
The battery may have a
high power density BUT

- **Battery Lifetime: Concline**
• Deep discharge of a
• battery costs lifetime
- Best with less than 10 % DoD battery costs lifetime
	-
- **Battery Lifetime: Conclu**
• Deep discharge of a
battery costs lifetime
– Best with less than 10 % DoD
• The battery may have a
high power density BUT
using it is expensive, i.e. a high power density BUT using it is expensive, i.e. a high power/energy ratio costs lifetime Deep discharge of a

battery costs lifetime

– Best with less than 10 % DoD

The battery may have a

high power density BUT

using it is expensive, i.e. a

high power/energy ratio

costs lifetime

– Best with an average ba
	- power in the range 3…4 x the battery energy capacity.

Electric Motor Drive Systems

What is an Electrical Machine?

What is an Electrical Machine?
• "A device that convertes between
Electric and Mechanic energy,
both ways" Electric and Mechanic energy, both ways" What is an Electrical Machine

• "A device that convertes between

Electric and Mechanic energy,

both ways"

• Physical principles?

• Some kind of field ... What is an Electrical Machi

"A device that convertes between

Electric and Mechanic energy,

both ways"

Physical principles?

> Some kind of field ...

* Acoustic field

* Piezoelectric deformation

- - - » Acoustic field
		- » Piezoelectric deformation
		- » Electrostatic field
		- » Magnetic field

http://www.shinsei-motor.com/English/techno/index.html

Energy density, Magnetic vs Electric

53

Linear Motion

-
-

Lorentz force = current in magnetic field

Multi Phase, otherwise it stops

Rotating movement from generic force

Conclusions on force and movement

- The same generic circuit accomplish both linear and rotating movement.
- One phase is not enough for continuous force.
- Qualitative:

Voltage ~ Speed Current ~ Force

Different mechanical arrangements

- Windings in the rotor
- Windings in the stator
- Windings in both sides

Magne⁺¹ circuits

- experience core provides mechanic support and construction

For magnetic core provides mechanic support and construction

Soft and hard magnetic materials

Solid, laminated or powder cores high µ & B_{sat} vs P_{loss} **Example 1:**

• The magnetic core provides mechanic support and

• Soft and hard magnetic materials

– Solid, laminated or powder cores – high μ & B_{sat} vs P_{loss}

– Discrete, multipole magnets – high B_rH_e vs cost France – Solid, laminated or powder cores – high μ & B_{sat} vs P_{loss}
– Solid, laminated or powder cores – high μ & B_{sat} vs P_{loss}
– Solid, laminated or powder cores – high μ & B_{sat} vs P_{loss}
– Discrete, multipole The magnetic core provides mechanic support and construction
Soft and hard magnetic materials
— Solid, laminated or powder cores – high μ & B_{sat} vs P_{loss}
— Discrete, multipole magnets – high B,H_c vs cost & integra • The magnetic core provides mechanic support and construction
• Soft and hard magnetic materials
• Sidid, laminated or powder cores – high μ & B_{sat} vs P_{loss}
• Establish magnetic coupling – linkage vs leakage
• Esta
- -
	- Discrete, multipole magnets $-$ high B_rH_c vs cost & integration
-

-
-
- -
-

Stator, Rotor and Airgap

- **Stator, Rotor and Airgap
• The stator** is static (not
moving)
• The rotor rotates moving) Stator, Rotor and Airgap
• The stator is static (not
moving)
• The rotor rotates
• The air gap seperates
-
- them
	-

65

Torque and Power

on the shaft

$T = F * r$

on the shaft

$P = T * \omega$

Current on the electrical terminals

Tangential force

Stator current / meter air gap periphery

Shear Force & Torque

- **Shear Force & Torque**
• Current and Flux interact for tangential
force
 σ = Force/Unit area is a key figure force **Shear Force & Torque**
• Current and Flux interact for tangential
force
 σ = Force/Unit area is a key figure
• A good design accomplish about
 σ = 10 000 ... 30 000 [N/m²]
• ... in continuous operation and **Shear Force & Torque**

• Current and Flux interact for tangential

force
 σ = Force/Unit area is a key figure

• A good design accomplish about
 σ = 10 000 ... 30 000 [N/m²]

• ... in continuous operation and

2.
	- σ = Force/Unit area is a key figure
- σ = 10 000 ... 30 000 [N/m²]]
[*[*]
- 2…4 times that in transient operation

$$
\sigma = \left(\frac{F}{A}\right)_{avg} = \frac{\frac{\pi}{2} D_{is} l_e B_{gm1} K_{s1}}{\pi D_{is} l_e} = \frac{B_{gm1} K_{s1}}{2} \quad [N/m^2]
$$

$$
T = \frac{\pi}{4} D_{is}^{2} l_{e} \cdot B_{gm}^{2} K_{sl}
$$

Conclusion on torque **nclusion on torque**

A torque is proportional to the:

Aggnetic flux density – Limited by material propertic

Axial length of the machine

Axial length of the machine

A Diameter SQUARED !

A state of the machine

A state **nclusion on torque**

Exerge torque is proportional to the:

Allong the Spatial current "density" – Limited by material pro

Axial length of the machine

Allong the machine

Allong Diameter SQUARED !

Allong the Machine

B

The torque is proportional to the:

- **nclusion on torque**

 Example 18 Accord Figure 10

 Spatial current "density" Limited by material propertied to about 1.0 ... 1.5 Tesla

 Axial length of the machine

 Axial length of the machine e torque is proportional to the:

- Magnetic flux density – Limited by material propertied to about 1.0 ... 1.5 Tes

- Spatial current "density" – Limited by cooling capability

- Axial length of the machine

- Diameter SQ
-
-
-

$$
\rightarrow
$$
 = Rotor Volume

$$
T = \frac{\pi}{4} D_{is}^{2} l_{e} \cdot B_{gm}^{2} K_{s1}
$$

Inner or Outer Rotor, Radial or Axial flux …

Distributed or Concentrated winding

Axially shorter end winding Cheaper assembly Lower torque quality

Longer end winding More expensive assembly Higher torque quality

Shear Force & Torque

Current and Flux interact for tangential force

 σ = Force/Unit area is a key figure

A good design accomplish about σ = 10000-30000 [N/m2] in continuous operation and 2..4 times more in transient operation

Form Factor

- be either short and wide, or long and slender …
- Assume 25000 [N/m²], and a desired torque of 1000 Nm, AND that the
	- the torque requirement?
- The long and slender machine will accelerate faster
	- Torque ~ radius^{2*}length
	- Inertia ~ radius^{4*}length
-

Conclusions on force and movement

- The same generic circuit accomplish both linear and rotating movement. • Conclusions on force and movement
• The same generic circuit accomplish both linear and rotating
movement.
• One phase is not enough for continuos force
• Qualitative:
-
- Qualitative:
	- Voltage ~ Speed
	- $Current _{Force}$

Field Weakening : I Field Weakening : I
• Remember:
• Voltage ~ flux density * speed
• Torque ~ flux density * current
• Power ~ speed*torque = voltage*current **eld Weakening : I**
Remember:
- Voltage ~ flux density * speed
- Torque ~ flux density * current
- Power ~ speed*torque = voltage*current **eld Weakening : I**
Remember:
- Voltage ~ flux density * speed
- Torque ~ flux density * current
- Power ~ speed*torque = voltage*current
The required voltage "hits the roof" at some

-
-
-
- **eld Weakening : I**

Remember:

 Voltage ~ flux density * speed

 Torque ~ flux density * current

 Power ~ speed*torque = voltage*current

The required voltage "hits the roof" at some
peed. What to do, to increase spee Field Weakening : I

• Remember:

– Voltage ~ flux density * speed

– Torque ~ flux density * current

– Power ~ speed*torque = voltage*current

• The required voltage "hits the roof" at some

speed. What to do, to increas speed. What to do, to increase speed beyond? **End Weakening :** \blacksquare

Remember:

— Voltage ~ flux density * speed

— Torque ~ flux density * current

— Power ~ speed*torque = voltage*current

the required voltage "hits the roof" at some

peed. What to do, to increa
	-
	- - desired
		-
- **CONTRET CONTRET CONSTANT AS the flux density.**

The power is kept constant, a increases in the same rate as the torque drops with increasing speed.

Field Weakening : II

Example from Toshiba

"Large Torque and High Efficiency Permanent Magnet Reluctance Motor for A Hybrid Truck" - Masanori Arata et. Al, EVS-22

Permanent Magnet Synchronous Machines **Permanent Magnet Synchronou
• Same as the generic machine
• Voltage and frequency proportional to
• Current proportional to torque Permanent Magnet Synchron**
• Same as the generic machine
• Voltage and frequency proportional to speed
• Current proportional to torque **Permanent Magnet Synchronol**
• Same as the generic machine
• Voltage and frequency proportional to
• Current proportional to torque
• High torque density
• 4.10 Nm/ka **Permanent Magnet Synchr**
• Same as the generic machine
• Voltage and frequency proportional to
speed
• Current proportional to torque
• High torque density
• High torque density
• Compare to ICE 1...2 Nm/kg
• High efficie Primanent Magnet Synchron

Same as the generic machine

Voltage and frequency proportional to

speed

Current proportional to torque

High torque density

— 1...10 Nm/kg

— Compare to ICE 1...2 Nm/kg

High efficiency

— Up **• Same as the generic machine**
• Voltage and frequency proportional to
speed
• Current proportional to torque
• High torque density
• High efficiency
• High efficiency
• Up to 97%
• Higher efficiency, higher torque densit

-
- speed
-
- -
	-
- -
- **Exame as the generic machine

Same as the generic machine

Voltage and frequency proportional to

speed

Current proportional to torque

High torque density

 1...10 Nm/kg

 Compare to ICE 1...2 Nm/kg

High efficiency
** • Same as the generic machine

• Voltage and frequency proportional to

speed

• Current proportional to torque

• High torque density

– 1...10 Nm/kg

– Compare to ICE 1...2 Nm/kg

• High efficiency

– Up to 97%

• Highe and more expensive than other machines Voltage and frequency proportional to
speed
Current proportional to torque
High torque density
- 1...10 Nm/kg
- Compare to ICE 1...2 Nm/kg
High efficiency
- Up to 97%
Higher efficiency, higher torque density
and more expen
	-

The Induction Machine : I **The Induction Machine : I**
• Same stator as the PMSM
• The rotor is a short circuited "cage"
• The rotor current must be induced magnetically The Induction Machine : I
• Same stator as the PMSM
• The rotor is a short circuited "cage"
• The rotor current must be induced
magnetically
– Losses related to magnetization The Induction Machine : I
• Same stator as the PMSM
• The rotor is a short circuited "cage"
• The rotor current must be induced
magnetically
– Losses related to magnetization
"competes" with losses due to torque

-
-
- magnetically
- **10 Induction Machine : I**
Same stator as the PMSM
The rotor is a short circuited "cage"
The rotor current must be induced
magnetically
— Losses related to magnetization
"competes" with losses due to torque
generation.
Rob Losses related to magnetization
"competes" with losses due to torque generation. The Induction Machine : I
• Same stator as the PMSM
• The rotor is a short circuited "cage"
• The rotor current must be induced
magnetically
– Losses related to magnetization
• Competes" with losses due to torque
generatio The Induction Machine : I
• Same stator as the PMSM
• The rotor is a short circuited "cage"
• The rotor current must be induced
magnetically
– Losses related to magnetization
• Costs (Suppleted in the state of the special • Same stator as the PMSM
• The rotor is a short circuited "cage"
• The rotor is a short circuited "cage"
• The rotor current must be induced
magnetically
• Losses related to magnetization
• "competes" with losses due to t • Same stator as the PMSM
• The rotor is a short circuited "cage"
• The rotor current must be induced
magnetically
– Losses related to magnetization
"competes" with losses due to torque
generation.
• Robust construction
•
-
-
-
- Heavily standardized for industrial
applications
- Voltage and frequency proportional
to speed, like PMSM

Electrical machine losses

The Traction motor efficiency

Power Electronics

- Needed to condition the battery voltage to the
• Needed to condition the battery voltage to the
• Use switching technology for high efficiency different electrical drives • Needed to condition the battery voltage to the
• Needed to condition the battery voltage to the
• Use switching technology for high efficiency
• Conventional converters (like loudspeaker amplifiers)
• efficiency 25-60 %
-
- ver Electronics

Needed to condition the battery voltage to the

different electrical drives

Use switching technology for high efficiency

 Conventional converters (like loudspeaker amplifiers)

 efficiency 25-60 % due efficiency 25-60 % due to continuous control of the voltage. ver Electronics

Needed to condition the battery voltage to the

different electrical drives

Use switching technology for high efficiency

— Conventional converters (like loudspeaker amplifiers)

efficiency 25-60 % due to
	- efficiency above 95 %.

Three-phase Converters

Three-phase Pulse Width Modulation

- contain high harmonics that cause:
	-
	-
	-

Simple Converter Loss Model

 $p_S(t) = v_S(t) \cdot i_S(t)$

Switching and Conduction losses

 $E_S(T_{sw}) = \int_{T_{sw}} p_S(\tau) d\tau = E_{S,on}(T_{sw}) + E_{S,cond}(T_{sw}) + E_{S,off}(T_{sw})$ **Energy losses:** $E_{S,on}(T_{sw}) = \int p_S(\tau) d\tau = V_{DC} \cdot I_0 \cdot \frac{t_{on}}{2}$ $E_{S,cond}(T_{sw}) = \int_{tcond} p_S(\tau) d\tau = V_{S(on)} \cdot I_0 \cdot t_{cond}$ Note $V_{S(on)} = V_{S0} + R_S \cdot I_0$ $E_{S,off}(T_{sw}) = \int p_S(\tau) d\tau = V_{DC} \cdot I_0 \cdot \frac{t_{off}}{2}$ **Power losses:** $P_S(T_{sw}) = \frac{E_S(T_{sw})}{T_{sw}} = P_{S,on}(T_{sw}) + P_{S,cond}(T_{sw}) + P_{S,off}(T_{sw})$ $P_{S,on}(T_{sw}) = \frac{E_{S,on}(T_{sw})}{T_{sw}} = E_{S,on}(T_{sw}) \cdot f_{sw} = \frac{V_{DC} \cdot I_0 \cdot t_{on}}{2} \cdot f_{sw}$ $P_{S,cond}(T_{sw}) = \frac{E_{S,cond}(T_{sw})}{T_{sw}} = V_{S(on)} \cdot I_0 \cdot \frac{t_{cond}}{T_{sw}} = V_{S(on)} \cdot I_0 \cdot D_S$ $P_{S,off}\left(T_{sw}\right)=\frac{E_{S,off}\left(T_{sw}\right)}{T_{sw}}=E_{S,off}\left(T_{sw}\right)\cdot f_{sw}=\frac{V_{DC}\cdot I_{0}\cdot t_{off}}{2}\cdot f_{sw}$ IEA $P_{S,sw}(T_{sw})=P_{S,on}(T_{sw})+P_{S,off}(T_{sw})$

Reverse recovery Losses

If specified, use:

$$
P_{D,off} = E_{D,off}(T_{sw}) \cdot f_{sw} , E_{D,off}(T_{sw}) = \frac{E_{off,n}}{V_{DC,n} \cdot I_{0,n}} \cdot V_{DC} \cdot I_0
$$

 $Q_f = \frac{Q_{f,n}}{I_{0,n}} I_0$

3-phase converter losses

One half-bridge of a threephase voltage source converter.

Converter output voltage and current. The current is displaced by an angle φ relative to the voltage.

Loss estimation

Switching losses:

$$
\overline{P}_{Ti,sw} = \frac{1}{T_n} \int_{T_n} (P_{on} + P_{off}) dt = \frac{f_{sw}}{T_n} \int_{T_n} (E_{on} + E_{off}) dt = \frac{E_{on,n} + E_{off,n}}{V_{dc,n} \cdot I_n} \cdot \frac{V_{dc} f_{sw}}{T_n} \int_{T_n} \hat{i_i} \sin(\omega_1 t - \varphi) dt = \frac{2\sqrt{2}}{\pi} \cdot \frac{E_{on,n} + E_{off,n}}{V_{dc,n} \cdot I_n} \cdot V_{dc} I_i f_{sw}
$$
\n
$$
\overline{P}_{Di,sw} = \frac{1}{T_n} \int_{T_n} (P_{on} + P_{off}) dt = \frac{f_{sw}}{T_n} \int_{T_n} (E_{on} + E_{off}) dt = \frac{2\sqrt{2}}{\pi} \cdot \frac{E_{off,n}}{V_{dc,n} \cdot I_n} \cdot V_{dc} I_i f_{sw} = \frac{2\sqrt{2}}{\pi} \cdot \frac{E_{DIT,n}}{V_{dc,n} \cdot I_n} \cdot V_{dc} I_i f_{sw}
$$

Conduction losses:

$$
\overline{P}_{Ti,cond} = \left(\frac{\sqrt{2}}{\pi} V_{T0} I_i + \frac{1}{2} R_{T(on)} I_i^2\right) + \left(V_{T0} I_i + \frac{4\sqrt{2}}{3\pi} R_{T(on)} I_i^2\right) \frac{U_i \cos(\varphi)}{V_{dc}}
$$
\n
$$
\overline{P}_{Di,cond} = \left(\frac{\sqrt{2}}{\pi} V_{D0} I_i + \frac{1}{2} R_{D(on)} I_i^2\right) + \left(V_{D0} I_i + \frac{4\sqrt{2}}{3\pi} R_{D(on)} I_i^2\right) \frac{U_i \cos(\varphi)}{V_{dc}}
$$

Example :

V to = 0.95; % [V] V_d do = 1.65; % [V] R_t_on = 0.5/300; % [Ohm] R_d_on = 0; % [Ohm] E d $rr = 0.0485$; % [J] E_{on} = 26e-3; % [J] $E_{of} = 55.5e-3; % [J]$

 $V_dc_n = 600$; % [V] $I_n = 450; %[A]$

Udc = 600; % [V] P_max = 200000; % [W]

Converter Efficiency for different f_{sw} & $cos(\varphi)$

Power Electronic Efficiency **Example 19 Yournal Section**
• Mostly depending on the
example 19 You the Matio
Soutput voltage

ratio

Output voltage 1 DC link voltage

- wide operating range $\frac{0.27}{0.2}$
- a constant, e.g. 0.97

